entry_point
stringlengths
1
65
original_triton_code
stringlengths
4.5k
619k
python_code
stringlengths
208
60.9k
triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
sequencelengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
pytorch_code
stringlengths
200
4.05k
SpeakNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qz/cqza6p5fjiie2hfiu5dfjqqugrnzziwuwxzlhzy2aa7khopxjbym.py # Topologically Sorted Source Nodes: [out_distr], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out_distr => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/v4/cv4nyn2kde7dd2c53ddahw4vtxyldln6pqt62jrliqindkf3sj5m.py # Topologically Sorted Source Nodes: [out_distr], Original ATen: [aten._softmax] # Source node to ATen node mapping: # out_distr => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_distr], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [out_distr], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) del buf1 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn import torch.optim def xavier_init(module): """ Xavier initializer for module parameters. """ for parameter in module.parameters(): if len(parameter.data.shape) == 1: parameter.data.fill_(0) else: fan_in = parameter.data.size(0) fan_out = parameter.data.size(1) parameter.data.normal_(0, math.sqrt(2 / (fan_in + fan_out))) class SpeakNet(nn.Module): """ Module for speaking a token based on current state. In ``forward``: Return a probability distribution of utterances of tokens. """ def __init__(self, state_size, out_size): super().__init__() self.net = nn.Linear(state_size, out_size) self.softmax = nn.Softmax() xavier_init(self) def forward(self, state): out_distr = self.softmax(self.net(state)) return out_distr def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2 def xavier_init(module): """ Xavier initializer for module parameters. """ for parameter in module.parameters(): if len(parameter.data.shape) == 1: parameter.data.fill_(0) else: fan_in = parameter.data.size(0) fan_out = parameter.data.size(1) parameter.data.normal_(0, math.sqrt(2 / (fan_in + fan_out))) class SpeakNetNew(nn.Module): """ Module for speaking a token based on current state. In ``forward``: Return a probability distribution of utterances of tokens. """ def __init__(self, state_size, out_size): super().__init__() self.net = nn.Linear(state_size, out_size) self.softmax = nn.Softmax() xavier_init(self) def forward(self, input_0): primals_1 = self.net.weight primals_2 = self.net.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
aaronmueller/discourse-hw3
SpeakNet
false
1,350
[ "MIT" ]
0
93313a2ce83fde9480914384be52ec9160e967af
https://github.com/aaronmueller/discourse-hw3/tree/93313a2ce83fde9480914384be52ec9160e967af
import math import torch import torch.nn as nn import torch.optim def xavier_init(module): """ Xavier initializer for module parameters. """ for parameter in module.parameters(): if len(parameter.data.shape) == 1: parameter.data.fill_(0) else: fan_in = parameter.data.size(0) fan_out = parameter.data.size(1) parameter.data.normal_(0, math.sqrt(2 / (fan_in + fan_out))) class Model(nn.Module): """ Module for speaking a token based on current state. In ``forward``: Return a probability distribution of utterances of tokens. """ def __init__(self, state_size, out_size): super().__init__() self.net = nn.Linear(state_size, out_size) self.softmax = nn.Softmax() xavier_init(self) def forward(self, state): out_distr = self.softmax(self.net(state)) return out_distr def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
StochasticPool2D
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/4k/c4kdwkpn25ze2sy4jo664gaosro3ydp6dglkpzbrwrf3i4lxuy5w.py # Topologically Sorted Source Nodes: [activ, sum_1, prob, setitem, sum_2, truediv], Original ATen: [aten.relu, aten.sum, aten.div, aten.lift_fresh, aten.index_put] # Source node to ATen node mapping: # activ => relu # prob => div # setitem => full_default, index_put # sum_1 => sum_1 # sum_2 => sum_2 # truediv => div_1 # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%relu, [-1]), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%relu, %unsqueeze), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%div, [%ne], %full_default), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%index_put, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%index_put, %sum_2), kwargs = {}) triton_per_fused_div_index_put_lift_fresh_relu_sum_0 = async_compile.triton('triton_per_fused_div_index_put_lift_fresh_relu_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_index_put_lift_fresh_relu_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_index_put_lift_fresh_relu_sum_0(in_ptr0, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r3 = rindex x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1) + (4*(r3 // 3)) + (16*x2) + (r3 % 3)), rmask & xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tmp2 / tmp6 tmp8 = tmp7 != tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp8, tmp9, tmp7) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(rmask & xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr3 + (r3 + (9*x4)), tmp15, rmask & xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4n/c4nzadr7rtbzpynqv2cuars3hvej42ujtc4rgccqcernmsyu53is.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.gather, aten.sum] # Source node to ATen node mapping: # out => gather # out_1 => sum_3 # Graph fragment: # %gather : [num_users=1] = call_function[target=torch.ops.aten.gather.default](args = (%view, -1, %unsqueeze_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%gather, [-1]), kwargs = {}) triton_poi_fused_gather_sum_1 = async_compile.triton('triton_poi_fused_gather_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_gather_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_gather_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert(((0 <= tmp4) & (tmp4 < 9)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 9") tmp6 = tl.load(in_ptr1 + (x0 + (4*x1) + (4*((tmp4 // 3) % 3)) + (16*x2) + (tmp4 % 3)), xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 2, 2, 9), (144, 36, 18, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [activ, sum_1, prob, setitem, sum_2, truediv], Original ATen: [aten.relu, aten.sum, aten.div, aten.lift_fresh, aten.index_put] stream0 = get_raw_stream(0) triton_per_fused_div_index_put_lift_fresh_relu_sum_0.run(arg0_1, buf3, 64, 9, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [multinomial], Original ATen: [aten.multinomial] buf4 = torch.ops.aten.multinomial.default(reinterpret_tensor(buf3, (64, 9), (9, 1), 0), 1, True) del buf3 buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.gather, aten.sum] triton_poi_fused_gather_sum_1.run(buf5, arg0_1, buf6, 64, grid=grid(64), stream=stream0) del arg0_1 del buf5 return (buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class StochasticPool2D(nn.Module): """ Args: kernel_size : size of the pooling kernel stride : pool stride Note: valid padding is implemented """ def __init__(self, kernel_size=3, stride=1, training=True): super(StochasticPool2D, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.training = training def forward(self, x, training=True): x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)) activ = F.relu(x) prob = torch.div(activ, activ.sum(dim=-1).unsqueeze_(-1)) prob[prob != prob] = 1 idx = torch.distributions.categorical.Categorical(prob).sample() out = x.gather(-1, idx.unsqueeze(-1)) out = out.sum(dim=-1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_div_index_put_lift_fresh_relu_sum_0(in_ptr0, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 rnumel = 9 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r3 = rindex x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1 + 4 * (r3 // 3) + 16 * x2 + r3 % 3), rmask & xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(rmask & xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tmp2 / tmp6 tmp8 = tmp7 != tmp7 tmp9 = 1.0 tmp10 = tl.where(tmp8, tmp9, tmp7) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.where(rmask & xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tmp15 = tmp10 / tmp14 tl.store(out_ptr3 + (r3 + 9 * x4), tmp15, rmask & xmask) @triton.jit def triton_poi_fused_gather_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.full([XBLOCK], 9, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 9) | ~xmask, 'index out of bounds: 0 <= tmp4 < 9') tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1 + 4 * (tmp4 // 3 % 3) + 16 * x2 + tmp4 % 3), xmask) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 2, 2, 9), (144, 36, 18, 9, 1), torch.float32) get_raw_stream(0) triton_per_fused_div_index_put_lift_fresh_relu_sum_0[grid(64)](arg0_1, buf3, 64, 9, XBLOCK=1, num_warps=2, num_stages=1) buf4 = torch.ops.aten.multinomial.default(reinterpret_tensor(buf3, (64, 9), (9, 1), 0), 1, True) del buf3 buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_gather_sum_1[grid(64)](buf5, arg0_1, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf5 return buf6, class StochasticPool2DNew(nn.Module): """ Args: kernel_size : size of the pooling kernel stride : pool stride Note: valid padding is implemented """ def __init__(self, kernel_size=3, stride=1, training=True): super(StochasticPool2DNew, self).__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.training = training def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
abhishek30-ml/Multiple-Deep-Network-Learning
StochasticPool2D
false
1,351
[ "MIT" ]
0
adf705c004cc8a1e517eeed99e7030acb476dfd9
https://github.com/abhishek30-ml/Multiple-Deep-Network-Learning/tree/adf705c004cc8a1e517eeed99e7030acb476dfd9
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.utils import _pair class Model(nn.Module): """ Args: kernel_size : size of the pooling kernel stride : pool stride Note: valid padding is implemented """ def __init__(self, kernel_size=3, stride=1, training=True): super().__init__() self.k = _pair(kernel_size) self.stride = _pair(stride) self.training = training def forward(self, x, training=True): x = x.unfold(2, self.k[0], self.stride[0]).unfold(3, self.k[1], self.stride[1]) x = x.contiguous().view(x.size()[:4] + (-1,)) activ = F.relu(x) prob = torch.div(activ, activ.sum(dim=-1).unsqueeze_(-1)) prob[prob != prob] = 1 idx = torch.distributions.categorical.Categorical(prob).sample() out = x.gather(-1, idx.unsqueeze(-1)) out = out.sum(dim=-1) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AvgPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r5/cr54iojraym6n7yh7cyg2qkslrdceq5no4rvsdr7qdqm4e7valap.py # Topologically Sorted Source Nodes: [sum_1, kernel_out], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # kernel_out => mul # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 0.0625), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 0.0625 tmp6 = tmp4 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, kernel_out], Original ATen: [aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(buf1, arg0_1, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.nn import Module import torch import torch as th class AvgPool2d(Module): """ This class is the beginning of an exact python port of the torch.nn.AvgPool2d module. Because PySyft cannot hook into layers which are implemented in C++, our special functionalities (such as encrypted computation) do not work with torch.nn.AvgPool2d and so we must have python ports available for all layer types which we seek to use. Note that this module has been tested to ensure that it outputs the exact output values that the main module outputs in the same order that the main module does. However, there is often some rounding error of unknown origin, usually less than 1e-6 in magnitude. This module has not yet been tested with GPUs but should work out of the box. """ def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): """For information on the constructor arguments, please see PyTorch's documentation in torch.nn.AvgPool2d""" super().__init__() assert padding == 0 assert ceil_mode is False assert count_include_pad is True assert divisor_override is None if stride is None: stride = kernel_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode self.count_include_pad = count_include_pad self.divisor_override = divisor_override self._one_over_kernel_size = 1 / (self.kernel_size * self.kernel_size) def forward(self, data): batch_size, out_channels, rows, cols = data.shape kernel_results = [] for i in range(0, rows - self.kernel_size + 1, self.stride): for j in range(0, cols - self.kernel_size + 1, self.stride): kernel_out = data[:, :, i:i + self.kernel_size, j:j + self. kernel_size].sum((2, 3)) * self._one_over_kernel_size kernel_results.append(kernel_out.unsqueeze(2)) pred = th.cat(kernel_results, axis=2).view(batch_size, out_channels, int(rows / self.stride), int(cols / self.stride)) return pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'kernel_size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 0.0625 tmp6 = tmp4 * tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mul_sum_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), class AvgPool2dNew(Module): """ This class is the beginning of an exact python port of the torch.nn.AvgPool2d module. Because PySyft cannot hook into layers which are implemented in C++, our special functionalities (such as encrypted computation) do not work with torch.nn.AvgPool2d and so we must have python ports available for all layer types which we seek to use. Note that this module has been tested to ensure that it outputs the exact output values that the main module outputs in the same order that the main module does. However, there is often some rounding error of unknown origin, usually less than 1e-6 in magnitude. This module has not yet been tested with GPUs but should work out of the box. """ def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): """For information on the constructor arguments, please see PyTorch's documentation in torch.nn.AvgPool2d""" super().__init__() assert padding == 0 assert ceil_mode is False assert count_include_pad is True assert divisor_override is None if stride is None: stride = kernel_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode self.count_include_pad = count_include_pad self.divisor_override = divisor_override self._one_over_kernel_size = 1 / (self.kernel_size * self.kernel_size) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
abogaziah/PySyft
AvgPool2d
false
1,352
[ "Apache-2.0" ]
0
812dc6f350261793c67a928786fc081158f22a76
https://github.com/abogaziah/PySyft/tree/812dc6f350261793c67a928786fc081158f22a76
from torch.nn import Module import torch import torch as th class Model(Module): """ This class is the beginning of an exact python port of the torch.nn.AvgPool2d module. Because PySyft cannot hook into layers which are implemented in C++, our special functionalities (such as encrypted computation) do not work with torch.nn.AvgPool2d and so we must have python ports available for all layer types which we seek to use. Note that this module has been tested to ensure that it outputs the exact output values that the main module outputs in the same order that the main module does. However, there is often some rounding error of unknown origin, usually less than 1e-6 in magnitude. This module has not yet been tested with GPUs but should work out of the box. """ def __init__(self, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None): """For information on the constructor arguments, please see PyTorch's documentation in torch.nn.AvgPool2d""" super().__init__() assert padding == 0 assert ceil_mode is False assert count_include_pad is True assert divisor_override is None if stride is None: stride = kernel_size self.kernel_size = kernel_size self.stride = stride self.padding = padding self.ceil_mode = ceil_mode self.count_include_pad = count_include_pad self.divisor_override = divisor_override self._one_over_kernel_size = 1 / (self.kernel_size * self.kernel_size) def forward(self, data): batch_size, out_channels, rows, cols = data.shape kernel_results = [] for i in range(0, rows - self.kernel_size + 1, self.stride): for j in range(0, cols - self.kernel_size + 1, self.stride): kernel_out = data[:, :, i:i + self.kernel_size, j:j + self. kernel_size].sum((2, 3)) * self._one_over_kernel_size kernel_results.append(kernel_out.unsqueeze(2)) pred = th.cat(kernel_results, axis=2).view(batch_size, out_channels, int(rows / self.stride), int(cols / self.stride)) return pred def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4e/c4efs56ymyev6yow4ruutakn3po5nni7rvtifmzxqreckdzecoje.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out_1 => convolution # out_2 => relu_1 # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yl/cyl57twtgf3lzd5sst7snomgtzysir6mpvrzx6jm7k4lxpcq6sru.py # Topologically Sorted Source Nodes: [out_3, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add # out_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [out_3, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf4, primals_5, primals_1, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf4, primals_2, primals_4, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): out = nn.ReLU()(x) out = self.conv1(out) out = nn.ReLU()(out) out = self.conv2(out) return out + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_add_convolution_2[grid(256)](buf4, primals_5, primals_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf4, primals_2, primals_4, buf0, buf2 class ResidualBlockNew(nn.Module): def __init__(self, in_channels): super(ResidualBlockNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
abhay97ps/visual-control-ppo-procgen
ResidualBlock
false
1,353
[ "MIT" ]
0
765fe1ddb289d384abddc4df8eb865379c8da76a
https://github.com/abhay97ps/visual-control-ppo-procgen/tree/765fe1ddb289d384abddc4df8eb865379c8da76a
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): out = nn.ReLU()(x) out = self.conv1(out) out = nn.ReLU()(out) out = self.conv2(out) return out + x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Attention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ay/caylcn737p2wwjm32cacv462xdgdut6ho32ptwxfu34t3i2tr75z.py # Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.clone] # Source node to ATen node mapping: # dot_products => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/eh/ceheq5ns3kg3p6tebb47gdy475c5v4keklf245jl4fgbpvugznm5.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out=buf1) del arg1_1 buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4) del arg2_1 del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_key': 4, 'dropout_ratio': 0.5, 'causal': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), out =buf1) del arg1_1 buf2 = buf0 del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused__softmax_2[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf4 ) del arg2_1 del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class AttentionNew(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
abhinavrangarajan/genienlp
Attention
false
1,354
[ "BSD-3-Clause" ]
0
ba121274b3365739ce9e5a8facc9a2904149b9c7
https://github.com/abhinavrangarajan/genienlp/tree/ba121274b3365739ce9e5a8facc9a2904149b9c7
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class Model(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4, 0.5, 4]
LinearAttentionBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zi/czioyfiql36jvbru3amu3iggyuvnn5c4pypwuaiss36muc2jqtqb.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rk/crk6tqxeouzrr5vbsuemrbbpt3jqeikmzcdef3pyikyh2ikt2ihc.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=2] = call_function[target=torch.ops.aten.amax.default](args = (%view, [2], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ox/coxwjbkt5chrwptdbmhtqllofnovyakhaac5lt3ztywtpnzfzwly.py # Topologically Sorted Source Nodes: [g_1], Original ATen: [aten.sum] # Source node to ATen node mapping: # g_1 => sum_2 # Graph fragment: # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_2, [2]), kwargs = {}) triton_per_fused_sum_2 = async_compile.triton('triton_per_fused_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (16*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (r2 + (16*x3)), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp7 = tmp5 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tl.store(out_ptr0 + (x3), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [c], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf1, buf2, buf3, 4, 16, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [g_1], Original ATen: [aten.sum] triton_per_fused_sum_2.run(buf1, buf2, buf3, primals_1, buf4, 16, 16, grid=grid(16), stream=stream0) return (buf1, buf4, primals_1, primals_3, buf0, buf1, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class LinearAttentionBlock(nn.Module): def __init__(self, in_features): super(LinearAttentionBlock, self).__init__() self.op = nn.Conv2d(in_channels=in_features, out_channels=1, kernel_size=1, padding=0, bias=False) def forward(self, l, g): N, C, W, H = l.size() c = self.op(l + g) a = F.softmax(c.view(N, 1, -1), dim=2).view(N, 1, W, H) g = torch.mul(a.expand_as(l), l) g = g.view(N, C, -1).sum(dim=2) return c.view(N, 1, W, H), g def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) @triton.jit def triton_per_fused_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x1 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 16 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (r2 + 16 * x3), xmask, other=0.0) tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp7 = tmp5 * tmp6 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tl.store(out_ptr0 + x3, tmp11, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) buf3 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) triton_per_fused__softmax_1[grid(4)](buf1, buf2, buf3, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_per_fused_sum_2[grid(16)](buf1, buf2, buf3, primals_1, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) return buf1, buf4, primals_1, primals_3, buf0, buf1, buf2, buf3 class LinearAttentionBlockNew(nn.Module): def __init__(self, in_features): super(LinearAttentionBlockNew, self).__init__() self.op = nn.Conv2d(in_channels=in_features, out_channels=1, kernel_size=1, padding=0, bias=False) def forward(self, input_0, input_1): primals_3 = self.op.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
abhay97ps/visual-control-ppo-procgen
LinearAttentionBlock
false
1,355
[ "MIT" ]
0
765fe1ddb289d384abddc4df8eb865379c8da76a
https://github.com/abhay97ps/visual-control-ppo-procgen/tree/765fe1ddb289d384abddc4df8eb865379c8da76a
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, in_features): super().__init__() self.op = nn.Conv2d(in_channels=in_features, out_channels=1, kernel_size=1, padding=0, bias=False) def forward(self, l, g): N, C, W, H = l.size() c = self.op(l + g) a = F.softmax(c.view(N, 1, -1), dim=2).view(N, 1, W, H) g = torch.mul(a.expand_as(l), l) g = g.view(N, C, -1).sum(dim=2) return c.view(N, 1, W, H), g def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
SirenLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py # Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin] # Source node to ATen node mapping: # mul => mul # sin => sin # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 30), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {}) triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 30.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_mul_sin_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np from torch import nn class SirenLayer(nn.Module): def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False): super().__init__() self.in_f = in_f self.w0 = w0 self.linear = nn.Linear(in_f, out_f) self.is_first = is_first self.is_last = is_last self.init_weights() def init_weights(self): b = 1 / self.in_f if self.is_first else np.sqrt(6 / self.in_f ) / self.w0 with torch.no_grad(): self.linear.weight.uniform_(-b, b) def forward(self, x, **kwargs): x = self.linear(x) return x if self.is_last else torch.sin(self.w0 * x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_f': 4, 'out_f': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 30.0 tmp2 = tmp0 * tmp1 tmp3 = tl_math.sin(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sin_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0 class SirenLayerNew(nn.Module): def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False): super().__init__() self.in_f = in_f self.w0 = w0 self.linear = nn.Linear(in_f, out_f) self.is_first = is_first self.is_last = is_last self.init_weights() def init_weights(self): b = 1 / self.in_f if self.is_first else np.sqrt(6 / self.in_f ) / self.w0 with torch.no_grad(): self.linear.weight.uniform_(-b, b) def forward(self, input_0): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
abrilcf/pixel-nerf
SirenLayer
false
1,356
[ "BSD-2-Clause" ]
0
9a6a8ab6c39ec01d52df3bf4c03830f7162cc679
https://github.com/abrilcf/pixel-nerf/tree/9a6a8ab6c39ec01d52df3bf4c03830f7162cc679
import torch import numpy as np from torch import nn class Model(nn.Module): def __init__(self, in_f, out_f, w0=30, is_first=False, is_last=False): super().__init__() self.in_f = in_f self.w0 = w0 self.linear = nn.Linear(in_f, out_f) self.is_first = is_first self.is_last = is_last self.init_weights() def init_weights(self): b = 1 / self.in_f if self.is_first else np.sqrt(6 / self.in_f ) / self.w0 with torch.no_grad(): self.linear.weight.uniform_(-b, b) def forward(self, x, **kwargs): x = self.linear(x) return x if self.is_last else torch.sin(self.w0 * x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ContextGating
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3u/c3ub52l73zdv4klgqzgxmtzrzxvztuyczv2jksnvrjr7erq7guxd.py # Topologically Sorted Source Nodes: [lin], Original ATen: [aten.clone] # Source node to ATen node mapping: # lin => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/as/cass36wyo7xsspzt4glzlehygszyrgb5htyg64cyq42hvtgrwapt.py # Topologically Sorted Source Nodes: [sig, res], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # res => mul # sig => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%permute_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp2 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + (x2 + (16*y3)), tmp5, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [lin], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [lin], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sig, res], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(primals_1, buf1, primals_3, buf2, 16, 16, grid=grid(16, 16), stream=stream0) return (buf2, primals_1, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class ContextGating(nn.Module): def __init__(self, input_num): super(ContextGating, self).__init__() self.sigmoid = nn.Sigmoid() self.linear = nn.Linear(input_num, input_num) def forward(self, x): lin = self.linear(x.permute(0, 2, 3, 1)) lin = lin.permute(0, 3, 1, 2) sig = self.sigmoid(lin) res = x * sig return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_num': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp2 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp0 * tmp4 tl.store(out_ptr0 + (x2 + 16 * y3), tmp5, xmask & ymask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(16, 16)](primals_1, buf1, primals_3, buf2, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) return buf2, primals_1, primals_3, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf1 class ContextGatingNew(nn.Module): def __init__(self, input_num): super(ContextGatingNew, self).__init__() self.sigmoid = nn.Sigmoid() self.linear = nn.Linear(input_num, input_num) def forward(self, input_0): primals_2 = self.linear.weight primals_3 = self.linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
aagnone3/dc19t2
ContextGating
false
1,357
[ "Apache-2.0" ]
0
cc7baf2a8fe73d28c224f0bf68b5355efd96c24f
https://github.com/aagnone3/dc19t2/tree/cc7baf2a8fe73d28c224f0bf68b5355efd96c24f
import torch from torch import nn class Model(nn.Module): def __init__(self, input_num): super().__init__() self.sigmoid = nn.Sigmoid() self.linear = nn.Linear(input_num, input_num) def forward(self, x): lin = self.linear(x.permute(0, 2, 3, 1)) lin = lin.permute(0, 3, 1, 2) sig = self.sigmoid(lin) res = x * sig return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MultiHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_3, [-1], True), kwargs = {}) # %sub_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_3, %amax_default_3), kwargs = {}) # %div_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_3, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_3,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mk/cmkim2hc4ksxhatli3y5cu7hoqofxcbzqrrxvnlhmswdt4cgww25.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %bmm_3, %bmm_5, %bmm_7], -1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6) buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [dot_products_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10) buf11 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [dot_products_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.bmm] extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14) buf15 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [dot_products_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf15, buf16, 64, grid=grid(64), stream=stream0) buf17 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf16, buf17, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_7], Original ATen: [aten.bmm] extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18) buf19 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf6, buf10, buf14, buf18, buf19, 64, grid=grid(64), stream=stream0) del buf10 del buf14 del buf18 del buf6 return (buf19, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), buf5, buf9, buf13, buf17, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class MultiHead(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, query, key, value, padding=None): query, key, value = self.wq(query), self.wk(key), self.wv(value) query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key, value)) return torch.cat([self.attention(q, k, v, padding=padding) for q, k, v in zip(query, key, value)], -1) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'d_key': 4, 'd_value': 4, 'n_heads': 4, 'dropout_ratio': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn from torch.nn import functional as F import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + x1, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + x1, tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_5, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6) buf7 = buf4 del buf4 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_1[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10) buf11 = buf8 del buf8 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = buf11 del buf11 triton_poi_fused__softmax_1[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14) buf15 = buf12 del buf12 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf15, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) buf17 = buf15 del buf15 triton_poi_fused__softmax_1[grid(64)](buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18) buf19 = buf16 del buf16 triton_poi_fused_cat_2[grid(64)](buf6, buf10, buf14, buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf10 del buf14 del buf18 del buf6 return buf19, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_5, (16, 4), (4, 1), 0 ), buf5, buf9, buf13, buf17, reinterpret_tensor(buf2, (4, 1, 4), ( 16, 1, 4), 3), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3 ), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3 ), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2 ), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2 ), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2 ), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1 ), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1 ), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1 ), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0) def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class MultiHeadNew(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, input_0, input_1, input_2): primals_2 = self.wq.weight primals_4 = self.wk.weight primals_6 = self.wv.weight primals_1 = input_0 primals_3 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
abhinavrangarajan/genienlp
MultiHead
false
1,358
[ "BSD-3-Clause" ]
0
ba121274b3365739ce9e5a8facc9a2904149b9c7
https://github.com/abhinavrangarajan/genienlp/tree/ba121274b3365739ce9e5a8facc9a2904149b9c7
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class Model(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, query, key, value, padding=None): query, key, value = self.wq(query), self.wk(key), self.wv(value) query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key, value)) return torch.cat([self.attention(q, k, v, padding=padding) for q, k, v in zip(query, key, value)], -1) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4, 4, 4, 0.5]
Net1
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/lg/clgnkdclmu24adiu7cbx7ybrhsind74uypy3cvuihzwv4hxzyjlf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 3844) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/s6/cs6oowloxihsa2iqf677aggor4dgxx3q4fq7upsksc3m7rf4j6xb.py # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_2 => convolution_1 # x_3 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 921600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 3600) % 64 x0 = xindex % 3600 x4 = (xindex // 3600) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + (3616*x4)), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6v/c6votzbefolf4fzzmnc4okxekuuh37ajyccnmrjo4ze3cvigljbw.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_4 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = (xindex // 30) % 30 x2 = (xindex // 900) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + (2*x0) + (120*x1) + (3616*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 492032, grid=grid(492032), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_5, buf3, 921600, grid=grid(921600), stream=stream0) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 230400, grid=grid(230400), stream=stream0) return (reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0), primals_1, primals_3, primals_4, buf1, buf3, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 1, 3, 3), (9, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1, 64, 64), (4096, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data import torch.utils.data.distributed class Net1(nn.Module): def __init__(self): super(Net1, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3844 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 3600 % 64 x0 = xindex % 3600 x4 = xindex // 3600 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x0 + 3616 * x4), tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 230400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x1 = xindex // 30 % 30 x2 = xindex // 900 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x1 + 3616 * x2), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (32, 1, 3, 3), (9, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (64, 32, 3, 3), (288, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 62, 62), (123008, 3844, 62, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(492032)](buf1, primals_2, 492032, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 60, 60), (230400, 3600, 60, 1)) buf3 = empty_strided_cuda((4, 64, 60, 60), (231424, 3616, 60, 1), torch.float32) triton_poi_fused_convolution_relu_1[grid(921600)](buf2, primals_5, buf3, 921600, XBLOCK=1024, num_warps=4, num_stages=1) del buf2 del primals_5 buf4 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.int8) buf5 = empty_strided_cuda((4, 64, 30, 30), (57600, 900, 30, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_2[grid(230400)](buf3, buf4, buf5, 230400, XBLOCK=512, num_warps=8, num_stages=1) return reinterpret_tensor(buf5, (4, 57600), (57600, 1), 0 ), primals_1, primals_3, primals_4, buf1, buf3, buf4 class Net1New(nn.Module): def __init__(self): super(Net1New, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
abhinavs95/deep-learning-containers
Net1
false
1,359
[ "Apache-2.0" ]
0
bd1cb70a8cd1cbb5d39bc825fc7ab9f53ebf9f89
https://github.com/abhinavs95/deep-learning-containers/tree/bd1cb70a8cd1cbb5d39bc825fc7ab9f53ebf9f89
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data import torch.utils.data.distributed class Model(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(1, 32, 3, 1) self.conv2 = nn.Conv2d(32, 64, 3, 1) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x, 2) x = torch.flatten(x, 1) return x def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return []
WeightedL2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ks/cks6eiptfmzxwlauzfz6ypjfzwqoiwmj7rqm6qnlxypds7qbkwp3.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, sum_1], Original ATen: [aten.sub, aten.pow, aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # pow_1 => pow_1 # sub => sub # sum_1 => sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) triton_per_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_mul_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tl.load(in_ptr2 + (r0), None) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, mul, sum_1], Original ATen: [aten.sub, aten.pow, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_pow_sub_sum_0.run(arg2_1, arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WeightedL2(nn.Module): def __init__(self): super(WeightedL2, self).__init__() def forward(self, x, target, w): return torch.sum(w * (x - target) ** 2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tl.load(in_ptr2 + r0, None) tmp3 = tmp1 - tmp2 tmp4 = tmp3 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp8, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_mul_pow_sub_sum_0[grid(1)](arg2_1, arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf0, class WeightedL2New(nn.Module): def __init__(self): super(WeightedL2New, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
acrosson/dl
WeightedL2
false
1,360
[ "MIT" ]
0
94e68533b38f53f09e9bef460ba96fa389fc8eb4
https://github.com/acrosson/dl/tree/94e68533b38f53f09e9bef460ba96fa389fc8eb4
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, target, w): return torch.sum(w * (x - target) ** 2) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
CustomGruCell
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3o/c3o3rsqvwtwazhhofhyvvpsx3gxpac2vdmskpikbppasjhmmc5gs.py # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # hy => add_3 # inputgate => sigmoid_1 # mul => mul # mul_1 => mul_1 # newgate => tanh # resetgate => sigmoid # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %view_7), kwargs = {}) # %sigmoid_1 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %view_11), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, %mul), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_2,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_6, %tanh), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_1, %sub), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, %mul_1), kwargs = {}) triton_poi_fused_add_mul_sigmoid_sub_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sub_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sub_tanh_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 11, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + (x2), xmask) tmp9 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + (x2), xmask) tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr6 + (x2), xmask) tmp17 = tl.load(in_ptr7 + (x2), xmask) tmp21 = tl.load(in_ptr8 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.sigmoid(tmp14) tmp18 = tmp7 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp22 = tmp21 - tmp20 tmp23 = tmp15 * tmp22 tmp24 = tmp20 + tmp23 tl.store(in_out_ptr0 + (x2), tmp7, xmask) tl.store(in_out_ptr1 + (x2), tmp15, xmask) tl.store(out_ptr0 + (x2), tmp24, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [i_n], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_11 del primals_12 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_n], Original ATen: [aten.addmm] extern_kernels.addmm(primals_14, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_13 del primals_14 buf6 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf7 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, resetgate, add_1, inputgate, mul, add_2, newgate, sub, mul_1, hy], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0.run(buf6, buf7, primals_2, buf1, primals_5, primals_8, buf3, primals_10, buf4, buf5, primals_6, buf8, 256, grid=grid(256), stream=stream0) del buf1 del buf3 del primals_10 del primals_2 del primals_5 del primals_8 return (buf8, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf4, buf5, buf6, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class CustomGruCell(nn.Module): """ A forward only GRU cell. Input should be: (sequence length x batch size x input_size). The output is the output of the final forward call. It's not clear if it would be possible to use the output from each cell in a Plan because of the assumptions of 2D tensors in backprop. """ def __init__(self, input_size, hidden_size, bias=True): super(CustomGruCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc_ir = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hr = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_iz = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hz = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_in = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hn = nn.Linear(hidden_size, hidden_size, bias=bias) self.init_parameters() def init_parameters(self): std = 1.0 / np.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, x, h): i_r = self.fc_ir(x) h_r = self.fc_hr(h) i_z = self.fc_iz(x) h_z = self.fc_hz(h) i_n = self.fc_in(x) h_n = self.fc_hn(h) resetgate = (i_r + h_r).sigmoid() inputgate = (i_z + h_z).sigmoid() newgate = (i_n + resetgate * h_n).tanh() hy = newgate + inputgate * (h - newgate) return hy def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_sub_tanh_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_out_ptr1 + x2, xmask) tmp9 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr4 + x2, xmask) tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr6 + x2, xmask) tmp17 = tl.load(in_ptr7 + x2, xmask) tmp21 = tl.load(in_ptr8 + x2, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp7 = tl.sigmoid(tmp6) tmp10 = tmp8 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = tl.sigmoid(tmp14) tmp18 = tmp7 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = libdevice.tanh(tmp19) tmp22 = tmp21 - tmp20 tmp23 = tmp15 * tmp22 tmp24 = tmp20 + tmp23 tl.store(in_out_ptr0 + x2, tmp7, xmask) tl.store(in_out_ptr1 + x2, tmp15, xmask) tl.store(out_ptr0 + x2, tmp24, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf3) del primals_9 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_11 del primals_12 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_14, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_13 del primals_14 buf6 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf7 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_sub_tanh_0[grid(256)](buf6, buf7, primals_2, buf1, primals_5, primals_8, buf3, primals_10, buf4, buf5, primals_6, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del buf3 del primals_10 del primals_2 del primals_5 del primals_8 return buf8, primals_6, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf4, buf5, buf6, buf7 class CustomGruCellNew(nn.Module): """ A forward only GRU cell. Input should be: (sequence length x batch size x input_size). The output is the output of the final forward call. It's not clear if it would be possible to use the output from each cell in a Plan because of the assumptions of 2D tensors in backprop. """ def __init__(self, input_size, hidden_size, bias=True): super(CustomGruCellNew, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc_ir = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hr = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_iz = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hz = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_in = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hn = nn.Linear(hidden_size, hidden_size, bias=bias) self.init_parameters() def init_parameters(self): std = 1.0 / np.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, input_0, input_1): primals_1 = self.fc_ir.weight primals_2 = self.fc_ir.bias primals_4 = self.fc_hr.weight primals_5 = self.fc_hr.bias primals_7 = self.fc_iz.weight primals_8 = self.fc_iz.bias primals_9 = self.fc_hz.weight primals_10 = self.fc_hz.bias primals_11 = self.fc_in.weight primals_12 = self.fc_in.bias primals_13 = self.fc_hn.weight primals_14 = self.fc_hn.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
abogaziah/PySyft
CustomGruCell
false
1,361
[ "Apache-2.0" ]
0
812dc6f350261793c67a928786fc081158f22a76
https://github.com/abogaziah/PySyft/tree/812dc6f350261793c67a928786fc081158f22a76
import torch import numpy as np import torch.nn as nn class Model(nn.Module): """ A forward only GRU cell. Input should be: (sequence length x batch size x input_size). The output is the output of the final forward call. It's not clear if it would be possible to use the output from each cell in a Plan because of the assumptions of 2D tensors in backprop. """ def __init__(self, input_size, hidden_size, bias=True): super().__init__() self.input_size = input_size self.hidden_size = hidden_size self.fc_ir = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hr = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_iz = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hz = nn.Linear(hidden_size, hidden_size, bias=bias) self.fc_in = nn.Linear(input_size, hidden_size, bias=bias) self.fc_hn = nn.Linear(hidden_size, hidden_size, bias=bias) self.init_parameters() def init_parameters(self): std = 1.0 / np.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, x, h): i_r = self.fc_ir(x) h_r = self.fc_hr(h) i_z = self.fc_iz(x) h_z = self.fc_hz(h) i_n = self.fc_in(x) h_n = self.fc_hn(h) resetgate = (i_r + h_r).sigmoid() inputgate = (i_z + h_z).sigmoid() newgate = (i_n + resetgate * h_n).tanh() hy = newgate + inputgate * (h - newgate) return hy def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ImpalaBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/o7/co7yez5qzvz5ywybvk4vlzzmoafzrb3epifmaj33nsuv2yxwmypv.py # Topologically Sorted Source Nodes: [x_1, out], Original ATen: [aten.max_pool2d_with_indices, aten.relu] # Source node to ATen node mapping: # out => relu # x_1 => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_relu_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x4 = (xindex // 2) x3 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x4)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x4)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x4)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x4)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x4)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x4)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x4)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x4)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x4)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + (x3), tmp51, xmask) tl.store(out_ptr1 + (x3), tmp76, xmask) tl.store(out_ptr2 + (x3), tmp78, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qv/cqvxbxuijiou474kzt3mgl6qbvm5mxnfuihqzhmr6kuqzjxfuhb4.py # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out_1 => convolution_1 # out_2 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bu/cbu6uxh3aqhltx43xtnaawqn5gfieybp3xlbr52mddgu2iyazdwt.py # Topologically Sorted Source Nodes: [out_3, x_2, out_4], Original ATen: [aten.convolution, aten.add, aten.relu] # Source node to ATen node mapping: # out_3 => convolution_2 # out_4 => relu_2 # x_2 => add # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) triton_poi_fused_add_convolution_relu_3 = async_compile.triton('triton_poi_fused_add_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xg/cxgrg2abpwtygxb5gswaupodpqah65wppykemsbre6vd3xobmjvc.py # Topologically Sorted Source Nodes: [out_3, x_2, out_7, x_3], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # out_3 => convolution_2 # out_7 => convolution_4 # x_2 => add # x_3 => add_1 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %getitem), kwargs = {}) # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_4, %add), kwargs = {}) triton_poi_fused_add_convolution_4 = async_compile.triton('triton_poi_fused_add_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1, out], Original ATen: [aten.max_pool2d_with_indices, aten.relu] triton_poi_fused_max_pool2d_with_indices_relu_1.run(buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 2, 2), (16, 4, 2, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf6, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 2, 2), (16, 4, 2, 1)) buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [out_3, x_2, out_4], Original ATen: [aten.convolution, aten.add, aten.relu] triton_poi_fused_add_convolution_relu_3.run(buf7, primals_7, buf2, buf8, 64, grid=grid(64), stream=stream0) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 2, 2), (16, 4, 2, 1)) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf10, primals_9, 64, grid=grid(64), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_7], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 2, 2), (16, 4, 2, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [out_3, x_2, out_7, x_3], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_4.run(buf12, primals_11, buf7, primals_7, buf2, 64, grid=grid(64), stream=stream0) del buf2 del buf7 del primals_11 del primals_7 return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf4, buf6, buf8, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): out = nn.ReLU()(x) out = self.conv1(out) out = nn.ReLU()(out) out = self.conv2(out) return out + x class ImpalaBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ImpalaBlock, self).__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1) self.res1 = ResidualBlock(out_channels) self.res2 = ResidualBlock(out_channels) def forward(self, x): x = self.conv(x) x = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x) x = self.res1(x) x = self.res2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x4 = xindex // 2 x3 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x4), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x4), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x4), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x4), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x4), tmp33 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x4), tmp36 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x4), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x4), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x4), tmp49 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.full([1], 0, tl.int32) tmp78 = triton_helpers.maximum(tmp77, tmp51) tl.store(out_ptr0 + x3, tmp51, xmask) tl.store(out_ptr1 + x3, tmp76, xmask) tl.store(out_ptr2 + x3, tmp78, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_3(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_add_convolution_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x3, xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp2 + tmp7 tl.store(in_out_ptr0 + x3, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_1[grid(64)](buf1, buf2, buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 2, 2), (16, 4, 2, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_2[grid(64)](buf6, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf7 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 2, 2), (16, 4, 2, 1)) buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) triton_poi_fused_add_convolution_relu_3[grid(64)](buf7, primals_7, buf2, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = extern_kernels.convolution(buf8, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 2, 2), (16, 4, 2, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_2[grid(64)](buf10, primals_9, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_9 buf11 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 2, 2), (16, 4, 2, 1)) buf12 = buf11 del buf11 triton_poi_fused_add_convolution_4[grid(64)](buf12, primals_11, buf7, primals_7, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 del buf7 del primals_11 del primals_7 return (buf12, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf4, buf6, buf8, buf10) class ResidualBlock(nn.Module): def __init__(self, in_channels): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): out = nn.ReLU()(x) out = self.conv1(out) out = nn.ReLU()(out) out = self.conv2(out) return out + x class ImpalaBlockNew(nn.Module): def __init__(self, in_channels, out_channels): super(ImpalaBlockNew, self).__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1) self.res1 = ResidualBlock(out_channels) self.res2 = ResidualBlock(out_channels) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.res1.conv1.weight primals_5 = self.res1.conv1.bias primals_6 = self.res1.conv2.weight primals_7 = self.res1.conv2.bias primals_8 = self.res2.conv1.weight primals_9 = self.res2.conv1.bias primals_10 = self.res2.conv2.weight primals_11 = self.res2.conv2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
abhay97ps/visual-control-ppo-procgen
ImpalaBlock
false
1,362
[ "MIT" ]
0
765fe1ddb289d384abddc4df8eb865379c8da76a
https://github.com/abhay97ps/visual-control-ppo-procgen/tree/765fe1ddb289d384abddc4df8eb865379c8da76a
import torch import torch.nn as nn class ResidualBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(in_channels=in_channels, out_channels= in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): out = nn.ReLU()(x) out = self.conv1(out) out = nn.ReLU()(out) out = self.conv2(out) return out + x class Model(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=3, stride=1, padding=1) self.res1 = ResidualBlock(out_channels) self.res2 = ResidualBlock(out_channels) def forward(self, x): x = self.conv(x) x = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x) x = self.res1(x) x = self.res2(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3fhhoromfrxrgrh5ma3jaeqwoi6yuymy4cqxxofozg4pvrqgdd.py # Topologically Sorted Source Nodes: [q_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # q_2 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/s2/cs2rk3o3kmhydx4oijp6rsdb5atcrq5axy4adadrpl7gkt7scies.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attention => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.clone] # Source node to ATen node mapping: # y_2 => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%view_19,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oj/coj4nnzlgbujvjymslbb45wevii2f3jiwa6sxn37hskllouzszsk.py # Topologically Sorted Source Nodes: [y_2, y_3], Original ATen: [aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # y_2 => add # y_3 => relu_3 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_21, %primals_11), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {}) triton_poi_fused_add_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ql/cqlkizbtc5ckgiftunxao47hductoqdvbrd2mxnieseagrgndyso.py # Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # v_1 => relu_2 # Graph fragment: # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [q_2], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [k_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [attention], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf6, buf7, 256, grid=grid(256), stream=stream0) del buf6 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [v_2], Original ATen: [aten.clone] triton_poi_fused_clone_0.run(buf2, primals_8, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf9, buf10, 16, 4, grid=grid(16, 4), stream=stream0) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf11) buf12 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0); del buf11 # reuse buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [y_2, y_3], Original ATen: [aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_relu_threshold_backward_4.run(buf12, primals_11, buf13, 64, grid=grid(64), stream=stream0) del primals_11 buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [v_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf2, primals_8, buf14, 64, grid=grid(64), stream=stream0) del buf2 del primals_8 buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [k_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf1, primals_5, buf15, 64, grid=grid(64), stream=stream0) del buf1 del primals_5 buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf0, primals_2, buf16, 64, grid=grid(64), stream=stream0) del buf0 del primals_2 return (buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0), buf13, primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 1), 0), buf14, buf15, buf16, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.utils.checkpoint from torch import nn import torch.nn.functional as F class ScaledDotProductAttention(nn.Module): def forward(self, query, key, value, mask=None): dk = query.size()[-1] scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) attention = F.softmax(scores, dim=-1) return attention.matmul(value) class MultiHeadAttention(nn.Module): def __init__(self, in_features, head_num, bias=True, activation=F.relu): """Multi-head attention. :param in_features: Size of each input sample. :param head_num: Number of heads. :param bias: Whether to use the bias term. :param activation: The activation after each linear transformation. """ super(MultiHeadAttention, self).__init__() if in_features % head_num != 0: raise ValueError( '`in_features`({}) should be divisible by `head_num`({})'. format(in_features, head_num)) self.in_features = in_features self.head_num = head_num self.activation = activation self.bias = bias self.linear_q = nn.Linear(in_features, in_features, bias) self.linear_k = nn.Linear(in_features, in_features, bias) self.linear_v = nn.Linear(in_features, in_features, bias) self.linear_o = nn.Linear(in_features, in_features, bias) def forward(self, q, k, v, mask=None): q, k, v = self.linear_q(q), self.linear_k(k), self.linear_v(v) if self.activation is not None: q = self.activation(q) k = self.activation(k) v = self.activation(v) q = self._reshape_to_batches(q) k = self._reshape_to_batches(k) v = self._reshape_to_batches(v) if mask is not None: mask = mask.repeat(self.head_num, 1, 1) y = ScaledDotProductAttention()(q, k, v, mask) y = self._reshape_from_batches(y) y = self.linear_o(y) if self.activation is not None: y = self.activation(y) return y @staticmethod def gen_history_mask(x): """Generate the mask that only uses history data. :param x: Input tensor. :return: The mask. """ batch_size, seq_len, _ = x.size() return torch.tril(torch.ones(seq_len, seq_len)).view(1, seq_len, seq_len).repeat(batch_size, 1, 1) def _reshape_to_batches(self, x): batch_size, seq_len, in_feature = x.size() sub_dim = in_feature // self.head_num return x.reshape(batch_size, seq_len, self.head_num, sub_dim).permute( 0, 2, 1, 3).reshape(batch_size * self.head_num, seq_len, sub_dim) def _reshape_from_batches(self, x): batch_size, seq_len, in_feature = x.size() batch_size //= self.head_num out_dim = in_feature * self.head_num return x.reshape(batch_size, self.head_num, seq_len, in_feature ).permute(0, 2, 1, 3).reshape(batch_size, seq_len, out_dim) def extra_repr(self): return 'in_features={}, head_num={}, bias={}, activation={}'.format( self.in_features, self.head_num, self.bias, self.activation) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'in_features': 4, 'head_num': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.utils.checkpoint from torch import nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = buf5 del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_8, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_3[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), out=buf11) buf12 = reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0) del buf11 buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_4[grid(64)](buf12, primals_11, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(64)](buf2, primals_8, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 del primals_8 buf15 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(64)](buf1, primals_5, buf15, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf1 del primals_5 buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(64)](buf0, primals_2, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del primals_2 return buf12, reinterpret_tensor(primals_3, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 4), (4, 1), 0 ), buf13, primals_10, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 1), 0 ), buf14, buf15, buf16 class ScaledDotProductAttention(nn.Module): def forward(self, query, key, value, mask=None): dk = query.size()[-1] scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) attention = F.softmax(scores, dim=-1) return attention.matmul(value) class MultiHeadAttentionNew(nn.Module): def __init__(self, in_features, head_num, bias=True, activation=F.relu): """Multi-head attention. :param in_features: Size of each input sample. :param head_num: Number of heads. :param bias: Whether to use the bias term. :param activation: The activation after each linear transformation. """ super(MultiHeadAttentionNew, self).__init__() if in_features % head_num != 0: raise ValueError( '`in_features`({}) should be divisible by `head_num`({})'. format(in_features, head_num)) self.in_features = in_features self.head_num = head_num self.activation = activation self.bias = bias self.linear_q = nn.Linear(in_features, in_features, bias) self.linear_k = nn.Linear(in_features, in_features, bias) self.linear_v = nn.Linear(in_features, in_features, bias) self.linear_o = nn.Linear(in_features, in_features, bias) @staticmethod def gen_history_mask(x): """Generate the mask that only uses history data. :param x: Input tensor. :return: The mask. """ batch_size, seq_len, _ = x.size() return torch.tril(torch.ones(seq_len, seq_len)).view(1, seq_len, seq_len).repeat(batch_size, 1, 1) def _reshape_to_batches(self, x): batch_size, seq_len, in_feature = x.size() sub_dim = in_feature // self.head_num return x.reshape(batch_size, seq_len, self.head_num, sub_dim).permute( 0, 2, 1, 3).reshape(batch_size * self.head_num, seq_len, sub_dim) def _reshape_from_batches(self, x): batch_size, seq_len, in_feature = x.size() batch_size //= self.head_num out_dim = in_feature * self.head_num return x.reshape(batch_size, self.head_num, seq_len, in_feature ).permute(0, 2, 1, 3).reshape(batch_size, seq_len, out_dim) def extra_repr(self): return 'in_features={}, head_num={}, bias={}, activation={}'.format( self.in_features, self.head_num, self.bias, self.activation) def forward(self, input_0, input_1, input_2): primals_1 = self.linear_q.weight primals_2 = self.linear_q.bias primals_4 = self.linear_k.weight primals_5 = self.linear_k.bias primals_7 = self.linear_v.weight primals_8 = self.linear_v.bias primals_10 = self.linear_o.weight primals_11 = self.linear_o.bias primals_3 = input_0 primals_6 = input_1 primals_9 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
abedi1/ECLARe
MultiHeadAttention
false
1,363
[ "Apache-2.0" ]
0
a446b8086404b058923a9b3ce47e75cc40436a58
https://github.com/abedi1/ECLARe/tree/a446b8086404b058923a9b3ce47e75cc40436a58
import math import torch import torch.utils.checkpoint from torch import nn import torch.nn.functional as F class ScaledDotProductAttention(nn.Module): def forward(self, query, key, value, mask=None): dk = query.size()[-1] scores = query.matmul(key.transpose(-2, -1)) / math.sqrt(dk) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) attention = F.softmax(scores, dim=-1) return attention.matmul(value) class Model(nn.Module): def __init__(self, in_features, head_num, bias=True, activation=F.relu): """Multi-head attention. :param in_features: Size of each input sample. :param head_num: Number of heads. :param bias: Whether to use the bias term. :param activation: The activation after each linear transformation. """ super().__init__() if in_features % head_num != 0: raise ValueError( '`in_features`({}) should be divisible by `head_num`({})'. format(in_features, head_num)) self.in_features = in_features self.head_num = head_num self.activation = activation self.bias = bias self.linear_q = nn.Linear(in_features, in_features, bias) self.linear_k = nn.Linear(in_features, in_features, bias) self.linear_v = nn.Linear(in_features, in_features, bias) self.linear_o = nn.Linear(in_features, in_features, bias) def forward(self, q, k, v, mask=None): q, k, v = self.linear_q(q), self.linear_k(k), self.linear_v(v) if self.activation is not None: q = self.activation(q) k = self.activation(k) v = self.activation(v) q = self._reshape_to_batches(q) k = self._reshape_to_batches(k) v = self._reshape_to_batches(v) if mask is not None: mask = mask.repeat(self.head_num, 1, 1) y = ScaledDotProductAttention()(q, k, v, mask) y = self._reshape_from_batches(y) y = self.linear_o(y) if self.activation is not None: y = self.activation(y) return y @staticmethod def gen_history_mask(x): """Generate the mask that only uses history data. :param x: Input tensor. :return: The mask. """ batch_size, seq_len, _ = x.size() return torch.tril(torch.ones(seq_len, seq_len)).view(1, seq_len, seq_len).repeat(batch_size, 1, 1) def _reshape_to_batches(self, x): batch_size, seq_len, in_feature = x.size() sub_dim = in_feature // self.head_num return x.reshape(batch_size, seq_len, self.head_num, sub_dim).permute( 0, 2, 1, 3).reshape(batch_size * self.head_num, seq_len, sub_dim) def _reshape_from_batches(self, x): batch_size, seq_len, in_feature = x.size() batch_size //= self.head_num out_dim = in_feature * self.head_num return x.reshape(batch_size, self.head_num, seq_len, in_feature ).permute(0, 2, 1, 3).reshape(batch_size, seq_len, out_dim) def extra_repr(self): return 'in_features={}, head_num={}, bias={}, activation={}'.format( self.in_features, self.head_num, self.bias, self.activation) def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [4, 4]
BertSelfOutput
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/uv/cuv5ywiflh7n5wdgqtkufif4yho6cbzwcjdxkdjubib3zte4a6ke.py # Topologically Sorted Source Nodes: [hidden_states_2, u], Original ATen: [aten.add, aten.mean] # Source node to ATen node mapping: # hidden_states_2 => add # u => mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) triton_poi_fused_add_mean_0 = async_compile.triton('triton_poi_fused_add_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/my/cmysbppbwfknwvg2gi2jiqqs7l3hosm7k7nbz7vf3rtnd4p6gznh.py # Topologically Sorted Source Nodes: [hidden_states_2, u, sub], Original ATen: [aten.add, aten.mean, aten.sub] # Source node to ATen node mapping: # hidden_states_2 => add # sub => sub # u => mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %sub : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {}) triton_poi_fused_add_mean_sub_1 = async_compile.triton('triton_poi_fused_add_mean_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4p/c4pnuv3rymhg72qutbvx7mkzv6t7edcefa73bt3nl66b4qtouu4a.py # Topologically Sorted Source Nodes: [pow_1, s, add_1, sqrt, x, mul, hidden_states_3], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add_1 => add_1 # hidden_states_3 => add_2 # mul => mul # pow_1 => pow_1 # s => mean_1 # sqrt => sqrt # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %div), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_5), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_2 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [hidden_states_2, u], Original ATen: [aten.add, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_0.run(buf0, primals_3, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [hidden_states_2, u, sub], Original ATen: [aten.add, aten.mean, aten.sub] triton_poi_fused_add_mean_sub_1.run(buf2, primals_3, buf1, 256, grid=grid(256), stream=stream0) del buf1 del primals_3 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, s, add_1, sqrt, x, mul, hidden_states_3], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_2.run(primals_4, buf2, primals_5, buf3, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.onnx class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias =False) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, hidden_dropout_prob=0.5)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mean_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_add_mean_sub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1.0 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_0[grid(64)](buf0, primals_3, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_add_mean_sub_1[grid(256)](buf2, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_3 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_2[grid(256)](primals_4, buf2, primals_5, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_4, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0 ), buf2 class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super(BertLayerNorm, self).__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class BertSelfOutputNew(nn.Module): def __init__(self, config): super(BertSelfOutputNew, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias =False) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_0, input_1): primals_1 = self.dense.weight primals_4 = self.LayerNorm.weight primals_5 = self.LayerNorm.bias primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Alwaysproblem/examples-1
BertSelfOutput
false
1,364
[ "MIT" ]
0
9754fa63ed1931489a21ac1f5b299f945e369a5c
https://github.com/Alwaysproblem/examples-1/tree/9754fa63ed1931489a21ac1f5b299f945e369a5c
from _paritybench_helpers import _mock_config import torch from torch import nn import torch.onnx class BertLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12): """Construct a layernorm module in the TF style (epsilon inside the square root). """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) self.variance_epsilon = eps def forward(self, x): u = x.mean(-1, keepdim=True) s = (x - u).pow(2).mean(-1, keepdim=True) x = (x - u) / torch.sqrt(s + self.variance_epsilon) return self.weight * x + self.bias class Model(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias =False) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config. layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor hidden_states = self.LayerNorm(hidden_states) return hidden_states def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4, layer_norm_eps=1, hidden_dropout_prob=0.5)}]
LinearWithChannel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yk/cyk3a7elqsizt2c7kcluxugv4qhuvafcdndizaytprt5pye7u4wl.py # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] # Source node to ATen node mapping: # matmul => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/p2/cp26ifb4v5s4enmro3on3skot6go4w2artjyvwk26s2niublm5rg.py # Topologically Sorted Source Nodes: [result], Original ATen: [aten.add] # Source node to ATen node mapping: # result => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%squeeze, %primals_3), kwargs = {}) triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_2, buf0, 1024, grid=grid(1024), stream=stream0) del primals_2 buf1 = empty_strided_cuda((64, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4, 1), (4, 1, 1), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [result], Original ATen: [aten.add] triton_poi_fused_add_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(primals_1, (64, 1, 4), (4, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class LinearWithChannel(nn.Module): def __init__(self, channel_size, input_size, output_size): super(LinearWithChannel, self).__init__() self.weight = torch.nn.Parameter(torch.zeros(channel_size, output_size, input_size)) self.bias = torch.nn.Parameter(torch.zeros(channel_size, output_size)) self.reset_parameters(self.weight, self.bias) def reset_parameters(self, weights, bias): torch.nn.init.kaiming_uniform_(weights, a=math.sqrt(3)) fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(weights) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(bias, -bound, bound) def forward(self, x): assert x.ndim >= 2, 'Requires (..., channel, features) shape.' x = x.unsqueeze(-1) result = torch.matmul(self.weight, x).squeeze(-1) + self.bias return result def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel_size': 4, 'input_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(1024)](primals_2, buf0, 1024, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((64, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4, 1), (4, 1, 1), 0), out=buf1) del buf0 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_add_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf2, reinterpret_tensor(primals_1, (64, 1, 4), (4, 1, 1), 0) class LinearWithChannelNew(nn.Module): def __init__(self, channel_size, input_size, output_size): super(LinearWithChannelNew, self).__init__() self.weight = torch.nn.Parameter(torch.zeros(channel_size, output_size, input_size)) self.bias = torch.nn.Parameter(torch.zeros(channel_size, output_size)) self.reset_parameters(self.weight, self.bias) def reset_parameters(self, weights, bias): torch.nn.init.kaiming_uniform_(weights, a=math.sqrt(3)) fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(weights) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(bias, -bound, bound) def forward(self, input_0): primals_2 = self.weight primals_3 = self.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
adam-coogan/swyft
LinearWithChannel
false
1,365
[ "MIT" ]
0
c54bdd9f77ddf02fda857e26640df012cbe545fc
https://github.com/adam-coogan/swyft/tree/c54bdd9f77ddf02fda857e26640df012cbe545fc
import math import torch import torch.nn as nn class Model(nn.Module): def __init__(self, channel_size, input_size, output_size): super().__init__() self.weight = torch.nn.Parameter(torch.zeros(channel_size, output_size, input_size)) self.bias = torch.nn.Parameter(torch.zeros(channel_size, output_size)) self.reset_parameters(self.weight, self.bias) def reset_parameters(self, weights, bias): torch.nn.init.kaiming_uniform_(weights, a=math.sqrt(3)) fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(weights) bound = 1 / math.sqrt(fan_in) torch.nn.init.uniform_(bias, -bound, bound) def forward(self, x): assert x.ndim >= 2, 'Requires (..., channel, features) shape.' x = x.unsqueeze(-1) result = torch.matmul(self.weight, x).squeeze(-1) + self.bias return result def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
WeightedL1
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xl/cxl6onjtnxjrziq4rgatyr2ccyrr7numztealqfiigowncfc7ffu.py # Topologically Sorted Source Nodes: [sub, abs_1, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # mean => mean # mul => mul # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %abs_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {}) triton_per_fused_abs_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_mean_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tl.load(in_ptr2 + (r0), None) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp10, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, mul, mean], Original ATen: [aten.sub, aten.abs, aten.mul, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0.run(buf1, arg2_1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class WeightedL1(nn.Module): def __init__(self): super(WeightedL1, self).__init__() def forward(self, x, target, w): return (w * torch.abs(x - target)).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_mean_mul_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tl.load(in_ptr2 + r0, None) tmp3 = tmp1 - tmp2 tmp4 = tl_math.abs(tmp3) tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = 256.0 tmp10 = tmp8 / tmp9 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp10, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_mean_mul_sub_0[grid(1)](buf1, arg2_1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf1, class WeightedL1New(nn.Module): def __init__(self): super(WeightedL1New, self).__init__() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
acrosson/dl
WeightedL1
false
1,366
[ "MIT" ]
0
94e68533b38f53f09e9bef460ba96fa389fc8eb4
https://github.com/acrosson/dl/tree/94e68533b38f53f09e9bef460ba96fa389fc8eb4
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x, target, w): return (w * torch.abs(x - target)).mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
minibatch_std_concat_layer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bc/cbcebs6veq3jcchg2s5hkpwbnyxvsyj4d2tmg22tn336tutpb46n.py # Topologically Sorted Source Nodes: [mean, sub, pow_1, mean_1, add, vals, vals_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt] # Source node to ATen node mapping: # add => add # mean => mean # mean_1 => mean_1 # pow_1 => pow_1 # sub => sub # vals => sqrt # vals_1 => mean_2 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %mean), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [1], True), kwargs = {}) triton_poi_fused_add_mean_pow_sqrt_sub_0 = async_compile.triton('triton_poi_fused_add_mean_pow_sqrt_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_pow_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp24 = tl.load(in_ptr0 + (16 + x0), xmask) tmp25 = tl.load(in_ptr0 + (80 + x0), xmask) tmp27 = tl.load(in_ptr0 + (144 + x0), xmask) tmp29 = tl.load(in_ptr0 + (208 + x0), xmask) tmp47 = tl.load(in_ptr0 + (32 + x0), xmask) tmp48 = tl.load(in_ptr0 + (96 + x0), xmask) tmp50 = tl.load(in_ptr0 + (160 + x0), xmask) tmp52 = tl.load(in_ptr0 + (224 + x0), xmask) tmp70 = tl.load(in_ptr0 + (48 + x0), xmask) tmp71 = tl.load(in_ptr0 + (112 + x0), xmask) tmp73 = tl.load(in_ptr0 + (176 + x0), xmask) tmp75 = tl.load(in_ptr0 + (240 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp31 = tmp30 / tmp7 tmp32 = tmp24 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp25 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp29 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp7 tmp44 = tmp43 + tmp21 tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp23 + tmp45 tmp49 = tmp47 + tmp48 tmp51 = tmp49 + tmp50 tmp53 = tmp51 + tmp52 tmp54 = tmp53 / tmp7 tmp55 = tmp47 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp48 - tmp54 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tmp50 - tmp54 tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = tmp52 - tmp54 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp65 / tmp7 tmp67 = tmp66 + tmp21 tmp68 = libdevice.sqrt(tmp67) tmp69 = tmp46 + tmp68 tmp72 = tmp70 + tmp71 tmp74 = tmp72 + tmp73 tmp76 = tmp74 + tmp75 tmp77 = tmp76 / tmp7 tmp78 = tmp70 - tmp77 tmp79 = tmp78 * tmp78 tmp80 = tmp71 - tmp77 tmp81 = tmp80 * tmp80 tmp82 = tmp79 + tmp81 tmp83 = tmp73 - tmp77 tmp84 = tmp83 * tmp83 tmp85 = tmp82 + tmp84 tmp86 = tmp75 - tmp77 tmp87 = tmp86 * tmp86 tmp88 = tmp85 + tmp87 tmp89 = tmp88 / tmp7 tmp90 = tmp89 + tmp21 tmp91 = libdevice.sqrt(tmp90) tmp92 = tmp69 + tmp91 tmp93 = tmp92 / tmp7 tl.store(out_ptr0 + (x0), tmp93, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fc/cfcpnsijfdjlkqlxyjsxpa4wd2v5qtfunr2guhqosjmgxykzzohf.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %expand], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 5 x0 = xindex % 16 x2 = (xindex // 80) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 5, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub, pow_1, mean_1, add, vals, vals_1], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_pow_sqrt_sub_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(arg0_1, buf0, buf1, 320, grid=grid(320), stream=stream0) del arg0_1 del buf0 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import copy import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class minibatch_std_concat_layer(nn.Module): def __init__(self, averaging='all'): super(minibatch_std_concat_layer, self).__init__() self.averaging = averaging.lower() if 'group' in self.averaging: self.n = int(self.averaging[5:]) else: assert self.averaging in ['all', 'flat', 'spatial', 'none', 'gpool' ], 'Invalid averaging mode' % self.averaging self.adjusted_std = lambda x, **kwargs: torch.sqrt(torch.mean((x - torch.mean(x, **kwargs)) ** 2, **kwargs) + 1e-08) def forward(self, x): shape = list(x.size()) target_shape = copy.deepcopy(shape) vals = self.adjusted_std(x, dim=0, keepdim=True) if self.averaging == 'all': target_shape[1] = 1 vals = torch.mean(vals, dim=1, keepdim=True) elif self.averaging == 'spatial': if len(shape) == 4: vals = mean(vals, axis=[2, 3], keepdim=True) elif self.averaging == 'none': target_shape = [target_shape[0]] + [s for s in target_shape[1:]] elif self.averaging == 'gpool': if len(shape) == 4: vals = mean(x, [0, 2, 3], keepdim=True) elif self.averaging == 'flat': target_shape[1] = 1 vals = torch.FloatTensor([self.adjusted_std(x)]) else: target_shape[1] = self.n vals = vals.view(self.n, self.shape[1] / self.n, self.shape[2], self.shape[3]) vals = mean(vals, axis=0, keepdim=True).view(1, self.n, 1, 1) vals = vals.expand(*target_shape) return torch.cat([x, vals], 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_pow_sqrt_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask) tmp3 = tl.load(in_ptr0 + (128 + x0), xmask) tmp5 = tl.load(in_ptr0 + (192 + x0), xmask) tmp24 = tl.load(in_ptr0 + (16 + x0), xmask) tmp25 = tl.load(in_ptr0 + (80 + x0), xmask) tmp27 = tl.load(in_ptr0 + (144 + x0), xmask) tmp29 = tl.load(in_ptr0 + (208 + x0), xmask) tmp47 = tl.load(in_ptr0 + (32 + x0), xmask) tmp48 = tl.load(in_ptr0 + (96 + x0), xmask) tmp50 = tl.load(in_ptr0 + (160 + x0), xmask) tmp52 = tl.load(in_ptr0 + (224 + x0), xmask) tmp70 = tl.load(in_ptr0 + (48 + x0), xmask) tmp71 = tl.load(in_ptr0 + (112 + x0), xmask) tmp73 = tl.load(in_ptr0 + (176 + x0), xmask) tmp75 = tl.load(in_ptr0 + (240 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-08 tmp22 = tmp20 + tmp21 tmp23 = libdevice.sqrt(tmp22) tmp26 = tmp24 + tmp25 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp31 = tmp30 / tmp7 tmp32 = tmp24 - tmp31 tmp33 = tmp32 * tmp32 tmp34 = tmp25 - tmp31 tmp35 = tmp34 * tmp34 tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp31 tmp38 = tmp37 * tmp37 tmp39 = tmp36 + tmp38 tmp40 = tmp29 - tmp31 tmp41 = tmp40 * tmp40 tmp42 = tmp39 + tmp41 tmp43 = tmp42 / tmp7 tmp44 = tmp43 + tmp21 tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp23 + tmp45 tmp49 = tmp47 + tmp48 tmp51 = tmp49 + tmp50 tmp53 = tmp51 + tmp52 tmp54 = tmp53 / tmp7 tmp55 = tmp47 - tmp54 tmp56 = tmp55 * tmp55 tmp57 = tmp48 - tmp54 tmp58 = tmp57 * tmp57 tmp59 = tmp56 + tmp58 tmp60 = tmp50 - tmp54 tmp61 = tmp60 * tmp60 tmp62 = tmp59 + tmp61 tmp63 = tmp52 - tmp54 tmp64 = tmp63 * tmp63 tmp65 = tmp62 + tmp64 tmp66 = tmp65 / tmp7 tmp67 = tmp66 + tmp21 tmp68 = libdevice.sqrt(tmp67) tmp69 = tmp46 + tmp68 tmp72 = tmp70 + tmp71 tmp74 = tmp72 + tmp73 tmp76 = tmp74 + tmp75 tmp77 = tmp76 / tmp7 tmp78 = tmp70 - tmp77 tmp79 = tmp78 * tmp78 tmp80 = tmp71 - tmp77 tmp81 = tmp80 * tmp80 tmp82 = tmp79 + tmp81 tmp83 = tmp73 - tmp77 tmp84 = tmp83 * tmp83 tmp85 = tmp82 + tmp84 tmp86 = tmp75 - tmp77 tmp87 = tmp86 * tmp86 tmp88 = tmp85 + tmp87 tmp89 = tmp88 / tmp7 tmp90 = tmp89 + tmp21 tmp91 = libdevice.sqrt(tmp90) tmp92 = tmp69 + tmp91 tmp93 = tmp92 / tmp7 tl.store(out_ptr0 + x0, tmp93, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 5 x0 = xindex % 16 x2 = xindex // 80 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 4, 4), (16, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_pow_sqrt_sub_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) triton_poi_fused_cat_1[grid(320)](arg0_1, buf0, buf1, 320, XBLOCK= 256, num_warps=4, num_stages=1) del arg0_1 del buf0 return buf1, class minibatch_std_concat_layerNew(nn.Module): def __init__(self, averaging='all'): super(minibatch_std_concat_layerNew, self).__init__() self.averaging = averaging.lower() if 'group' in self.averaging: self.n = int(self.averaging[5:]) else: assert self.averaging in ['all', 'flat', 'spatial', 'none', 'gpool' ], 'Invalid averaging mode' % self.averaging self.adjusted_std = lambda x, **kwargs: torch.sqrt(torch.mean((x - torch.mean(x, **kwargs)) ** 2, **kwargs) + 1e-08) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
achrefjarray/ESRGANplus-master
minibatch_std_concat_layer
false
1,367
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
import copy import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class Model(nn.Module): def __init__(self, averaging='all'): super().__init__() self.averaging = averaging.lower() if 'group' in self.averaging: self.n = int(self.averaging[5:]) else: assert self.averaging in ['all', 'flat', 'spatial', 'none', 'gpool' ], 'Invalid averaging mode' % self.averaging self.adjusted_std = lambda x, **kwargs: torch.sqrt(torch.mean((x - torch.mean(x, **kwargs)) ** 2, **kwargs) + 1e-08) def forward(self, x): shape = list(x.size()) target_shape = copy.deepcopy(shape) vals = self.adjusted_std(x, dim=0, keepdim=True) if self.averaging == 'all': target_shape[1] = 1 vals = torch.mean(vals, dim=1, keepdim=True) elif self.averaging == 'spatial': if len(shape) == 4: vals = mean(vals, axis=[2, 3], keepdim=True) elif self.averaging == 'none': target_shape = [target_shape[0]] + [s for s in target_shape[1:]] elif self.averaging == 'gpool': if len(shape) == 4: vals = mean(x, [0, 2, 3], keepdim=True) elif self.averaging == 'flat': target_shape[1] = 1 vals = torch.FloatTensor([self.adjusted_std(x)]) else: target_shape[1] = self.n vals = vals.view(self.n, self.shape[1] / self.n, self.shape[2], self.shape[3]) vals = mean(vals, axis=0, keepdim=True).view(1, self.n, 1, 1) vals = vals.expand(*target_shape) return torch.cat([x, vals], 1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
ResidualBlockNoBN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lm/clmneuks6sx5dgl2umedoyuqhtcgjyvqbcszrrcdyj3vdy5verfg.py # Topologically Sorted Source Nodes: [out, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # out => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_convolution_mul_1 = async_compile.triton('triton_poi_fused_add_convolution_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_out_ptr0 + (x3), None) tmp2 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(in_out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 1048576, grid=grid(1048576), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_1.run(buf3, primals_1, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 return (buf3, primals_1, primals_2, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class ResidualBlockNoBN(nn.Module): """Residual block without BN. It has a style of: ---Conv-ReLU-Conv-+- |________________| Args: num_feat (int): Channel number of intermediate features. Default: 64. res_scale (float): Residual scale. Default: 1. pytorch_init (bool): If set to True, use pytorch default init, otherwise, use default_init_weights. Default: False. """ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): super(ResidualBlockNoBN, self).__init__() self.res_scale = res_scale self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.relu = nn.ReLU(inplace=True) if not pytorch_init: default_init_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = self.conv2(self.relu(self.conv1(x))) return identity + out * self.res_scale def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_add_convolution_mul_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_out_ptr0 + x3, None) tmp2 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(in_out_ptr0 + x3, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_3, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_add_convolution_mul_1[grid(1048576)](buf3, primals_1, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_2, primals_4, buf1 @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class ResidualBlockNoBNNew(nn.Module): """Residual block without BN. It has a style of: ---Conv-ReLU-Conv-+- |________________| Args: num_feat (int): Channel number of intermediate features. Default: 64. res_scale (float): Residual scale. Default: 1. pytorch_init (bool): If set to True, use pytorch default init, otherwise, use default_init_weights. Default: False. """ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): super(ResidualBlockNoBNNew, self).__init__() self.res_scale = res_scale self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.relu = nn.ReLU(inplace=True) if not pytorch_init: default_init_weights([self.conv1, self.conv2], 0.1) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
achrefjarray/ESRGANplus-master
ResidualBlockNoBN
false
1,368
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class Model(nn.Module): """Residual block without BN. It has a style of: ---Conv-ReLU-Conv-+- |________________| Args: num_feat (int): Channel number of intermediate features. Default: 64. res_scale (float): Residual scale. Default: 1. pytorch_init (bool): If set to True, use pytorch default init, otherwise, use default_init_weights. Default: False. """ def __init__(self, num_feat=64, res_scale=1, pytorch_init=False): super().__init__() self.res_scale = res_scale self.conv1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1, bias=True) self.relu = nn.ReLU(inplace=True) if not pytorch_init: default_init_weights([self.conv1, self.conv2], 0.1) def forward(self, x): identity = x out = self.conv2(self.relu(self.conv1(x))) return identity + out * self.res_scale def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
MySoftmax
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rg/crg522m3y4v7k4jllgwpydciu6bjqsfnsxrer5whyf4hotsoe5rw.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select, [0], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qa/cqafyqzuhzckoqdtli33dfagjrh5mrprozxqnetiembzeg4w7oxs.py # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_1 => amax_1, exp_1, sub_1 # Graph fragment: # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_1, [0], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (64 + x2), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (80 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (96 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (112 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bu/cbuxug7lya4eih33uq4mfbh5da6sagxquwrfjrgtafyvfsyilfs6.py # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_2 => amax_2, exp_2, sub_2 # Graph fragment: # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_2, [0], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (128 + x2), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (160 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (176 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/u7/cu74v7lonz2mq7mnyfx2dm5mtzonjucbuxvnfjvhv7cucufpoird.py # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax_3 => amax_3, exp_3, sub_3 # Graph fragment: # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%select_3, [0], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_3, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (192 + x2), xmask) tmp1 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (208 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (224 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (240 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2r/c2r7byeley523l73hpccj2xhbirofuf24dg4r7qgj7gvydbk7ytg.py # Topologically Sorted Source Nodes: [output_], Original ATen: [aten.stack] # Source node to ATen node mapping: # output_ => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%div, %div_1, %div_2, %div_3],), kwargs = {}) triton_poi_fused_stack_4 = async_compile.triton('triton_poi_fused_stack_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_stack_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 20, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) x0 = xindex % 16 x2 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (16*x1)), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr0 + (16 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.load(in_ptr0 + (32 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.load(in_ptr0 + (48 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = tmp5 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 8, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1))), tmp19 & xmask, other=0.0) tmp21 = tl.load(in_ptr1 + (x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp22 = tl.load(in_ptr1 + (16 + x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = tl.load(in_ptr1 + (32 + x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.load(in_ptr1 + (48 + x0), tmp19 & xmask, eviction_policy='evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = tmp20 / tmp27 tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp19, tmp28, tmp29) tmp31 = tmp0 >= tmp17 tmp32 = tl.full([1], 12, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr2 + (x0 + (16*((-8) + x1))), tmp34 & xmask, other=0.0) tmp36 = tl.load(in_ptr2 + (x0), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp37 = tl.load(in_ptr2 + (16 + x0), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr2 + (32 + x0), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tl.load(in_ptr2 + (48 + x0), tmp34 & xmask, eviction_policy='evict_last', other=0.0) tmp42 = tmp40 + tmp41 tmp43 = tmp35 / tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp34, tmp43, tmp44) tmp46 = tmp0 >= tmp32 tmp47 = tl.full([1], 16, tl.int64) tmp48 = tmp0 < tmp47 tmp49 = tl.load(in_ptr3 + (x0 + (16*((-12) + x1))), tmp46 & xmask, other=0.0) tmp50 = tl.load(in_ptr3 + (x0), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tl.load(in_ptr3 + (16 + x0), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp52 = tmp50 + tmp51 tmp53 = tl.load(in_ptr3 + (32 + x0), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp54 = tmp52 + tmp53 tmp55 = tl.load(in_ptr3 + (48 + x0), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp56 = tmp54 + tmp55 tmp57 = tmp49 / tmp56 tmp58 = tl.full(tmp57.shape, 0.0, tmp57.dtype) tmp59 = tl.where(tmp46, tmp57, tmp58) tmp60 = tl.where(tmp34, tmp45, tmp59) tmp61 = tl.where(tmp19, tmp30, tmp60) tmp62 = tl.where(tmp4, tmp15, tmp61) tl.store(out_ptr0 + (x2), tmp62, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(arg0_1, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(arg0_1, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(arg0_1, buf3, 64, grid=grid(64), stream=stream0) del arg0_1 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_], Original ATen: [aten.stack] triton_poi_fused_stack_4.run(buf0, buf1, buf2, buf3, buf4, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del buf2 del buf3 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MySoftmax(nn.Module): def forward(self, input_): batch_size = input_.size()[0] output_ = torch.stack([F.softmax(input_[i]) for i in range( batch_size)], 0) return output_ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (64 + x2), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (80 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (96 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (112 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (128 + x2), xmask) tmp1 = tl.load(in_ptr0 + (128 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (144 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (160 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (176 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + (192 + x2), xmask) tmp1 = tl.load(in_ptr0 + (192 + x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (208 + x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (224 + x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (240 + x0), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_stack_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 x0 = xindex % 16 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr0 + (16 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.load(in_ptr0 + (32 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp10 = tmp8 + tmp9 tmp11 = tl.load(in_ptr0 + (48 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = tmp5 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 8, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tmp16 & tmp18 tmp20 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1)), tmp19 & xmask, other=0.0) tmp21 = tl.load(in_ptr1 + x0, tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp22 = tl.load(in_ptr1 + (16 + x0), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = tl.load(in_ptr1 + (32 + x0), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.load(in_ptr1 + (48 + x0), tmp19 & xmask, eviction_policy= 'evict_last', other=0.0) tmp27 = tmp25 + tmp26 tmp28 = tmp20 / tmp27 tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp19, tmp28, tmp29) tmp31 = tmp0 >= tmp17 tmp32 = tl.full([1], 12, tl.int64) tmp33 = tmp0 < tmp32 tmp34 = tmp31 & tmp33 tmp35 = tl.load(in_ptr2 + (x0 + 16 * (-8 + x1)), tmp34 & xmask, other=0.0) tmp36 = tl.load(in_ptr2 + x0, tmp34 & xmask, eviction_policy= 'evict_last', other=0.0) tmp37 = tl.load(in_ptr2 + (16 + x0), tmp34 & xmask, eviction_policy= 'evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tl.load(in_ptr2 + (32 + x0), tmp34 & xmask, eviction_policy= 'evict_last', other=0.0) tmp40 = tmp38 + tmp39 tmp41 = tl.load(in_ptr2 + (48 + x0), tmp34 & xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tmp40 + tmp41 tmp43 = tmp35 / tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp34, tmp43, tmp44) tmp46 = tmp0 >= tmp32 tl.full([1], 16, tl.int64) tmp49 = tl.load(in_ptr3 + (x0 + 16 * (-12 + x1)), tmp46 & xmask, other=0.0) tmp50 = tl.load(in_ptr3 + x0, tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp51 = tl.load(in_ptr3 + (16 + x0), tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp52 = tmp50 + tmp51 tmp53 = tl.load(in_ptr3 + (32 + x0), tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp54 = tmp52 + tmp53 tmp55 = tl.load(in_ptr3 + (48 + x0), tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp56 = tmp54 + tmp55 tmp57 = tmp49 / tmp56 tmp58 = tl.full(tmp57.shape, 0.0, tmp57.dtype) tmp59 = tl.where(tmp46, tmp57, tmp58) tmp60 = tl.where(tmp34, tmp45, tmp59) tmp61 = tl.where(tmp19, tmp30, tmp60) tmp62 = tl.where(tmp4, tmp15, tmp61) tl.store(out_ptr0 + x2, tmp62, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](arg0_1, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](arg0_1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(64)](arg0_1, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_stack_4[grid(256)](buf0, buf1, buf2, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del buf3 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), class MySoftmaxNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
acrosson/dl
MySoftmax
false
1,369
[ "MIT" ]
0
94e68533b38f53f09e9bef460ba96fa389fc8eb4
https://github.com/acrosson/dl/tree/94e68533b38f53f09e9bef460ba96fa389fc8eb4
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def forward(self, input_): batch_size = input_.size()[0] output_ = torch.stack([F.softmax(input_[i]) for i in range( batch_size)], 0) return output_ def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CBR
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cs/ccsak2aq2focic3gvi5yypd2u37w22ixutbqzqc6vdjhrk4zppac.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out => convolution # out_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 9) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_2, buf2, 144, grid=grid(144), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CBR(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(CBR, self).__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.relu = nn.ReLU() def forward(self, x): out = self.cnn(x) out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 9 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_relu_threshold_backward_0[grid(144)](buf1, primals_2, buf2, 144, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3, buf2 class CBRNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(CBRNew, self).__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.relu = nn.ReLU() def forward(self, input_0): primals_1 = self.cnn.weight primals_2 = self.cnn.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
adamkrekorian/CI-UNet
CBR
false
1,370
[ "MIT" ]
0
fab0f8806540f5d79911bd81ba54dff135f9814f
https://github.com/adamkrekorian/CI-UNet/tree/fab0f8806540f5d79911bd81ba54dff135f9814f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super().__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.relu = nn.ReLU() def forward(self, x): out = self.cnn(x) out = self.relu(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/fz/cfzmg4qtw6jgry4nhlwopodzjz62ll3n3ykfox77hwd2crdnlh2w.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor_3, [-1], True), kwargs = {}) # %sub_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor_3, %amax_default_3), kwargs = {}) # %div_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor_3, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor_3,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kj/ckjtlefzavjukjsytvkak6ek26zmzexpcbnlwelx4k5kascjxlf3.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mk/cmkim2hc4ksxhatli3y5cu7hoqofxcbzqrrxvnlhmswdt4cgww25.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%bmm_1, %bmm_3, %bmm_5, %bmm_7], -1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x1), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + (x1), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 4, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr3 + (x1), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x2), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7f/c7fwok6q7j5rvjs3ob32s2cth5xjbedhynzb5ozchylog57bhmxv.py # Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std] # Source node to ATen node mapping: # add => add # mean => mean # std => var # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %cat), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True}) triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + (x0), tmp29, xmask) tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dw/cdwd24bmovp4kvuenv3jq6ffpahgl34iziauouexc57lxivmzubp.py # Topologically Sorted Source Nodes: [add, mean, std, sub, mul, add_1, truediv_4, add_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # mean => mean # mul => mul # std => sqrt # sub => sub_4 # truediv_4 => div_8 # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %cat), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, %sub_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div_8 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add_1), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_8, %primals_6), kwargs = {}) triton_poi_fused_add_div_mean_mul_std_sub_4 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp6 = tmp0 * tmp5 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-06 tmp10 = tmp8 + tmp9 tmp11 = tmp6 / tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/va/cvayouropyisaprtjrhemadbdvsels72axdjsrgmbayknhu335yc.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_31,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_relu_threshold_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dg/cdg2dxfjk7prchu44e4cgkid2y4524hl5vpyijgt6dwrnsrwzz2k.py # Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add] # Source node to ATen node mapping: # add_3 => add_3 # Graph fragment: # %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_33), kwargs = {}) triton_poi_fused_add_6 = async_compile.triton('triton_poi_fused_add_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j4/cj4wrybpym5umgwi5ropl654n64ptcknq2hunhzirmo6b5jmhqyj.py # Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, mul_1, add_4, truediv_5, add_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add_4 => add_4 # add_5 => add_5 # mean_2 => mean_1 # mul_1 => mul_1 # std_2 => sqrt_1, var_1 # sub_1 => sub_5 # truediv_5 => div_9 # Graph fragment: # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_3, [-1], True), kwargs = {}) # %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add_3, [-1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var_1,), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %mean_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_11, %sub_5), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt_1, 1e-06), kwargs = {}) # %div_9 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_4), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div_9, %primals_12), kwargs = {}) triton_poi_fused_add_div_mean_mul_std_sub_7 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-06 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dot_products], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf3, buf4, 64, grid=grid(64), stream=stream0) buf5 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 64, grid=grid(64), stream=stream0) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6) buf7 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [dot_products_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf7, buf8, 64, grid=grid(64), stream=stream0) buf9 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf8, buf9, 64, grid=grid(64), stream=stream0) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_3], Original ATen: [aten.bmm] extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10) buf11 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [dot_products_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [softmax_2], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf12, buf13, 64, grid=grid(64), stream=stream0) buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_5], Original ATen: [aten.bmm] extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14) buf15 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [dot_products_3], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_0.run(buf15, buf16, 64, grid=grid(64), stream=stream0) buf17 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [softmax_3], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf16, buf17, 64, grid=grid(64), stream=stream0) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_7], Original ATen: [aten.bmm] extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18) buf19 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(buf6, buf10, buf14, buf18, buf19, 64, grid=grid(64), stream=stream0) del buf10 del buf14 buf20 = reinterpret_tensor(buf6, (4, 4, 1), (4, 1, 16), 0); del buf6 # reuse buf21 = buf20; del buf20 # reuse buf22 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 16), 0); del buf18 # reuse # Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std] triton_poi_fused_add_mean_std_3.run(buf21, primals_1, buf19, buf22, 16, grid=grid(16), stream=stream0) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, mean, std, sub, mul, add_1, truediv_4, add_2], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.mul, aten.div] triton_poi_fused_add_div_mean_mul_std_sub_4.run(primals_5, primals_1, buf19, buf22, buf21, primals_6, buf23, 64, grid=grid(64), stream=stream0) del buf21 del buf22 del primals_6 buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf23, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf24) buf25 = reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0); del buf24 # reuse buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_5.run(buf25, primals_8, buf29, 64, grid=grid(64), stream=stream0) del primals_8 buf26 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse # Topologically Sorted Source Nodes: [add_3], Original ATen: [aten.add] triton_poi_fused_add_6.run(buf27, buf23, primals_10, 64, grid=grid(64), stream=stream0) del primals_10 buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean_2, std_2, sub_1, mul_1, add_4, truediv_5, add_5], Original ATen: [aten.mean, aten.std, aten.sub, aten.mul, aten.add, aten.div] triton_poi_fused_add_div_mean_mul_std_sub_7.run(primals_11, buf27, primals_12, buf28, 64, grid=grid(64), stream=stream0) del primals_12 return (buf28, primals_1, primals_5, primals_11, buf5, buf9, buf13, buf17, buf19, reinterpret_tensor(buf23, (16, 4), (4, 1), 0), reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, primals_9, buf29, primals_7, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class LayerNorm(nn.Module): def __init__(self, d_model, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(d_model)) self.beta = nn.Parameter(torch.zeros(d_model)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class ResidualBlock(nn.Module): def __init__(self, layer, d_model, dropout_ratio): super().__init__() self.layer = layer self.dropout = nn.Dropout(dropout_ratio) self.layernorm = LayerNorm(d_model) def forward(self, *x, padding=None): return self.layernorm(x[0] + self.dropout(self.layer(*x, padding= padding))) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class MultiHead(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, query, key, value, padding=None): query, key, value = self.wq(query), self.wk(key), self.wv(value) query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key, value)) return torch.cat([self.attention(q, k, v, padding=padding) for q, k, v in zip(query, key, value)], -1) class Feedforward(nn.Module): def __init__(self, d_in, d_out, activation=None, bias=True, dropout=0.2): super().__init__() if activation is not None: self.activation = getattr(torch, activation) else: self.activation = lambda x: x self.linear = Linear(d_in, d_out, bias=bias) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.activation(self.linear(self.dropout(x))) class LinearReLU(nn.Module): def __init__(self, d_model, d_hidden): super().__init__() self.feedforward = Feedforward(d_model, d_hidden, activation='relu') self.linear = Linear(d_hidden, d_model) def forward(self, x, padding=None): return self.linear(self.feedforward(x)) class TransformerEncoderLayer(nn.Module): def __init__(self, dimension, n_heads, hidden, dropout): super().__init__() self.selfattn = ResidualBlock(MultiHead(dimension, dimension, n_heads, dropout), dimension, dropout) self.feedforward = ResidualBlock(LinearReLU(dimension, hidden), dimension, dropout) def forward(self, x, padding=None): return self.feedforward(self.selfattn(x, x, x, padding=padding)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dimension': 4, 'n_heads': 4, 'hidden': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math from torch import nn from torch.nn import functional as F import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 2, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + x1, tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 3, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr2 + x1, tmp14 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 4, tl.int64) tmp19 = tl.load(in_ptr3 + x1, tmp16 & xmask, eviction_policy= 'evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + x0, tmp29, xmask) tl.store(out_ptr0 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp6 = tmp0 * tmp5 tmp8 = libdevice.sqrt(tmp7) tmp9 = 1e-06 tmp10 = tmp8 + tmp9 tmp11 = tmp6 / tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_7(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp0 * tmp11 tmp13 = tmp2 - tmp10 tmp14 = tmp13 * tmp13 tmp15 = tmp3 - tmp10 tmp16 = tmp15 * tmp15 tmp17 = tmp14 + tmp16 tmp18 = tmp5 - tmp10 tmp19 = tmp18 * tmp18 tmp20 = tmp17 + tmp19 tmp21 = tmp7 - tmp10 tmp22 = tmp21 * tmp21 tmp23 = tmp20 + tmp22 tmp24 = 3.0 tmp25 = tmp23 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-06 tmp28 = tmp26 + tmp27 tmp29 = tmp12 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = buf3 del buf3 triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 0), out=buf6) buf7 = buf4 del buf4 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf7, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_1[grid(64)](buf8, buf9, 64, XBLOCK=64, num_warps=1, num_stages=1) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 1), out=buf10) buf11 = buf8 del buf8 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = buf11 del buf11 triton_poi_fused__softmax_1[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 2), out=buf14) buf15 = buf12 del buf12 extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15) buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_0[grid(64)](buf15, buf16, 64, XBLOCK=64, num_warps=1, num_stages=1) buf17 = buf15 del buf15 triton_poi_fused__softmax_1[grid(64)](buf16, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16, 4, 1), 3), out=buf18) buf19 = buf16 del buf16 triton_poi_fused_cat_2[grid(64)](buf6, buf10, buf14, buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf10 del buf14 buf20 = reinterpret_tensor(buf6, (4, 4, 1), (4, 1, 16), 0) del buf6 buf21 = buf20 del buf20 buf22 = reinterpret_tensor(buf18, (4, 4, 1), (4, 1, 16), 0) del buf18 triton_poi_fused_add_mean_std_3[grid(16)](buf21, primals_1, buf19, buf22, 16, XBLOCK=16, num_warps=1, num_stages=1) buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_std_sub_4[grid(64)](primals_5, primals_1, buf19, buf22, buf21, primals_6, buf23, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf21 del buf22 del primals_6 buf24 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf23, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf24) buf25 = reinterpret_tensor(buf24, (4, 4, 4), (16, 4, 1), 0) del buf24 buf29 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_5[grid(64)](buf25, primals_8, buf29, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_8 buf26 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf25, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 triton_poi_fused_add_6[grid(64)](buf27, buf23, primals_10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_10 buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_std_sub_7[grid(64)](primals_11, buf27, primals_12, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_12 return (buf28, primals_1, primals_5, primals_11, buf5, buf9, buf13, buf17, buf19, reinterpret_tensor(buf23, (16, 4), (4, 1), 0), reinterpret_tensor(buf25, (16, 4), (4, 1), 0), buf27, primals_9, buf29, primals_7, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3 ), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0)) def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class LayerNorm(nn.Module): def __init__(self, d_model, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(d_model)) self.beta = nn.Parameter(torch.zeros(d_model)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class ResidualBlock(nn.Module): def __init__(self, layer, d_model, dropout_ratio): super().__init__() self.layer = layer self.dropout = nn.Dropout(dropout_ratio) self.layernorm = LayerNorm(d_model) def forward(self, *x, padding=None): return self.layernorm(x[0] + self.dropout(self.layer(*x, padding= padding))) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class MultiHead(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, query, key, value, padding=None): query, key, value = self.wq(query), self.wk(key), self.wv(value) query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key, value)) return torch.cat([self.attention(q, k, v, padding=padding) for q, k, v in zip(query, key, value)], -1) class Feedforward(nn.Module): def __init__(self, d_in, d_out, activation=None, bias=True, dropout=0.2): super().__init__() if activation is not None: self.activation = getattr(torch, activation) else: self.activation = lambda x: x self.linear = Linear(d_in, d_out, bias=bias) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.activation(self.linear(self.dropout(x))) class LinearReLU(nn.Module): def __init__(self, d_model, d_hidden): super().__init__() self.feedforward = Feedforward(d_model, d_hidden, activation='relu') self.linear = Linear(d_hidden, d_model) def forward(self, x, padding=None): return self.linear(self.feedforward(x)) class TransformerEncoderLayerNew(nn.Module): def __init__(self, dimension, n_heads, hidden, dropout): super().__init__() self.selfattn = ResidualBlock(MultiHead(dimension, dimension, n_heads, dropout), dimension, dropout) self.feedforward = ResidualBlock(LinearReLU(dimension, hidden), dimension, dropout) def forward(self, input_0): primals_2 = self.selfattn.layer.wq.weight primals_3 = self.selfattn.layer.wk.weight primals_4 = self.selfattn.layer.wv.weight primals_5 = self.selfattn.layernorm.gamma primals_6 = self.selfattn.layernorm.beta primals_7 = self.feedforward.layer.feedforward.linear.weight primals_8 = self.feedforward.layer.feedforward.linear.bias primals_9 = self.feedforward.layer.linear.weight primals_10 = self.feedforward.layer.linear.bias primals_11 = self.feedforward.layernorm.gamma primals_12 = self.feedforward.layernorm.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
abhinavrangarajan/genienlp
TransformerEncoderLayer
false
1,371
[ "BSD-3-Clause" ]
0
ba121274b3365739ce9e5a8facc9a2904149b9c7
https://github.com/abhinavrangarajan/genienlp/tree/ba121274b3365739ce9e5a8facc9a2904149b9c7
import math import torch from torch import nn from torch.nn import functional as F import torch.utils.data def matmul(x, y): if x.dim() == y.dim(): return x @ y if x.dim() == y.dim() - 1: return (x.unsqueeze(-2) @ y).squeeze(-2) return (x @ y.unsqueeze(-2)).squeeze(-2) class LayerNorm(nn.Module): def __init__(self, d_model, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(d_model)) self.beta = nn.Parameter(torch.zeros(d_model)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.gamma * (x - mean) / (std + self.eps) + self.beta class ResidualBlock(nn.Module): def __init__(self, layer, d_model, dropout_ratio): super().__init__() self.layer = layer self.dropout = nn.Dropout(dropout_ratio) self.layernorm = LayerNorm(d_model) def forward(self, *x, padding=None): return self.layernorm(x[0] + self.dropout(self.layer(*x, padding= padding))) class Attention(nn.Module): def __init__(self, d_key, dropout_ratio, causal): super().__init__() self.scale = math.sqrt(d_key) self.dropout = nn.Dropout(dropout_ratio) self.causal = causal def forward(self, query, key, value, padding=None): dot_products = matmul(query, key.transpose(1, 2)) if query.dim() == 3 and self.causal: tri = key.new_ones((key.size(1), key.size(1))).triu(1) * INF dot_products.sub_(tri.unsqueeze(0)) if padding is not None: if dot_products.dim() == 3: dot_products.masked_fill_(padding.unsqueeze(1).expand_as( dot_products), -INF) else: dot_products.masked_fill_(padding, -INF) return matmul(self.dropout(F.softmax(dot_products / self.scale, dim =-1)), value) class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class MultiHead(nn.Module): def __init__(self, d_key, d_value, n_heads, dropout_ratio, causal=False): super().__init__() self.attention = Attention(d_key, dropout_ratio, causal=causal) self.wq = Linear(d_key, d_key, bias=False) self.wk = Linear(d_key, d_key, bias=False) self.wv = Linear(d_value, d_value, bias=False) self.n_heads = n_heads def forward(self, query, key, value, padding=None): query, key, value = self.wq(query), self.wk(key), self.wv(value) query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key, value)) return torch.cat([self.attention(q, k, v, padding=padding) for q, k, v in zip(query, key, value)], -1) class Feedforward(nn.Module): def __init__(self, d_in, d_out, activation=None, bias=True, dropout=0.2): super().__init__() if activation is not None: self.activation = getattr(torch, activation) else: self.activation = lambda x: x self.linear = Linear(d_in, d_out, bias=bias) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.activation(self.linear(self.dropout(x))) class LinearReLU(nn.Module): def __init__(self, d_model, d_hidden): super().__init__() self.feedforward = Feedforward(d_model, d_hidden, activation='relu') self.linear = Linear(d_hidden, d_model) def forward(self, x, padding=None): return self.linear(self.feedforward(x)) class Model(nn.Module): def __init__(self, dimension, n_heads, hidden, dropout): super().__init__() self.selfattn = ResidualBlock(MultiHead(dimension, dimension, n_heads, dropout), dimension, dropout) self.feedforward = ResidualBlock(LinearReLU(dimension, hidden), dimension, # ... truncated (>4000 chars) for memory efficiency
DCT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zl/czlsirg37jkcoxnj3z3xijex74bdwg2q6v2s742a23s2xm4rnmtp.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.tanh] # Source node to ATen node mapping: # out => convolution # out_1 => tanh # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_tanh_0 = async_compile.triton('triton_poi_fused_convolution_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 8, 8), (256, 64, 8, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_convolution_tanh_0.run(buf1, primals_2, 1024, grid=grid(1024), stream=stream0) del primals_2 return (buf1, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 2, 2), (16, 4, 2, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DCT(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, out_pad=0): super(DCT, self).__init__() self.dcnn = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, output_padding=out_pad) self.tanh = nn.Tanh() def forward(self, x1): out = self.dcnn(x1) out = self.tanh(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 2, 2), (16, 4, 2, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 8, 8), (256, 64, 8, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_tanh_0[grid(1024)](buf1, primals_2, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, primals_1, primals_3, buf1 class DCTNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, out_pad=0): super(DCTNew, self).__init__() self.dcnn = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, output_padding=out_pad) self.tanh = nn.Tanh() def forward(self, input_0): primals_1 = self.dcnn.weight primals_2 = self.dcnn.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
adamkrekorian/CI-UNet
DCT
false
1,372
[ "MIT" ]
0
fab0f8806540f5d79911bd81ba54dff135f9814f
https://github.com/adamkrekorian/CI-UNet/tree/fab0f8806540f5d79911bd81ba54dff135f9814f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, out_pad=0): super().__init__() self.dcnn = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=2, stride=2, output_padding=out_pad) self.tanh = nn.Tanh() def forward(self, x1): out = self.dcnn(x1) out = self.tanh(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
CL
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/g3/cg3xptk52xarqj2v7qdvujkxs2jznflef6xcucqtzouvzurxg2na.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # out => convolution # out_1 => gt, mul, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_convolution_leaky_relu_0 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 9) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr1 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 144, grid=grid(144), stream=stream0) del buf0 del primals_2 return (buf2, primals_1, primals_3, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class CL(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(CL, self).__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.lr = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): out = self.cnn(x) out = self.lr(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 9 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 3, 3), (36, 9, 3, 1)) buf1 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_leaky_relu_0[grid(144)](buf0, primals_2, buf1, buf2, 144, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 return buf2, primals_1, primals_3, buf1 class CLNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super(CLNew, self).__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.lr = nn.LeakyReLU(negative_slope=0.2) def forward(self, input_0): primals_1 = self.cnn.weight primals_2 = self.cnn.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
adamkrekorian/CI-UNet
CL
false
1,373
[ "MIT" ]
0
fab0f8806540f5d79911bd81ba54dff135f9814f
https://github.com/adamkrekorian/CI-UNet/tree/fab0f8806540f5d79911bd81ba54dff135f9814f
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size): super().__init__() self.cnn = nn.Conv2d(in_channels, out_channels, kernel_size, stride =2, padding=2) self.lr = nn.LeakyReLU(negative_slope=0.2) def forward(self, x): out = self.cnn(x) out = self.lr(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ModulatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] # Source node to ATen node mapping: # bias => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ri/criuvsdl3sferb4bb6ci5zaps3wys7xxcpybz7vfo2ba4q7cuq6c.py # Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt] # Source node to ATen node mapping: # add => add # demod => rsqrt # mul_2 => mul_2 # pow_1 => pow_1 # sum_1 => sum_1 # weight => mul_3 # weight_1 => mul_4 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.125), kwargs = {}) # %mul_3 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_3, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %view_1), kwargs = {}) triton_per_fused_add_mul_pow_rsqrt_sum_2 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r5 = rindex x0 = xindex % 4 r3 = (rindex // 16) x1 = (xindex // 4) x4 = xindex tmp0 = tl.load(in_ptr0 + (r5 + (64*x0)), xmask, eviction_policy='evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), xmask, eviction_policy='evict_last', other=0.0) tmp1 = 0.125 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 1e-08 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp4 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr0 + (r5 + (64*x4)), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf1 buf3 = buf0; del buf0 # reuse buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, weight, pow_1, sum_1, add, demod, weight_1], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt] triton_per_fused_add_mul_pow_rsqrt_sum_2.run(buf4, primals_5, buf2, buf5, 16, 64, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1)) return (reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class UpFirDnSmooth(nn.Module): """Upsample, FIR filter, and downsample (smooth version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. upsample_factor (int): Upsampling scale factor. Default: 1. downsample_factor (int): Downsampling scale factor. Default: 1. kernel_size (int): Kernel size: Deafult: 1. """ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): super(UpFirDnSmooth, self).__init__() self.upsample_factor = upsample_factor self.downsample_factor = downsample_factor self.kernel = make_resample_kernel(resample_kernel) if upsample_factor > 1: self.kernel = self.kernel * upsample_factor ** 2 if upsample_factor > 1: pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1) self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1 elif downsample_factor > 1: pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1) self.pad = (pad + 1) // 2, pad // 2 else: raise NotImplementedError def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) return out def __repr__(self): return ( f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})' ) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) class ModulatedConv2d(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel= (1, 3, 3, 1), eps=1e-08): super(ModulatedConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps if self.sample_mode == 'upsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) elif self.sample_mode == 'downsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) elif self.sample_mode is None: pass else: raise ValueError( f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]." ) self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2) self.modulation = EqualLinear(num_style_feat, in_channels, bias= True, bias_init_val=1, lr_mul=1, activation=None) self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) self.padding = kernel_size // 2 def forward(self, x, style): """Forward function. Args: x (Tensor): Tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). Returns: Tensor: Modulated tensor after convolution. """ b, c, h, w = x.shape style = self.modulation(style).view(b, 1, c, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) weight = weight * demod.view(b, self.out_channels, 1, 1, 1) weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) if self.sample_mode == 'upsample': x = x.view(1, b * c, h, w) weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(b * c, self. out_channels, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) out = self.smooth(out) elif self.sample_mode == 'downsample': x = self.smooth(x) x = x.view(1, b * c, *x.shape[2:4]) out = F.conv2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) else: x = x.view(1, b * c, h, w) out = F.conv2d(x, weight, padding=self.padding, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})' ) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4, 'num_style_feat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.autograd import Function import math import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused_add_mul_pow_rsqrt_sum_2(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r5 = rindex x0 = xindex % 4 r3 = rindex // 16 x1 = xindex // 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (r5 + 64 * x0), xmask, eviction_policy= 'evict_last', other=0.0) tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp1 = 0.125 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp5 = tmp4 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = 1e-08 tmp11 = tmp9 + tmp10 tmp12 = libdevice.rsqrt(tmp11) tmp13 = tmp4 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr0 + (r5 + 64 * x4), tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf1 buf3 = buf0 del buf0 buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_per_fused_add_mul_pow_rsqrt_sum_2[grid(16)](buf4, primals_5, buf2, buf5, 16, 64, XBLOCK=1, num_warps=2, num_stages=1) buf6 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf6, (1, 16, 5, 5), (400, 25, 5, 1)) return reinterpret_tensor(buf6, (4, 4, 5, 5), (100, 25, 5, 1), 0 ), primals_4, primals_5, buf2, buf4, reinterpret_tensor(buf5, (16, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0) def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class UpFirDnSmooth(nn.Module): """Upsample, FIR filter, and downsample (smooth version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. upsample_factor (int): Upsampling scale factor. Default: 1. downsample_factor (int): Downsampling scale factor. Default: 1. kernel_size (int): Kernel size: Deafult: 1. """ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): super(UpFirDnSmooth, self).__init__() self.upsample_factor = upsample_factor self.downsample_factor = downsample_factor self.kernel = make_resample_kernel(resample_kernel) if upsample_factor > 1: self.kernel = self.kernel * upsample_factor ** 2 if upsample_factor > 1: pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1) self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1 elif downsample_factor > 1: pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1) self.pad = (pad + 1) // 2, pad // 2 else: raise NotImplementedError def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) return out def __repr__(self): return ( f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})' ) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) class ModulatedConv2dNew(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel= (1, 3, 3, 1), eps=1e-08): super(ModulatedConv2dNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps if self.sample_mode == 'upsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) elif self.sample_mode == 'downsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) elif self.sample_mode is None: pass else: raise ValueError( f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]." ) self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2) self.modulation = EqualLinear(num_style_feat, in_channels, bias= True, bias_init_val=1, lr_mul=1, activation=None) self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) self.padding = kernel_size // 2 def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})' ) def forward(self, input_0, input_1): primals_5 = self.weight primals_3 = self.modulation.weight primals_2 = self.modulation.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
achrefjarray/ESRGANplus-master
ModulatedConv2d
false
1,374
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_o # ... truncated (>4000 chars) for memory efficiency
ToRGB
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] # Source node to ATen node mapping: # bias => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/on/conl6eemb3vyjzkllydlouehrcxphkzifo5kmslz6fgiz6ixsw5h.py # Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_2 => mul_2 # weight => mul_3 # Graph fragment: # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_5, 0.5), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {}) triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 12 x0 = xindex % 4 x2 = (xindex // 12) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x4), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add] # Source node to ATen node mapping: # out_3 => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 3 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1)) assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0) del primals_3 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_2, buf1, 4, grid=grid(4), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul] triton_poi_fused_mul_2.run(primals_5, buf2, buf3, 48, grid=grid(48), stream=stream0) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0) del primals_6 return (buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class UpFirDnUpsample(nn.Module): """Upsample, FIR filter, and downsample (upsampole version). References: 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. factor (int): Upsampling scale factor. Default: 2. """ def __init__(self, resample_kernel, factor=2): super(UpFirDnUpsample, self).__init__() self.kernel = make_resample_kernel(resample_kernel) * factor ** 2 self.factor = factor pad = self.kernel.shape[0] - factor self.pad = (pad + 1) // 2 + factor - 1, pad // 2 def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) return out def __repr__(self): return f'{self.__class__.__name__}(factor={self.factor})' class UpFirDnSmooth(nn.Module): """Upsample, FIR filter, and downsample (smooth version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. upsample_factor (int): Upsampling scale factor. Default: 1. downsample_factor (int): Downsampling scale factor. Default: 1. kernel_size (int): Kernel size: Deafult: 1. """ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): super(UpFirDnSmooth, self).__init__() self.upsample_factor = upsample_factor self.downsample_factor = downsample_factor self.kernel = make_resample_kernel(resample_kernel) if upsample_factor > 1: self.kernel = self.kernel * upsample_factor ** 2 if upsample_factor > 1: pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1) self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1 elif downsample_factor > 1: pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1) self.pad = (pad + 1) // 2, pad // 2 else: raise NotImplementedError def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) return out def __repr__(self): return ( f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})' ) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) class ModulatedConv2d(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel= (1, 3, 3, 1), eps=1e-08): super(ModulatedConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps if self.sample_mode == 'upsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) elif self.sample_mode == 'downsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) elif self.sample_mode is None: pass else: raise ValueError( f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]." ) self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2) self.modulation = EqualLinear(num_style_feat, in_channels, bias= True, bias_init_val=1, lr_mul=1, activation=None) self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) self.padding = kernel_size // 2 def forward(self, x, style): """Forward function. Args: x (Tensor): Tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). Returns: Tensor: Modulated tensor after convolution. """ b, c, h, w = x.shape style = self.modulation(style).view(b, 1, c, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) weight = weight * demod.view(b, self.out_channels, 1, 1, 1) weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) if self.sample_mode == 'upsample': x = x.view(1, b * c, h, w) weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(b * c, self. out_channels, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) out = self.smooth(out) elif self.sample_mode == 'downsample': x = self.smooth(x) x = x.view(1, b * c, *x.shape[2:4]) out = F.conv2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) else: x = x.view(1, b * c, h, w) out = F.conv2d(x, weight, padding=self.padding, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})' ) class ToRGB(nn.Module): """To RGB from features. Args: in_channels (int): Channel number of input. num_style_feat (int): Channel number of style features. upsample (bool): Whether to upsample. Default: True. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). """ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)): super(ToRGB, self).__init__() if upsample: self.upsample = UpFirDnUpsample(resample_kernel, factor=2) else: self.upsample = None self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, x, style, skip=None): """Forward function. Args: x (Tensor): Feature tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). skip (Tensor): Base/skip tensor. Default: None. Returns: Tensor: RGB images. """ out = self.modulated_conv(x, style) out = out + self.bias if skip is not None: if self.upsample: skip = self.upsample(skip) out = out + skip return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'num_style_feat': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.autograd import Function import math import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 12 x0 = xindex % 4 x2 = xindex // 12 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 3 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1)) assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_2, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch. float32) triton_poi_fused_mul_2[grid(48)](primals_5, buf2, buf3, 48, XBLOCK= 64, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1)) buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0) del buf4 triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128, num_warps=4, num_stages=1) del primals_6 return buf5, primals_4, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0) def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_out = upfirdn2d_ext.upfirdn2d(gradgrad_input, kernel, ctx. up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1, ctx.pad_y0, ctx.pad_y1) gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]) return gradgrad_out, None, None, None, None, None, None, None, None class UpFirDn2d(Function): @staticmethod def forward(ctx, input, kernel, up, down, pad): up_x, up_y = up down_x, down_y = down pad_x0, pad_x1, pad_y0, pad_y1 = pad kernel_h, kernel_w = kernel.shape _batch, channel, in_h, in_w = input.shape ctx.in_size = input.shape input = input.reshape(-1, in_h, in_w, 1) ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1])) out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 ctx.out_size = out_h, out_w ctx.up = up_x, up_y ctx.down = down_x, down_y ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1 g_pad_x0 = kernel_w - pad_x0 - 1 g_pad_y0 = kernel_h - pad_y0 - 1 g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1 g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1 ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 out = upfirdn2d_ext.upfirdn2d(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1) out = out.view(-1, channel, out_h, out_w) return out @staticmethod def backward(ctx, grad_output): kernel, grad_kernel = ctx.saved_tensors grad_input = UpFirDn2dBackward.apply(grad_output, kernel, grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size, ctx.out_size) return grad_input, None, None, None, None class UpFirDnUpsample(nn.Module): """Upsample, FIR filter, and downsample (upsampole version). References: 1. https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.upfirdn.html # noqa: E501 2. http://www.ece.northwestern.edu/local-apps/matlabhelp/toolbox/signal/upfirdn.html # noqa: E501 Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. factor (int): Upsampling scale factor. Default: 2. """ def __init__(self, resample_kernel, factor=2): super(UpFirDnUpsample, self).__init__() self.kernel = make_resample_kernel(resample_kernel) * factor ** 2 self.factor = factor pad = self.kernel.shape[0] - factor self.pad = (pad + 1) // 2 + factor - 1, pad // 2 def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=self.factor, down=1, pad=self.pad) return out def __repr__(self): return f'{self.__class__.__name__}(factor={self.factor})' class UpFirDnSmooth(nn.Module): """Upsample, FIR filter, and downsample (smooth version). Args: resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. upsample_factor (int): Upsampling scale factor. Default: 1. downsample_factor (int): Downsampling scale factor. Default: 1. kernel_size (int): Kernel size: Deafult: 1. """ def __init__(self, resample_kernel, upsample_factor=1, downsample_factor=1, kernel_size=1): super(UpFirDnSmooth, self).__init__() self.upsample_factor = upsample_factor self.downsample_factor = downsample_factor self.kernel = make_resample_kernel(resample_kernel) if upsample_factor > 1: self.kernel = self.kernel * upsample_factor ** 2 if upsample_factor > 1: pad = self.kernel.shape[0] - upsample_factor - (kernel_size - 1) self.pad = (pad + 1) // 2 + upsample_factor - 1, pad // 2 + 1 elif downsample_factor > 1: pad = self.kernel.shape[0] - downsample_factor + (kernel_size - 1) self.pad = (pad + 1) // 2, pad // 2 else: raise NotImplementedError def forward(self, x): out = upfirdn2d(x, self.kernel.type_as(x), up=1, down=1, pad=self.pad) return out def __repr__(self): return ( f'{self.__class__.__name__}(upsample_factor={self.upsample_factor}, downsample_factor={self.downsample_factor})' ) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) class ModulatedConv2d(nn.Module): """Modulated Conv2d used in StyleGAN2. There is no bias in ModulatedConv2d. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. num_style_feat (int): Channel number of style features. demodulate (bool): Whether to demodulate in the conv layer. Default: True. sample_mode (str | None): Indicating 'upsample', 'downsample' or None. Default: None. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). eps (float): A value added to the denominator for numerical stability. Default: 1e-8. """ def __init__(self, in_channels, out_channels, kernel_size, num_style_feat, demodulate=True, sample_mode=None, resample_kernel= (1, 3, 3, 1), eps=1e-08): super(ModulatedConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.demodulate = demodulate self.sample_mode = sample_mode self.eps = eps if self.sample_mode == 'upsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=2, downsample_factor=1, kernel_size=kernel_size) elif self.sample_mode == 'downsample': self.smooth = UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size) elif self.sample_mode is None: pass else: raise ValueError( f"Wrong sample mode {self.sample_mode}, supported ones are ['upsample', 'downsample', None]." ) self.scale = 1 / math.sqrt(in_channels * kernel_size ** 2) self.modulation = EqualLinear(num_style_feat, in_channels, bias= True, bias_init_val=1, lr_mul=1, activation=None) self.weight = nn.Parameter(torch.randn(1, out_channels, in_channels, kernel_size, kernel_size)) self.padding = kernel_size // 2 def forward(self, x, style): """Forward function. Args: x (Tensor): Tensor with shape (b, c, h, w). style (Tensor): Tensor with shape (b, num_style_feat). Returns: Tensor: Modulated tensor after convolution. """ b, c, h, w = x.shape style = self.modulation(style).view(b, 1, c, 1, 1) weight = self.scale * self.weight * style if self.demodulate: demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + self.eps) weight = weight * demod.view(b, self.out_channels, 1, 1, 1) weight = weight.view(b * self.out_channels, c, self.kernel_size, self.kernel_size) if self.sample_mode == 'upsample': x = x.view(1, b * c, h, w) weight = weight.view(b, self.out_channels, c, self.kernel_size, self.kernel_size) weight = weight.transpose(1, 2).reshape(b * c, self. out_channels, self.kernel_size, self.kernel_size) out = F.conv_transpose2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) out = self.smooth(out) elif self.sample_mode == 'downsample': x = self.smooth(x) x = x.view(1, b * c, *x.shape[2:4]) out = F.conv2d(x, weight, padding=0, stride=2, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) else: x = x.view(1, b * c, h, w) out = F.conv2d(x, weight, padding=self.padding, groups=b) out = out.view(b, self.out_channels, *out.shape[2:4]) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, kernel_size={self.kernel_size}, demodulate={self.demodulate}, sample_mode={self.sample_mode})' ) class ToRGBNew(nn.Module): """To RGB from features. Args: in_channels (int): Channel number of input. num_style_feat (int): Channel number of style features. upsample (bool): Whether to upsample. Default: True. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. Default: (1, 3, 3, 1). """ def __init__(self, in_channels, num_style_feat, upsample=True, resample_kernel=(1, 3, 3, 1)): super(ToRGBNew, self).__init__() if upsample: self.upsample = UpFirDnUpsample(resample_kernel, factor=2) else: self.upsample = None self.modulated_conv = ModulatedConv2d(in_channels, 3, kernel_size=1, num_style_feat=num_style_feat, demodulate=False, sample_mode=None) self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1)) def forward(self, input_0, input_1): primals_6 = self.bias primals_5 = self.modulated_conv.weight primals_3 = self.modulated_conv.modulation.weight primals_2 = self.modulated_conv.modulation.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
achrefjarray/ESRGANplus-master
ToRGB
false
1,375
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def pad(pad_type, padding): pad_type = pad_type.lower() if padding == 0: return None if pad_type == 'reflect': layer = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': layer = nn.ReplicationPad2d(padding) else: raise NotImplementedError('padding layer [{:s}] is not implemented' .format(pad_type)) return layer def make_resample_kernel(k): """Make resampling kernel for UpFirDn. Args: k (list[int]): A list indicating the 1D resample kernel magnitude. Returns: Tensor: 2D resampled kernel. """ k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(- pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): if input.device.type == 'cpu': out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) else: out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0 ], pad[1], pad[0], pad[1])) return out def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class UpFirDn2dBackward(Function): @staticmethod def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size): up_x, up_y = up down_x, down_y = down g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1) grad_input = upfirdn2d_ext.upfirdn2d(grad_output, grad_kernel, down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1) grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3]) ctx.save_for_backward(kernel) pad_x0, pad_x1, pad_y0, pad_y1 = pad ctx.up_x = up_x ctx.up_y = up_y ctx.down_x = down_x ctx.down_y = down_y ctx.pad_x0 = pad_x0 ctx.pad_x1 = pad_x1 ctx.pad_y0 = pad_y0 ctx.pad_y1 = pad_y1 ctx.in_size = in_size ctx.out_size = out_size return grad_input @staticmethod def backward(ctx, gradgrad_input): kernel, = ctx.saved_tensors gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx. in_size[3], 1) gradgrad_o # ... truncated (>4000 chars) for memory efficiency
HighwayLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/i3/ci3asduovereenc5juon6pzphu6oeecdpkloo6migbh6cxdu6y2t.py # Topologically Sorted Source Nodes: [gate, nlin, mul, sub, mul_1, res], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # gate => sigmoid # mul => mul # mul_1 => mul_1 # nlin => tanh # res => add # sub => sub # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %tanh), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_rsub_sigmoid_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp7 = tl.load(in_ptr2 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [gate, nlin, mul, sub, mul_1, res], Original ATen: [aten.sigmoid, aten.tanh, aten.mul, aten.rsub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0.run(buf0, buf1, primals_3, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_3, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data import torch.utils.data.distributed def my_xavier_init(m, gain=1): """Xavier initialization: weights initialization that tries to make variance of outputs of a layer equal to variance of its inputs. """ for p in m.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain) else: nn.init.constant_(p, 0) class HighwayLayer(torch.nn.Module): """Highway transformation used in span prediction.""" def __init__(self, dim): super(HighwayLayer, self).__init__() self.gate_proj = nn.Linear(dim, dim, bias=True) self.nlin_proj = nn.Linear(dim, dim, bias=True) my_xavier_init(self.nlin_proj) my_xavier_init(self.gate_proj) nn.init.constant_(self.gate_proj.bias, -1) def forward(self, x): gate = torch.sigmoid(self.gate_proj(x)) nlin = torch.tanh(self.nlin_proj(x)) res = gate * nlin + (1 - gate) * x return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_rsub_sigmoid_tanh_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp7 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = libdevice.tanh(tmp2) tmp4 = tmp1 * tmp3 tmp5 = 1.0 tmp6 = tmp5 - tmp1 tmp8 = tmp6 * tmp7 tmp9 = tmp4 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_rsub_sigmoid_tanh_0[grid(256)](buf0, buf1, primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_3, buf0, buf1 def my_xavier_init(m, gain=1): """Xavier initialization: weights initialization that tries to make variance of outputs of a layer equal to variance of its inputs. """ for p in m.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain) else: nn.init.constant_(p, 0) class HighwayLayerNew(torch.nn.Module): """Highway transformation used in span prediction.""" def __init__(self, dim): super(HighwayLayerNew, self).__init__() self.gate_proj = nn.Linear(dim, dim, bias=True) self.nlin_proj = nn.Linear(dim, dim, bias=True) my_xavier_init(self.nlin_proj) my_xavier_init(self.gate_proj) nn.init.constant_(self.gate_proj.bias, -1) def forward(self, input_0): primals_1 = self.gate_proj.weight primals_2 = self.gate_proj.bias primals_4 = self.nlin_proj.weight primals_5 = self.nlin_proj.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
adamlerer/droidlet
HighwayLayer
false
1,376
[ "MIT" ]
0
ada38d191dadcea9aba12330e35e8e7d6d1663d9
https://github.com/adamlerer/droidlet/tree/ada38d191dadcea9aba12330e35e8e7d6d1663d9
import torch import torch.nn as nn import torch.utils.data import torch.utils.data.distributed def my_xavier_init(m, gain=1): """Xavier initialization: weights initialization that tries to make variance of outputs of a layer equal to variance of its inputs. """ for p in m.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain) else: nn.init.constant_(p, 0) class Model(torch.nn.Module): """Highway transformation used in span prediction.""" def __init__(self, dim): super().__init__() self.gate_proj = nn.Linear(dim, dim, bias=True) self.nlin_proj = nn.Linear(dim, dim, bias=True) my_xavier_init(self.nlin_proj) my_xavier_init(self.gate_proj) nn.init.constant_(self.gate_proj.bias, -1) def forward(self, x): gate = torch.sigmoid(self.gate_proj(x)) nlin = torch.tanh(self.nlin_proj(x)) res = gate * nlin + (1 - gate) * x return res def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
GramMatrix
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/yf/cyffia4j5wd4wdfnclucpdacx4spvmo5kez6yaogjnfasyq75igc.py # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] # Source node to ATen node mapping: # div => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%bmm, 256), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 0.00390625 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [G], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [div], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(buf1, 64, grid=grid(64), stream=stream0) return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.onnx class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.matmul(features, torch.transpose(features, 1, 2)) return G.div(a * b * c * d) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 0.00390625 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg0_1, (4, 4, 16), (64, 16, 1), 0), reinterpret_tensor(arg0_1, (4, 16, 4), (64, 1, 16), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_div_0[grid(64)](buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf1, class GramMatrixNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
adi-horowitz/final-project
GramMatrix
false
1,377
[ "MIT" ]
0
0fd864663e92a6bcaa5f068e3e45b2a76460d335
https://github.com/adi-horowitz/final-project/tree/0fd864663e92a6bcaa5f068e3e45b2a76460d335
import torch import torch.nn as nn import torch.onnx class Model(nn.Module): def forward(self, input): a, b, c, d = input.size() features = input.view(a, b, c * d) G = torch.matmul(features, torch.transpose(features, 1, 2)) return G.div(a * b * c * d) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MDN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py # Topologically Sorted Source Nodes: [z_h], Original ATen: [aten.tanh] # Source node to ATen node mapping: # z_h => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xk/cxkugsynlmnyrjhah42fewrhwovuvurnuv2qimo2qhxq27wjmq7q.py # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pi => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jf/cjfzp64ny4hf7wdw5wptah3hqv5fcsh5rrw4brz7uxcy6ad57n7h.py # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pi => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/y5/cy5iv7msc6zzagdyyumqciwhsmaylxsamuern7rjeyeo3hkd3zsi.py # Topologically Sorted Source Nodes: [sig], Original ATen: [aten.exp] # Source node to ATen node mapping: # sig => exp_1 # Graph fragment: # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_7,), kwargs = {}) triton_poi_fused_exp_3 = async_compile.triton('triton_poi_fused_exp_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_exp_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl_math.exp(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [z_h], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 256, grid=grid(256), stream=stream0) buf5 = reinterpret_tensor(buf3, (64, 4), (4, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [sig], Original ATen: [aten.exp] triton_poi_fused_exp_3.run(buf7, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 return (buf4, buf7, reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, buf7, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class MDN(nn.Module): def __init__(self, input_size, hidden_size, output_size, batch_size): super(MDN, self).__init__() self.hidden_size = hidden_size self.batch_size = batch_size self.z_h = nn.Linear(input_size, hidden_size) self.z_pi = nn.Linear(hidden_size, output_size) self.z_mu = nn.Linear(hidden_size, output_size) self.z_sig = nn.Linear(hidden_size, output_size) def forward(self, inp): z_h = F.tanh(self.z_h(inp)) pi = F.softmax(self.z_pi(z_h)) mu = self.z_mu(z_h) sig = torch.exp(self.z_sig(z_h)) return pi, sig, mu def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4, 'batch_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_exp_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl_math.exp(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf3, (64, 4), (4, 1), 0) del buf3 extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_exp_3[grid(256)](buf7, primals_9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return buf4, buf7, reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf4, buf7, primals_8, primals_6, primals_4 class MDNNew(nn.Module): def __init__(self, input_size, hidden_size, output_size, batch_size): super(MDNNew, self).__init__() self.hidden_size = hidden_size self.batch_size = batch_size self.z_h = nn.Linear(input_size, hidden_size) self.z_pi = nn.Linear(hidden_size, output_size) self.z_mu = nn.Linear(hidden_size, output_size) self.z_sig = nn.Linear(hidden_size, output_size) def forward(self, input_0): primals_1 = self.z_h.weight primals_2 = self.z_h.bias primals_4 = self.z_pi.weight primals_5 = self.z_pi.bias primals_6 = self.z_mu.weight primals_7 = self.z_mu.bias primals_8 = self.z_sig.weight primals_9 = self.z_sig.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1], output[2]
adelaunay3/DL-Seq2Seq
MDN
false
1,378
[ "MIT" ]
0
7b83e2501b26780ff2dec140ac15a6664699dc16
https://github.com/adelaunay3/DL-Seq2Seq/tree/7b83e2501b26780ff2dec140ac15a6664699dc16
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, input_size, hidden_size, output_size, batch_size): super().__init__() self.hidden_size = hidden_size self.batch_size = batch_size self.z_h = nn.Linear(input_size, hidden_size) self.z_pi = nn.Linear(hidden_size, output_size) self.z_mu = nn.Linear(hidden_size, output_size) self.z_sig = nn.Linear(hidden_size, output_size) def forward(self, inp): z_h = F.tanh(self.z_h(inp)) pi = F.softmax(self.z_pi(z_h)) mu = self.z_mu(z_h) sig = torch.exp(self.z_sig(z_h)) return pi, sig, mu def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4, 'batch_size': 4}]
ConvReLUNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cu/ccutvo2v4333pq6xhrg2zryqqwthm7dmmuqprvva2xdwiodpz5jn.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gy/cgylhqrp7uo6ulwwvwcaavkdj6lb3xbmk43eobqwwqruey33hhwc.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, clone, rsqrt, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask) tmp9 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + (x2), tmp13, xmask) tl.store(out_ptr1 + (x2), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pa/cpaccjq76xvjux47qgs7wy4lqiq65radyhdwdqtrvh44sdzkani6.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, clone, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%clone, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clone, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_5), kwargs = {}) triton_poi_fused_native_layer_norm_2 = async_compile.triton('triton_poi_fused_native_layer_norm_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (y3), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (y3), ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2 + (4*y3)), tmp10, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(buf1, buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_2.run(buf1, buf2, buf3, primals_4, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0) del buf2 del buf3 del primals_5 return (reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0), primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.cuda import torch.distributed import torch.optim class ConvReLUNorm(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNorm, self).__init__() self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, padding=kernel_size // 2) self.norm = torch.nn.LayerNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) def forward(self, signal): out = torch.nn.functional.relu(self.conv(signal)) out = self.norm(out.transpose(1, 2)).transpose(1, 2) return self.dropout(out) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.cuda import torch.distributed import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp6 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp9 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp1, tmp3) tmp5 = tmp2 + tmp4 tmp7 = triton_helpers.maximum(tmp1, tmp6) tmp8 = tmp5 + tmp7 tmp10 = triton_helpers.maximum(tmp1, tmp9) tmp11 = tmp8 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp14 tmp16 = tmp4 - tmp13 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp7 - tmp13 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 - tmp13 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp24 / tmp12 tmp26 = 1e-05 tmp27 = tmp25 + tmp26 tmp28 = libdevice.rsqrt(tmp27) tl.store(out_ptr0 + x2, tmp13, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 * tmp7 tmp10 = tmp8 + tmp9 tl.store(out_ptr0 + (x2 + 4 * y3), tmp10, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4), (16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_1[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_2[grid(16, 4)](buf1, buf2, buf3, primals_4, primals_5, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf2 del buf3 del primals_5 return reinterpret_tensor(buf4, (4, 4, 4), (16, 1, 4), 0 ), primals_1, primals_3, primals_4, buf1 class ConvReLUNormNew(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super(ConvReLUNormNew, self).__init__() self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, padding=kernel_size // 2) self.norm = torch.nn.LayerNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_4 = self.norm.weight primals_5 = self.norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
admariner/NeMo
ConvReLUNorm
false
1,379
[ "Apache-2.0" ]
0
e542d7f9063a40afa4119a3b94de4c2c636a37bb
https://github.com/admariner/NeMo/tree/e542d7f9063a40afa4119a3b94de4c2c636a37bb
import torch import torch.cuda import torch.distributed import torch.optim class Model(torch.nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1, dropout=0.0): super().__init__() self.conv = torch.nn.Conv1d(in_channels, out_channels, kernel_size= kernel_size, padding=kernel_size // 2) self.norm = torch.nn.LayerNorm(out_channels) self.dropout = torch.nn.Dropout(dropout) def forward(self, signal): out = torch.nn.functional.relu(self.conv(signal)) out = self.norm(out.transpose(1, 2)).transpose(1, 2) return self.dropout(out) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
MultiHeadDense
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cm/ccmcgo4hhocf76otuns232vkfdobmiyhbrbzce7zxp7kc5eree6u.py # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] # Source node to ATen node mapping: # repeat => repeat # Graph fragment: # %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_2, [4, 1, 1]), kwargs = {}) triton_poi_fused_repeat_0 = async_compile.triton('triton_poi_fused_repeat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat] stream0 = get_raw_stream(0) triton_poi_fused_repeat_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [repeat, x], Original ATen: [aten.repeat, aten.bmm] extern_kernels.bmm(primals_1, buf0, out=buf1) del buf0 return (buf1, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class MultiHeadDense(nn.Module): def __init__(self, d): super(MultiHeadDense, self).__init__() self.weight = nn.Parameter(torch.Tensor(d, d)) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, x): b, _wh, _d = x.size() x = torch.bmm(x, self.weight.repeat(b, 1, 1)) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(64)](primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(primals_1, buf0, out=buf1) del buf0 return buf1, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1, 4), 0) class MultiHeadDenseNew(nn.Module): def __init__(self, d): super(MultiHeadDenseNew, self).__init__() self.weight = nn.Parameter(torch.Tensor(d, d)) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
afperezm/DeepGlobe-Road-Extraction-Challenge
MultiHeadDense
false
1,380
[ "MIT" ]
0
d3e0a8123d64baa3975663ece053edbc4bbdc4e6
https://github.com/afperezm/DeepGlobe-Road-Extraction-Challenge/tree/d3e0a8123d64baa3975663ece053edbc4bbdc4e6
import math import torch import torch.nn as nn class Model(nn.Module): def __init__(self, d): super().__init__() self.weight = nn.Parameter(torch.Tensor(d, d)) self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self) ->None: nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) def forward(self, x): b, _wh, _d = x.size() x = torch.bmm(x, self.weight.repeat(b, 1, 1)) return x def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
EqualLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul_1 => mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] # Source node to ATen node mapping: # bias => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 1), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0) del primals_2 buf1 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(primals_1, buf1, 4, grid=grid(4), stream=stream0) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias, out], Original ATen: [aten.mul, aten.addmm] extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinear(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinear, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.autograd import Function import math import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 buf1 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_mul_1[grid(4)](primals_1, buf1, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(buf1, reinterpret_tensor(primals_3, (64, 4), ( 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del buf0 del buf1 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0) def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class EqualLinearNew(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super(EqualLinearNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) def forward(self, input_0): primals_2 = self.weight primals_1 = self.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
achrefjarray/ESRGANplus-master
EqualLinear
false
1,381
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
from torch.autograd import Function import math import torch import torch.utils.data from torch.nn import functional as F from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale) class FusedLeakyReLUFunctionBackward(Function): @staticmethod def forward(ctx, grad_output, out, negative_slope, scale): ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale empty = grad_output.new_empty(0) grad_input = fused_act_ext.fused_bias_act(grad_output, empty, out, 3, 1, negative_slope, scale) dim = [0] if grad_input.ndim > 2: dim += list(range(2, grad_input.ndim)) grad_bias = grad_input.sum(dim).detach() return grad_input, grad_bias @staticmethod def backward(ctx, gradgrad_input, gradgrad_bias): out, = ctx.saved_tensors gradgrad_out = fused_act_ext.fused_bias_act(gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale) return gradgrad_out, None, None, None class FusedLeakyReLUFunction(Function): @staticmethod def forward(ctx, input, bias, negative_slope, scale): empty = input.new_empty(0) out = fused_act_ext.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale) ctx.save_for_backward(out) ctx.negative_slope = negative_slope ctx.scale = scale return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_tensors grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply( grad_output, out, ctx.negative_slope, ctx.scale) return grad_input, grad_bias, None, None class Model(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Size of each sample. out_channels (int): Size of each output sample. bias (bool): If set to ``False``, the layer will not learn an additive bias. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. lr_mul (float): Learning rate multiplier. Default: 1. activation (None | str): The activation after ``linear`` operation. Supported: 'fused_lrelu', None. Default: None. """ def __init__(self, in_channels, out_channels, bias=True, bias_init_val= 0, lr_mul=1, activation=None): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.lr_mul = lr_mul self.activation = activation if self.activation not in ['fused_lrelu', None]: raise ValueError( f"Wrong activation value in EqualLinear: {activation}Supported ones are: ['fused_lrelu', None]." ) self.scale = 1 / math.sqrt(in_channels) * lr_mul self.weight = nn.Parameter(torch.randn(out_channels, in_channels). div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_( bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): if self.bias is None: bias = None else: bias = self.bias * self.lr_mul if self.activation == 'fused_lrelu': out = F.linear(x, self.weight * self.scale) out = fused_leaky_relu(out, bias) else: out = F.linear(x, self.weight * self.scale, bias=bias) return out def __repr__(self): return ( f'{self.__class__.__name__}(in_channels={self.in_channels}, out_channels={self.out_channels}, bias={self.bias is not None})' ) def get_inputs(): return [torch.ran # ... truncated (>4000 chars) for memory efficiency
GlobalMaxPool1d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l7/cl7te2znkphosjjgl5c32tkhoiehr4feuczsseen53wz7j4ifolb.py # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool1d => _low_memory_max_pool2d_with_offsets # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%unsqueeze, [1, 4], [1, 4], [0, 0], [1, 1], False), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [max_pool1d], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class GlobalMaxPool1d(nn.Module): """Performs global max pooling over the entire length of a batched 1D tensor # Arguments input: Input tensor """ def forward(self, input): return nn.functional.max_pool1d(input, kernel_size=input.size()[2:] ).view(-1, input.size(1)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4), (4, 1), 0), class GlobalMaxPool1dNew(nn.Module): """Performs global max pooling over the entire length of a batched 1D tensor # Arguments input: Input tensor """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
aiswaryasankar/Few_shot_exp
GlobalMaxPool1d
false
1,382
[ "MIT" ]
0
21c5a5d93dc69715b037a0fd2dca1b6f7d9de773
https://github.com/aiswaryasankar/Few_shot_exp/tree/21c5a5d93dc69715b037a0fd2dca1b6f7d9de773
import torch from torch import nn class Model(nn.Module): """Performs global max pooling over the entire length of a batched 1D tensor # Arguments input: Input tensor """ def forward(self, input): return nn.functional.max_pool1d(input, kernel_size=input.size()[2:] ).view(-1, input.size(1)) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return []
VectorQuantizer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/x6/cx6vj6jd2qhcbwnwwajpsdipepno6iepsyrvmepfo457t522sl26.py # Topologically Sorted Source Nodes: [latents, flat_latents], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # flat_latents => view # latents => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [-1, 4]), kwargs = {}) triton_poi_fused_clone_view_0 = async_compile.triton('triton_poi_fused_clone_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((16*x1) + (64*(y0 // 16)) + (y0 % 16)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oh/coh3kyu6rghphyqtfflzqlsbjfinc4c7cmryrm7sbhmrnnvqqu6w.py # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] # Source node to ATen node mapping: # add => add # dist => sub # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) triton_poi_fused_add_mul_pow_sub_sum_1 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3l/c3ltycq3kz4scgm57x763xs5lwirtcz6gwjv67cofz752mk5hx4y.py # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] # Source node to ATen node mapping: # argmin => argmin # Graph fragment: # %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%sub, 1), kwargs = {}) triton_poi_fused_argmin_2 = async_compile.triton('triton_poi_fused_argmin_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rl/crlo3ugzwljr2rgpi3zcuc6lfaljqn4v44qgasneddceseggjqyz.py # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] # Source node to ATen node mapping: # scatter_ => scatter_upon_const_tensor # Graph fragment: # %scatter_upon_const_tensor : [num_users=2] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: 1}) triton_poi_fused_scatter_3 = async_compile.triton('triton_poi_fused_scatter_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_scatter_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q2/cq24hmqtvfblft2slktho4yrwgljb7yc26un25ohqnsjv4htdt4u.py # Topologically Sorted Source Nodes: [latents, commitment_loss, mul_1, vq_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] # Source node to ATen node mapping: # commitment_loss => mean, pow_3, sub_1 # latents => clone # mul_1 => mul_1 # vq_loss => add_1 # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %clone), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.25), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mean), kwargs = {}) triton_per_fused_add_clone_mse_loss_mul_4 = async_compile.triton('triton_per_fused_add_clone_mse_loss_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clone_mse_loss_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = (rindex // 4) % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr1 + (r1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp10 + tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hw/chwygzi5nyxhprs3zdxgfmgjft5cozvbp3ndu6tgtrshdfvktxae.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + (16*y3)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hv/chvjnf47pob5gcg7s6gozmhfrxafd765t6zvezusswetka32p7n6.py # Topologically Sorted Source Nodes: [latents, commitment_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] # Source node to ATen node mapping: # commitment_loss => sub_1 # latents => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %clone), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.0078125), kwargs = {}) triton_poi_fused_clone_mse_loss_mse_loss_backward_6 = async_compile.triton('triton_poi_fused_clone_mse_loss_mse_loss_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mse_loss_mse_loss_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_6(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [latents, flat_latents], Original ATen: [aten.clone, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_clone_view_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, dist], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] triton_poi_fused_add_mul_pow_sub_sum_1.run(buf2, buf0, primals_2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] triton_poi_fused_argmin_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] triton_poi_fused_scatter_3.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [quantized_latents], Original ATen: [aten.mm] extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf9 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [latents, commitment_loss, mul_1, vq_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] triton_per_fused_add_clone_mse_loss_mul_4.run(buf9, buf5, primals_1, 1, 256, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(primals_1, buf5, buf7, 16, 16, grid=grid(16, 16), stream=stream0) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [latents, commitment_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] triton_poi_fused_clone_mse_loss_mse_loss_backward_6.run(buf8, primals_1, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 return (buf7, buf9, buf8, reinterpret_tensor(buf4, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import Tensor from torch import nn from torch.nn import functional as F class VectorQuantizer(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizer, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, latents: 'Tensor') ->Tensor: latents = latents.permute(0, 2, 3, 1).contiguous() latents_shape = latents.shape flat_latents = latents.view(-1, self.D) dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) device = latents.device encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K, device=device) encoding_one_hot.scatter_(1, encoding_inds, 1) quantized_latents = torch.matmul(encoding_one_hot, self.embedding. weight) quantized_latents = quantized_latents.view(latents_shape) commitment_loss = F.mse_loss(quantized_latents.detach(), latents) embedding_loss = F.mse_loss(quantized_latents, latents.detach()) vq_loss = commitment_loss * self.beta + embedding_loss quantized_latents = latents + (quantized_latents - latents).detach() return quantized_latents.permute(0, 3, 1, 2).contiguous(), vq_loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (y0 // 16) + y0 % 16), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_scatter_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = rindex // 4 % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr1 + (r1 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 0.25 tmp10 = tmp8 * tmp9 tmp11 = tmp10 + tmp8 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) @triton.jit def triton_poi_fused_clone_5(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + 16 * y3), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_6(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_view_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4 ), 0), out=buf1) buf2 = buf1 del buf1 triton_poi_fused_add_mul_pow_sub_sum_1[grid(256)](buf2, buf0, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_argmin_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused_scatter_3[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 buf5 = buf0 del buf0 extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf9 = buf6 del buf6 triton_per_fused_add_clone_mse_loss_mul_4[grid(1)](buf9, buf5, primals_1, 1, 256, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(16, 16)](primals_1, buf5, buf7, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_clone_mse_loss_mse_loss_backward_6[grid(64, 4)](buf8, primals_1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 return buf7, buf9, buf8, reinterpret_tensor(buf4, (4, 64), (1, 4), 0) class VectorQuantizerNew(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super(VectorQuantizerNew, self).__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, input_0): primals_2 = self.embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1]
adammoss/vae
VectorQuantizer
false
1,383
[ "Apache-2.0" ]
0
52f0f56492e3ac7c8b866ae99d5333b4281a371f
https://github.com/adammoss/vae/tree/52f0f56492e3ac7c8b866ae99d5333b4281a371f
import torch from torch import Tensor from torch import nn from torch.nn import functional as F class Model(nn.Module): """ Reference: [1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py """ def __init__(self, num_embeddings: 'int', embedding_dim: 'int', beta: 'float'=0.25): super().__init__() self.K = num_embeddings self.D = embedding_dim self.beta = beta self.embedding = nn.Embedding(self.K, self.D) self.embedding.weight.data.uniform_(-1 / self.K, 1 / self.K) def forward(self, latents: 'Tensor') ->Tensor: latents = latents.permute(0, 2, 3, 1).contiguous() latents_shape = latents.shape flat_latents = latents.view(-1, self.D) dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + torch.sum( self.embedding.weight ** 2, dim=1) - 2 * torch.matmul(flat_latents, self.embedding.weight.t()) encoding_inds = torch.argmin(dist, dim=1).unsqueeze(1) device = latents.device encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K, device=device) encoding_one_hot.scatter_(1, encoding_inds, 1) quantized_latents = torch.matmul(encoding_one_hot, self.embedding. weight) quantized_latents = quantized_latents.view(latents_shape) commitment_loss = F.mse_loss(quantized_latents.detach(), latents) embedding_loss = F.mse_loss(quantized_latents, latents.detach()) vq_loss = commitment_loss * self.beta + embedding_loss quantized_latents = latents + (quantized_latents - latents).detach() return quantized_latents.permute(0, 3, 1, 2).contiguous(), vq_loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
VectorQuantizer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/x6/cx6vj6jd2qhcbwnwwajpsdipepno6iepsyrvmepfo457t522sl26.py # Topologically Sorted Source Nodes: [inputs, flat_input], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # flat_input => view # inputs => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [-1, 4]), kwargs = {}) triton_poi_fused_clone_view_0 = async_compile.triton('triton_poi_fused_clone_view_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + ((16*x1) + (64*(y0 // 16)) + (y0 % 16)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oh/coh3kyu6rghphyqtfflzqlsbjfinc4c7cmryrm7sbhmrnnvqqu6w.py # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, distances], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] # Source node to ATen node mapping: # add => add # distances => sub # mul => mul # pow_1 => pow_1 # pow_2 => pow_2 # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_2, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mul), kwargs = {}) triton_poi_fused_add_mul_pow_sub_sum_1 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + (x2), tmp26, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3l/c3ltycq3kz4scgm57x763xs5lwirtcz6gwjv67cofz752mk5hx4y.py # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] # Source node to ATen node mapping: # argmin => argmin # Graph fragment: # %argmin : [num_users=1] = call_function[target=torch.ops.aten.argmin.default](args = (%sub, 1), kwargs = {}) triton_poi_fused_argmin_2 = async_compile.triton('triton_poi_fused_argmin_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_argmin_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tmp45 = tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + (x0), tmp46, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rl/crlo3ugzwljr2rgpi3zcuc6lfaljqn4v44qgasneddceseggjqyz.py # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] # Source node to ATen node mapping: # scatter_ => scatter_upon_const_tensor # Graph fragment: # %scatter_upon_const_tensor : [num_users=4] = call_function[target=torch._inductor.fx_passes.post_grad.scatter_upon_const_tensor](args = (), kwargs = {shape: [64, 4], background_val: 0, dtype: torch.float32, dim: 1, selector: %unsqueeze, val: 1}) triton_poi_fused_scatter_3 = async_compile.triton('triton_poi_fused_scatter_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_scatter_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_scatter_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rl/crlh4w24igjub75ofntngq2kxti3e545jiew4yq2ywudajjeo6rg.py # Topologically Sorted Source Nodes: [inputs, e_latent_loss, mul_1, loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] # Source node to ATen node mapping: # e_latent_loss => mean, pow_3, sub_1 # inputs => clone # loss => add_1 # mul_1 => mul_1 # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %clone), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, %mul_1), kwargs = {}) triton_per_fused_add_clone_mse_loss_mul_4 = async_compile.triton('triton_per_fused_add_clone_mse_loss_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clone_mse_loss_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = (rindex // 4) % 16 r2 = (rindex // 64) tmp0 = tl.load(in_ptr0 + (r3), None) tmp1 = tl.load(in_ptr1 + (r1 + (16*r0) + (64*r2)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp8 + tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/a2/ca232fin2jffpjv5w2zyhuh2ckhenxab6tdn2yi57j6ei5g4qs4m.py # Topologically Sorted Source Nodes: [avg_probs], Original ATen: [aten.mean] # Source node to ATen node mapping: # avg_probs => mean_2 # Graph fragment: # %mean_2 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%scatter_upon_const_tensor, [0]), kwargs = {}) triton_per_fused_mean_5 = async_compile.triton('triton_per_fused_mean_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*r1)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4w/c4wxalb74hnqm7bofzo3lg3agija2prtunuv57hmktdvopbkhsxc.py # Topologically Sorted Source Nodes: [avg_probs, add_3, log, mul_2, sum_3, neg, perplexity], Original ATen: [aten.mean, aten.add, aten.log, aten.mul, aten.sum, aten.neg, aten.exp] # Source node to ATen node mapping: # add_3 => add_3 # avg_probs => mean_2 # log => log # mul_2 => mul_2 # neg => neg # perplexity => exp # sum_3 => sum_3 # Graph fragment: # %mean_2 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%scatter_upon_const_tensor, [0]), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_2, 1e-10), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, %log), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_2,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_3,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) triton_per_fused_add_exp_log_mean_mul_neg_sum_6 = async_compile.triton('triton_per_fused_add_exp_log_mean_mul_neg_sum_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_log_mean_mul_neg_sum_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_log_mean_mul_neg_sum_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 64.0 tmp2 = tmp0 / tmp1 tmp3 = 1e-10 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp2 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = -tmp9 tmp11 = tl_math.exp(tmp10) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp11, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ut/cutu3atbdahfmtyqne2geeq5zl4j2hwswrriy5kdbgboi7c3aidq.py # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_1 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + (16*y3)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/kt/ckteflldoepzirjw6jyk3eate2sra2igoaeiohc65qghsunimlko.py # Topologically Sorted Source Nodes: [inputs, e_latent_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] # Source node to ATen node mapping: # e_latent_loss => sub_1 # inputs => clone # Graph fragment: # %clone : [num_users=3] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %sub_1 : [num_users=3] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_1, %clone), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, 0.0078125), kwargs = {}) triton_poi_fused_clone_mse_loss_mse_loss_backward_8 = async_compile.triton('triton_poi_fused_clone_mse_loss_mse_loss_backward_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_mse_loss_mse_loss_backward_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_8(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = (yindex // 16) tmp0 = tl.load(in_out_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs, flat_input], Original ATen: [aten.clone, aten.view] stream0 = get_raw_stream(0) triton_poi_fused_clone_view_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pow_1, sum_1, pow_2, sum_2, add, mul, distances], Original ATen: [aten.pow, aten.sum, aten.add, aten.mul, aten.sub] triton_poi_fused_add_mul_pow_sub_sum_1.run(buf2, buf0, primals_2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((64, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [argmin], Original ATen: [aten.argmin] triton_poi_fused_argmin_2.run(buf2, buf3, 64, grid=grid(64), stream=stream0) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [scatter_], Original ATen: [aten.scatter] triton_poi_fused_scatter_3.run(buf3, buf4, 256, grid=grid(256), stream=stream0) del buf3 buf5 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf11 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [inputs, e_latent_loss, mul_1, loss], Original ATen: [aten.clone, aten.mse_loss, aten.mul, aten.add] triton_per_fused_add_clone_mse_loss_mul_4.run(buf11, buf5, primals_1, 1, 256, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [avg_probs], Original ATen: [aten.mean] triton_per_fused_mean_5.run(buf4, buf7, 4, 64, grid=grid(4), stream=stream0) buf8 = empty_strided_cuda((), (), torch.float32) buf12 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [avg_probs, add_3, log, mul_2, sum_3, neg, perplexity], Original ATen: [aten.mean, aten.add, aten.log, aten.mul, aten.sum, aten.neg, aten.exp] triton_per_fused_add_exp_log_mean_mul_neg_sum_6.run(buf12, buf7, 1, 4, grid=grid(1), stream=stream0) del buf7 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(primals_1, buf5, buf9, 16, 16, grid=grid(16, 16), stream=stream0) buf10 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [inputs, e_latent_loss], Original ATen: [aten.clone, aten.mse_loss, aten.mse_loss_backward] triton_poi_fused_clone_mse_loss_mse_loss_backward_8.run(buf10, primals_1, 64, 4, grid=grid(64, 4), stream=stream0) del primals_1 return (buf11, buf9, buf12, buf4, buf10, reinterpret_tensor(buf4, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class VectorQuantizer(nn.Module): def __init__(self, num_embeddings, embedding_dim, commitment_cost): super(VectorQuantizer, self).__init__() self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self. _embedding_dim) self._embedding.weight.data.uniform_(-1 / self._num_embeddings, 1 / self._num_embeddings) self._commitment_cost = commitment_cost def forward(self, inputs): inputs = inputs.permute(0, 2, 3, 1).contiguous() input_shape = inputs.shape flat_input = inputs.view(-1, self._embedding_dim) distances = torch.sum(flat_input ** 2, dim=1, keepdim=True ) + torch.sum(self._embedding.weight ** 2, dim=1 ) - 2 * torch.matmul(flat_input, self._embedding.weight.t()) encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) encodings = torch.zeros(encoding_indices.shape[0], self. _num_embeddings, device=inputs.device) encodings.scatter_(1, encoding_indices, 1) quantized = torch.matmul(encodings, self._embedding.weight).view( input_shape) e_latent_loss = F.mse_loss(quantized.detach(), inputs) q_latent_loss = F.mse_loss(quantized, inputs.detach()) loss = q_latent_loss + self._commitment_cost * e_latent_loss quantized = inputs + (quantized - inputs).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return loss, quantized.permute(0, 3, 1, 2).contiguous( ), perplexity, encodings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'commitment_cost': 4} ]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (y0 // 16) + y0 % 16), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_scatter_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = rindex // 4 % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr1 + (r1 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp8 + tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * r1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_per_fused_add_exp_log_mean_mul_neg_sum_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 64.0 tmp2 = tmp0 / tmp1 tmp3 = 1e-10 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp2 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = -tmp9 tmp11 = tl_math.exp(tmp10) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_poi_fused_clone_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + 16 * y3), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_8(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_view_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4 ), 0), out=buf1) buf2 = buf1 del buf1 triton_poi_fused_add_mul_pow_sub_sum_1[grid(256)](buf2, buf0, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_argmin_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused_scatter_3[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 buf5 = buf0 del buf0 extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf11 = buf6 del buf6 triton_per_fused_add_clone_mse_loss_mul_4[grid(1)](buf11, buf5, primals_1, 1, 256, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mean_5[grid(4)](buf4, buf7, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((), (), torch.float32) buf12 = buf8 del buf8 triton_per_fused_add_exp_log_mean_mul_neg_sum_6[grid(1)](buf12, buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf7 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_7[grid(16, 16)](primals_1, buf5, buf9, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_clone_mse_loss_mse_loss_backward_8[grid(64, 4)](buf10, primals_1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 return buf11, buf9, buf12, buf4, buf10, reinterpret_tensor(buf4, (4, 64 ), (1, 4), 0) class VectorQuantizerNew(nn.Module): def __init__(self, num_embeddings, embedding_dim, commitment_cost): super(VectorQuantizerNew, self).__init__() self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self. _embedding_dim) self._embedding.weight.data.uniform_(-1 / self._num_embeddings, 1 / self._num_embeddings) self._commitment_cost = commitment_cost def forward(self, input_0): primals_2 = self._embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1], output[2], output[3]
acyclics/neurips2020-procgen-starter-kit
VectorQuantizer
false
1,384
[ "Apache-2.0" ]
0
16d52eb72d41c6b808c20644501710842134add4
https://github.com/acyclics/neurips2020-procgen-starter-kit/tree/16d52eb72d41c6b808c20644501710842134add4
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, num_embeddings, embedding_dim, commitment_cost): super().__init__() self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self. _embedding_dim) self._embedding.weight.data.uniform_(-1 / self._num_embeddings, 1 / self._num_embeddings) self._commitment_cost = commitment_cost def forward(self, inputs): inputs = inputs.permute(0, 2, 3, 1).contiguous() input_shape = inputs.shape flat_input = inputs.view(-1, self._embedding_dim) distances = torch.sum(flat_input ** 2, dim=1, keepdim=True ) + torch.sum(self._embedding.weight ** 2, dim=1 ) - 2 * torch.matmul(flat_input, self._embedding.weight.t()) encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) encodings = torch.zeros(encoding_indices.shape[0], self. _num_embeddings, device=inputs.device) encodings.scatter_(1, encoding_indices, 1) quantized = torch.matmul(encodings, self._embedding.weight).view( input_shape) e_latent_loss = F.mse_loss(quantized.detach(), inputs) q_latent_loss = F.mse_loss(quantized, inputs.detach()) loss = q_latent_loss + self._commitment_cost * e_latent_loss quantized = inputs + (quantized - inputs).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return loss, quantized.permute(0, 3, 1, 2).contiguous( ), perplexity, encodings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'commitment_cost': 4} ]
ANN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # out => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # out_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf10, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf9, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf4 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf5, primals_7, buf8, 256, grid=grid(256), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf7, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0), buf7, primals_8, buf8, primals_6, buf9, primals_4, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class ANN(nn.Module): def __init__(self, n_li, n_l1, n_l2, n_l3, n_lo): super(ANN, self).__init__() self.lin_in = nn.Linear(n_li, n_l1) self.lin_h1 = nn.Linear(n_l1, n_l2) self.lin_h2 = nn.Linear(n_l2, n_l3) self.lin_out = nn.Linear(n_l3, n_lo) def forward(self, inputs): out = F.relu(self.lin_in(inputs)) out = F.relu(self.lin_h1(out)) out = F.relu(self.lin_h2(out)) out = F.sigmoid(self.lin_out(out)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_li': 4, 'n_l1': 4, 'n_l2': 4, 'n_l3': 4, 'n_lo': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf4 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf5, primals_7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 triton_poi_fused_sigmoid_1[grid(256)](buf7, primals_9, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), reinterpret_tensor(buf5, (64, 4), (4, 1), 0 ), buf7, primals_8, buf8, primals_6, buf9, primals_4, buf10 class ANNNew(nn.Module): def __init__(self, n_li, n_l1, n_l2, n_l3, n_lo): super(ANNNew, self).__init__() self.lin_in = nn.Linear(n_li, n_l1) self.lin_h1 = nn.Linear(n_l1, n_l2) self.lin_h2 = nn.Linear(n_l2, n_l3) self.lin_out = nn.Linear(n_l3, n_lo) def forward(self, input_0): primals_1 = self.lin_in.weight primals_2 = self.lin_in.bias primals_4 = self.lin_h1.weight primals_5 = self.lin_h1.bias primals_6 = self.lin_h2.weight primals_7 = self.lin_h2.bias primals_8 = self.lin_out.weight primals_9 = self.lin_out.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
aixpact/python
ANN
false
1,385
[ "MIT" ]
0
41256672472fec2c0f8bf6a9146c4053b16fd907
https://github.com/aixpact/python/tree/41256672472fec2c0f8bf6a9146c4053b16fd907
import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, n_li, n_l1, n_l2, n_l3, n_lo): super().__init__() self.lin_in = nn.Linear(n_li, n_l1) self.lin_h1 = nn.Linear(n_l1, n_l2) self.lin_h2 = nn.Linear(n_l2, n_l3) self.lin_out = nn.Linear(n_l3, n_lo) def forward(self, inputs): out = F.relu(self.lin_in(inputs)) out = F.relu(self.lin_h1(out)) out = F.relu(self.lin_h2(out)) out = F.sigmoid(self.lin_out(out)) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 4, 4]
Affine
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/we/cwegr75gc7slhvygkh4qgpti3y7cw7j23tllhdeulaje2nyjxbbr.py # Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul] # Source node to ATen node mapping: # addcmul => add, mul, mul_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul_1), kwargs = {}) triton_poi_fused_addcmul_0 = async_compile.triton('triton_poi_fused_addcmul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_addcmul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x2), xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [addcmul], Original ATen: [aten.addcmul] stream0 = get_raw_stream(0) triton_poi_fused_addcmul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf0, primals_3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class Affine(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, x): return torch.addcmul(self.beta, self.alpha, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_addcmul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x2, xmask) tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp5 = tmp3 * tmp4 tmp6 = tmp0 + tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_addcmul_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, primals_3 class AffineNew(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, input_0): primals_1 = self.alpha primals_2 = self.beta primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
akarshkumar0101/timm-mlp-shaker
Affine
false
1,386
[ "Apache-2.0" ]
0
ab211dd137b790ac57f5ed924c2ada148d54a194
https://github.com/akarshkumar0101/timm-mlp-shaker/tree/ab211dd137b790ac57f5ed924c2ada148d54a194
import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data class Model(nn.Module): def __init__(self, dim): super().__init__() self.alpha = nn.Parameter(torch.ones((1, 1, dim))) self.beta = nn.Parameter(torch.zeros((1, 1, dim))) def forward(self, x): return torch.addcmul(self.beta, self.alpha, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
WeightedAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wd/cwdz7kqs3uwyg53zsyekt77eye7yjl6v7vulow2q6ni534mkf6zw.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # inputs => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vs/cvsfvbs4wlaqvwxm3svg65dnhcq336ptudvn6xetnbnrtzj7xssn.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # inputs => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zx/czx6j7hzi437xsgk2hhzcoogrdjeyjwgd6mxd3bxxrrjatsr2rwi.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_9, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp3 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vw/cvwwlf5hh74femiy52pxilo5w77x22ndrh7cd3nkkzhhazqhimhy.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/di/cdithamweskare7z2aqhhntz55injsf2gw4yt23lxxrta2znnu4s.py # Topologically Sorted Source Nodes: [attn, sum_1, attn_1], Original ATen: [aten.add, aten.sum, aten.div] # Source node to ATen node mapping: # attn => add_4 # attn_1 => div_1 # sum_1 => sum_2 # Graph fragment: # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, 1e-08), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_4, [2], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_4, %sum_2), kwargs = {}) triton_poi_fused_add_div_sum_4 = async_compile.triton('triton_poi_fused_add_div_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1e-08 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp1 tmp10 = tmp7 + tmp9 tmp12 = tmp11 + tmp1 tmp13 = tmp10 + tmp12 tmp14 = tmp2 / tmp13 tl.store(out_ptr0 + (x2), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_0.run(primals_6, buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf4, 64, grid=grid(64), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.addmm] extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [context], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_6, buf2, buf3, primals_4, primals_5, buf6, 64, grid=grid(64), stream=stream0) del buf2 del buf3 del primals_4 del primals_5 buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(primals_12, reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8) del primals_12 buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [einsum], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [attn, sum_1, attn_1], Original ATen: [aten.add, aten.sum, aten.div] triton_poi_fused_add_div_sum_4.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [updates], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf8, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf12, (4, 4, 4), (16, 1, 4), 0), out=buf13) return (reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0), primals_3, primals_6, reinterpret_tensor(buf4, (16, 4), (4, 1), 0), reinterpret_tensor(buf6, (16, 4), (4, 1), 0), buf11, buf12, reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0), primals_11, primals_9, primals_7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn class WeightedAttention(nn.Module): def __init__(self, dim, eps=1e-08, softmax_dim=1, weighted_mean_dim=2): super().__init__() self.norm_input = nn.LayerNorm(dim) self.norm_context = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, dim) self.to_k = nn.Linear(dim, dim) self.to_v = nn.Linear(dim, dim) self.eps = eps self.scale = dim ** -0.5 self.softmax_dim = softmax_dim self.weighted_mean_dim = weighted_mean_dim def forward(self, inputs, context): inputs = self.norm_input(inputs) context = self.norm_context(context) q = self.to_q(inputs) k = self.to_k(context) v = self.to_v(context) dots = torch.einsum('bid,bjd->bij', q, k) * self.scale attn = dots.softmax(dim=self.softmax_dim) + self.eps attn = attn / attn.sum(dim=self.weighted_mean_dim, keepdim=True) updates = torch.einsum('bjd,bij->bid', v, attn) return updates def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x3, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_add_div_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1e-08 tmp2 = tmp0 + tmp1 tmp4 = tmp3 + tmp1 tmp6 = tmp5 + tmp1 tmp7 = tmp4 + tmp6 tmp9 = tmp8 + tmp1 tmp10 = tmp7 + tmp9 tmp12 = tmp11 + tmp1 tmp13 = tmp10 + tmp12 tmp14 = tmp2 / tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf1 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_3, buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_native_layer_norm_0[grid(16)](primals_6, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_3, buf0, buf1, primals_1, primals_2, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(buf4, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_8 buf6 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(64)](primals_6, buf2, buf3, primals_4, primals_5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 del buf3 del primals_4 del primals_5 buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_10, reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_10 buf8 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_12, reinterpret_tensor(buf6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf8) del primals_12 buf9 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf7, (4, 4, 4), (16, 1, 4), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(64)](buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = buf9 del buf9 triton_poi_fused__softmax_3[grid(64)](buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = buf10 del buf10 triton_poi_fused_add_div_sum_4[grid(64)](buf11, buf12, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf13 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf8, (4, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf12, (4, 4, 4), (16, 1, 4), 0), out=buf13) return reinterpret_tensor(buf13, (4, 4, 4), (16, 1, 4), 0 ), primals_3, primals_6, reinterpret_tensor(buf4, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf6, (16, 4), (4, 1), 0 ), buf11, buf12, reinterpret_tensor(buf8, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(buf5, (4, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf7, (4, 4, 4), (16, 4, 1), 0 ), primals_11, primals_9, primals_7 class WeightedAttentionNew(nn.Module): def __init__(self, dim, eps=1e-08, softmax_dim=1, weighted_mean_dim=2): super().__init__() self.norm_input = nn.LayerNorm(dim) self.norm_context = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, dim) self.to_k = nn.Linear(dim, dim) self.to_v = nn.Linear(dim, dim) self.eps = eps self.scale = dim ** -0.5 self.softmax_dim = softmax_dim self.weighted_mean_dim = weighted_mean_dim def forward(self, input_0, input_1): primals_1 = self.norm_input.weight primals_2 = self.norm_input.bias primals_4 = self.norm_context.weight primals_5 = self.norm_context.bias primals_7 = self.to_q.weight primals_8 = self.to_q.bias primals_9 = self.to_k.weight primals_10 = self.to_k.bias primals_11 = self.to_v.weight primals_12 = self.to_v.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
ajabri/slot-attention
WeightedAttention
false
1,387
[ "MIT" ]
0
32acb6614f1bd511f2dc3c263f852ed2dbe9c213
https://github.com/ajabri/slot-attention/tree/32acb6614f1bd511f2dc3c263f852ed2dbe9c213
import torch from torch import nn class Model(nn.Module): def __init__(self, dim, eps=1e-08, softmax_dim=1, weighted_mean_dim=2): super().__init__() self.norm_input = nn.LayerNorm(dim) self.norm_context = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, dim) self.to_k = nn.Linear(dim, dim) self.to_v = nn.Linear(dim, dim) self.eps = eps self.scale = dim ** -0.5 self.softmax_dim = softmax_dim self.weighted_mean_dim = weighted_mean_dim def forward(self, inputs, context): inputs = self.norm_input(inputs) context = self.norm_context(context) q = self.to_q(inputs) k = self.to_k(context) v = self.to_v(context) dots = torch.einsum('bid,bjd->bij', q, k) * self.scale attn = dots.softmax(dim=self.softmax_dim) + self.eps attn = attn / attn.sum(dim=self.weighted_mean_dim, keepdim=True) updates = torch.einsum('bjd,bij->bid', v, attn) return updates def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [4]
GDN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ow/cowdcudxhul3bkp5n6x4sh5xlfsr5wjeys5mle367nouiee2xmcv.py # Topologically Sorted Source Nodes: [var, pow_1, sub], Original ATen: [aten.clamp, aten.pow, aten.sub] # Source node to ATen node mapping: # pow_1 => pow_1 # sub => sub # var => clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 3.814697265625e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, 1.4551915228366852e-11), kwargs = {}) triton_poi_fused_clamp_pow_sub_0 = async_compile.triton('triton_poi_fused_clamp_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_pow_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.814697265625e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = 1.4551915228366852e-11 tmp5 = tmp3 - tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2y/c2y2depfxa2z6x54ydtq4sztgglwdvphffk5xy2ad6meezomjm6h.py # Topologically Sorted Source Nodes: [pow_3], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_3 => pow_3 # Graph fragment: # %pow_3 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {}) triton_poi_fused_pow_1 = async_compile.triton('triton_poi_fused_pow_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ug/cug44ghn7hpw52fmb6cvsqsikmnucfhvsokiyh4jncwkntkhgtb3.py # Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution] # Source node to ATen node mapping: # beta => sub_1 # norm_pool => convolution # pow_2 => pow_2 # var_1 => clamp_min_1 # Graph fragment: # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 0.0010000072759311445), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, 1.4551915228366852e-11), kwargs = {}) # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%pow_3, %view, %sub_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_clamp_convolution_pow_sub_2 = async_compile.triton('triton_poi_fused_clamp_convolution_pow_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_convolution_pow_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_convolution_pow_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0010000072759311445 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = 1.4551915228366852e-11 tmp5 = tmp3 - tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cl/cclwght2uzu6dkoinyev2wpfgnp3tg3nmwinz7z2d5yrlspj6gh5.py # Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool, norm_pool_1, norm_pool_2], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution, aten.sqrt, aten.div] # Source node to ATen node mapping: # beta => sub_1 # norm_pool => convolution # norm_pool_1 => sqrt # norm_pool_2 => div # pow_2 => pow_2 # var_1 => clamp_min_1 # Graph fragment: # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_2, 0.0010000072759311445), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min_1, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, 1.4551915228366852e-11), kwargs = {}) # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%pow_3, %view, %sub_1, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%convolution,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_3, %sqrt), kwargs = {}) triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3 = async_compile.triton('triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = libdevice.sqrt(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [var, pow_1, sub], Original ATen: [aten.clamp, aten.pow, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_clamp_pow_sub_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_3], Original ATen: [aten.pow] triton_poi_fused_pow_1.run(primals_3, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution] triton_poi_fused_clamp_convolution_pow_sub_2.run(primals_2, buf2, 4, grid=grid(4), stream=stream0) # Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution] buf3 = extern_kernels.convolution(buf1, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [var_1, pow_2, beta, norm_pool, norm_pool_1, norm_pool_2], Original ATen: [aten.clamp, aten.pow, aten.sub, aten.convolution, aten.sqrt, aten.div] triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3.run(buf4, buf2, primals_3, buf5, 256, grid=grid(256), stream=stream0) del buf2 return (buf5, primals_1, primals_2, primals_3, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf1, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from torch.autograd import Function import torch import torch.nn.functional as F import torch.nn as nn class LowerBound(Function): @staticmethod def forward(ctx, inputs, bound): ctx.save_for_backward(inputs, inputs.new_ones(1) * bound) return inputs.clamp(min=bound) @staticmethod def backward(ctx, grad_output): inputs, bound = ctx.saved_tensors pass_through_1 = inputs >= bound pass_through_2 = grad_output < 0 pass_through = pass_through_1 | pass_through_2 return pass_through.type(grad_output.dtype) * grad_output, None class GDN(nn.Module): def __init__(self, num_features, inverse=False, gamma_init=0.1, beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18): super(GDN, self).__init__() self._inverse = inverse self.num_features = num_features self.reparam_offset = reparam_offset self.pedestal = self.reparam_offset ** 2 beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) + self.pedestal) gama_init = torch.sqrt(torch.full((num_features, num_features), fill_value=gamma_init, dtype=torch.float) * torch.eye( num_features, dtype=torch.float) + self.pedestal) self.beta = nn.Parameter(beta_init) self.gamma = nn.Parameter(gama_init) self.beta_bound = (beta_bound + self.pedestal) ** 0.5 self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5 def _reparam(self, var, bound): var = LowerBound.apply(var, bound) return var ** 2 - self.pedestal def forward(self, x): gamma = self._reparam(self.gamma, self.gamma_bound).view(self. num_features, self.num_features, 1, 1) beta = self._reparam(self.beta, self.beta_bound) norm_pool = F.conv2d(x ** 2, gamma, bias=beta, stride=1, padding=0) norm_pool = torch.sqrt(norm_pool) if self._inverse: norm_pool = x * norm_pool else: norm_pool = x / norm_pool return norm_pool def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.autograd import Function import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clamp_pow_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.814697265625e-06 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = 1.4551915228366852e-11 tmp5 = tmp3 - tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_pow_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) @triton.jit def triton_poi_fused_clamp_convolution_pow_sub_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0010000072759311445 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = tmp2 * tmp2 tmp4 = 1.4551915228366852e-11 tmp5 = tmp3 - tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = libdevice.sqrt(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_pow_sub_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_pow_1[grid(256)](primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_clamp_convolution_pow_sub_2[grid(4)](primals_2, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) buf3 = extern_kernels.convolution(buf1, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clamp_convolution_div_pow_sqrt_sub_3[grid(256)](buf4, buf2, primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return buf5, primals_1, primals_2, primals_3, reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf1, buf4 class LowerBound(Function): @staticmethod def forward(ctx, inputs, bound): ctx.save_for_backward(inputs, inputs.new_ones(1) * bound) return inputs.clamp(min=bound) @staticmethod def backward(ctx, grad_output): inputs, bound = ctx.saved_tensors pass_through_1 = inputs >= bound pass_through_2 = grad_output < 0 pass_through = pass_through_1 | pass_through_2 return pass_through.type(grad_output.dtype) * grad_output, None class GDNNew(nn.Module): def __init__(self, num_features, inverse=False, gamma_init=0.1, beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18): super(GDNNew, self).__init__() self._inverse = inverse self.num_features = num_features self.reparam_offset = reparam_offset self.pedestal = self.reparam_offset ** 2 beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) + self.pedestal) gama_init = torch.sqrt(torch.full((num_features, num_features), fill_value=gamma_init, dtype=torch.float) * torch.eye( num_features, dtype=torch.float) + self.pedestal) self.beta = nn.Parameter(beta_init) self.gamma = nn.Parameter(gama_init) self.beta_bound = (beta_bound + self.pedestal) ** 0.5 self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5 def _reparam(self, var, bound): var = LowerBound.apply(var, bound) return var ** 2 - self.pedestal def forward(self, input_0): primals_2 = self.beta primals_1 = self.gamma primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
agr17/pytorch-msssim
GDN
false
1,388
[ "MIT" ]
0
69aec4113ccceafa5568d1191e98c1db525c0c0f
https://github.com/agr17/pytorch-msssim/tree/69aec4113ccceafa5568d1191e98c1db525c0c0f
from torch.autograd import Function import torch import torch.nn.functional as F import torch.nn as nn class LowerBound(Function): @staticmethod def forward(ctx, inputs, bound): ctx.save_for_backward(inputs, inputs.new_ones(1) * bound) return inputs.clamp(min=bound) @staticmethod def backward(ctx, grad_output): inputs, bound = ctx.saved_tensors pass_through_1 = inputs >= bound pass_through_2 = grad_output < 0 pass_through = pass_through_1 | pass_through_2 return pass_through.type(grad_output.dtype) * grad_output, None class Model(nn.Module): def __init__(self, num_features, inverse=False, gamma_init=0.1, beta_bound=1e-06, gamma_bound=0.0, reparam_offset=2 ** -18): super().__init__() self._inverse = inverse self.num_features = num_features self.reparam_offset = reparam_offset self.pedestal = self.reparam_offset ** 2 beta_init = torch.sqrt(torch.ones(num_features, dtype=torch.float) + self.pedestal) gama_init = torch.sqrt(torch.full((num_features, num_features), fill_value=gamma_init, dtype=torch.float) * torch.eye( num_features, dtype=torch.float) + self.pedestal) self.beta = nn.Parameter(beta_init) self.gamma = nn.Parameter(gama_init) self.beta_bound = (beta_bound + self.pedestal) ** 0.5 self.gamma_bound = (gamma_bound + self.pedestal) ** 0.5 def _reparam(self, var, bound): var = LowerBound.apply(var, bound) return var ** 2 - self.pedestal def forward(self, x): gamma = self._reparam(self.gamma, self.gamma_bound).view(self. num_features, self.num_features, 1, 1) beta = self._reparam(self.beta, self.beta_bound) norm_pool = F.conv2d(x ** 2, gamma, bias=beta, stride=1, padding=0) norm_pool = torch.sqrt(norm_pool) if self._inverse: norm_pool = x * norm_pool else: norm_pool = x / norm_pool return norm_pool def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ResidualDenseBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/5i/c5icgszsmzzz6scnewpijmeu66hhcnz77ph7igiddh765aw6r7tr.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1572864 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 96 x0 = xindex % 4096 x2 = (xindex // 393216) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + ((-64) + x1), tmp6, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.2 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp6, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tl.store(out_ptr0 + (x3), tmp19, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/3w/c3wk4rwnrsnr4gmyth3hio7xwmgrpmqs4uenaletytzd3iyq6vvp.py # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_1 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 128 x0 = xindex % 4096 x2 = (xindex // 524288) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 128, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp20, other=0.0) tmp24 = tl.load(in_ptr4 + ((-96) + x1), tmp20, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tmp25 > tmp13 tmp27 = tmp25 * tmp15 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp20, tmp28, tmp29) tmp31 = tl.where(tmp9, tmp19, tmp30) tmp32 = tl.where(tmp4, tmp5, tmp31) tl.store(out_ptr0 + (x3), tmp32, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2r/c2rqqtyzbql3t7c5cwopzfw7emthunmmfinwngoit7fltetzafgz.py # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_2 => cat_2 # Graph fragment: # %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1, %where_2], 1), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2621440 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 160 x0 = xindex % 4096 x2 = (xindex // 655360) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 128, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp23, other=0.0) tmp25 = tl.load(in_ptr4 + ((-96) + x1), tmp23, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp13 tmp28 = tmp26 * tmp15 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp23, tmp29, tmp30) tmp32 = tmp0 >= tmp21 tmp33 = tl.full([1], 160, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tl.load(in_ptr5 + (x0 + (4096*((-128) + x1)) + (131072*x2)), tmp32, other=0.0) tmp36 = tl.load(in_ptr6 + ((-128) + x1), tmp32, eviction_policy='evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp13 tmp39 = tmp37 * tmp15 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp32, tmp40, tmp41) tmp43 = tl.where(tmp23, tmp31, tmp42) tmp44 = tl.where(tmp9, tmp19, tmp43) tmp45 = tl.where(tmp4, tmp5, tmp44) tl.store(out_ptr0 + (x3), tmp45, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j2/cj26bsblk3vsepnyamagvkjh7epw4anmcc7il5aezu6wbv4vtlgr.py # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat_3 => cat_3 # Graph fragment: # %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %where, %where_1, %where_2, %where_3], 1), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3145728 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4096) % 192 x0 = xindex % 4096 x2 = (xindex // 786432) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (262144*x2)), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + (4096*((-64) + x1)) + (131072*x2)), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + ((-64) + x1), tmp9, eviction_policy='evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 128, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr3 + (x0 + (4096*((-96) + x1)) + (131072*x2)), tmp23, other=0.0) tmp25 = tl.load(in_ptr4 + ((-96) + x1), tmp23, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp13 tmp28 = tmp26 * tmp15 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp23, tmp29, tmp30) tmp32 = tmp0 >= tmp21 tmp33 = tl.full([1], 160, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tl.load(in_ptr5 + (x0 + (4096*((-128) + x1)) + (131072*x2)), tmp35, other=0.0) tmp37 = tl.load(in_ptr6 + ((-128) + x1), tmp35, eviction_policy='evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tmp38 > tmp13 tmp40 = tmp38 * tmp15 tmp41 = tl.where(tmp39, tmp38, tmp40) tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp35, tmp41, tmp42) tmp44 = tmp0 >= tmp33 tmp45 = tl.full([1], 192, tl.int64) tmp46 = tmp0 < tmp45 tmp47 = tl.load(in_ptr7 + (x0 + (4096*((-160) + x1)) + (131072*x2)), tmp44, other=0.0) tmp48 = tl.load(in_ptr8 + ((-160) + x1), tmp44, eviction_policy='evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tmp49 > tmp13 tmp51 = tmp49 * tmp15 tmp52 = tl.where(tmp50, tmp49, tmp51) tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype) tmp54 = tl.where(tmp44, tmp52, tmp53) tmp55 = tl.where(tmp35, tmp43, tmp54) tmp56 = tl.where(tmp23, tmp31, tmp55) tmp57 = tl.where(tmp9, tmp19, tmp56) tmp58 = tl.where(tmp4, tmp5, tmp57) tl.store(out_ptr0 + (x3), tmp58, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wu/cwuo4ansny5vnyc4a2x5xpz4gbuuax6hc3qatv42odtfa4bida4v.py # Topologically Sorted Source Nodes: [x5, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul_4 # x5 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_3, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_3), kwargs = {}) triton_poi_fused_add_convolution_mul_4 = async_compile.triton('triton_poi_fused_add_convolution_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp3 = 0.2 tmp4 = tmp2 * tmp3 tmp6 = tmp4 + tmp5 tl.store(in_out_ptr0 + (x3), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/so/csob5f5gihtgxmcfdkbvlkmaytf6h7aanlunprqwxuq3peoe4znw.py # Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # x4 => gt_3, mul_3, where_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_8, %primals_9, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_3, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 32 tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (32, ), (1, )) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (32, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_5, (32, ), (1, )) assert_size_stride(primals_6, (32, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (32, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_9, (32, ), (1, )) assert_size_stride(primals_10, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_11, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 96, 64, 64), (393216, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_3, buf0, primals_2, buf1, 1572864, grid=grid(1572864), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(primals_3, buf0, primals_2, buf2, primals_5, buf3, 2097152, grid=grid(2097152), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 160, 64, 64), (655360, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf5, 2621440, grid=grid(2621440), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 3145728, grid=grid(3145728), stream=stream0) # Topologically Sorted Source Nodes: [x5], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x5, mul, add], Original ATen: [aten.convolution, aten.mul, aten.add] triton_poi_fused_add_convolution_mul_4.run(buf9, primals_11, primals_3, 1048576, grid=grid(1048576), stream=stream0) del primals_11 buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf6, primals_9, buf10, 524288, grid=grid(524288), stream=stream0) del buf6 del primals_9 buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf4, primals_7, buf11, 524288, grid=grid(524288), stream=stream0) del buf4 del primals_7 buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf2, primals_5, buf12, 524288, grid=grid(524288), stream=stream0) del buf2 del primals_5 buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5.run(buf0, primals_2, buf13, 524288, grid=grid(524288), stream=stream0) del buf0 del primals_2 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((32, 96, 3, 3), (864, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((32, 160, 3, 3), (1440, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 192, 3, 3), (1728, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class ResidualDenseBlock(nn.Module): """Residual Dense Block. Used in RRDB block in ESRGAN. Args: num_feat (int): Channel number of intermediate features. num_grow_ch (int): Channels for each growth. """ def __init__(self, num_feat=64, num_grow_ch=32): super(ResidualDenseBlock, self).__init__() self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) default_init_weights([self.conv1, self.conv2, self.conv3, self. conv4, self.conv5], 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 96 x0 = xindex % 4096 x2 = xindex // 393216 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 96, tl.int64) tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp6, other=0.0) tmp10 = tl.load(in_ptr2 + (-64 + x1), tmp6, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.2 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp6, tmp16, tmp17) tmp19 = tl.where(tmp4, tmp5, tmp18) tl.store(out_ptr0 + x3, tmp19, None) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 128 x0 = xindex % 4096 x2 = xindex // 524288 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tl.full([1], 128, tl.int64) tmp23 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp20, other=0.0) tmp24 = tl.load(in_ptr4 + (-96 + x1), tmp20, eviction_policy= 'evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tmp25 > tmp13 tmp27 = tmp25 * tmp15 tmp28 = tl.where(tmp26, tmp25, tmp27) tmp29 = tl.full(tmp28.shape, 0.0, tmp28.dtype) tmp30 = tl.where(tmp20, tmp28, tmp29) tmp31 = tl.where(tmp9, tmp19, tmp30) tmp32 = tl.where(tmp4, tmp5, tmp31) tl.store(out_ptr0 + x3, tmp32, None) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 160 x0 = xindex % 4096 x2 = xindex // 655360 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 128, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23, other=0.0) tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp13 tmp28 = tmp26 * tmp15 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp23, tmp29, tmp30) tmp32 = tmp0 >= tmp21 tl.full([1], 160, tl.int64) tmp35 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2), tmp32, other=0.0) tmp36 = tl.load(in_ptr6 + (-128 + x1), tmp32, eviction_policy= 'evict_last', other=0.0) tmp37 = tmp35 + tmp36 tmp38 = tmp37 > tmp13 tmp39 = tmp37 * tmp15 tmp40 = tl.where(tmp38, tmp37, tmp39) tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype) tmp42 = tl.where(tmp32, tmp40, tmp41) tmp43 = tl.where(tmp23, tmp31, tmp42) tmp44 = tl.where(tmp9, tmp19, tmp43) tmp45 = tl.where(tmp4, tmp5, tmp44) tl.store(out_ptr0 + x3, tmp45, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 192 x0 = xindex % 4096 x2 = xindex // 786432 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 262144 * x2), tmp4, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 96, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (x0 + 4096 * (-64 + x1) + 131072 * x2), tmp9, other=0.0) tmp11 = tl.load(in_ptr2 + (-64 + x1), tmp9, eviction_policy= 'evict_last', other=0.0) tmp12 = tmp10 + tmp11 tmp13 = 0.0 tmp14 = tmp12 > tmp13 tmp15 = 0.2 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp14, tmp12, tmp16) tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype) tmp19 = tl.where(tmp9, tmp17, tmp18) tmp20 = tmp0 >= tmp7 tmp21 = tl.full([1], 128, tl.int64) tmp22 = tmp0 < tmp21 tmp23 = tmp20 & tmp22 tmp24 = tl.load(in_ptr3 + (x0 + 4096 * (-96 + x1) + 131072 * x2), tmp23, other=0.0) tmp25 = tl.load(in_ptr4 + (-96 + x1), tmp23, eviction_policy= 'evict_last', other=0.0) tmp26 = tmp24 + tmp25 tmp27 = tmp26 > tmp13 tmp28 = tmp26 * tmp15 tmp29 = tl.where(tmp27, tmp26, tmp28) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp23, tmp29, tmp30) tmp32 = tmp0 >= tmp21 tmp33 = tl.full([1], 160, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tmp32 & tmp34 tmp36 = tl.load(in_ptr5 + (x0 + 4096 * (-128 + x1) + 131072 * x2), tmp35, other=0.0) tmp37 = tl.load(in_ptr6 + (-128 + x1), tmp35, eviction_policy= 'evict_last', other=0.0) tmp38 = tmp36 + tmp37 tmp39 = tmp38 > tmp13 tmp40 = tmp38 * tmp15 tmp41 = tl.where(tmp39, tmp38, tmp40) tmp42 = tl.full(tmp41.shape, 0.0, tmp41.dtype) tmp43 = tl.where(tmp35, tmp41, tmp42) tmp44 = tmp0 >= tmp33 tl.full([1], 192, tl.int64) tmp47 = tl.load(in_ptr7 + (x0 + 4096 * (-160 + x1) + 131072 * x2), tmp44, other=0.0) tmp48 = tl.load(in_ptr8 + (-160 + x1), tmp44, eviction_policy= 'evict_last', other=0.0) tmp49 = tmp47 + tmp48 tmp50 = tmp49 > tmp13 tmp51 = tmp49 * tmp15 tmp52 = tl.where(tmp50, tmp49, tmp51) tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype) tmp54 = tl.where(tmp44, tmp52, tmp53) tmp55 = tl.where(tmp35, tmp43, tmp54) tmp56 = tl.where(tmp23, tmp31, tmp55) tmp57 = tl.where(tmp9, tmp19, tmp56) tmp58 = tl.where(tmp4, tmp5, tmp57) tl.store(out_ptr0 + x3, tmp58, None) @triton.jit def triton_poi_fused_add_convolution_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp3 = 0.2 tmp4 = tmp2 * tmp3 tmp6 = tmp4 + tmp5 tl.store(in_out_ptr0 + x3, tmp6, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 32 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.2 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_4, (32, 96, 3, 3), (864, 9, 3, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (32, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (32, 160, 3, 3), (1440, 9, 3, 1)) assert_size_stride(primals_9, (32,), (1,)) assert_size_stride(primals_10, (64, 192, 3, 3), (1728, 9, 3, 1)) assert_size_stride(primals_11, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf1 = empty_strided_cuda((4, 96, 64, 64), (393216, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1572864)](primals_3, buf0, primals_2, buf1, 1572864, XBLOCK=1024, num_warps=4, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf3 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) triton_poi_fused_cat_1[grid(2097152)](primals_3, buf0, primals_2, buf2, primals_5, buf3, 2097152, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf5 = empty_strided_cuda((4, 160, 64, 64), (655360, 4096, 64, 1), torch.float32) triton_poi_fused_cat_2[grid(2621440)](primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf5, 2621440, XBLOCK=1024, num_warps=4, num_stages=1) buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1)) buf7 = empty_strided_cuda((4, 192, 64, 64), (786432, 4096, 64, 1), torch.float32) triton_poi_fused_cat_3[grid(3145728)](primals_3, buf0, primals_2, buf2, primals_5, buf4, primals_7, buf6, primals_9, buf7, 3145728, XBLOCK=512, num_warps=8, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf9 = buf8 del buf8 triton_poi_fused_add_convolution_mul_4[grid(1048576)](buf9, primals_11, primals_3, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf10 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid( 524288)](buf6, primals_9, buf10, 524288, XBLOCK=512, num_warps= 8, num_stages=1) del buf6 del primals_9 buf11 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid( 524288)](buf4, primals_7, buf11, 524288, XBLOCK=512, num_warps= 8, num_stages=1) del buf4 del primals_7 buf12 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid( 524288)](buf2, primals_5, buf12, 524288, XBLOCK=512, num_warps= 8, num_stages=1) del buf2 del primals_5 buf13 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_5[grid( 524288)](buf0, primals_2, buf13, 524288, XBLOCK=512, num_warps= 8, num_stages=1) del buf0 del primals_2 return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, buf10, buf11, buf12, buf13) @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class ResidualDenseBlockNew(nn.Module): """Residual Dense Block. Used in RRDB block in ESRGAN. Args: num_feat (int): Channel number of intermediate features. num_grow_ch (int): Channels for each growth. """ def __init__(self, num_feat=64, num_grow_ch=32): super(ResidualDenseBlockNew, self).__init__() self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) default_init_weights([self.conv1, self.conv2, self.conv3, self. conv4, self.conv5], 0.1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.conv5.weight primals_11 = self.conv5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
achrefjarray/ESRGANplus-master
ResidualDenseBlock
false
1,389
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm from torchvision.models import vgg as vgg from torch import autograd as autograd @torch.no_grad() def default_init_weights(module_list, scale=1, bias_fill=0, **kwargs): """Initialize network weights. Args: module_list (list[nn.Module] | nn.Module): Modules to be initialized. scale (float): Scale initialized weights, especially for residual blocks. Default: 1. bias_fill (float): The value to fill bias. Default: 0 kwargs (dict): Other arguments for initialization function. """ if not isinstance(module_list, list): module_list = [module_list] for module in module_list: for m in module.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight, **kwargs) m.weight.data *= scale if m.bias is not None: m.bias.data.fill_(bias_fill) elif isinstance(m, _BatchNorm): init.constant_(m.weight, 1) if m.bias is not None: m.bias.data.fill_(bias_fill) class Model(nn.Module): """Residual Dense Block. Used in RRDB block in ESRGAN. Args: num_feat (int): Channel number of intermediate features. num_grow_ch (int): Channels for each growth. """ def __init__(self, num_feat=64, num_grow_ch=32): super().__init__() self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1 ) self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) default_init_weights([self.conv1, self.conv2, self.conv3, self. conv4, self.conv5], 0.1) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
EncoderImagePrecomp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7y/c7yvmseinx6mtn7syc332l4dh5naxbr76mdf6jwiyvy5l3xzedwc.py # Topologically Sorted Source Nodes: [pow_1, sum_1, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div] # Source node to ATen node mapping: # X => div # norm => sqrt # pow_1 => pow_1 # sum_1 => sum_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %sqrt), kwargs = {}) triton_poi_fused_div_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_div_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [features], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, norm, X], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_pow_sqrt_sum_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.init from collections import OrderedDict def l2norm(X): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt() X = torch.div(X, norm) return X class EncoderImagePrecomp(nn.Module): def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False): super(EncoderImagePrecomp, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.use_abs = use_abs self.fc = nn.Linear(img_dim, embed_size) self.init_weights() def init_weights(self): """Xavier initialization for the fully connected layer """ r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features) self.fc.weight.data.uniform_(-r, r) self.fc.bias.data.fill_(0) def forward(self, images): """Extract image feature vectors.""" features = self.fc(images) if not self.no_imgnorm: features = l2norm(features) if self.use_abs: features = torch.abs(features) return features def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImagePrecomp, self).load_state_dict(new_state) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'img_dim': 4, 'embed_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn import torch.nn.init from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_pow_sqrt_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_pow_sqrt_sum_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0 def l2norm(X): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt() X = torch.div(X, norm) return X class EncoderImagePrecompNew(nn.Module): def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False): super(EncoderImagePrecompNew, self).__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.use_abs = use_abs self.fc = nn.Linear(img_dim, embed_size) self.init_weights() def init_weights(self): """Xavier initialization for the fully connected layer """ r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features) self.fc.weight.data.uniform_(-r, r) self.fc.bias.data.fill_(0) def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImagePrecompNew, self).load_state_dict(new_state) def forward(self, input_0): primals_1 = self.fc.weight primals_2 = self.fc.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
akurniawan/jina-hub
EncoderImagePrecomp
false
1,390
[ "Apache-2.0" ]
0
d89bc5e8f527f1212c3228a15775e222983c0087
https://github.com/akurniawan/jina-hub/tree/d89bc5e8f527f1212c3228a15775e222983c0087
import torch import numpy as np import torch.nn as nn import torch.nn.init from collections import OrderedDict def l2norm(X): """L2-normalize columns of X """ norm = torch.pow(X, 2).sum(dim=1, keepdim=True).sqrt() X = torch.div(X, norm) return X class Model(nn.Module): def __init__(self, img_dim, embed_size, use_abs=False, no_imgnorm=False): super().__init__() self.embed_size = embed_size self.no_imgnorm = no_imgnorm self.use_abs = use_abs self.fc = nn.Linear(img_dim, embed_size) self.init_weights() def init_weights(self): """Xavier initialization for the fully connected layer """ r = np.sqrt(6.0) / np.sqrt(self.fc.in_features + self.fc.out_features) self.fc.weight.data.uniform_(-r, r) self.fc.bias.data.fill_(0) def forward(self, images): """Extract image feature vectors.""" features = self.fc(images) if not self.no_imgnorm: features = l2norm(features) if self.use_abs: features = torch.abs(features) return features def load_state_dict(self, state_dict): """Copies parameters. overwritting the default one to accept state_dict from Full model """ own_state = self.state_dict() new_state = OrderedDict() for name, param in state_dict.items(): if name in own_state: new_state[name] = param super(EncoderImagePrecomp, self).load_state_dict(new_state) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
_ShiftedSoftPlus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ur/curfo5zsg7v2odmq2ylzriguhfqc6nwunbfzegsawhqov3yup6aa.py # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] # Source node to ATen node mapping: # softplus => exp, gt, log1p, where # sub => sub # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, 0.6931471805599453), kwargs = {}) triton_poi_fused_softplus_sub_0 = async_compile.triton('triton_poi_fused_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471805599453 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_softplus_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.jit import torch.nn.functional import torch.nn class _ShiftedSoftPlus(torch.nn.Module): """ Shifted softplus as defined in SchNet, NeurIPS 2017. :param beta: value for the a more general softplus, default = 1 :param threshold: values above are linear function, default = 20 """ _log2: 'float' def __init__(self, beta=1, threshold=20): super().__init__() self.softplus = torch.nn.Softplus(beta=beta, threshold=threshold) self._log2 = math.log(2.0) def forward(self, x): """ Evaluate shifted softplus :param x: torch.Tensor, input :return: torch.Tensor, ssp(x) """ return self.softplus(x) - self._log2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.jit import torch.nn.functional import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471805599453 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class _ShiftedSoftPlusNew(torch.nn.Module): """ Shifted softplus as defined in SchNet, NeurIPS 2017. :param beta: value for the a more general softplus, default = 1 :param threshold: values above are linear function, default = 20 """ _log2: 'float' def __init__(self, beta=1, threshold=20): super().__init__() self.softplus = torch.nn.Softplus(beta=beta, threshold=threshold) self._log2 = math.log(2.0) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
albertzhu01/nequip
_ShiftedSoftPlus
false
1,391
[ "MIT" ]
0
63ba41185e7852ebb6f68983ec30d1f569e43271
https://github.com/albertzhu01/nequip/tree/63ba41185e7852ebb6f68983ec30d1f569e43271
import math import torch import torch.jit import torch.nn.functional import torch.nn class Model(torch.nn.Module): """ Shifted softplus as defined in SchNet, NeurIPS 2017. :param beta: value for the a more general softplus, default = 1 :param threshold: values above are linear function, default = 20 """ _log2: 'float' def __init__(self, beta=1, threshold=20): super().__init__() self.softplus = torch.nn.Softplus(beta=beta, threshold=threshold) self._log2 = math.log(2.0) def forward(self, x): """ Evaluate shifted softplus :param x: torch.Tensor, input :return: torch.Tensor, ssp(x) """ return self.softplus(x) - self._log2 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SinActv
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/vp/cvpc55lt3l2owcwndt777vegsrq4gm7oa7jxzrn47qc6xud2rego.py # Topologically Sorted Source Nodes: [sin], Original ATen: [aten.sin] # Source node to ATen node mapping: # sin => sin # Graph fragment: # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_sin_0 = async_compile.triton('triton_poi_fused_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.sin(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sin], Original ATen: [aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_sin_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SinActv(nn.Module): """The sin activation function. """ def __init__(self): """Initializer method. """ super().__init__() def forward(self, input_): return torch.sin(input_) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.sin(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sin_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class SinActvNew(nn.Module): """The sin activation function. """ def __init__(self): """Initializer method. """ super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
aksj98/neurodiffeq
SinActv
false
1,392
[ "MIT" ]
0
f0ee8ee1e78f2aeee97a4e1fc887ebe0b50749c8
https://github.com/aksj98/neurodiffeq/tree/f0ee8ee1e78f2aeee97a4e1fc887ebe0b50749c8
import torch import torch.nn as nn class Model(nn.Module): """The sin activation function. """ def __init__(self): """Initializer method. """ super().__init__() def forward(self, input_): return torch.sin(input_) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AlphaModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pz/cpz6a7zfdl7vz4ybgvsjbp7xvkg4dgyjzkkmvmfagirjg5cukeeh.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn.parameter import Parameter import torch.optim class AlphaModule(nn.Module): def __init__(self, shape): super(AlphaModule, self).__init__() if not isinstance(shape, tuple): shape = shape, self.alpha = Parameter(torch.rand(tuple([1] + list(shape))) * 0.1, requires_grad=True) def forward(self, x): return x * self.alpha def parameters(self, recurse: 'bool'=True): yield self.alpha def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'shape': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn.parameter import Parameter import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class AlphaModuleNew(nn.Module): def __init__(self, shape): super(AlphaModuleNew, self).__init__() if not isinstance(shape, tuple): shape = shape, self.alpha = Parameter(torch.rand(tuple([1] + list(shape))) * 0.1, requires_grad=True) def parameters(self, recurse: 'bool'=True): yield self.alpha def forward(self, input_0): primals_1 = self.alpha primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
albertozurli/mammoth
AlphaModule
false
1,393
[ "MIT" ]
0
849234afe084b4f707de5300e953a2a8c104ea36
https://github.com/albertozurli/mammoth/tree/849234afe084b4f707de5300e953a2a8c104ea36
import torch from torch import nn from torch.nn.parameter import Parameter import torch.optim class Model(nn.Module): def __init__(self, shape): super().__init__() if not isinstance(shape, tuple): shape = shape, self.alpha = Parameter(torch.rand(tuple([1] + list(shape))) * 0.1, requires_grad=True) def forward(self, x): return x * self.alpha def parameters(self, recurse: 'bool'=True): yield self.alpha def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
MultiHeadAttn
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gu/cguak4pmui2ydemh2nfin5rax4se6fwibhum52l6wzraswotmhe6.py # Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone] # Source node to ATen node mapping: # q => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wt/cwtwhu7iqo5rair5bnweuo5khmb7e5l2qv2pku3hann6ogfos7mk.py # Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone] # Source node to ATen node mapping: # v => clone_2 # Graph fragment: # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/v4/cv4ht4ztzq6xell45o2uwdqpaatovskqg4idcdyplfbbfxu7r6h6.py # Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone] # Source node to ATen node mapping: # k => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + (4*x2) + (48*x1) + (192*x3)), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + (4*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/c5/cc5335fx2gusb6qgcjpudfhou76zahyma2ckrjw26lmkw2q3zxd3.py # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_prob => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 0.5), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zh/czh6tw7ngffcygnivwvcjex5edxy3ms4t27ymyn2hemxlpspxzq7.py # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_prob => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/my/cmyquxsupn5jxhfg2hje2gcqqg62qnzzhyxd7jixp5puholjjh5o.py # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous => clone_4 # Graph fragment: # %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_5,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (64*x1)), xmask) tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ns/cnspfsjjmvserkfymbru7x5vm2xumtyor5javdiv74jr3avx67rq.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7u/c7uxwow3tztifyrr5oj6dotpbrh7qtup53xfydkt35y65ajtfwre.py # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # add => add # output => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_3, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_6), kwargs = {}) triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (48, 4), (4, 1)) assert_size_stride(primals_3, (48, ), (1, )) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 48), (48, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 48), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf0, primals_3, buf2, 256, grid=grid(256), stream=stream0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf0, primals_3, buf3, 256, grid=grid(256), stream=stream0) del buf0 del primals_3 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_score], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attn_prob], Original ATen: [aten._softmax] triton_poi_fused__softmax_4.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [attn_vec], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_5.run(buf7, buf8, 256, grid=grid(256), stream=stream0) del buf7 buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_out], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf9, buf10, buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, output], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf9, buf10, buf11, primals_5, primals_6, buf12, 64, grid=grid(64), stream=stream0) del buf10 del buf11 del primals_6 return (buf12, primals_1, primals_5, buf6, reinterpret_tensor(buf8, (16, 16), (16, 1), 0), buf9, primals_4, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((48, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((48, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.cuda from torch import nn import torch.nn.functional as F import torch.distributed import torch.optim class MultiHeadAttn(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttn, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'n_head': 4, 'd_model': 4, 'd_head': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.cuda from torch import nn import torch.nn.functional as F import torch.distributed import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (32 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (32 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (16 + x0 + 4 * x2 + 48 * x1 + 192 * x3), xmask) tmp1 = tl.load(in_ptr1 + (16 + x0 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 64 * x1), xmask) tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (48, 4), (4, 1)) assert_size_stride(primals_3, (48,), (1,)) assert_size_stride(primals_4, (4, 16), (16, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 48), (48, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 48), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](buf0, primals_3, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(256)](buf0, primals_3, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_2[grid(256)](buf0, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_3 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_3[grid(256)](buf4, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_4[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = buf5 del buf5 extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_5[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 4), (1, 16), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(16)](primals_1, buf9, buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_7[grid(64)](primals_1, buf9, buf10, buf11, primals_5, primals_6, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf10 del buf11 del primals_6 return buf12, primals_1, primals_5, buf6, reinterpret_tensor(buf8, (16, 16), (16, 1), 0), buf9, primals_4, reinterpret_tensor(buf2, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0) class MultiHeadAttnNew(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super(MultiHeadAttnNew, self).__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def forward(self, input_0): primals_2 = self.qkv_net.weight primals_3 = self.qkv_net.bias primals_4 = self.o_net.weight primals_5 = self.layer_norm.weight primals_6 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
admariner/NeMo
MultiHeadAttn
false
1,394
[ "Apache-2.0" ]
0
e542d7f9063a40afa4119a3b94de4c2c636a37bb
https://github.com/admariner/NeMo/tree/e542d7f9063a40afa4119a3b94de4c2c636a37bb
import torch import torch.cuda from torch import nn import torch.nn.functional as F import torch.distributed import torch.optim class Model(nn.Module): def __init__(self, n_head, d_model, d_head, dropout, dropatt=0.1, pre_lnorm=False): super().__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.scale = 1 / d_head ** 0.5 self.pre_lnorm = pre_lnorm self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model) def forward(self, inp, attn_mask=None): return self._forward(inp, attn_mask) def _forward(self, inp, attn_mask=None): residual = inp if self.pre_lnorm: inp = self.layer_norm(inp) n_head, d_head = self.n_head, self.d_head head_q, head_k, head_v = torch.chunk(self.qkv_net(inp), 3, dim=2) head_q = head_q.view(inp.size(0), inp.size(1), n_head, d_head) head_k = head_k.view(inp.size(0), inp.size(1), n_head, d_head) head_v = head_v.view(inp.size(0), inp.size(1), n_head, d_head) q = head_q.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) k = head_k.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) v = head_v.permute(0, 2, 1, 3).reshape(-1, inp.size(1), d_head) attn_score = torch.bmm(q, k.transpose(1, 2)) attn_score.mul_(self.scale) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(1) attn_mask = attn_mask.repeat(n_head, attn_mask.size(2), 1) attn_score.masked_fill_(attn_mask, -float('inf')) attn_prob = F.softmax(attn_score, dim=2) attn_prob = self.dropatt(attn_prob) attn_vec = torch.bmm(attn_prob, v) attn_vec = attn_vec.view(n_head, inp.size(0), inp.size(1), d_head) attn_vec = attn_vec.permute(1, 2, 0, 3).contiguous().view(inp.size( 0), inp.size(1), n_head * d_head) attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: output = residual + attn_out else: output = self.layer_norm(residual + attn_out) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4, 4, 0.5]
NormalizationLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/5d/c5dhk7bkuqo4u6hoo6g4wm36lekpofplwrblvshjxay6uhmurm2w.py # Topologically Sorted Source Nodes: [mul, features], Original ATen: [aten.mul, aten.div] # Source node to ATen node mapping: # features => div # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %expand), kwargs = {}) triton_poi_fused_div_mul_0 = async_compile.triton('triton_poi_fused_div_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp3 / tmp15 tl.store(out_ptr0 + (x3), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, features], Original ATen: [aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) del primals_1 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.init class NormalizationLayer(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayer, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, x): features = self.norm_s * x / torch.norm(x, dim=1, keepdim=True ).expand_as(x) return features def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp3 / tmp15 tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class NormalizationLayerNew(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayerNew, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, input_0): primals_1 = self.norm_s primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
akurniawan/jina-hub
NormalizationLayer
false
1,395
[ "Apache-2.0" ]
0
d89bc5e8f527f1212c3228a15775e222983c0087
https://github.com/akurniawan/jina-hub/tree/d89bc5e8f527f1212c3228a15775e222983c0087
import torch import torch.nn.init class Model(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super().__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, x): features = self.norm_s * x / torch.norm(x, dim=1, keepdim=True ).expand_as(x) return features def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
BesselBasis
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zc/czcwoefxcbi23dqxnhhuymitmc67fa27uifwflhbdmygvxhk2ab5.py # Topologically Sorted Source Nodes: [mul, truediv, numerator, truediv_1, mul_1], Original ATen: [aten.mul, aten.div, aten.sin] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # numerator => sin # truediv => div # truediv_1 => div_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %unsqueeze), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 4.0), kwargs = {}) # %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%div,), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sin, %unsqueeze), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, 0.5), kwargs = {}) triton_poi_fused_div_mul_sin_0 = async_compile.triton('triton_poi_fused_div_mul_sin_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_mul_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.25 tmp4 = tmp2 * tmp3 tmp5 = tl_math.sin(tmp4) tmp6 = tmp5 / tmp1 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (8, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 8), (512, 128, 32, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, truediv, numerator, truediv_1, mul_1], Original ATen: [aten.mul, aten.div, aten.sin] stream0 = get_raw_stream(0) triton_poi_fused_div_mul_sin_0.run(primals_1, primals_2, buf0, 2048, grid=grid(2048), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.jit import torch.nn.functional from torch import nn import torch.nn class BesselBasis(nn.Module): r_max: 'float' prefactor: 'float' def __init__(self, r_max, num_basis=8, trainable=True): """Radial Bessel Basis, as proposed in DimeNet: https://arxiv.org/abs/2003.03123 Parameters ---------- r_max : float Cutoff radius num_basis : int Number of Bessel Basis functions trainable : bool Train the :math:`n \\pi` part or not. """ super(BesselBasis, self).__init__() self.trainable = trainable self.num_basis = num_basis self.r_max = float(r_max) self.prefactor = 2.0 / self.r_max bessel_weights = torch.linspace(start=1.0, end=num_basis, steps= num_basis) * math.pi if self.trainable: self.bessel_weights = nn.Parameter(bessel_weights) else: self.register_buffer('bessel_weights', bessel_weights) def forward(self, x): """ Evaluate Bessel Basis for input x. Parameters ---------- x : torch.Tensor Input """ numerator = torch.sin(self.bessel_weights * x.unsqueeze(-1) / self. r_max) return self.prefactor * (numerator / x.unsqueeze(-1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'r_max': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.jit import torch.nn.functional from torch import nn import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = 0.25 tmp4 = tmp2 * tmp3 tmp5 = tl_math.sin(tmp4) tmp6 = tmp5 / tmp1 tmp7 = 0.5 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, None) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (8,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 8), (512, 128, 32, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_sin_0[grid(2048)](primals_1, primals_2, buf0, 2048, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2 class BesselBasisNew(nn.Module): r_max: 'float' prefactor: 'float' def __init__(self, r_max, num_basis=8, trainable=True): """Radial Bessel Basis, as proposed in DimeNet: https://arxiv.org/abs/2003.03123 Parameters ---------- r_max : float Cutoff radius num_basis : int Number of Bessel Basis functions trainable : bool Train the :math:`n \\pi` part or not. """ super(BesselBasisNew, self).__init__() self.trainable = trainable self.num_basis = num_basis self.r_max = float(r_max) self.prefactor = 2.0 / self.r_max bessel_weights = torch.linspace(start=1.0, end=num_basis, steps= num_basis) * math.pi if self.trainable: self.bessel_weights = nn.Parameter(bessel_weights) else: self.register_buffer('bessel_weights', bessel_weights) def forward(self, input_0): primals_1 = self.bessel_weights primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
albertzhu01/nequip
BesselBasis
false
1,396
[ "MIT" ]
0
63ba41185e7852ebb6f68983ec30d1f569e43271
https://github.com/albertzhu01/nequip/tree/63ba41185e7852ebb6f68983ec30d1f569e43271
import math import torch import torch.jit import torch.nn.functional from torch import nn import torch.nn class Model(nn.Module): r_max: 'float' prefactor: 'float' def __init__(self, r_max, num_basis=8, trainable=True): """Radial Bessel Basis, as proposed in DimeNet: https://arxiv.org/abs/2003.03123 Parameters ---------- r_max : float Cutoff radius num_basis : int Number of Bessel Basis functions trainable : bool Train the :math:`n \\pi` part or not. """ super().__init__() self.trainable = trainable self.num_basis = num_basis self.r_max = float(r_max) self.prefactor = 2.0 / self.r_max bessel_weights = torch.linspace(start=1.0, end=num_basis, steps= num_basis) * math.pi if self.trainable: self.bessel_weights = nn.Parameter(bessel_weights) else: self.register_buffer('bessel_weights', bessel_weights) def forward(self, x): """ Evaluate Bessel Basis for input x. Parameters ---------- x : torch.Tensor Input """ numerator = torch.sin(self.bessel_weights * x.unsqueeze(-1) / self. r_max) return self.prefactor * (numerator / x.unsqueeze(-1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ms/cmst7mt7j7fhd4u7yepw3dgxyuxu635ovhpmhkr53qhybmjgcjpp.py # Topologically Sorted Source Nodes: [mul, numerator, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] # Source node to ATen node mapping: # mul => mul # numerator => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2, 3, 4]), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [2, 3, 4]), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg1_1, [2, 3, 4]), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp10, xmask) tl.store(out_ptr2 + (x0), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/i3/ci3si673alryeb3th3a6x6orvada2rlzj4txkk6fbbeudpantejs.py # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, dice, mean, sub], Original ATen: [aten.add, aten.mul, aten.div, aten.mean, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # dice => div # mean => mean # mul_1 => mul_1 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-07), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %mean), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp6 = tl.load(in_ptr2 + (r0), None) tmp1 = 1e-07 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 16.0 tmp14 = tmp12 / tmp13 tmp15 = 1.0 tmp16 = tmp15 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp16, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, numerator, sum_2, sum_3], Original ATen: [aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, buf1, buf2, 16, 64, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [add, mul_1, add_1, add_2, dice, mean, sub], Original ATen: [aten.add, aten.mul, aten.div, aten.mean, aten.rsub] triton_per_fused_add_div_mean_mul_rsub_1.run(buf4, buf0, buf1, buf2, 1, 16, grid=grid(1), stream=stream0) del buf0 del buf1 del buf2 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch.nn.modules.loss import _Loss class DiceLoss(_Loss): def __init__(self): super(DiceLoss, self).__init__() self.axis = 2, 3, 4 self.smooth = 1e-07 def forward(self, input, target): return 1.0 - self.dice_score(input, target) def dice_score(self, input, target): numerator = torch.sum(input * target, dim=self.axis) dice = 2.0 * (numerator + self.smooth) / (torch.sum(input, dim=self .axis) + torch.sum(target, dim=self.axis) + self.smooth) return torch.mean(dice) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4]), torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn.modules.loss import _Loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp13 = tl.where(xmask, tmp11, 0) tmp14 = tl.sum(tmp13, 1)[:, None] tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp10, xmask) tl.store(out_ptr2 + x0, tmp14, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp1 = 1e-07 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp13 = 16.0 tmp14 = tmp12 / tmp13 tmp15 = 1.0 tmp16 = tmp15 - tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp16, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(16)](arg0_1, arg1_1, buf0, buf1, buf2, 16, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused_add_div_mean_mul_rsub_1[grid(1)](buf4, buf0, buf1, buf2, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf2 return buf4, class DiceLossNew(_Loss): def __init__(self): super(DiceLossNew, self).__init__() self.axis = 2, 3, 4 self.smooth = 1e-07 def dice_score(self, input, target): numerator = torch.sum(input * target, dim=self.axis) dice = 2.0 * (numerator + self.smooth) / (torch.sum(input, dim=self .axis) + torch.sum(target, dim=self.axis) + self.smooth) return torch.mean(dice) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
aledelmo/KDCompression
DiceLoss
false
1,397
[ "Apache-2.0" ]
0
030e7331f72ac8977964b6adb65d268c23d59130
https://github.com/aledelmo/KDCompression/tree/030e7331f72ac8977964b6adb65d268c23d59130
import torch from torch.nn.modules.loss import _Loss class Model(_Loss): def __init__(self): super().__init__() self.axis = 2, 3, 4 self.smooth = 1e-07 def forward(self, input, target): return 1.0 - self.dice_score(input, target) def dice_score(self, input, target): numerator = torch.sum(input * target, dim=self.axis) dice = 2.0 * (numerator + self.smooth) / (torch.sum(input, dim=self .axis) + torch.sum(target, dim=self.axis) + self.smooth) return torch.mean(dice) def get_inputs(): return [torch.rand([4, 4, 4, 4, 4]), torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return []
AuxiliaryConvolutions
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/k3/ck32qkbu76goin6gngorb46frxtcgido7u4gqqjikn6bs3l76qke.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = (yindex // 1024) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None) tl.store(out_ptr0 + (y0 + (1024*x2) + (4194304*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/iw/ciw5fne4c4ykscbegdmm3uvzowo3xwefv4ro2tovkicwghjx4kku.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qn/cqnvlz36e5n74qbwjehi6cgr4dntmtxxsduqflrrittcgu3yf256.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dt/cdtzy2sk4ud45h7rfcart7sv7jm567awlymms4zgeznths2wtsqv.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ge/cgeoavt4hzgtf4m2q7qssqlp3nld2sgotuhmnrsgchg7mbqmoq6z.py # Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # conv2d_2 => convolution_2 # out_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 1024], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 1024 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (524288*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (1024*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (512*x2) + (524288*y1)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7j/c7jq3fq7s3nff7zmqw3tkclugp3t4n7gtljlodonzl7vtd77ccv6.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_5 = async_compile.triton('triton_poi_fused_convolution_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bx/cbx47x2dxzsrue4u24vxstww4bfmxqkborergbnxsewnl2ohqpcj.py # Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # conv2d_4 => convolution_4 # out_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (65536*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (256*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (256*x2) + (65536*y1)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hx/chxoq3xxsaciy3qpsdg7bzm7yh45vwcakjrprs74f5aqhz23ftak.py # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_4 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_3, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/o4/co4poaxsi3ynmtrayjqpbklkdqtnt7ufei7tynzfqeyxnr34djrs.py # Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # conv2d_6 => convolution_6 # out_5 => relu_5 # Graph fragment: # %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {}) # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_relu_8 = async_compile.triton('triton_poi_fused_convolution_relu_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 196 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (50176*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + (196*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (256*x2) + (50176*y1)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/e3/ce3s664utrz3vjali3f3qxxqtzcxam23vzxcz5kt5uaqjjtawb7h.py # Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_6 => convolution_6 # out_6 => relu_6 # Graph fragment: # %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_5, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 100352 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6t/c6tucgktlc6hbc3e47hpkzjzo3jk4qfiy427zrqtws2iag7p6avh.py # Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv11_2_feats => relu_7 # conv2d_7 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 256], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 144 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = (yindex // 256) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (256*x2) + (36864*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + (144*y3)), tmp4, xmask) tl.store(out_ptr1 + (y0 + (256*x2) + (36864*y1)), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (512, ), (1, )) assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (256, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_3, buf0, 4096, 4096, grid=grid(4096, 4096), stream=stream0) del primals_3 buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_4, buf1, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_4 buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf2, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_8 buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_12, buf3, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_12 buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_16, buf4, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_16 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_3.run(buf6, primals_2, 4194304, grid=grid(4194304), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512)) buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, out_1, conv2d_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_4.run(buf7, primals_5, buf8, buf9, 2048, 1024, grid=grid(2048, 1024), stream=stream0) del buf7 del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128)) del buf9 buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_5.run(buf11, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, out_3, conv2d_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf12, primals_9, buf13, buf14, 1024, 256, grid=grid(1024, 256), stream=stream0) del buf12 del primals_9 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128)) del buf14 buf16 = buf15; del buf15 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_7.run(buf16, primals_11, 131072, grid=grid(131072), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256)) buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1), torch.float32) buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, out_5, conv2d_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_8.run(buf17, primals_13, buf18, buf19, 1024, 196, grid=grid(1024, 196), stream=stream0) del buf17 del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128)) del buf19 buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_6, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf21, primals_15, 100352, grid=grid(100352), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256)) buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1), torch.float32) buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, conv11_2_feats], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_10.run(buf22, primals_17, buf23, buf24, 1024, 144, grid=grid(1024, 144), stream=stream0) del buf22 del primals_17 return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6, buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13, buf16, buf18, buf21, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 1024, 1, 1), (1024, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 512, 1, 1), (512, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F from itertools import product as product import torch.optim import torch.utils.data class AuxiliaryConvolutions(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutions, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats def get_inputs(): return [torch.rand([4, 1024, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn from itertools import product as product import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 1024 y1 = yindex // 1024 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None) tl.store(out_ptr0 + (y0 + 1024 * x2 + 4194304 * y1), tmp0, None) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 1024 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 524288 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 1024 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 512 * x2 + 524288 * y1), tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 65536 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 256 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 256 * x2 + 65536 * y1), tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 196 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 50176 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x2 + 196 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 256 * x2 + 50176 * y1), tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 144 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 256 y1 = yindex // 256 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 36864 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 144 * y3), tmp4, xmask) tl.store(out_ptr1 + (y0 + 256 * x2 + 36864 * y1), tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_4, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (512,), (1,)) assert_size_stride(primals_6, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_17, (256,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1024, 64, 64), (4194304, 1, 65536, 1024), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(4096, 4096)](primals_3, buf0, 4096, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_1[grid(131072, 9)](primals_4, buf1, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(32768, 9)](primals_8, buf2, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(32768, 9)](primals_12, buf3, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf4 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_2[grid(32768, 9)](primals_16, buf4, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf5 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_3[grid(4194304)](buf6, primals_2, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf7 = extern_kernels.convolution(buf6, buf1, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 512, 32, 32), (524288, 1, 16384, 512)) buf8 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf9 = empty_strided_cuda((4, 512, 32, 32), (524288, 1, 16384, 512), torch.float32) triton_poi_fused_convolution_relu_4[grid(2048, 1024)](buf7, primals_5, buf8, buf9, 2048, 1024, XBLOCK=64, YBLOCK=64, num_warps=8, num_stages=1) del buf7 del primals_5 buf10 = extern_kernels.convolution(buf9, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 32, 32), (131072, 1, 4096, 128)) del buf9 buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_5[grid(524288)](buf11, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf12 = extern_kernels.convolution(buf11, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf13 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.float32) buf14 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused_convolution_relu_6[grid(1024, 256)](buf12, primals_9, buf13, buf14, 1024, 256, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf12 del primals_9 buf15 = extern_kernels.convolution(buf14, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 128, 16, 16), (32768, 1, 2048, 128)) del buf14 buf16 = buf15 del buf15 triton_poi_fused_convolution_relu_7[grid(131072)](buf16, primals_11, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf17 = extern_kernels.convolution(buf16, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 14, 14), (50176, 1, 3584, 256)) buf18 = empty_strided_cuda((4, 256, 14, 14), (50176, 196, 14, 1), torch.float32) buf19 = empty_strided_cuda((4, 256, 14, 14), (50176, 1, 3584, 256), torch.float32) triton_poi_fused_convolution_relu_8[grid(1024, 196)](buf17, primals_13, buf18, buf19, 1024, 196, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf17 del primals_13 buf20 = extern_kernels.convolution(buf19, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 14, 14), (25088, 1, 1792, 128)) del buf19 buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_9[grid(100352)](buf21, primals_15, 100352, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 256, 12, 12), (36864, 1, 3072, 256)) buf23 = empty_strided_cuda((4, 256, 12, 12), (36864, 144, 12, 1), torch.float32) buf24 = empty_strided_cuda((4, 256, 12, 12), (36864, 1, 3072, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(1024, 144) ](buf22, primals_17, buf23, buf24, 1024, 144, XBLOCK=32, YBLOCK =32, num_warps=4, num_stages=1) del buf22 del primals_17 return (buf8, buf13, buf18, buf23, primals_1, buf0, buf1, primals_6, buf2, primals_10, buf3, primals_14, buf4, buf6, buf8, buf11, buf13, buf16, buf18, buf21, buf24) class AuxiliaryConvolutionsNew(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutionsNew, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, input_0): primals_1 = self.conv8_1.weight primals_2 = self.conv8_1.bias primals_4 = self.conv8_2.weight primals_5 = self.conv8_2.bias primals_6 = self.conv9_1.weight primals_7 = self.conv9_1.bias primals_8 = self.conv9_2.weight primals_9 = self.conv9_2.bias primals_10 = self.conv10_1.weight primals_11 = self.conv10_1.bias primals_12 = self.conv10_2.weight primals_13 = self.conv10_2.bias primals_14 = self.conv11_1.weight primals_15 = self.conv11_1.bias primals_16 = self.conv11_2.weight primals_17 = self.conv11_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0], output[1], output[2], output[3]
aarashfeizi/a-PyTorch-Tutorial-to-Object-Detection
AuxiliaryConvolutions
false
1,398
[ "MIT" ]
0
a9e1f3092d4b8c094bff5cd0897e0e3c1e0bc9c2
https://github.com/aarashfeizi/a-PyTorch-Tutorial-to-Object-Detection/tree/a9e1f3092d4b8c094bff5cd0897e0e3c1e0bc9c2
import torch from torch import nn import torch.nn.functional as F from itertools import product as product import torch.optim import torch.utils.data class Model(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super().__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats def get_inputs(): return [torch.rand([4, 1024, 64, 64])] def get_init_inputs(): return []
Recon_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bn/cbnh46eccygtwmobyyqcyxqhfjjffg4zb3raalwbveuss5ev65zh.py # Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d => convolution # prelu => gt, mul, where # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ys/cysdfdcv2vxpbszysabil3dhqxmdo5yeuwdwf5xbxwcxc4uvhlps.py # Topologically Sorted Source Nodes: [conv2d_1, output, output_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # output => gt_1, mul_1, where_1 # output_1 => add # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_1, %primals_1), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_1 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + (x3), None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(out_ptr0 + (x3), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q3/cq3txbjfht2ebdapcp55od7pwiaywk3hwpxn2pco3igbqz46hr6m.py # Topologically Sorted Source Nodes: [output_8, output_9], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # output_8 => convolution_8 # output_9 => add_4 # Graph fragment: # %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_3, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_8, %primals_1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 4096) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_6, (64, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) assert_size_stride(primals_11, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_12, (64, ), (1, )) assert_size_stride(primals_13, (1, ), (1, )) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (1, ), (1, )) assert_size_stride(primals_17, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_18, (64, ), (1, )) assert_size_stride(primals_19, (1, ), (1, )) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (1, ), (1, )) assert_size_stride(primals_23, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_24, (64, ), (1, )) assert_size_stride(primals_25, (1, ), (1, )) assert_size_stride(primals_26, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_3, primals_4, buf2, 1048576, grid=grid(1048576), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, output, output_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_1.run(buf4, primals_6, primals_7, primals_1, buf5, 1048576, grid=grid(1048576), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6; del buf6 # reuse buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, prelu_2], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_0.run(buf7, primals_9, primals_10, buf8, 1048576, grid=grid(1048576), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9; del buf9 # reuse buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, output_2, output_3], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_1.run(buf10, primals_12, primals_13, buf5, buf11, 1048576, grid=grid(1048576), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf13 = buf12; del buf12 # reuse buf14 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, prelu_4], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_0.run(buf13, primals_15, primals_16, buf14, 1048576, grid=grid(1048576), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, primals_17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf16 = buf15; del buf15 # reuse buf17 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, output_4, output_5], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_1.run(buf16, primals_18, primals_19, buf11, buf17, 1048576, grid=grid(1048576), stream=stream0) del primals_18 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf19 = buf18; del buf18 # reuse buf20 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_6, prelu_6], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_0.run(buf19, primals_21, primals_22, buf20, 1048576, grid=grid(1048576), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf22 = buf21; del buf21 # reuse buf23 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_7, output_6, output_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_1.run(buf22, primals_24, primals_25, buf17, buf23, 1048576, grid=grid(1048576), stream=stream0) del primals_24 # Topologically Sorted Source Nodes: [output_8], Original ATen: [aten.convolution] buf24 = extern_kernels.convolution(buf23, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf25 = buf24; del buf24 # reuse # Topologically Sorted Source Nodes: [output_8, output_9], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf25, primals_27, primals_1, 1048576, grid=grid(1048576), stream=stream0) del primals_27 return (buf25, primals_1, primals_2, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, primals_14, primals_16, primals_17, primals_19, primals_20, primals_22, primals_23, primals_25, primals_26, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Recon_Block(nn.Module): def __init__(self, num_chans=64): super(Recon_Block, self).__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu14 = nn.PReLU() self.conv15 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu16 = nn.PReLU() self.conv17 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, x): res1 = x output = self.relu4(self.conv3(self.relu2(self.conv1(x)))) output = torch.add(output, res1) res2 = output output = self.relu8(self.conv7(self.relu6(self.conv5(output)))) output = torch.add(output, res2) res3 = output output = self.relu12(self.conv11(self.relu10(self.conv9(output)))) output = torch.add(output, res3) res4 = output output = self.relu16(self.conv15(self.relu14(self.conv13(output)))) output = torch.add(output, res4) output = self.conv17(output) output = torch.add(output, res1) return output def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp9 = tl.load(in_ptr2 + x3, None) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tmp10 = tmp8 + tmp9 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(out_ptr0 + x3, tmp10, None) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, None) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_6, (64,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (1,), (1,)) assert_size_stride(primals_11, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_12, (64,), (1,)) assert_size_stride(primals_13, (1,), (1,)) assert_size_stride(primals_14, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (1,), (1,)) assert_size_stride(primals_17, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_18, (64,), (1,)) assert_size_stride(primals_19, (1,), (1,)) assert_size_stride(primals_20, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (1,), (1,)) assert_size_stride(primals_23, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_24, (64,), (1,)) assert_size_stride(primals_25, (1,), (1,)) assert_size_stride(primals_26, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_27, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_convolution_0[grid(1048576)](buf1, primals_3, primals_4, buf2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_1[grid(1048576)](buf4, primals_6, primals_7, primals_1, buf5, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_6 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_0[grid(1048576)](buf7, primals_9, primals_10, buf8, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf10 = buf9 del buf9 buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_1[grid(1048576)](buf10, primals_12, primals_13, buf5, buf11, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_12 buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf13 = buf12 del buf12 buf14 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_0[grid(1048576)](buf13, primals_15, primals_16, buf14, 1048576, XBLOCK=1024, num_warps= 4, num_stages=1) del primals_15 buf15 = extern_kernels.convolution(buf14, primals_17, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf16 = buf15 del buf15 buf17 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_1[grid(1048576)](buf16, primals_18, primals_19, buf11, buf17, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_18 buf18 = extern_kernels.convolution(buf17, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf18, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf19 = buf18 del buf18 buf20 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_convolution_0[grid(1048576)](buf19, primals_21, primals_22, buf20, 1048576, XBLOCK=1024, num_warps= 4, num_stages=1) del primals_21 buf21 = extern_kernels.convolution(buf20, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf22 = buf21 del buf21 buf23 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_1[grid(1048576)](buf22, primals_24, primals_25, buf17, buf23, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_24 buf24 = extern_kernels.convolution(buf23, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf25 = buf24 del buf24 triton_poi_fused_add_convolution_2[grid(1048576)](buf25, primals_27, primals_1, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_27 return (buf25, primals_1, primals_2, primals_4, primals_5, primals_7, primals_8, primals_10, primals_11, primals_13, primals_14, primals_16, primals_17, primals_19, primals_20, primals_22, primals_23, primals_25, primals_26, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, buf13, buf14, buf16, buf17, buf19, buf20, buf22, buf23) class Recon_BlockNew(nn.Module): def __init__(self, num_chans=64): super(Recon_BlockNew, self).__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu14 = nn.PReLU() self.conv15 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu16 = nn.PReLU() self.conv17 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.relu2.weight primals_5 = self.conv3.weight primals_6 = self.conv3.bias primals_7 = self.relu4.weight primals_8 = self.conv5.weight primals_9 = self.conv5.bias primals_10 = self.relu6.weight primals_11 = self.conv7.weight primals_12 = self.conv7.bias primals_13 = self.relu8.weight primals_14 = self.conv9.weight primals_15 = self.conv9.bias primals_16 = self.relu10.weight primals_17 = self.conv11.weight primals_18 = self.conv11.bias primals_19 = self.relu12.weight primals_20 = self.conv13.weight primals_21 = self.conv13.bias primals_22 = self.relu14.weight primals_23 = self.conv15.weight primals_24 = self.conv15.bias primals_25 = self.relu16.weight primals_26 = self.conv17.weight primals_27 = self.conv17.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
albangossard/Course-inverse-problems-and-unrolled-networks
Recon_Block
false
1,399
[ "MIT" ]
0
0d4161c905149817e3abff9e70c101f36fac4270
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/tree/0d4161c905149817e3abff9e70c101f36fac4270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_chans=64): super().__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu14 = nn.PReLU() self.conv15 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu16 = nn.PReLU() self.conv17 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, x): res1 = x output = self.relu4(self.conv3(self.relu2(self.conv1(x)))) output = torch.add(output, res1) res2 = output output = self.relu8(self.conv7(self.relu6(self.conv5(output)))) output = torch.add(output, res2) res3 = output output = self.relu12(self.conv11(self.relu10(self.conv9(output)))) output = torch.add(output, res3) res4 = output output = self.relu16(self.conv15(self.relu14(self.conv13(output)))) output = torch.add(output, res4) output = self.conv17(output) output = torch.add(output, res1) return output def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
Classification3DUnet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zo/czobpmlyr5atbcpsuque6vcmk7nafmb3smtbzoqilz46drm7zbkm.py # Topologically Sorted Source Nodes: [conv_c], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv_c => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (1, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv_c], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (1, 1, 4, 4, 4), (64, 1, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [conv_c], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (1, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class Classification3DUnet(nn.Module): def __init__(self, base_filters): super().__init__() self.conv = nn.Conv3d(in_channels=base_filters, out_channels=1, kernel_size=1, stride=1, padding=0) self.act = nn.Sigmoid() def forward(self, x): conv_c = self.conv(x) return conv_c def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'base_filters': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 1, 4, 4, 4), (64, 64, 16, 4, 1)) buf1 = reinterpret_tensor(buf0, (1, 1, 4, 4, 4), (64, 1, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (1, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class Classification3DUnetNew(nn.Module): def __init__(self, base_filters): super().__init__() self.conv = nn.Conv3d(in_channels=base_filters, out_channels=1, kernel_size=1, stride=1, padding=0) self.act = nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
aledelmo/KDCompression
Classification3DUnet
false
1,400
[ "Apache-2.0" ]
0
030e7331f72ac8977964b6adb65d268c23d59130
https://github.com/aledelmo/KDCompression/tree/030e7331f72ac8977964b6adb65d268c23d59130
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, base_filters): super().__init__() self.conv = nn.Conv3d(in_channels=base_filters, out_channels=1, kernel_size=1, stride=1, padding=0) self.act = nn.Sigmoid() def forward(self, x): conv_c = self.conv(x) return conv_c def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Actor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/x3/cx3vj33z3tpfqf7y5eyq5z5jjba7dgt7ne7hw4gjsclwj5porq6x.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 0.01), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, None) tl.store(out_ptr1 + (x2), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/z5/cz5xewuewa42a6n4thqo4mciml67onbmm6c3i2vtaekracd5b5tn.py # Topologically Sorted Source Nodes: [x_2, tanh], Original ATen: [aten.leaky_relu, aten.tanh] # Source node to ATen node mapping: # tanh => tanh # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_5, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, 0.01), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %view_5, %mul_2), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%where_2,), kwargs = {}) triton_poi_fused_leaky_relu_tanh_1 = async_compile.triton('triton_poi_fused_leaky_relu_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_tanh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = libdevice.tanh(tmp7) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, buf2, 8192, grid=grid(8192), stream=stream0) del primals_2 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_0.run(buf3, primals_5, buf4, buf5, 8192, grid=grid(8192), stream=stream0) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, tanh], Original ATen: [aten.leaky_relu, aten.tanh] triton_poi_fused_leaky_relu_tanh_1.run(buf6, primals_7, buf7, buf8, 256, grid=grid(256), stream=stream0) del buf6 del primals_7 return (buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0), buf4, reinterpret_tensor(buf5, (64, 128), (128, 1), 0), buf7, buf8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from math import * def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Actor(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(Actor, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" x = F.leaky_relu(self.fc1(state)) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) return F.tanh(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn from math import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, None) tl.store(out_ptr1 + x2, tmp7, None) @triton.jit def triton_poi_fused_leaky_relu_tanh_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = libdevice.tanh(tmp7) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 128), (128, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf2 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(8192)](buf0, primals_2, buf1, buf2, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = buf0 del buf0 extern_kernels.mm(reinterpret_tensor(buf2, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 128), (1, 128), 0), out=buf3) buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.float32) triton_poi_fused_leaky_relu_0[grid(8192)](buf3, primals_5, buf4, buf5, 8192, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), out=buf6) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_leaky_relu_tanh_1[grid(256)](buf6, primals_7, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 del primals_7 return buf8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, reinterpret_tensor(buf2, (64, 128), (128, 1), 0 ), buf4, reinterpret_tensor(buf5, (64, 128), (128, 1), 0 ), buf7, buf8, primals_6, primals_4 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class ActorNew(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super(ActorNew, self).__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
albimc/deep-reinforcement-learning
Actor
false
1,401
[ "MIT" ]
0
e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
https://github.com/albimc/deep-reinforcement-learning/tree/e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from math import * def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """Actor (Policy) Model.""" def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fc1_units (int): Number of nodes in first hidden layer fc2_units (int): Number of nodes in second hidden layer """ super().__init__() self.seed = torch.manual_seed(seed) self.fc1 = nn.Linear(state_size, fc1_units) self.fc2 = nn.Linear(fc1_units, fc2_units) self.fc3 = nn.Linear(fc2_units, action_size) self.reset_parameters() def reset_parameters(self): self.fc1.weight.data.uniform_(*hidden_init(self.fc1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state): """Build an actor (policy) network that maps states -> actions.""" x = F.leaky_relu(self.fc1(state)) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) return F.tanh(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Policy
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/o4/co4ltgolfty6xbtjs454crc7imkotqguqwb6zvbpz2luzl3qkzin.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2e/c2ei25xypczil2scpap6sg6cxhom5wssmh3azqrbkeq7nevkrhj7.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = (xindex // 32) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 16), (16, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf5, 1024, grid=grid(1024), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf3, buf4, 128, grid=grid(128), stream=stream0) del buf3 return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), buf4, primals_4, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F from math import * from torch.distributions import Categorical class Policy(nn.Module): def __init__(self, s_size=4, h_size=16, a_size=2): super(Policy, self).__init__() self.fc1 = nn.Linear(s_size, h_size) self.fc2 = nn.Linear(h_size, a_size) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return F.softmax(x, dim=1) def act(self, state): state = torch.from_numpy(state).float().unsqueeze(0) probs = self.forward(state).cpu() m = Categorical(probs) action = m.sample() return action.item(), m.log_prob(action) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from math import * from torch.distributions import Categorical assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 8 x2 = xindex // 32 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (2, 16), (16, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1, primals_2, buf5, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) triton_poi_fused__softmax_1[grid(128)](buf2, buf3, 128, XBLOCK=128, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf2 triton_poi_fused__softmax_2[grid(128)](buf3, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del buf3 return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 16), (16, 1), 0 ), buf4, primals_4, buf5 class PolicyNew(nn.Module): def __init__(self, s_size=4, h_size=16, a_size=2): super(PolicyNew, self).__init__() self.fc1 = nn.Linear(s_size, h_size) self.fc2 = nn.Linear(h_size, a_size) def act(self, state): state = torch.from_numpy(state).float().unsqueeze(0) probs = self.forward(state).cpu() m = Categorical(probs) action = m.sample() return action.item(), m.log_prob(action) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
albimc/deep-reinforcement-learning
Policy
false
1,402
[ "MIT" ]
0
e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
https://github.com/albimc/deep-reinforcement-learning/tree/e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
import torch import torch.nn as nn import torch.nn.functional as F from math import * from torch.distributions import Categorical class Model(nn.Module): def __init__(self, s_size=4, h_size=16, a_size=2): super().__init__() self.fc1 = nn.Linear(s_size, h_size) self.fc2 = nn.Linear(h_size, a_size) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return F.softmax(x, dim=1) def act(self, state): state = torch.from_numpy(state).float().unsqueeze(0) probs = self.forward(state).cpu() m = Categorical(probs) action = m.sample() return action.item(), m.log_prob(action) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
MINCNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/f7/cf7tayhctr3m6ezk7xezotpdlc5h4drokdkbz4vy2pfkbdxnmn4q.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5b/c5brnjme4e4oybuabwsko4vuljormwjqoawce7jgxo5fbkhzx55r.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xq/cxq75w43anllid5ys7ss3yyizuoeph3vvaqlvm5lo434hrywtyle.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/nw/cnwm6ljuusoqjcwr2jdx6p2ue7ldghxjdr3oe62stiuqhsboiczy.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/32/c32xiwptfqtyhbnde262mvq5tzywzo6zquurttkv7sztqnze6yni.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jj/cjjz4tpbucpuc3faa2ky32crfwhb5fbnssd6o2yfkgdcjg2acfmo.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tg/ctgdsxjd3rciejxtjvi3y2w5fmmggh5lm3mivuygvkdzeb3zulmc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_6 = async_compile.triton('triton_poi_fused_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/e7/ce7jqsdrj5poslb2hpufqd2wdux5xiab5n2auqal3ztzvkzrmnzl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_7 = async_compile.triton('triton_poi_fused_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ks/ckso6iiq5yfqfxmx7ilr6ufrmz6mlkiy75pexzhyf3ierq4pu3zl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_8 = async_compile.triton('triton_poi_fused_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 262144 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = (yindex // 512) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (512*x2) + (4608*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/rv/crv3uzu52jbc4u62gio2klk6cj5xhjt7yazr75tq67kvtteddsn5.py # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # out => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ku/ckuscrbyawdttbdara4zmhmq3lgm6lvxmizlt7j4v446lfogr7ah.py # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_2 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = (xindex // 64) % 32 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (128*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + (128*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ws/cwssgzseoqxwmttgkoxdmvdzcrtg4ars5flpnsa2at2qixzwygfj.py # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_3 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) triton_poi_fused_convolution_relu_11 = async_compile.triton('triton_poi_fused_convolution_relu_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/a5/ca5aycvivtwycqu7yn2xzgnljbqetxezkymwgte32n4b4c3doezm.py # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_5 => getitem_2, getitem_3 # Graph fragment: # %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_12 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 16 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (256*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + (256*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/c3/cc36sjgk3au3ve2witr7srumjy6npsyym5bconvmq65prldokmso.py # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_6 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l4/cl4n5dxp5ry2ji6m3g5uyniuwrai22ts6qhsulpbeng2mhu4ibj7.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_9 => getitem_4, getitem_5 # Graph fragment: # %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {}) # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_14 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bo/cbory36nvcjc37vmkyigprzjn5qrg2tdk4ivdkunxl3icdtgur5z.py # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_7 => convolution_7 # out_10 => relu_7 # Graph fragment: # %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {}) triton_poi_fused_convolution_relu_15 = async_compile.triton('triton_poi_fused_convolution_relu_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mf/cmfur3mmxa6x6i4nd7emjcnrjpgjj6myhwsch4rls3kx4vdzsyc5.py # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # out_13 => getitem_6, getitem_7 # Graph fragment: # %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {}) # %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_16 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = (xindex // 512) % 4 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (1024*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + (1024*x1) + (8192*x2)), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + (1024*x1) + (8192*x2)), None) tmp5 = tl.load(in_ptr0 + (4608 + x0 + (1024*x1) + (8192*x2)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, None) tl.store(out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/if/cifuazosgglhb63vtzrpxidmty7j5hpnqulfi4w5cefgewy4woma.py # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_10 => convolution_10 # out_14 => relu_10 # Graph fragment: # %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {}) triton_poi_fused_convolution_relu_17 = async_compile.triton('triton_poi_fused_convolution_relu_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gk/cgk6cd3jxwag74z6lovwqhltgj3mkf6vid62hp4up4jruy6lb3dd.py # Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_16 => convolution_12 # Graph fragment: # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_11, %primals_26, %primals_27, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_18 = async_compile.triton('triton_poi_fused_convolution_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_18(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = (yindex // 512) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (512*x2) + (8192*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (16*y3)), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256, ), (1, )) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256, ), (1, )) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512, ), (1, )) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512, ), (1, )) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512, ), (1, )) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512, ), (1, )) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 9, grid=grid(192, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_12, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_6.run(primals_14, buf7, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_7.run(primals_16, buf8, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_18, buf9, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_20, buf10, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_22, buf11, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_24, buf12, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_8.run(primals_26, buf13, 262144, 9, grid=grid(262144, 9), stream=stream0) del primals_26 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14; del buf14 # reuse # Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf15, primals_2, 1048576, grid=grid(1048576), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = buf16; del buf16 # reuse # Topologically Sorted Source Nodes: [conv2d_1, out_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf17, primals_5, 1048576, grid=grid(1048576), stream=stream0) del primals_5 buf18 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf17, buf18, buf19, 262144, grid=grid(262144), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf18, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20; del buf20 # reuse # Topologically Sorted Source Nodes: [conv2d_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf21, primals_7, 524288, grid=grid(524288), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = buf22; del buf22 # reuse # Topologically Sorted Source Nodes: [conv2d_3, out_4], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_11.run(buf23, primals_9, 524288, grid=grid(524288), stream=stream0) del primals_9 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) # Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_12.run(buf23, buf24, buf25, 131072, grid=grid(131072), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf24, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [conv2d_4, out_6], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf27, primals_11, 262144, grid=grid(262144), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf28 = extern_kernels.convolution(buf27, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [conv2d_5, out_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf29, primals_13, 262144, grid=grid(262144), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf30 = extern_kernels.convolution(buf29, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = buf30; del buf30 # reuse # Topologically Sorted Source Nodes: [conv2d_6, out_8], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf31, primals_15, 262144, grid=grid(262144), stream=stream0) del primals_15 buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_14.run(buf31, buf32, buf33, 65536, grid=grid(65536), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf34 = extern_kernels.convolution(buf32, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf35 = buf34; del buf34 # reuse # Topologically Sorted Source Nodes: [conv2d_7, out_10], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf35, primals_17, 131072, grid=grid(131072), stream=stream0) del primals_17 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf37 = buf36; del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_8, out_11], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf37, primals_19, 131072, grid=grid(131072), stream=stream0) del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [conv2d_9, out_12], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_15.run(buf39, primals_21, 131072, grid=grid(131072), stream=stream0) del primals_21 buf40 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) # Topologically Sorted Source Nodes: [out_13], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_16.run(buf39, buf40, buf41, 32768, grid=grid(32768), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_10], Original ATen: [aten.convolution] buf42 = extern_kernels.convolution(buf40, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf43 = buf42; del buf42 # reuse # Topologically Sorted Source Nodes: [conv2d_10, out_14], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf43, primals_23, 32768, grid=grid(32768), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf45 = buf44; del buf44 # reuse # Topologically Sorted Source Nodes: [conv2d_11, out_15], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_17.run(buf45, primals_25, 32768, grid=grid(32768), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf47 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.convolution] triton_poi_fused_convolution_18.run(buf46, primals_27, buf47, 2048, 16, grid=grid(2048, 16), stream=stream0) del buf46 del primals_27 return (buf47, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class MINCNet(nn.Module): def __init__(self): super(MINCNet, self).__init__() self.ReLU = nn.ReLU(True) self.conv11 = nn.Conv2d(3, 64, 3, 1, 1) self.conv12 = nn.Conv2d(64, 64, 3, 1, 1) self.maxpool1 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv21 = nn.Conv2d(64, 128, 3, 1, 1) self.conv22 = nn.Conv2d(128, 128, 3, 1, 1) self.maxpool2 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv31 = nn.Conv2d(128, 256, 3, 1, 1) self.conv32 = nn.Conv2d(256, 256, 3, 1, 1) self.conv33 = nn.Conv2d(256, 256, 3, 1, 1) self.maxpool3 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv41 = nn.Conv2d(256, 512, 3, 1, 1) self.conv42 = nn.Conv2d(512, 512, 3, 1, 1) self.conv43 = nn.Conv2d(512, 512, 3, 1, 1) self.maxpool4 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv51 = nn.Conv2d(512, 512, 3, 1, 1) self.conv52 = nn.Conv2d(512, 512, 3, 1, 1) self.conv53 = nn.Conv2d(512, 512, 3, 1, 1) def forward(self, x): out = self.ReLU(self.conv11(x)) out = self.ReLU(self.conv12(out)) out = self.maxpool1(out) out = self.ReLU(self.conv21(out)) out = self.ReLU(self.conv22(out)) out = self.maxpool2(out) out = self.ReLU(self.conv31(out)) out = self.ReLU(self.conv32(out)) out = self.ReLU(self.conv33(out)) out = self.maxpool3(out) out = self.ReLU(self.conv41(out)) out = self.ReLU(self.conv42(out)) out = self.ReLU(self.conv43(out)) out = self.maxpool4(out) out = self.ReLU(self.conv51(out)) out = self.ReLU(self.conv52(out)) out = self.conv53(out) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 512 y1 = yindex // 512 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 512 * x2 + 4608 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_12(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 16 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 256 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4224 + x0 + 256 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_16(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 512 x1 = xindex // 512 % 4 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 1024 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (512 + x0 + 1024 * x1 + 8192 * x2), None) tmp3 = tl.load(in_ptr0 + (4096 + x0 + 1024 * x1 + 8192 * x2), None) tmp5 = tl.load(in_ptr0 + (4608 + x0 + 1024 * x1 + 8192 * x2), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, None) tl.store(out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_18(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 512 y1 = yindex // 512 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 512 * x2 + 8192 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 16 * y3), tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(4096, 9)](primals_4, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_6, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(16384, 9)](primals_8, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_5[grid(32768, 9)](primals_10, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_12, buf6, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_12 buf7 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_6[grid(65536, 9)](primals_14, buf7, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf8 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_7[grid(131072, 9)](primals_16, buf8, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_16 buf9 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_18, buf9, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_18 buf10 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_20, buf10, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_20 buf11 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_22, buf11, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_22 buf12 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_24, buf12, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf13 = empty_strided_cuda((512, 512, 3, 3), (4608, 1, 1536, 512), torch.float32) triton_poi_fused_8[grid(262144, 9)](primals_26, buf13, 262144, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_26 buf14 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_9[grid(1048576)](buf15, primals_2, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf16 = extern_kernels.convolution(buf15, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_9[grid(1048576)](buf17, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf18 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.float32) buf19 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_10[grid(262144)](buf17, buf18, buf19, 262144, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf18, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_11[grid(524288)](buf21, primals_7, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf22 = extern_kernels.convolution(buf21, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_11[grid(524288)](buf23, primals_9, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf24 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf25 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_12[grid(131072)](buf23, buf24, buf25, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf26 = extern_kernels.convolution(buf24, buf5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26 del buf26 triton_poi_fused_convolution_relu_13[grid(262144)](buf27, primals_11, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf28 = extern_kernels.convolution(buf27, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_13[grid(262144)](buf29, primals_13, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf30 = extern_kernels.convolution(buf29, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_13[grid(262144)](buf31, primals_15, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf32 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.float32) buf33 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_14[grid(65536)](buf31, buf32, buf33, 65536, XBLOCK=256, num_warps=4, num_stages=1) buf34 = extern_kernels.convolution(buf32, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf34, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf35 = buf34 del buf34 triton_poi_fused_convolution_relu_15[grid(131072)](buf35, primals_17, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_17 buf36 = extern_kernels.convolution(buf35, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_15[grid(131072)](buf37, primals_19, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_19 buf38 = extern_kernels.convolution(buf37, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_15[grid(131072)](buf39, primals_21, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf40 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.float32) buf41 = empty_strided_cuda((4, 512, 4, 4), (8192, 1, 2048, 512), torch.int8) triton_poi_fused_max_pool2d_with_indices_16[grid(32768)](buf39, buf40, buf41, 32768, XBLOCK=256, num_warps=4, num_stages=1) buf42 = extern_kernels.convolution(buf40, buf11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf42, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf43 = buf42 del buf42 triton_poi_fused_convolution_relu_17[grid(32768)](buf43, primals_23, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_23 buf44 = extern_kernels.convolution(buf43, buf12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf45 = buf44 del buf44 triton_poi_fused_convolution_relu_17[grid(32768)](buf45, primals_25, 32768, XBLOCK=128, num_warps=4, num_stages=1) del primals_25 buf46 = extern_kernels.convolution(buf45, buf13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 4, 4), (8192, 1, 2048, 512)) buf47 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch. float32) triton_poi_fused_convolution_18[grid(2048, 16)](buf46, primals_27, buf47, 2048, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del buf46 del primals_27 return (buf47, buf0, buf1, buf2, buf3, buf4, buf5, buf6, buf7, buf8, buf9, buf10, buf11, buf12, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf24, buf25, buf27, buf29, buf31, buf32, buf33, buf35, buf37, buf39, buf40, buf41, buf43, buf45) class MINCNetNew(nn.Module): def __init__(self): super(MINCNetNew, self).__init__() self.ReLU = nn.ReLU(True) self.conv11 = nn.Conv2d(3, 64, 3, 1, 1) self.conv12 = nn.Conv2d(64, 64, 3, 1, 1) self.maxpool1 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv21 = nn.Conv2d(64, 128, 3, 1, 1) self.conv22 = nn.Conv2d(128, 128, 3, 1, 1) self.maxpool2 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv31 = nn.Conv2d(128, 256, 3, 1, 1) self.conv32 = nn.Conv2d(256, 256, 3, 1, 1) self.conv33 = nn.Conv2d(256, 256, 3, 1, 1) self.maxpool3 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv41 = nn.Conv2d(256, 512, 3, 1, 1) self.conv42 = nn.Conv2d(512, 512, 3, 1, 1) self.conv43 = nn.Conv2d(512, 512, 3, 1, 1) self.maxpool4 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv51 = nn.Conv2d(512, 512, 3, 1, 1) self.conv52 = nn.Conv2d(512, 512, 3, 1, 1) self.conv53 = nn.Conv2d(512, 512, 3, 1, 1) def forward(self, input_0): primals_1 = self.conv11.weight primals_2 = self.conv11.bias primals_4 = self.conv12.weight primals_5 = self.conv12.bias primals_6 = self.conv21.weight primals_7 = self.conv21.bias primals_8 = self.conv22.weight primals_9 = self.conv22.bias primals_10 = self.conv31.weight primals_11 = self.conv31.bias primals_12 = self.conv32.weight primals_13 = self.conv32.bias primals_14 = self.conv33.weight primals_15 = self.conv33.bias primals_16 = self.conv41.weight primals_17 = self.conv41.bias primals_18 = self.conv42.weight primals_19 = self.conv42.bias primals_20 = self.conv43.weight primals_21 = self.conv43.bias primals_22 = self.conv51.weight primals_23 = self.conv51.bias primals_24 = self.conv52.weight primals_25 = self.conv52.bias primals_26 = self.conv53.weight primals_27 = self.conv53.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
achrefjarray/ESRGANplus-master
MINCNet
false
1,403
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class Model(nn.Module): def __init__(self): super().__init__() self.ReLU = nn.ReLU(True) self.conv11 = nn.Conv2d(3, 64, 3, 1, 1) self.conv12 = nn.Conv2d(64, 64, 3, 1, 1) self.maxpool1 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv21 = nn.Conv2d(64, 128, 3, 1, 1) self.conv22 = nn.Conv2d(128, 128, 3, 1, 1) self.maxpool2 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv31 = nn.Conv2d(128, 256, 3, 1, 1) self.conv32 = nn.Conv2d(256, 256, 3, 1, 1) self.conv33 = nn.Conv2d(256, 256, 3, 1, 1) self.maxpool3 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv41 = nn.Conv2d(256, 512, 3, 1, 1) self.conv42 = nn.Conv2d(512, 512, 3, 1, 1) self.conv43 = nn.Conv2d(512, 512, 3, 1, 1) self.maxpool4 = nn.MaxPool2d(2, stride=2, padding=0, ceil_mode=True) self.conv51 = nn.Conv2d(512, 512, 3, 1, 1) self.conv52 = nn.Conv2d(512, 512, 3, 1, 1) self.conv53 = nn.Conv2d(512, 512, 3, 1, 1) def forward(self, x): out = self.ReLU(self.conv11(x)) out = self.ReLU(self.conv12(out)) out = self.maxpool1(out) out = self.ReLU(self.conv21(out)) out = self.ReLU(self.conv22(out)) out = self.maxpool2(out) out = self.ReLU(self.conv31(out)) out = self.ReLU(self.conv32(out)) out = self.ReLU(self.conv33(out)) out = self.maxpool3(out) out = self.ReLU(self.conv41(out)) out = self.ReLU(self.conv42(out)) out = self.ReLU(self.conv43(out)) out = self.maxpool4(out) out = self.ReLU(self.conv51(out)) out = self.ReLU(self.conv52(out)) out = self.conv53(out) return out def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return []
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pp/cppkemfcm5vk2kpavj557cjird4kw4pnkego4rxxbls3fn3ot7nv.py # Topologically Sorted Source Nodes: [eq_1, eq, input_1, sub, p_t, sub_1, pow_1, mul, log, fl, mul_2, mul_3, fl_1, mean], Original ATen: [aten.eq, aten.sigmoid, aten.rsub, aten.where, aten.pow, aten.mul, aten.log, aten.mean] # Source node to ATen node mapping: # eq => eq # eq_1 => eq_1 # fl => mul_1 # fl_1 => where_1 # input_1 => sigmoid # log => log # mean => mean # mul => mul # mul_2 => mul_2 # mul_3 => mul_3 # p_t => where # pow_1 => pow_1 # sub => sub # sub_1 => sub_1 # Graph fragment: # %eq_1 : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg1_1, 1), kwargs = {}) # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %sigmoid, %sub), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %where), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, -1), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%where,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %log), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 0.25), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 0.75), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq_1, %mul_2, %mul_3), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where_1,), kwargs = {}) triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0 = async_compile.triton('triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp3 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp1 - tmp4 tmp6 = tl.where(tmp2, tmp4, tmp5) tmp7 = tmp1 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = -1.0 tmp10 = tmp8 * tmp9 tmp11 = tl_math.log(tmp6) tmp12 = tmp10 * tmp11 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = 0.75 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp2, tmp14, tmp16) tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp22, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [eq_1, eq, input_1, sub, p_t, sub_1, pow_1, mul, log, fl, mul_2, mul_3, fl_1, mean], Original ATen: [aten.eq, aten.sigmoid, aten.rsub, aten.where, aten.pow, aten.mul, aten.log, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, alpha=0.25, gamma=2, with_logits=True, reduction: 'str'='mean'): """ https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py https://arxiv.org/pdf/1708.02002.pdf default gamma from tabel 1(b) """ super().__init__() if reduction not in ['mean', 'none', 'sum']: raise NotImplementedError('Reduction {} not implemented.'. format(reduction)) self.reduction = reduction self.alpha = alpha self.gamma = gamma self.with_logits = with_logits def forward(self, input, target): """ input to be (B, 1) of probabilites (not logits) """ if self.with_logits: input = F.sigmoid(input) p_t = torch.where(target == 1, input, 1 - input) fl = -1 * (1 - p_t) ** self.gamma * torch.log(p_t) fl = torch.where(target == 1, fl * self.alpha, fl * (1 - self.alpha)) return self._reduce(fl) def _reduce(self, x): if self.reduction == 'mean': return x.mean() elif self.reduction == 'sum': return x.sum() else: return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 == tmp1 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp1 - tmp4 tmp6 = tl.where(tmp2, tmp4, tmp5) tmp7 = tmp1 - tmp6 tmp8 = tmp7 * tmp7 tmp9 = -1.0 tmp10 = tmp8 * tmp9 tmp11 = tl_math.log(tmp6) tmp12 = tmp10 * tmp11 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = 0.75 tmp16 = tmp12 * tmp15 tmp17 = tl.where(tmp2, tmp14, tmp16) tmp18 = tl.broadcast_to(tmp17, [RBLOCK]) tmp20 = triton_helpers.promote_to_tensor(tl.sum(tmp18, 0)) tmp21 = 256.0 tmp22 = tmp20 / tmp21 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp22, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_eq_log_mean_mul_pow_rsub_sigmoid_where_0[grid(1)](buf1 , arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class FocalLossNew(nn.Module): def __init__(self, alpha=0.25, gamma=2, with_logits=True, reduction: 'str'='mean'): """ https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py https://arxiv.org/pdf/1708.02002.pdf default gamma from tabel 1(b) """ super().__init__() if reduction not in ['mean', 'none', 'sum']: raise NotImplementedError('Reduction {} not implemented.'. format(reduction)) self.reduction = reduction self.alpha = alpha self.gamma = gamma self.with_logits = with_logits def _reduce(self, x): if self.reduction == 'mean': return x.mean() elif self.reduction == 'sum': return x.sum() else: return x def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
alexander-soare/PyTorch-Custom
FocalLoss
false
1,404
[ "Apache-2.0" ]
0
f4f9865f960806f7e05d55ea259e861ee2d7c6dc
https://github.com/alexander-soare/PyTorch-Custom/tree/f4f9865f960806f7e05d55ea259e861ee2d7c6dc
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): def __init__(self, alpha=0.25, gamma=2, with_logits=True, reduction: 'str'='mean'): """ https://github.com/mathiaszinnen/focal_loss_torch/blob/main/focal_loss/focal_loss.py https://arxiv.org/pdf/1708.02002.pdf default gamma from tabel 1(b) """ super().__init__() if reduction not in ['mean', 'none', 'sum']: raise NotImplementedError('Reduction {} not implemented.'. format(reduction)) self.reduction = reduction self.alpha = alpha self.gamma = gamma self.with_logits = with_logits def forward(self, input, target): """ input to be (B, 1) of probabilites (not logits) """ if self.with_logits: input = F.sigmoid(input) p_t = torch.where(target == 1, input, 1 - input) fl = -1 * (1 - p_t) ** self.gamma * torch.log(p_t) fl = torch.where(target == 1, fl * self.alpha, fl * (1 - self.alpha)) return self._reduce(fl) def _reduce(self, x): if self.reduction == 'mean': return x.mean() elif self.reduction == 'sum': return x.sum() else: return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
Foo
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/74/c74yuox45avk3dyefqdkvkdygfzym6suwnjtqzkgr6lapmzwsqve.py # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # add => add # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, add], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_1 del primals_3 return (buf0, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn.functional import torch.nn.parallel import torch.utils.data import torch.optim import torch.utils.data.distributed class Foo(torch.nn.Module): def __init__(self, size): super(Foo, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) def forward(self, input): return self.n * input + self.m def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional import torch.nn.parallel import torch.utils.data import torch.optim import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class FooNew(torch.nn.Module): def __init__(self, size): super(FooNew, self).__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) def forward(self, input_0): primals_1 = self.n primals_3 = self.m primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
alexshuang/apex
Foo
false
1,405
[ "BSD-3-Clause" ]
0
107f1ff569c40769de2ed8d366126282e63b63ce
https://github.com/alexshuang/apex/tree/107f1ff569c40769de2ed8d366126282e63b63ce
import torch import torch.nn.functional import torch.nn.parallel import torch.utils.data import torch.optim import torch.utils.data.distributed class Model(torch.nn.Module): def __init__(self, size): super().__init__() self.n = torch.nn.Parameter(torch.ones(size)) self.m = torch.nn.Parameter(torch.ones(size)) def forward(self, input): return self.n * input + self.m def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Conv1DSame
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/cy/ccy6reubhys5e7ewfwc45tptdpiy2szxvk3hlqwnh5wrfstexex3.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 2], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = (xindex // 7) x2 = xindex tmp0 = (-1) + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1)), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2m/c2mt7vvxypcyg4roj4r3bns7fqblbouce2ybektelf7rsc62boym.py # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7), (7, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 28, grid=grid(28), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7), (0, 7, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4), (4, 1), 0), primals_2, reinterpret_tensor(buf0, (1, 4, 7), (28, 7, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import math import torch import torch.nn as nn class Conv1DSame(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, groups=1, bias=True, stride=1): super(Conv1DSame, self).__init__() p = (kernel_size - 1) / 2 self.padding = nn.ConstantPad1d((math.floor(p), math.ceil(p)), 0.0) self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, groups=groups, bias=bias, stride=stride) def forward(self, x): x = self.padding(x) out = self.conv(x) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 28 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 7 x1 = xindex // 7 x2 = xindex tmp0 = -1 + x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1), tmp5 & xmask, other=0.0) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 7), (7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(28)](primals_1, buf0, 28, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(reinterpret_tensor(buf0, (1, 4, 7 ), (0, 7, 1), 0), primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (1, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(16)](buf2, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4), (4, 1), 0 ), primals_2, reinterpret_tensor(buf0, (1, 4, 7), (28, 7, 1), 0) class Conv1DSameNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, groups=1, bias=True, stride=1): super(Conv1DSameNew, self).__init__() p = (kernel_size - 1) / 2 self.padding = nn.ConstantPad1d((math.floor(p), math.ceil(p)), 0.0) self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, groups=groups, bias=bias, stride=stride) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
alexchartrand/IoT
Conv1DSame
false
1,406
[ "MIT" ]
0
2cc0d40b7f8305b9f82fc83ad4ed55c83efa1bfd
https://github.com/alexchartrand/IoT/tree/2cc0d40b7f8305b9f82fc83ad4ed55c83efa1bfd
import math import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, groups=1, bias=True, stride=1): super().__init__() p = (kernel_size - 1) / 2 self.padding = nn.ConstantPad1d((math.floor(p), math.ceil(p)), 0.0) self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, groups=groups, bias=bias, stride=stride) def forward(self, x): x = self.padding(x) out = self.conv(x) return out def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
GE2ELoss
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xs/cxsrpt6fc6keotwox53jqah3sh3dxvxtz3kwc2blhwib6t3qy42k.py # Topologically Sorted Source Nodes: [sub, centroids_1], Original ATen: [aten.sub, aten.div] # Source node to ATen node mapping: # centroids_1 => div # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %primals_2), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 3), kwargs = {}) triton_poi_fused_div_sub_0 = async_compile.triton('triton_poi_fused_div_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 - tmp7 tmp9 = 0.3333333333333333 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dv/cdvje63sjkelf3el4u53unnyfy2sevhogihzqbwx6hsyrbsy7cbg.py # Topologically Sorted Source Nodes: [cos_same], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] # Source node to ATen node mapping: # cos_same => clamp_min_1, clamp_min_2, div_1, div_2, mul, pow_1, pow_2, pow_3, pow_4, sum_2, sum_3 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_2, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, [1], True), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_2, 1e-08), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_4, 1e-08), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_1, %clamp_min_2), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_2, %clamp_min_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_2, %div_1), kwargs = {}) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + (x2), xmask) tmp17 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bd/cbdptvqpyegwucijcr6uwn6bfx3eo4vhu5rbuhfpm7rxzwz5eeqd.py # Topologically Sorted Source Nodes: [centroids, centroids_expand, cos_diff], Original ATen: [aten.mean, aten.repeat, aten.linalg_vector_norm] # Source node to ATen node mapping: # centroids => mean # centroids_expand => repeat # cos_diff => pow_7, sum_6 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [1]), kwargs = {}) # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%mean, [16, 1]), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%repeat, 2), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [1], True), kwargs = {}) triton_poi_fused_linalg_vector_norm_mean_repeat_2 = async_compile.triton('triton_poi_fused_linalg_vector_norm_mean_repeat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_linalg_vector_norm_mean_repeat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (16*(x0 % 4)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (4 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (8 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (12 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (5 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (9 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (13 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (6 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (10 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (14 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (3 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr0 + (7 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (11 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr0 + (15 + (16*(x0 % 4))), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp8 * tmp8 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp16 / tmp7 tmp18 = tmp17 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp27 = tmp26 / tmp7 tmp28 = tmp27 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 + tmp31 tmp34 = tmp32 + tmp33 tmp36 = tmp34 + tmp35 tmp37 = tmp36 / tmp7 tmp38 = tmp37 * tmp37 tmp39 = tmp29 + tmp38 tl.store(out_ptr0 + (x0), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/nh/cnhrs5oppznwegybmgag7bb4gbadinbwe6rek6ylphkotmgrmcpa.py # Topologically Sorted Source Nodes: [centroids, centroids_expand, cos_diff], Original ATen: [aten.mean, aten.repeat, aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] # Source node to ATen node mapping: # centroids => mean # centroids_expand => repeat # cos_diff => clamp_min_3, clamp_min_4, div_3, div_4, mul_1, pow_5, pow_6, pow_8, sum_5 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_2, [1]), kwargs = {}) # %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%mean, [16, 1]), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view_3, 2), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_5, [1], True), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_6, 0.5), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_6, 1e-08), kwargs = {}) # %clamp_min_4 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%pow_8, 1e-08), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%repeat, %clamp_min_4), kwargs = {}) # %div_4 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_3, %clamp_min_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_4, %div_3), kwargs = {}) triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3 = async_compile.triton('triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*(x1 // 4))), xmask) tmp1 = tl.load(in_ptr0 + (4*(x1 // 4)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*(x1 // 4))), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*(x1 // 4))), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*(x1 // 4))), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (x0 + (16*(x1 % 4))), xmask) tmp17 = tl.load(in_ptr0 + (4 + x0 + (16*(x1 % 4))), xmask) tmp19 = tl.load(in_ptr0 + (8 + x0 + (16*(x1 % 4))), xmask) tmp21 = tl.load(in_ptr0 + (12 + x0 + (16*(x1 % 4))), xmask) tmp25 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp16 + tmp17 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp23 = 4.0 tmp24 = tmp22 / tmp23 tmp26 = libdevice.sqrt(tmp25) tmp27 = triton_helpers.maximum(tmp26, tmp13) tmp28 = tmp24 / tmp27 tmp29 = tmp15 * tmp28 tl.store(out_ptr0 + (x2), tmp29, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ir/cirx4jc3ufwibutztgyf7asd3mqxh5khmvscvbnbn4jwbtzmxwex.py # Topologically Sorted Source Nodes: [cos_diff], Original ATen: [aten.sum] # Source node to ATen node mapping: # cos_diff => sum_7 # Graph fragment: # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) triton_poi_fused_sum_4 = async_compile.triton('triton_poi_fused_sum_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sum_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ql/cqls67w2vyuytuch5eevuasqxfpvx6dzsfraeuvrtvwpy4pinmbt.py # Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.index_put] # Source node to ATen node mapping: # setitem => index_put # Graph fragment: # %index_put : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%view_4, [%lift_fresh_copy, None, %lift_fresh_copy_1], %view_5), kwargs = {}) triton_poi_fused_index_put_5 = async_compile.triton('triton_poi_fused_index_put_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_put_5', 'mutated_arg_names': ['out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_index_put_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex x0 = xindex % 4 tmp11 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp0 = x1 tmp1 = tl.full([1], 2, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 0, tl.int64) tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.where(tmp8, tmp1, tmp7) tmp10 = tl.where(tmp2, tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tl.store(out_ptr0 + ((4*x0) + (17*tmp10)), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lc/clc6rso4dneipezyns6n5nqji3ursl6dn5npzhlm6jd7b6k2a73q.py # Topologically Sorted Source Nodes: [cos_diff_2, mul, sim_matrix, pos, exp, sum_2, add_2, neg, sub_1, per_embedding_loss, loss], Original ATen: [aten.add, aten.mul, aten.index, aten.exp, aten.sum, aten.log, aten.sub] # Source node to ATen node mapping: # add_2 => add_2 # cos_diff_2 => add # exp => exp # loss => sum_9 # mul => mul_2 # neg => log # per_embedding_loss => mul_3 # pos => index # sim_matrix => add_1 # sub_1 => sub_1 # sum_2 => sum_8 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_9, 1e-06), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %add), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_3), kwargs = {}) # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%add_1, [%lift_fresh_copy_2, None, %lift_fresh_copy_3]), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%add_1,), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2]), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_8, 1e-06), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%index, %log), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, -1), kwargs = {}) # %sum_9 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_3,), kwargs = {}) triton_per_fused_add_exp_index_log_mul_sub_sum_6 = async_compile.triton('triton_per_fused_add_exp_index_log_mul_sub_sum_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_exp_index_log_mul_sub_sum_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_exp_index_log_mul_sub_sum_6(in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = (rindex // 4) r0 = rindex % 4 r2 = rindex tmp11 = tl.load(in_ptr0 + (0)) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp17 = tl.load(in_ptr2 + (0)) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.load(in_ptr1 + (4*r2), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (1 + (4*r2)), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (2 + (4*r2)), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (3 + (4*r2)), None, eviction_policy='evict_last') tmp0 = r1 tmp1 = tl.full([1, 1], 2, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1, 1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1, 1], 0, tl.int64) tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.full([1, 1], 3, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.where(tmp8, tmp1, tmp7) tmp10 = tl.where(tmp2, tmp6, tmp9) tmp13 = tl.load(in_ptr1 + ((4*r0) + (17*tmp10)), None, eviction_policy='evict_last') tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 * tmp15 tmp19 = tmp16 + tmp18 tmp21 = tmp20 + tmp14 tmp22 = tmp12 * tmp21 tmp23 = tmp22 + tmp18 tmp24 = tl_math.exp(tmp23) tmp26 = tmp25 + tmp14 tmp27 = tmp12 * tmp26 tmp28 = tmp27 + tmp18 tmp29 = tl_math.exp(tmp28) tmp30 = tmp24 + tmp29 tmp32 = tmp31 + tmp14 tmp33 = tmp12 * tmp32 tmp34 = tmp33 + tmp18 tmp35 = tl_math.exp(tmp34) tmp36 = tmp30 + tmp35 tmp38 = tmp37 + tmp14 tmp39 = tmp12 * tmp38 tmp40 = tmp39 + tmp18 tmp41 = tl_math.exp(tmp40) tmp42 = tmp36 + tmp41 tmp43 = tmp42 + tmp14 tmp44 = tl_math.log(tmp43) tmp45 = tmp19 - tmp44 tmp46 = -1.0 tmp47 = tmp45 * tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp50, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, centroids_1], Original ATen: [aten.sub, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_sub_0.run(primals_2, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [cos_same], Original ATen: [aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1.run(primals_2, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = reinterpret_tensor(buf0, (64, 1), (1, 64), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [centroids, centroids_expand, cos_diff], Original ATen: [aten.mean, aten.repeat, aten.linalg_vector_norm] triton_poi_fused_linalg_vector_norm_mean_repeat_2.run(primals_2, buf2, 64, grid=grid(64), stream=stream0) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [centroids, centroids_expand, cos_diff], Original ATen: [aten.mean, aten.repeat, aten.linalg_vector_norm, aten.clamp_min, aten.div, aten.mul] triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3.run(primals_2, buf2, buf3, 256, grid=grid(256), stream=stream0) del primals_2 buf4 = reinterpret_tensor(buf2, (64, ), (1, ), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [cos_diff], Original ATen: [aten.sum] triton_poi_fused_sum_4.run(buf3, buf4, 64, grid=grid(64), stream=stream0) del buf3 # Topologically Sorted Source Nodes: [setitem], Original ATen: [aten.index_put] triton_poi_fused_index_put_5.run(buf1, buf4, 16, grid=grid(16), stream=stream0) del buf1 buf7 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [cos_diff_2, mul, sim_matrix, pos, exp, sum_2, add_2, neg, sub_1, per_embedding_loss, loss], Original ATen: [aten.add, aten.mul, aten.index, aten.exp, aten.sum, aten.log, aten.sub] triton_per_fused_add_exp_index_log_mul_sub_sum_6.run(primals_1, buf4, primals_3, buf7, 1, 16, grid=grid(1), stream=stream0) return (buf7, primals_1, primals_3, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((), (), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F def calc_loss(sim_matrix): same_idx = list(range(sim_matrix.size(0))) pos = sim_matrix[same_idx, :, same_idx] neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-06).log_() per_embedding_loss = -1 * (pos - neg) loss = per_embedding_loss.sum() return loss, per_embedding_loss def get_centroids(embeddings): centroids = embeddings.mean(dim=1) return centroids def get_utterance_centroids(embeddings): """ Returns the centroids for each utterance of a speaker, where the utterance centroid is the speaker centroid without considering this utterance Shape of embeddings should be: (speaker_ct, utterance_per_speaker_ct, embedding_size) """ sum_centroids = embeddings.sum(dim=1) sum_centroids = sum_centroids.reshape(sum_centroids.shape[0], 1, sum_centroids.shape[-1]) num_utterances = embeddings.shape[1] - 1 centroids = (sum_centroids - embeddings) / num_utterances return centroids def get_cossim(embeddings, centroids): num_utterances = embeddings.shape[1] utterance_centroids = get_utterance_centroids(embeddings) utterance_centroids_flat = utterance_centroids.view(utterance_centroids .shape[0] * utterance_centroids.shape[1], -1) embeddings_flat = embeddings.view(embeddings.shape[0] * num_utterances, -1) cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat) centroids_expand = centroids.repeat((num_utterances * embeddings.shape[ 0], 1)) embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings. shape[0], 1) embeddings_expand = embeddings_expand.view(embeddings_expand.shape[0] * embeddings_expand.shape[1], embeddings_expand.shape[-1]) cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand) cos_diff = cos_diff.view(embeddings.size(0), num_utterances, centroids. size(0)) same_idx = list(range(embeddings.size(0))) cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0], num_utterances) cos_diff = cos_diff + 1e-06 return cos_diff class GE2ELoss(nn.Module): def __init__(self, device): super(GE2ELoss, self).__init__() self.w = nn.Parameter(torch.tensor(10.0), requires_grad=True) self.b = nn.Parameter(torch.tensor(-5.0), requires_grad=True) self.device = device def forward(self, embeddings): torch.clamp(self.w, 1e-06) centroids = get_centroids(embeddings) cossim = get_cossim(embeddings, centroids) sim_matrix = self.w * cossim + self.b loss, _ = calc_loss(sim_matrix) return loss def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr0 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 - tmp7 tmp9 = 0.3333333333333333 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr1 + x2, xmask) tmp17 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) @triton.jit def triton_poi_fused_linalg_vector_norm_mean_repeat_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 16 * (x0 % 4), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr0 + (4 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (8 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (12 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr0 + (1 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (5 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (9 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr0 + (13 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr0 + (2 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (6 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr0 + (10 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr0 + (14 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (3 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp31 = tl.load(in_ptr0 + (7 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp33 = tl.load(in_ptr0 + (11 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp35 = tl.load(in_ptr0 + (15 + 16 * (x0 % 4)), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp8 * tmp8 tmp12 = tmp10 + tmp11 tmp14 = tmp12 + tmp13 tmp16 = tmp14 + tmp15 tmp17 = tmp16 / tmp7 tmp18 = tmp17 * tmp17 tmp19 = tmp9 + tmp18 tmp22 = tmp20 + tmp21 tmp24 = tmp22 + tmp23 tmp26 = tmp24 + tmp25 tmp27 = tmp26 / tmp7 tmp28 = tmp27 * tmp27 tmp29 = tmp19 + tmp28 tmp32 = tmp30 + tmp31 tmp34 = tmp32 + tmp33 tmp36 = tmp34 + tmp35 tmp37 = tmp36 / tmp7 tmp38 = tmp37 * tmp37 tmp39 = tmp29 + tmp38 tl.store(out_ptr0 + x0, tmp39, xmask) @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3(in_ptr0 , in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * (x1 // 4)), xmask) tmp1 = tl.load(in_ptr0 + 4 * (x1 // 4), xmask, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (1 + 4 * (x1 // 4)), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * (x1 // 4)), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * (x1 // 4)), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr0 + (x0 + 16 * (x1 % 4)), xmask) tmp17 = tl.load(in_ptr0 + (4 + x0 + 16 * (x1 % 4)), xmask) tmp19 = tl.load(in_ptr0 + (8 + x0 + 16 * (x1 % 4)), xmask) tmp21 = tl.load(in_ptr0 + (12 + x0 + 16 * (x1 % 4)), xmask) tmp25 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp16 + tmp17 tmp20 = tmp18 + tmp19 tmp22 = tmp20 + tmp21 tmp23 = 4.0 tmp24 = tmp22 / tmp23 tmp26 = libdevice.sqrt(tmp25) tmp27 = triton_helpers.maximum(tmp26, tmp13) tmp28 = tmp24 / tmp27 tmp29 = tmp15 * tmp28 tl.store(out_ptr0 + x2, tmp29, xmask) @triton.jit def triton_poi_fused_sum_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_index_put_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex x0 = xindex % 4 tmp11 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp14 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp0 = x1 tmp1 = tl.full([1], 2, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1], 0, tl.int64) tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.full([1], 3, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.where(tmp8, tmp1, tmp7) tmp10 = tl.where(tmp2, tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp15 = tmp13 + tmp14 tmp17 = tmp15 + tmp16 tl.store(out_ptr0 + (4 * x0 + 17 * tmp10), tmp17, xmask) @triton.jit def triton_per_fused_add_exp_index_log_mul_sub_sum_6(in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex // 4 r0 = rindex % 4 r2 = rindex tmp11 = tl.load(in_ptr0 + 0) tmp12 = tl.broadcast_to(tmp11, [XBLOCK, RBLOCK]) tmp17 = tl.load(in_ptr2 + 0) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.load(in_ptr1 + 4 * r2, None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (1 + 4 * r2), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (2 + 4 * r2), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (3 + 4 * r2), None, eviction_policy='evict_last') tmp0 = r1 tmp1 = tl.full([1, 1], 2, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1, 1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.full([1, 1], 0, tl.int64) tmp6 = tl.where(tmp4, tmp5, tmp3) tmp7 = tl.full([1, 1], 3, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.where(tmp8, tmp1, tmp7) tmp10 = tl.where(tmp2, tmp6, tmp9) tmp13 = tl.load(in_ptr1 + (4 * r0 + 17 * tmp10), None, eviction_policy= 'evict_last') tmp14 = 1e-06 tmp15 = tmp13 + tmp14 tmp16 = tmp12 * tmp15 tmp19 = tmp16 + tmp18 tmp21 = tmp20 + tmp14 tmp22 = tmp12 * tmp21 tmp23 = tmp22 + tmp18 tmp24 = tl_math.exp(tmp23) tmp26 = tmp25 + tmp14 tmp27 = tmp12 * tmp26 tmp28 = tmp27 + tmp18 tmp29 = tl_math.exp(tmp28) tmp30 = tmp24 + tmp29 tmp32 = tmp31 + tmp14 tmp33 = tmp12 * tmp32 tmp34 = tmp33 + tmp18 tmp35 = tl_math.exp(tmp34) tmp36 = tmp30 + tmp35 tmp38 = tmp37 + tmp14 tmp39 = tmp12 * tmp38 tmp40 = tmp39 + tmp18 tmp41 = tl_math.exp(tmp40) tmp42 = tmp36 + tmp41 tmp43 = tmp42 + tmp14 tmp44 = tl_math.log(tmp43) tmp45 = tmp19 - tmp44 tmp46 = -1.0 tmp47 = tmp45 * tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp50, None) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (), ()) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_sub_0[grid(64)](primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_1[grid(64)]( primals_2, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = reinterpret_tensor(buf0, (64, 1), (1, 64), 0) del buf0 triton_poi_fused_linalg_vector_norm_mean_repeat_2[grid(64)](primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) triton_poi_fused_clamp_min_div_linalg_vector_norm_mean_mul_repeat_3[ grid(256)](primals_2, buf2, buf3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf4 = reinterpret_tensor(buf2, (64,), (1,), 0) del buf2 triton_poi_fused_sum_4[grid(64)](buf3, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf3 triton_poi_fused_index_put_5[grid(16)](buf1, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf1 buf7 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_exp_index_log_mul_sub_sum_6[grid(1)](primals_1, buf4, primals_3, buf7, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) return buf7, primals_1, primals_3, reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0) def calc_loss(sim_matrix): same_idx = list(range(sim_matrix.size(0))) pos = sim_matrix[same_idx, :, same_idx] neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-06).log_() per_embedding_loss = -1 * (pos - neg) loss = per_embedding_loss.sum() return loss, per_embedding_loss def get_centroids(embeddings): centroids = embeddings.mean(dim=1) return centroids def get_utterance_centroids(embeddings): """ Returns the centroids for each utterance of a speaker, where the utterance centroid is the speaker centroid without considering this utterance Shape of embeddings should be: (speaker_ct, utterance_per_speaker_ct, embedding_size) """ sum_centroids = embeddings.sum(dim=1) sum_centroids = sum_centroids.reshape(sum_centroids.shape[0], 1, sum_centroids.shape[-1]) num_utterances = embeddings.shape[1] - 1 centroids = (sum_centroids - embeddings) / num_utterances return centroids def get_cossim(embeddings, centroids): num_utterances = embeddings.shape[1] utterance_centroids = get_utterance_centroids(embeddings) utterance_centroids_flat = utterance_centroids.view(utterance_centroids .shape[0] * utterance_centroids.shape[1], -1) embeddings_flat = embeddings.view(embeddings.shape[0] * num_utterances, -1) cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat) centroids_expand = centroids.repeat((num_utterances * embeddings.shape[ 0], 1)) embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings. shape[0], 1) embeddings_expand = embeddings_expand.view(embeddings_expand.shape[0] * embeddings_expand.shape[1], embeddings_expand.shape[-1]) cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand) cos_diff = cos_diff.view(embeddings.size(0), num_utterances, centroids. size(0)) same_idx = list(range(embeddings.size(0))) cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0], num_utterances) cos_diff = cos_diff + 1e-06 return cos_diff class GE2ELossNew(nn.Module): def __init__(self, device): super(GE2ELossNew, self).__init__() self.w = nn.Parameter(torch.tensor(10.0), requires_grad=True) self.b = nn.Parameter(torch.tensor(-5.0), requires_grad=True) self.device = device def forward(self, input_0): primals_1 = self.w primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
akuz91/SpeakerVerificationEmbedding
GE2ELoss
false
1,407
[ "BSD-3-Clause" ]
0
461d10c2bc34e70f3eb2798bcae803d2ca00f16b
https://github.com/akuz91/SpeakerVerificationEmbedding/tree/461d10c2bc34e70f3eb2798bcae803d2ca00f16b
import torch import torch.nn as nn import torch.nn.functional as F def calc_loss(sim_matrix): same_idx = list(range(sim_matrix.size(0))) pos = sim_matrix[same_idx, :, same_idx] neg = (torch.exp(sim_matrix).sum(dim=2) + 1e-06).log_() per_embedding_loss = -1 * (pos - neg) loss = per_embedding_loss.sum() return loss, per_embedding_loss def get_centroids(embeddings): centroids = embeddings.mean(dim=1) return centroids def get_utterance_centroids(embeddings): """ Returns the centroids for each utterance of a speaker, where the utterance centroid is the speaker centroid without considering this utterance Shape of embeddings should be: (speaker_ct, utterance_per_speaker_ct, embedding_size) """ sum_centroids = embeddings.sum(dim=1) sum_centroids = sum_centroids.reshape(sum_centroids.shape[0], 1, sum_centroids.shape[-1]) num_utterances = embeddings.shape[1] - 1 centroids = (sum_centroids - embeddings) / num_utterances return centroids def get_cossim(embeddings, centroids): num_utterances = embeddings.shape[1] utterance_centroids = get_utterance_centroids(embeddings) utterance_centroids_flat = utterance_centroids.view(utterance_centroids .shape[0] * utterance_centroids.shape[1], -1) embeddings_flat = embeddings.view(embeddings.shape[0] * num_utterances, -1) cos_same = F.cosine_similarity(embeddings_flat, utterance_centroids_flat) centroids_expand = centroids.repeat((num_utterances * embeddings.shape[ 0], 1)) embeddings_expand = embeddings_flat.unsqueeze(1).repeat(1, embeddings. shape[0], 1) embeddings_expand = embeddings_expand.view(embeddings_expand.shape[0] * embeddings_expand.shape[1], embeddings_expand.shape[-1]) cos_diff = F.cosine_similarity(embeddings_expand, centroids_expand) cos_diff = cos_diff.view(embeddings.size(0), num_utterances, centroids. size(0)) same_idx = list(range(embeddings.size(0))) cos_diff[same_idx, :, same_idx] = cos_same.view(embeddings.shape[0], num_utterances) cos_diff = cos_diff + 1e-06 return cos_diff class Model(nn.Module): def __init__(self, device): super().__init__() self.w = nn.Parameter(torch.tensor(10.0), requires_grad=True) self.b = nn.Parameter(torch.tensor(-5.0), requires_grad=True) self.device = device def forward(self, embeddings): torch.clamp(self.w, 1e-06) centroids = get_centroids(embeddings) cossim = get_cossim(embeddings, centroids) sim_matrix = self.w * cossim + self.b loss, _ = calc_loss(sim_matrix) return loss def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [0]
BCELabelSmoothingLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/kj/ckj6wiaeje3acvbaxzn52koxfcd74zz6yhdbymg6s3gh455dqq25.py # Topologically Sorted Source Nodes: [sub, target, binary_cross_entropy_with_logits], Original ATen: [aten.sub, aten.abs, aten.binary_cross_entropy_with_logits] # Source node to ATen node mapping: # binary_cross_entropy_with_logits => abs_2, exp, full_default, log1p, mean, minimum, mul, neg, sub_1, sub_2, sub_3 # sub => sub # target => abs_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 4), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %abs_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %arg1_1), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_3,), kwargs = {}) triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0 = async_compile.triton('triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp6 = tl.load(in_ptr1 + (r0), None) tmp1 = 4.0 tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp7 = tmp5 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tl_math.abs(tmp6) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp7 - tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = 256.0 tmp20 = tmp18 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, target, binary_cross_entropy_with_logits], Original ATen: [aten.sub, aten.abs, aten.binary_cross_entropy_with_logits] stream0 = get_raw_stream(0) triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn import torch.nn.functional as F class BCELabelSmoothingLoss(nn.Module): """ Binary Cross Entropy Loss with label smoothing, takes logits """ def __init__(self, smoothing): """ `smoothing` is the smoothing factor. How much less confident than 100% are we on true labels? """ super().__init__() self.smoothing = smoothing def forward(self, input, target): """ expects target to be binary, and input to be logits """ with torch.no_grad(): target = torch.abs(target - self.smoothing) return F.binary_cross_entropy_with_logits(input, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'smoothing': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp6 = tl.load(in_ptr1 + r0, None) tmp1 = 4.0 tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = 1.0 tmp5 = tmp4 - tmp3 tmp7 = tmp5 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp6) tmp10 = tl_math.abs(tmp6) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp7 - tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = 256.0 tmp20 = tmp18 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_binary_cross_entropy_with_logits_sub_0[grid(1)]( buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class BCELabelSmoothingLossNew(nn.Module): """ Binary Cross Entropy Loss with label smoothing, takes logits """ def __init__(self, smoothing): """ `smoothing` is the smoothing factor. How much less confident than 100% are we on true labels? """ super().__init__() self.smoothing = smoothing def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
alexander-soare/PyTorch-Custom
BCELabelSmoothingLoss
false
1,408
[ "Apache-2.0" ]
0
f4f9865f960806f7e05d55ea259e861ee2d7c6dc
https://github.com/alexander-soare/PyTorch-Custom/tree/f4f9865f960806f7e05d55ea259e861ee2d7c6dc
import torch from torch import nn import torch.nn.functional as F class Model(nn.Module): """ Binary Cross Entropy Loss with label smoothing, takes logits """ def __init__(self, smoothing): """ `smoothing` is the smoothing factor. How much less confident than 100% are we on true labels? """ super().__init__() self.smoothing = smoothing def forward(self, input, target): """ expects target to be binary, and input to be logits """ with torch.no_grad(): target = torch.abs(target - self.smoothing) return F.binary_cross_entropy_with_logits(input, target) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
TSAFusion
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/g4/cg4ol27qewbsblsqindyqcoqjbv3ocrgpr3ueqortiqfpei53c5z.py # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] # Source node to ATen node mapping: # clone => clone # Graph fragment: # %clone : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 1024 x1 = (xindex // 1024) x2 = xindex tmp0 = tl.load(in_ptr0 + (2048 + x0 + (5120*x1)), None) tl.store(out_ptr0 + (x2), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vl/cvlmoerlrbmnehdmef3bbge55w43r7yeghhzhrdh2czvthybjclb.py # Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution] # Source node to ATen node mapping: # embedding_ref => convolution # Graph fragment: # %convolution : [num_users=6] = call_function[target=torch.ops.aten.convolution.default](args = (%clone, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/in/cinfzueyyyniakvywqmnsv3rq6nal3xyzxhsxtrblzrtqg3xc4w6.py # Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution] # Source node to ATen node mapping: # embedding => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6g/c6g5w2xfkgqh3jcdcbb55u57ppgqo3xomq7ralymlbohawjrlbf7.py # Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat] # Source node to ATen node mapping: # cat => cat # corr => sum_1 # corr_1 => sum_2 # corr_2 => sum_3 # corr_3 => sum_4 # corr_4 => sum_5 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_1, %convolution), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %convolution), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_3, %convolution), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %convolution), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_3, [1]), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_5, %convolution), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%unsqueeze, %unsqueeze_1, %unsqueeze_2, %unsqueeze_3, %unsqueeze_4], 1), kwargs = {}) triton_per_fused_cat_mul_sum_3 = async_compile.triton('triton_per_fused_cat_mul_sum_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[64, 64], reduction_hint=ReductionHint.OUTER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_cat_mul_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 5, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 64 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + (16*r2) + (1024*x1)), xmask, other=0.0) tmp7 = tl.load(in_ptr0 + (1024 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (2048 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp19 = tl.load(in_ptr0 + (3072 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp25 = tl.load(in_ptr0 + (4096 + x0 + (16*r2) + (5120*x1)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp7 * tmp1 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp14 = tmp13 * tmp1 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = tmp19 * tmp1 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.where(xmask, tmp21, 0) tmp24 = tl.sum(tmp23, 1)[:, None] tmp26 = tmp25 * tmp1 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tl.store(out_ptr5 + (x0 + (80*x1)), tmp6, xmask) tl.store(out_ptr6 + (x0 + (80*x1)), tmp12, xmask) tl.store(out_ptr7 + (x0 + (80*x1)), tmp18, xmask) tl.store(out_ptr8 + (x0 + (80*x1)), tmp24, xmask) tl.store(out_ptr9 + (x0 + (80*x1)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fh/cfhd3pv6oq22djbxa5tx4y42vjmwgldrhgaichhekhdwb5ize252.py # Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul] # Source node to ATen node mapping: # aligned_feat => mul_5 # Graph fragment: # %mul_5 : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %view_2), kwargs = {}) triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) % 320 x2 = (xindex // 5120) tmp0 = tl.load(in_ptr0 + (x3), None) tmp1 = tl.load(in_ptr1 + (x0 + (16*(x1 // 64)) + (80*x2)), None) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zr/czrki3u23zsgaiiexnna7jtzoedroempx47tvzii26xeuavvtgad.py # Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # attn => gt_1, mul_7, where_1 # conv2d_3 => convolution_3 # Graph fragment: # %convolution_3 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {}) # %where_1 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_3, %mul_7), kwargs = {}) triton_poi_fused_convolution_leaky_relu_5 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pk/cpk3fygaseyui7qdpy3xpxqkvxk3hgw7slvnar3gxlbr74q67zf5.py # Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] # Source node to ATen node mapping: # attn_avg => avg_pool2d # attn_max => _low_memory_max_pool2d_with_offsets, getitem_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_1, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_1, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x5 = (xindex // 2) x3 = (xindex // 256) x6 = xindex % 256 x7 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (2*x0) tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp12 = 2*x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x0) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2*x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + (2*x1) tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x5)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x5)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 + tmp77 tmp80 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x5)), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp80 + tmp79 tmp82 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x5)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tmp82 + tmp81 tmp84 = tl.load(in_ptr0 + ((2*x0) + (8*x5)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tmp84 + tmp83 tmp86 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x5)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp87 = tmp86 + tmp85 tmp88 = tl.load(in_ptr0 + (3 + (2*x0) + (8*x5)), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tmp88 + tmp87 tmp90 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x5)), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp91 = tmp90 + tmp89 tmp92 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x5)), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp93 = tmp92 + tmp91 tmp94 = 1 + ((-2)*x0) + ((-2)*x1) + (((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x0*((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5)))) + ((-2)*x1*((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5)))) + (4*x0*x1) + ((5) * ((5) <= (2 + (2*x0))) + (2 + (2*x0)) * ((2 + (2*x0)) < (5))) + ((5) * ((5) <= (2 + (2*x1))) + (2 + (2*x1)) * ((2 + (2*x1)) < (5))) tmp95 = tmp93 / tmp94 tl.store(out_ptr0 + (x6 + (512*x3)), tmp51, xmask) tl.store(out_ptr1 + (x7), tmp76, xmask) tl.store(out_ptr2 + (x6 + (512*x3)), tmp95, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ku/ckudte3yk3k5yua5cn4wgvpz6fzasnpftrdhrse4k2pj5bssbxy3.py # Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # attn_1 => gt_2, mul_8, where_2 # conv2d_4 => convolution_4 # Graph fragment: # %convolution_4 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_4, 0.1), kwargs = {}) # %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_4, %mul_8), kwargs = {}) triton_poi_fused_convolution_leaky_relu_7 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sg/csgczegfowupuwjczr4ywjw7hwfokovqexu34tu4cf2odny25h7r.py # Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] # Source node to ATen node mapping: # attn_avg_1 => avg_pool2d_1 # attn_max_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%where_3, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) # %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%where_3, [3, 3], [2, 2], [1, 1]), kwargs = {}) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 18, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = (xindex // 64) tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=float("-inf")) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.load(in_ptr0 + ((-3) + (4*x2)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + ((-2) + (4*x2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp66 = tmp65 + tmp64 tmp67 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp68 = tmp67 + tmp66 tmp69 = tl.load(in_ptr0 + ((-1) + (4*x2)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp70 = tmp69 + tmp68 tmp71 = tl.load(in_ptr0 + (4*x2), tmp24 & xmask, eviction_policy='evict_last', other=0.0) tmp72 = tmp71 + tmp70 tmp73 = tl.load(in_ptr0 + (1 + (4*x2)), tmp27 & xmask, eviction_policy='evict_last', other=0.0) tmp74 = tmp73 + tmp72 tmp75 = tl.load(in_ptr0 + (1 + (4*x2)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp76 = tmp75 + tmp74 tmp77 = tl.load(in_ptr0 + (2 + (4*x2)), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tmp77 + tmp76 tmp79 = tl.load(in_ptr0 + (3 + (4*x2)), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp80 = tmp79 + tmp78 tmp81 = tl.full([1], 9, tl.int32) tmp82 = tmp80 / tmp81 tl.store(out_ptr0 + (x0 + (128*x1)), tmp38, xmask) tl.store(out_ptr1 + (x2), tmp63, xmask) tl.store(out_ptr2 + (x0 + (128*x1)), tmp82, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wq/cwqagsj5ls25hrcw6hxsayqci33xusemulwfozklrduzjqzpvbdb.py # Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu] # Source node to ATen node mapping: # attn_level_1 => gt_4, mul_10, where_4 # conv2d_6 => convolution_6 # Graph fragment: # %convolution_6 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_6, 0), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_6, 0.1), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_6, %mul_10), kwargs = {}) triton_poi_fused_convolution_leaky_relu_9 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l4/cl4vcjd4z7lumtxc5zcpws7ce6eexgpl5gregarvkbnjzwfii7gk.py # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # attn_level_3 => convert_element_type_1 # Graph fragment: # %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {}) triton_poi_fused__to_copy_10 = async_compile.triton('triton_poi_fused__to_copy_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vi/cvixasqvjpzhra4mkzvqpwqtena4rblcmdqim6ofp3nmxkli5cho.py # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # attn_level_3 => add_1, clamp_max # Graph fragment: # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {}) # %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 0), kwargs = {}) triton_poi_fused_add_clamp_11 = async_compile.triton('triton_poi_fused_add_clamp_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + (x0), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dw/cdwvjjvjx5yjaylq4q7psjgmnhvskuynevkz7t3bpyhxzjigsatv.py # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # attn_level_3 => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul_12, sub, sub_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (2,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_12, 0.5), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/g7/cg7hwas3ulxmdn6h36bo5ewdukiqxglk6whwhnhy37eovq7koydc.py # Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward] # Source node to ATen node mapping: # attn_2 => add_7 # attn_level_2 => gt_5, mul_11, where_5 # attn_level_3 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_14, mul_15, mul_16, sub_3, sub_4, sub_6 # conv2d_7 => convolution_7 # conv2d_8 => convolution_8 # leaky_relu_6 => gt_6, mul_17, where_6 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {}) # %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_5, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_14), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_15), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %mul_16 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_16), kwargs = {}) # %convolution_8 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_18, %primals_19, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_6 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_8, 0), kwargs = {}) # %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_8, 0.1), kwargs = {}) # %where_6 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %convolution_8, %mul_17), kwargs = {}) # %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_6, %add_6), kwargs = {}) # %gt_11 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_6, 0), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*i64', 10: '*fp32', 11: '*i1', 12: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 10, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x5 = (xindex // 4) x2 = (xindex // 4) % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + (x6), xmask) tmp26 = tl.load(in_ptr7 + (x2), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tmp16 - tmp16 tmp23 = tmp21 * tmp22 tmp24 = tmp16 + tmp23 tmp27 = tmp25 + tmp26 tmp28 = tmp27 > tmp12 tmp29 = tmp27 * tmp14 tmp30 = tl.where(tmp28, tmp27, tmp29) tmp32 = tmp31 + tmp1 tmp33 = tmp31 < 0 tmp34 = tl.where(tmp33, tmp32, tmp31) tmp35 = tmp24 - tmp24 tmp37 = tmp35 * tmp36 tmp38 = tmp24 + tmp37 tmp39 = tmp30 + tmp38 tmp40 = tmp30 > tmp12 tl.store(in_out_ptr0 + (x6), tmp39, xmask) tl.store(out_ptr0 + (x6), tmp40, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qh/cqhre475mhrzai26fnzznz5at2t325ucwdj2hqvrn3rxtfvbapzo.py # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy] # Source node to ATen node mapping: # attn_4 => convert_element_type_5 # Graph fragment: # %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {}) triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5f/c5fjkguhvjg5ryun7wopg6renfax5rp23vfbg6nzsu7akebanlci.py # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp] # Source node to ATen node mapping: # attn_4 => add_9, clamp_max_4 # Graph fragment: # %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {}) # %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_9, 1), kwargs = {}) triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ae/caebye2u374vhzlpesqh72pu5msuyvgx2qnngs7zftzquvm3h3mg.py # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] # Source node to ATen node mapping: # attn_4 => add_8, clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_19, sub_7, sub_9 # Graph fragment: # %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {}) # %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.5), kwargs = {}) # %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_8, 0.5), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_19, 0.5), kwargs = {}) # %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + (x0), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5d/c5digbxcc3yvdlkmff5azrziozddchj6yb3sq5xkpjinfocpzrk4.py # Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] # Source node to ATen node mapping: # attn_3 => gt_7, mul_18, where_7 # attn_4 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_12, add_13, add_14, mul_21, mul_22, mul_23, sub_10, sub_11, sub_13 # conv2d_9 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%where_7, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_21 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_21), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %mul_22 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_22), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {}) # %mul_23 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {}) # %add_14 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_23), kwargs = {}) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: '*fp32', 7: '*i64', 8: '*fp32', 9: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 4 x0 = xindex % 4 x6 = (xindex // 16) x2 = (xindex // 16) % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tl.load(in_ptr2 + (tmp20 + (2*tmp4) + (4*x6)), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp10 tmp23 = tmp22 > tmp12 tmp24 = tmp22 * tmp14 tmp25 = tl.where(tmp23, tmp22, tmp24) tmp26 = tmp25 - tmp16 tmp28 = tmp26 * tmp27 tmp29 = tmp16 + tmp28 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp8 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tmp35 > tmp12 tmp37 = tmp35 * tmp14 tmp38 = tl.where(tmp36, tmp35, tmp37) tmp39 = tl.load(in_ptr2 + (tmp20 + (2*tmp33) + (4*x6)), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp10 tmp41 = tmp40 > tmp12 tmp42 = tmp40 * tmp14 tmp43 = tl.where(tmp41, tmp40, tmp42) tmp44 = tmp43 - tmp38 tmp45 = tmp44 * tmp27 tmp46 = tmp38 + tmp45 tmp47 = tmp46 - tmp29 tmp49 = tmp47 * tmp48 tmp50 = tmp29 + tmp49 tl.store(in_out_ptr0 + (x4), tmp50, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cu/ccuvxkf5qhj2jvrsbb3ffhmjd2jtqb6hmsyda6rq3u6bfora32rr.py # Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # attn_6 => sigmoid_1 # attn_add => convolution_12 # conv2d_2 => convolution_2 # feat => gt, mul_6, where # feat_1 => add_15 # mul_6 => mul_25 # mul_7 => mul_26 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_5, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution_2, %mul_6), kwargs = {}) # %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_8, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_10,), kwargs = {}) # %mul_25 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid_1), kwargs = {}) # %mul_26 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_25, 2), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_26, %convolution_12), kwargs = {}) triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18 = async_compile.triton('triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (x3), None) tmp13 = tl.load(in_out_ptr1 + (x3), None) tmp14 = tl.load(in_ptr2 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 * tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tl.store(in_out_ptr0 + (x3), tmp2, None) tl.store(in_out_ptr1 + (x3), tmp16, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/74/c744ryizhtwhrucrt6eo7euxmid6gpfdi3fhwvvcyslcqrxawzy3.py # Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # attn_3 => gt_7, mul_18, where_7 # conv2d_9 => convolution_9 # Graph fragment: # %convolution_9 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%add_7, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_7 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_9, 0), kwargs = {}) # %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_9, 0.1), kwargs = {}) # %where_7 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_7, %convolution_9, %mul_18), kwargs = {}) # %gt_10 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_7, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 64 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ey/ceyyqukhyyygq34vtv7g5xckv5mooqbd7qwq2qatahqa4c2so7gc.py # Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # attn_level_2 => gt_5, mul_11, where_5 # conv2d_7 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_16, %primals_17, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_7, 0), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_7, 0.1), kwargs = {}) # %where_5 : [num_users=5] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_7, %mul_11), kwargs = {}) # %gt_12 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_5, 0), kwargs = {}) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args args.clear() assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_9, (64, ), (1, )) assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (64, ), (1, )) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64, ), (1, )) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64, ), (1, )) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64, ), (1, )) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64, ), (1, )) assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (64, ), (1, )) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64, ), (1, )) assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (64, ), (1, )) assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_27, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clone], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [embedding_ref], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 4096, grid=grid(4096), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [embedding], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 20480, grid=grid(20480), stream=stream0) del primals_5 buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) # alias buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) # alias buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) # alias buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) # alias buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias # Topologically Sorted Source Nodes: [mul, corr, mul_1, corr_1, mul_2, corr_2, mul_3, corr_3, mul_4, corr_4, cat], Original ATen: [aten.mul, aten.sum, aten.cat] triton_per_fused_cat_mul_sum_3.run(buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, grid=grid(64), stream=stream0) buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [aligned_feat], Original ATen: [aten.mul] triton_poi_fused_mul_4.run(primals_1, buf15, buf16, 20480, grid=grid(20480), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [conv2d_3, attn], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf20, primals_9, 4096, grid=grid(4096), stream=stream0) del primals_9 buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch.float32) buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) # alias buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8) buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) # alias # Topologically Sorted Source Nodes: [attn_max, attn_avg], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6.run(buf20, buf21, buf22, buf23, 1024, grid=grid(1024), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1)) buf26 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [conv2d_4, attn_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_7.run(buf26, primals_11, 1024, grid=grid(1024), stream=stream0) del primals_11 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1)) buf28 = buf27; del buf27 # reuse # Topologically Sorted Source Nodes: [conv2d_5, attn_level], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_7.run(buf28, primals_13, 1024, grid=grid(1024), stream=stream0) del primals_13 buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32) buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) # alias buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8) buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) # alias # Topologically Sorted Source Nodes: [attn_max_1, attn_avg_1], Original ATen: [aten.max_pool2d_with_indices, aten.avg_pool2d] triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8.run(buf28, buf29, buf30, buf31, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1)) buf34 = buf33; del buf33 # reuse # Topologically Sorted Source Nodes: [conv2d_6, attn_level_1], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_9.run(buf34, primals_15, 256, grid=grid(256), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_7], Original ATen: [aten.convolution] buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1)) buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_10.run(buf36, 2, grid=grid(2), stream=stream0) buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf37, 2, grid=grid(2), stream=stream0) buf38 = empty_strided_cuda((2, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_10.run(buf38, 2, grid=grid(2), stream=stream0) buf39 = empty_strided_cuda((2, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_11.run(buf39, 2, grid=grid(2), stream=stream0) buf40 = empty_strided_cuda((2, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf40, 2, grid=grid(2), stream=stream0) buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_level_3], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12.run(buf42, 2, grid=grid(2), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1)) buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32) buf44 = buf41; del buf41 # reuse buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, attn_level_2, attn_level_3, conv2d_8, leaky_relu_6, attn_2], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add, aten.leaky_relu_backward] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13.run(buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, grid=grid(1024), stream=stream0) del buf43 del primals_19 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1)) buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten._to_copy] triton_poi_fused__to_copy_14.run(buf46, 4, grid=grid(4), stream=stream0) buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf47, 4, grid=grid(4), stream=stream0) buf48 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_14.run(buf48, 4, grid=grid(4), stream=stream0) buf49 = empty_strided_cuda((4, ), (1, ), torch.int64) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.add, aten.clamp] triton_poi_fused_add_clamp_15.run(buf49, 4, grid=grid(4), stream=stream0) buf50 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf50, 4, grid=grid(4), stream=stream0) buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_4], Original ATen: [aten.sub, aten.clamp] triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16.run(buf52, 4, grid=grid(4), stream=stream0) buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch.float32) buf54 = buf53; del buf53 # reuse # Topologically Sorted Source Nodes: [conv2d_9, attn_3, attn_4], Original ATen: [aten.convolution, aten.leaky_relu, aten._unsafe_index, aten.sub, aten.mul, aten.add] triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17.run(buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, grid=grid(4096), stream=stream0) # Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution] buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1)) buf56 = buf55; del buf55 # reuse # Topologically Sorted Source Nodes: [attn_5], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf56, primals_23, 4096, grid=grid(4096), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1)) buf58 = buf57; del buf57 # reuse # Topologically Sorted Source Nodes: [conv2d_11, leaky_relu_8], Original ATen: [aten.convolution, aten.leaky_relu] triton_poi_fused_convolution_leaky_relu_5.run(buf58, primals_25, 4096, grid=grid(4096), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [attn_add], Original ATen: [aten.convolution] buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1)) buf18 = buf17; del buf17 # reuse buf60 = buf59; del buf59 # reuse # Topologically Sorted Source Nodes: [conv2d_2, feat, attn_add, attn_6, mul_6, mul_7, feat_1], Original ATen: [aten.convolution, aten.leaky_relu, aten.sigmoid, aten.mul, aten.add] triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18.run(buf18, buf60, primals_7, buf56, primals_27, 4096, grid=grid(4096), stream=stream0) del primals_27 del primals_7 buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_9, attn_3], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19.run(buf45, primals_21, buf61, 1024, grid=grid(1024), stream=stream0) del buf45 del primals_21 buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_7, attn_level_2], Original ATen: [aten.convolution, aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20.run(buf35, primals_17, buf63, 256, grid=grid(256), stream=stream0) del buf35 del primals_17 return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((64, 320, 1, 1), (320, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((64, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class TSAFusion(nn.Module): """Temporal Spatial Attention (TSA) fusion module. Temporal: Calculate the correlation between center frame and neighboring frames; Spatial: It has 3 pyramid levels, the attention is similar to SFT. (SFT: Recovering realistic texture in image super-resolution by deep spatial feature transform.) Args: num_feat (int): Channel number of middle features. Default: 64. num_frame (int): Number of frames. Default: 5. center_frame_idx (int): The index of center frame. Default: 2. """ def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2): super(TSAFusion, self).__init__() self.center_frame_idx = center_frame_idx self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1) self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1) self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) def forward(self, aligned_feat): """ Args: aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w). Returns: Tensor: Features after TSA with the shape (b, c, h, w). """ b, t, c, h, w = aligned_feat.size() embedding_ref = self.temporal_attn1(aligned_feat[:, self. center_frame_idx, :, :, :].clone()) embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w)) embedding = embedding.view(b, t, -1, h, w) corr_l = [] for i in range(t): emb_neighbor = embedding[:, i, :, :, :] corr = torch.sum(emb_neighbor * embedding_ref, 1) corr_l.append(corr.unsqueeze(1)) corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w) corr_prob = corr_prob.contiguous().view(b, -1, h, w) aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob feat = self.lrelu(self.feat_fusion(aligned_feat)) attn = self.lrelu(self.spatial_attn1(aligned_feat)) attn_max = self.max_pool(attn) attn_avg = self.avg_pool(attn) attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1))) attn_level = self.lrelu(self.spatial_attn_l1(attn)) attn_max = self.max_pool(attn_level) attn_avg = self.avg_pool(attn_level) attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1))) attn_level = self.lrelu(self.spatial_attn_l3(attn_level)) attn_level = self.upsample(attn_level) attn = self.lrelu(self.spatial_attn3(attn)) + attn_level attn = self.lrelu(self.spatial_attn4(attn)) attn = self.upsample(attn) attn = self.spatial_attn5(attn) attn_add = self.spatial_attn_add2(self.lrelu(self.spatial_attn_add1 (attn))) attn = torch.sigmoid(attn) feat = feat * attn * 2 + attn_add return feat def get_inputs(): return [torch.rand([4, 5, 64, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 1024 x1 = xindex // 1024 x2 = xindex tmp0 = tl.load(in_ptr0 + (2048 + x0 + 5120 * x1), None) tl.store(out_ptr0 + x2, tmp0, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_per_fused_cat_mul_sum_3(in_ptr0, in_ptr1, out_ptr5, out_ptr6, out_ptr7, out_ptr8, out_ptr9, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (x0 + 16 * r2 + 1024 * x1), xmask, other=0.0) tmp7 = tl.load(in_ptr0 + (1024 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp13 = tl.load(in_ptr0 + (2048 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp19 = tl.load(in_ptr0 + (3072 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp25 = tl.load(in_ptr0 + (4096 + x0 + 16 * r2 + 5120 * x1), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp8 = tmp7 * tmp1 tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp14 = tmp13 * tmp1 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = tmp19 * tmp1 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.where(xmask, tmp21, 0) tmp24 = tl.sum(tmp23, 1)[:, None] tmp26 = tmp25 * tmp1 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tl.store(out_ptr5 + (x0 + 80 * x1), tmp6, xmask) tl.store(out_ptr6 + (x0 + 80 * x1), tmp12, xmask) tl.store(out_ptr7 + (x0 + 80 * x1), tmp18, xmask) tl.store(out_ptr8 + (x0 + 80 * x1), tmp24, xmask) tl.store(out_ptr9 + (x0 + 80 * x1), tmp30, xmask) @triton.jit def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 16 x1 = xindex // 16 % 320 x2 = xindex // 5120 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 64) + 80 * x2), None) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, None) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x5 = xindex // 2 x3 = xindex // 256 x6 = xindex % 256 x7 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + 2 * x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp12 = 2 * x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = 2 * x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + 2 * x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask, eviction_policy='evict_last', other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tmp77 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x5), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp78 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x5), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp79 = tmp78 + tmp77 tmp80 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x5), tmp23 & xmask, eviction_policy='evict_last', other=0.0) tmp81 = tmp80 + tmp79 tmp82 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x5), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp83 = tmp82 + tmp81 tmp84 = tl.load(in_ptr0 + (2 * x0 + 8 * x5), tmp33 & xmask, eviction_policy='evict_last', other=0.0) tmp85 = tmp84 + tmp83 tmp86 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x5), tmp36 & xmask, eviction_policy='evict_last', other=0.0) tmp87 = tmp86 + tmp85 tmp88 = tl.load(in_ptr0 + (3 + 2 * x0 + 8 * x5), tmp43 & xmask, eviction_policy='evict_last', other=0.0) tmp89 = tmp88 + tmp87 tmp90 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x5), tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp91 = tmp90 + tmp89 tmp92 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x5), tmp49 & xmask, eviction_policy='evict_last', other=0.0) tmp93 = tmp92 + tmp91 tmp94 = 1 + -2 * x0 + -2 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x0 * (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5)) + -2 * x1 * (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + 4 * x0 * x1 + (5 * (5 <= 2 + 2 * x0) + (2 + 2 * x0) * (2 + 2 * x0 < 5)) + (5 * (5 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 5) ) tmp95 = tmp93 / tmp94 tl.store(out_ptr0 + (x6 + 512 * x3), tmp51, xmask) tl.store(out_ptr1 + x7, tmp76, xmask) tl.store(out_ptr2 + (x6 + 512 * x3), tmp95, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 64 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x3, tmp7, xmask) @triton.jit def triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 x1 = xindex // 64 tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tmp64 = tl.load(in_ptr0 + (-3 + 4 * x2), tmp6 & xmask, eviction_policy= 'evict_last', other=0.0) tmp65 = tl.load(in_ptr0 + (-2 + 4 * x2), tmp11 & xmask, eviction_policy ='evict_last', other=0.0) tmp66 = tmp65 + tmp64 tmp67 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp18 & xmask, eviction_policy ='evict_last', other=0.0) tmp68 = tmp67 + tmp66 tmp69 = tl.load(in_ptr0 + (-1 + 4 * x2), tmp21 & xmask, eviction_policy ='evict_last', other=0.0) tmp70 = tmp69 + tmp68 tmp71 = tl.load(in_ptr0 + 4 * x2, tmp24 & xmask, eviction_policy= 'evict_last', other=0.0) tmp72 = tmp71 + tmp70 tmp73 = tl.load(in_ptr0 + (1 + 4 * x2), tmp27 & xmask, eviction_policy= 'evict_last', other=0.0) tmp74 = tmp73 + tmp72 tmp75 = tl.load(in_ptr0 + (1 + 4 * x2), tmp30 & xmask, eviction_policy= 'evict_last', other=0.0) tmp76 = tmp75 + tmp74 tmp77 = tl.load(in_ptr0 + (2 + 4 * x2), tmp33 & xmask, eviction_policy= 'evict_last', other=0.0) tmp78 = tmp77 + tmp76 tmp79 = tl.load(in_ptr0 + (3 + 4 * x2), tmp36 & xmask, eviction_policy= 'evict_last', other=0.0) tmp80 = tmp79 + tmp78 tmp81 = tl.full([1], 9, tl.int32) tmp82 = tmp80 / tmp81 tl.store(out_ptr0 + (x0 + 128 * x1), tmp38, xmask) tl.store(out_ptr1 + x2, tmp63, xmask) tl.store(out_ptr2 + (x0 + 128 * x1), tmp82, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(in_out_ptr0 + x2, tmp7, xmask) @triton.jit def triton_poi_fused__to_copy_10(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_11(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = tl.full([1], 0, tl.int64) tmp12 = triton_helpers.minimum(tmp10, tmp11) tl.store(out_ptr0 + x0, tmp12, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x5 = xindex // 4 x2 = xindex // 4 % 64 x6 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr6 + x6, xmask) tmp26 = tl.load(in_ptr7 + x2, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 1, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tl.where(tmp7, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tl.where(tmp19, tmp18, tmp17) tmp21 = tmp16 - tmp16 tmp23 = tmp21 * tmp22 tmp24 = tmp16 + tmp23 tmp27 = tmp25 + tmp26 tmp28 = tmp27 > tmp12 tmp29 = tmp27 * tmp14 tmp30 = tl.where(tmp28, tmp27, tmp29) tmp32 = tmp31 + tmp1 tmp33 = tmp31 < 0 tl.where(tmp33, tmp32, tmp31) tmp35 = tmp24 - tmp24 tmp37 = tmp35 * tmp36 tmp38 = tmp24 + tmp37 tmp39 = tmp30 + tmp38 tmp40 = tmp30 > tmp12 tl.store(in_out_ptr0 + x6, tmp39, xmask) tl.store(out_ptr0 + x6, tmp40, xmask) @triton.jit def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tl.full([1], 1, tl.int64) tmp10 = tmp8 + tmp9 tmp11 = triton_helpers.minimum(tmp10, tmp9) tl.store(out_ptr0 + x0, tmp11, xmask) @triton.jit def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 - tmp2 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp7.to(tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 - tmp9 tmp11 = triton_helpers.maximum(tmp10, tmp6) tmp12 = 1.0 tmp13 = triton_helpers.minimum(tmp11, tmp12) tl.store(out_ptr0 + x0, tmp13, xmask) @triton.jit def triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 4 x0 = xindex % 4 x6 = xindex // 16 x2 = xindex // 16 % 64 x4 = xindex tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last') tmp17 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last') tmp48 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last') tmp1 = tl.full([XBLOCK], 2, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tmp6 = tmp5 + tmp1 tmp7 = tmp5 < 0 tmp8 = tl.where(tmp7, tmp6, tmp5) tmp9 = tl.load(in_ptr2 + (tmp8 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp11 = tmp9 + tmp10 tmp12 = 0.0 tmp13 = tmp11 > tmp12 tmp14 = 0.1 tmp15 = tmp11 * tmp14 tmp16 = tl.where(tmp13, tmp11, tmp15) tmp18 = tmp17 + tmp1 tmp19 = tmp17 < 0 tmp20 = tl.where(tmp19, tmp18, tmp17) tmp21 = tl.load(in_ptr2 + (tmp20 + 2 * tmp4 + 4 * x6), None, eviction_policy='evict_last') tmp22 = tmp21 + tmp10 tmp23 = tmp22 > tmp12 tmp24 = tmp22 * tmp14 tmp25 = tl.where(tmp23, tmp22, tmp24) tmp26 = tmp25 - tmp16 tmp28 = tmp26 * tmp27 tmp29 = tmp16 + tmp28 tmp31 = tmp30 + tmp1 tmp32 = tmp30 < 0 tmp33 = tl.where(tmp32, tmp31, tmp30) tmp34 = tl.load(in_ptr2 + (tmp8 + 2 * tmp33 + 4 * x6), None, eviction_policy='evict_last') tmp35 = tmp34 + tmp10 tmp36 = tmp35 > tmp12 tmp37 = tmp35 * tmp14 tmp38 = tl.where(tmp36, tmp35, tmp37) tmp39 = tl.load(in_ptr2 + (tmp20 + 2 * tmp33 + 4 * x6), None, eviction_policy='evict_last') tmp40 = tmp39 + tmp10 tmp41 = tmp40 > tmp12 tmp42 = tmp40 * tmp14 tmp43 = tl.where(tmp41, tmp40, tmp42) tmp44 = tmp43 - tmp38 tmp45 = tmp44 * tmp27 tmp46 = tmp38 + tmp45 tmp47 = tmp46 - tmp29 tmp49 = tmp47 * tmp48 tmp50 = tmp29 + tmp49 tl.store(in_out_ptr0 + x4, tmp50, None) @triton.jit def triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + x3, None) tmp13 = tl.load(in_out_ptr1 + x3, None) tmp14 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp9 = tl.sigmoid(tmp8) tmp10 = tmp7 * tmp9 tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp15 = tmp13 + tmp14 tmp16 = tmp12 + tmp15 tl.store(in_out_ptr0 + x3, tmp2, None) tl.store(in_out_ptr1 + x3, tmp16, None) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.1 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tmp8 = tmp7 > tmp3 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27) = args args.clear() assert_size_stride(primals_1, (4, 5, 64, 4, 4), (5120, 1024, 16, 4, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (64, 320, 1, 1), (320, 1, 1, 1)) assert_size_stride(primals_9, (64,), (1,)) assert_size_stride(primals_10, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_11, (64,), (1,)) assert_size_stride(primals_12, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_13, (64,), (1,)) assert_size_stride(primals_14, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (64,), (1,)) assert_size_stride(primals_16, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_17, (64,), (1,)) assert_size_stride(primals_18, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_19, (64,), (1,)) assert_size_stride(primals_20, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_21, (64,), (1,)) assert_size_stride(primals_22, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_23, (64,), (1,)) assert_size_stride(primals_24, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_25, (64,), (1,)) assert_size_stride(primals_26, (64, 64, 1, 1), (64, 1, 1, 1)) assert_size_stride(primals_27, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch. float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4096)](primals_1, buf0, 4096, XBLOCK= 128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 64, 4, 4), (1024, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(4096)](buf2, primals_3, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(reinterpret_tensor(primals_1, (20, 64, 4, 4), (1024, 16, 4, 1), 0), primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (20, 64, 4, 4), (1024, 16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(20480)](buf4, primals_5, 20480, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf15 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32) buf10 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 0) buf11 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 16) buf12 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 32) buf13 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 48) buf14 = reinterpret_tensor(buf15, (4, 1, 4, 4), (80, 16, 4, 1), 64) triton_per_fused_cat_mul_sum_3[grid(64)](buf4, buf2, buf10, buf11, buf12, buf13, buf14, 64, 64, XBLOCK=32, num_warps=8, num_stages=1) buf16 = empty_strided_cuda((4, 320, 4, 4), (5120, 16, 4, 1), torch. float32) triton_poi_fused_mul_4[grid(20480)](primals_1, buf15, buf16, 20480, XBLOCK=256, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf16, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 64, 4, 4), (1024, 16, 4, 1)) buf19 = extern_kernels.convolution(buf16, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 64, 4, 4), (1024, 16, 4, 1)) buf20 = buf19 del buf19 triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf20, primals_9, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 4, 2, 1), torch. float32) buf21 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 0) buf22 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.int8) buf23 = reinterpret_tensor(buf24, (4, 64, 2, 2), (512, 4, 2, 1), 256) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_6[grid(1024)](buf20 , buf21, buf22, buf23, 1024, XBLOCK=128, num_warps=4, num_stages=1) buf25 = extern_kernels.convolution(buf24, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf25, (4, 64, 2, 2), (256, 4, 2, 1)) buf26 = buf25 del buf25 triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf26, primals_11, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf27 = extern_kernels.convolution(buf26, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf27, (4, 64, 2, 2), (256, 4, 2, 1)) buf28 = buf27 del buf27 triton_poi_fused_convolution_leaky_relu_7[grid(1024)](buf28, primals_13, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch. float32) buf29 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 0) buf30 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.int8) buf31 = reinterpret_tensor(buf32, (4, 64, 1, 1), (128, 1, 1, 1), 64) triton_poi_fused_avg_pool2d_max_pool2d_with_indices_8[grid(256)](buf28, buf29, buf30, buf31, 256, XBLOCK=128, num_warps=4, num_stages=1) buf33 = extern_kernels.convolution(buf32, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 64, 1, 1), (64, 1, 1, 1)) buf34 = buf33 del buf33 triton_poi_fused_convolution_leaky_relu_9[grid(256)](buf34, primals_15, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf35 = extern_kernels.convolution(buf34, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf35, (4, 64, 1, 1), (64, 1, 1, 1)) buf36 = empty_strided_cuda((2, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_10[grid(2)](buf36, 2, XBLOCK=2, num_warps =1, num_stages=1) buf37 = empty_strided_cuda((2, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_11[grid(2)](buf37, 2, XBLOCK=2, num_warps=1, num_stages=1) buf38 = empty_strided_cuda((2,), (1,), torch.int64) triton_poi_fused__to_copy_10[grid(2)](buf38, 2, XBLOCK=2, num_warps =1, num_stages=1) buf39 = empty_strided_cuda((2,), (1,), torch.int64) triton_poi_fused_add_clamp_11[grid(2)](buf39, 2, XBLOCK=2, num_warps=1, num_stages=1) buf40 = empty_strided_cuda((2,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf40, 2, XBLOCK=2, num_warps=1, num_stages=1) buf42 = empty_strided_cuda((2, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_12[grid(2)](buf42, 2, XBLOCK=2, num_warps=1, num_stages=1) buf43 = extern_kernels.convolution(buf26, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 2, 2), (256, 4, 2, 1)) buf41 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.float32 ) buf44 = buf41 del buf41 buf62 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) triton_poi_fused__unsafe_index_add_convolution_leaky_relu_leaky_relu_backward_mul_sub_13[ grid(1024)](buf44, buf36, buf38, buf35, primals_17, buf39, buf40, buf43, primals_19, buf37, buf42, buf62, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf43 del primals_19 buf45 = extern_kernels.convolution(buf44, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf45, (4, 64, 2, 2), (256, 4, 2, 1)) buf46 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused__to_copy_14[grid(4)](buf46, 4, XBLOCK=4, num_warps =1, num_stages=1) buf47 = empty_strided_cuda((4, 1), (1, 1), torch.int64) triton_poi_fused_add_clamp_15[grid(4)](buf47, 4, XBLOCK=4, num_warps=1, num_stages=1) buf48 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused__to_copy_14[grid(4)](buf48, 4, XBLOCK=4, num_warps =1, num_stages=1) buf49 = empty_strided_cuda((4,), (1,), torch.int64) triton_poi_fused_add_clamp_15[grid(4)](buf49, 4, XBLOCK=4, num_warps=1, num_stages=1) buf50 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf50, 4, XBLOCK=4, num_warps=1, num_stages=1) buf52 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused__to_copy_add_arange_clamp_mul_sub_16[grid(4)](buf52, 4, XBLOCK=4, num_warps=1, num_stages=1) buf53 = empty_strided_cuda((4, 64, 4, 4), (1024, 16, 4, 1), torch. float32) buf54 = buf53 del buf53 triton_poi_fused__unsafe_index_add_convolution_leaky_relu_mul_sub_17[ grid(4096)](buf54, buf46, buf48, buf45, primals_21, buf49, buf50, buf47, buf52, 4096, XBLOCK=128, num_warps=4, num_stages=1) buf55 = extern_kernels.convolution(buf54, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf55, (4, 64, 4, 4), (1024, 16, 4, 1)) buf56 = buf55 del buf55 triton_poi_fused_convolution_1[grid(4096)](buf56, primals_23, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_23 buf57 = extern_kernels.convolution(buf56, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf57, (4, 64, 4, 4), (1024, 16, 4, 1)) buf58 = buf57 del buf57 triton_poi_fused_convolution_leaky_relu_5[grid(4096)](buf58, primals_25, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_25 buf59 = extern_kernels.convolution(buf58, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf59, (4, 64, 4, 4), (1024, 16, 4, 1)) buf18 = buf17 del buf17 buf60 = buf59 del buf59 triton_poi_fused_add_convolution_leaky_relu_mul_sigmoid_18[grid(4096)]( buf18, buf60, primals_7, buf56, primals_27, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_27 del primals_7 buf61 = empty_strided_cuda((4, 64, 2, 2), (256, 4, 2, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_19[grid (1024)](buf45, primals_21, buf61, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf45 del primals_21 buf63 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.bool) triton_poi_fused_convolution_leaky_relu_leaky_relu_backward_20[grid (256)](buf35, primals_17, buf63, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf35 del primals_17 return (buf60, primals_1, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 0), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 1024), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 2048), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 3072), reinterpret_tensor(buf4, (4, 64, 4, 4), (5120, 16, 4, 1), 4096), buf15, buf16, buf18, buf20, buf22, buf24, buf26, buf28, buf30, buf32, buf34, buf36, buf37, buf38, buf39, buf40, buf42, buf44, buf46, buf47, buf48, buf49, buf50, buf52, buf54, buf56, buf58, buf61, buf62, buf63) class TSAFusionNew(nn.Module): """Temporal Spatial Attention (TSA) fusion module. Temporal: Calculate the correlation between center frame and neighboring frames; Spatial: It has 3 pyramid levels, the attention is similar to SFT. (SFT: Recovering realistic texture in image super-resolution by deep spatial feature transform.) Args: num_feat (int): Channel number of middle features. Default: 64. num_frame (int): Number of frames. Default: 5. center_frame_idx (int): The index of center frame. Default: 2. """ def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2): super(TSAFusionNew, self).__init__() self.center_frame_idx = center_frame_idx self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1) self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1) self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) def forward(self, input_0): primals_2 = self.temporal_attn1.weight primals_3 = self.temporal_attn1.bias primals_4 = self.temporal_attn2.weight primals_5 = self.temporal_attn2.bias primals_6 = self.feat_fusion.weight primals_7 = self.feat_fusion.bias primals_8 = self.spatial_attn1.weight primals_9 = self.spatial_attn1.bias primals_10 = self.spatial_attn2.weight primals_11 = self.spatial_attn2.bias primals_16 = self.spatial_attn3.weight primals_13 = self.spatial_attn3.bias primals_12 = self.spatial_attn4.weight primals_15 = self.spatial_attn4.bias primals_18 = self.spatial_attn5.weight primals_17 = self.spatial_attn5.bias primals_20 = self.spatial_attn_l1.weight primals_19 = self.spatial_attn_l1.bias primals_14 = self.spatial_attn_l2.weight primals_21 = self.spatial_attn_l2.bias primals_22 = self.spatial_attn_l3.weight primals_23 = self.spatial_attn_l3.bias primals_24 = self.spatial_attn_add1.weight primals_25 = self.spatial_attn_add1.bias primals_26 = self.spatial_attn_add2.weight primals_27 = self.spatial_attn_add2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27]) return output[0]
achrefjarray/ESRGANplus-master
TSAFusion
false
1,409
[ "Apache-2.0" ]
0
ba470ec5c565a6dc8b48575b1e185ef6b796aec6
https://github.com/achrefjarray/ESRGANplus-master/tree/ba470ec5c565a6dc8b48575b1e185ef6b796aec6
import torch import torch.utils.data from torch.utils import data as data import torch.nn as nn from torch.nn import init as init from torchvision.models import vgg as vgg from torch import autograd as autograd class Model(nn.Module): """Temporal Spatial Attention (TSA) fusion module. Temporal: Calculate the correlation between center frame and neighboring frames; Spatial: It has 3 pyramid levels, the attention is similar to SFT. (SFT: Recovering realistic texture in image super-resolution by deep spatial feature transform.) Args: num_feat (int): Channel number of middle features. Default: 64. num_frame (int): Number of frames. Default: 5. center_frame_idx (int): The index of center frame. Default: 2. """ def __init__(self, num_feat=64, num_frame=5, center_frame_idx=2): super().__init__() self.center_frame_idx = center_frame_idx self.temporal_attn1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.temporal_attn2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.feat_fusion = nn.Conv2d(num_frame * num_feat, num_feat, 1, 1) self.max_pool = nn.MaxPool2d(3, stride=2, padding=1) self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) self.spatial_attn1 = nn.Conv2d(num_frame * num_feat, num_feat, 1) self.spatial_attn2 = nn.Conv2d(num_feat * 2, num_feat, 1) self.spatial_attn3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn4 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn5 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_l1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_l2 = nn.Conv2d(num_feat * 2, num_feat, 3, 1, 1) self.spatial_attn_l3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.spatial_attn_add1 = nn.Conv2d(num_feat, num_feat, 1) self.spatial_attn_add2 = nn.Conv2d(num_feat, num_feat, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) def forward(self, aligned_feat): """ Args: aligned_feat (Tensor): Aligned features with shape (b, t, c, h, w). Returns: Tensor: Features after TSA with the shape (b, c, h, w). """ b, t, c, h, w = aligned_feat.size() embedding_ref = self.temporal_attn1(aligned_feat[:, self. center_frame_idx, :, :, :].clone()) embedding = self.temporal_attn2(aligned_feat.view(-1, c, h, w)) embedding = embedding.view(b, t, -1, h, w) corr_l = [] for i in range(t): emb_neighbor = embedding[:, i, :, :, :] corr = torch.sum(emb_neighbor * embedding_ref, 1) corr_l.append(corr.unsqueeze(1)) corr_prob = torch.sigmoid(torch.cat(corr_l, dim=1)) corr_prob = corr_prob.unsqueeze(2).expand(b, t, c, h, w) corr_prob = corr_prob.contiguous().view(b, -1, h, w) aligned_feat = aligned_feat.view(b, -1, h, w) * corr_prob feat = self.lrelu(self.feat_fusion(aligned_feat)) attn = self.lrelu(self.spatial_attn1(aligned_feat)) attn_max = self.max_pool(attn) attn_avg = self.avg_pool(attn) attn = self.lrelu(self.spatial_attn2(torch.cat([attn_max, attn_avg], dim=1))) attn_level = self.lrelu(self.spatial_attn_l1(attn)) attn_max = self.max_pool(attn_level) attn_avg = self.avg_pool(attn_level) attn_level = self.lrelu(self.spatial_attn_l2(torch.cat([attn_max, attn_avg], dim=1))) attn_level = self.lrelu(self.spatial_attn_l3(attn_level)) attn_level = self.upsample(attn_level) attn = self.lrelu(self.spatial_attn3(attn)) + attn_level attn = self.lrelu(self.spatial_attn4(attn)) attn = self.upsample(attn) attn = self.spatial_attn5(attn) attn_add = self.spatial_attn_add2(s # ... truncated (>4000 chars) for memory efficiency
Critic
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/63/c63e4fw37yfygragwmer4h7e7isksccfoolup3usz5vtr7lhb7hn.py # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # xs => gt # Graph fragment: # %add_tensor_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_2), kwargs = {}) # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_2, 0), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/6d/c6depi55ccpvlfjhb2h5m6ku5azoqqdvapms67ug3cuy7ny2pfud.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where, %primals_4], 1), kwargs = {}) triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 528 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 132 x1 = (xindex // 132) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((128*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + ((128*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tmp15 = tl.full([1], 132, tl.int64) tmp16 = tmp0 < tmp15 tmp17 = tl.load(in_ptr3 + ((4*x1) + ((-128) + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/s7/cs7gsad2nwerw72fkgynxijoetsbqdbeox6aswi6mp5zemavqgxz.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %add_tensor_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_6), kwargs = {}) # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor_1, 0.01), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_tensor_1, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr1 + (x2), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cx/ccx2i2jcyhm3qt43haejp6hc2nz6svpv6x67j4kxqfubat2uf3t3.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %add_tensor : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_8), kwargs = {}) # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_tensor, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_tensor, 0.01), kwargs = {}) # %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_tensor, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + (x0), tmp5, xmask) tl.store(out_ptr1 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 132), (132, 1)) assert_size_stride(primals_6, (128, ), (1, )) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 128), (128, 1), torch.bool) # Topologically Sorted Source Nodes: [xs], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, primals_2, buf1, 512, grid=grid(512), stream=stream0) buf2 = empty_strided_cuda((4, 132), (132, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] triton_poi_fused_cat_1.run(buf1, buf0, primals_2, primals_4, buf2, 528, grid=grid(528), stream=stream0) del primals_2 del primals_4 buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (132, 128), (1, 132), 0), out=buf3) buf4 = empty_strided_cuda((4, 128), (128, 1), torch.bool) buf5 = empty_strided_cuda((4, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf3, primals_6, buf4, buf5, 512, grid=grid(512), stream=stream0) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), out=buf6) buf7 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf6, primals_8, buf7, buf8, 4, grid=grid(4), stream=stream0) del buf6 del primals_8 return (buf8, primals_3, buf1, buf2, buf4, buf5, buf7, primals_7, primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, 132), (132, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from math import * def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Critic(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(Critic, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.leaky_relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'state_size': 4, 'action_size': 4, 'seed': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn from math import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 528 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 132 x1 = xindex // 132 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (128 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0).to(tl.int1) tmp6 = tl.load(in_ptr1 + (128 * x1 + x0), tmp4 & xmask, eviction_policy ='evict_last', other=0.0) tmp7 = tl.load(in_ptr2 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = 0.01 tmp10 = tmp8 * tmp9 tmp11 = tl.where(tmp5, tmp8, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 132, tl.int64) tmp17 = tl.load(in_ptr3 + (4 * x1 + (-128 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.where(tmp4, tmp13, tmp17) tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.01 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tl.store(out_ptr0 + x0, tmp5, xmask) tl.store(out_ptr1 + x0, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (128, 4), (4, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (128, 132), (132, 1)) assert_size_stride(primals_6, (128,), (1,)) assert_size_stride(primals_7, (1, 128), (128, 1)) assert_size_stride(primals_8, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 128), (128, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((4, 128), (128, 1), torch.bool) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(512)](buf0, primals_2, buf1, 512, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((4, 132), (132, 1), torch.float32) triton_poi_fused_cat_1[grid(528)](buf1, buf0, primals_2, primals_4, buf2, 528, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_4 buf3 = buf0 del buf0 extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (132, 128), ( 1, 132), 0), out=buf3) buf4 = empty_strided_cuda((4, 128), (128, 1), torch.bool) buf5 = empty_strided_cuda((4, 128), (128, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(512)](buf3, primals_6, buf4, buf5, 512, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_6 buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(primals_7, (128, 1), (1, 128), 0), out=buf6) buf7 = empty_strided_cuda((4, 1), (1, 1), torch.bool) buf8 = empty_strided_cuda((4, 1), (1, 1), torch.float32) triton_poi_fused_leaky_relu_3[grid(4)](buf6, primals_8, buf7, buf8, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf6 del primals_8 return buf8, primals_3, buf1, buf2, buf4, buf5, buf7, primals_7, primals_5 def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class CriticNew(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super(CriticNew, self).__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, input_0, input_1): primals_1 = self.fcs1.weight primals_2 = self.fcs1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_3 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
albimc/deep-reinforcement-learning
Critic
false
1,410
[ "MIT" ]
0
e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
https://github.com/albimc/deep-reinforcement-learning/tree/e11a6c9d4c8991cf229e686b645ae22ec4cff4f5
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from math import * def hidden_init(layer): fan_in = layer.weight.data.size()[0] lim = 1.0 / np.sqrt(fan_in) return -lim, lim class Model(nn.Module): """Critic (Value) Model.""" def __init__(self, state_size, action_size, seed, fcs1_units=128, fc2_units=128): """Initialize parameters and build model. Params ====== state_size (int): Dimension of each state action_size (int): Dimension of each action seed (int): Random seed fcs1_units (int): Number of nodes in the first hidden layer fc2_units (int): Number of nodes in the second hidden layer """ super().__init__() self.seed = torch.manual_seed(seed) self.fcs1 = nn.Linear(state_size, fcs1_units) self.fc2 = nn.Linear(fcs1_units + action_size, fc2_units) self.fc3 = nn.Linear(fc2_units, 1) self.reset_parameters() def reset_parameters(self): self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1)) self.fc2.weight.data.uniform_(*hidden_init(self.fc2)) self.fc3.weight.data.uniform_(-0.003, 0.003) def forward(self, state, action): """Build a critic (value) network that maps (state, action) pairs -> Q-values.""" xs = F.leaky_relu(self.fcs1(state)) x = torch.cat((xs, action), dim=1) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) return x def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
DownSampleConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/zt/cztfdbfdeuswkfmqcigzocsq5mos7eqthkdqr2u3uktw4kuq7d5w.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 3) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 3), (12, 3, 1)) buf1 = reinterpret_tensor(buf0, (4, 3), (3, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 3), (3, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf2, 12, grid=grid(12), stream=stream0) del primals_2 return (buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class DownSampleConv(nn.Module): def __init__(self, in_feature, out_feature, kernel): super(DownSampleConv, self).__init__() self.conv = nn.Conv1d(in_feature, out_feature, kernel_size=kernel, stride=2, padding=kernel // 2, groups=in_feature) self._init_weigth() def _init_weigth(self): nn.init.xavier_uniform_(self.conv.weight) nn.init.zeros_(self.conv.bias) def forward(self, x): x = self.conv(x) return nn.ReLU()(x) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_feature': 4, 'out_feature': 4, 'kernel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 3 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 1, 4), (4, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf0, (1, 4, 3), (12, 3, 1)) buf1 = reinterpret_tensor(buf0, (4, 3), (3, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 3), (3, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(12)](buf1, primals_2, buf2, 12, XBLOCK=16, num_warps=1, num_stages=1) del primals_2 return buf1, primals_1, reinterpret_tensor(primals_3, (1, 4, 4), (16, 4, 1), 0), buf2 class DownSampleConvNew(nn.Module): def __init__(self, in_feature, out_feature, kernel): super(DownSampleConvNew, self).__init__() self.conv = nn.Conv1d(in_feature, out_feature, kernel_size=kernel, stride=2, padding=kernel // 2, groups=in_feature) self._init_weigth() def _init_weigth(self): nn.init.xavier_uniform_(self.conv.weight) nn.init.zeros_(self.conv.bias) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
alexchartrand/IoT
DownSampleConv
false
1,411
[ "MIT" ]
0
2cc0d40b7f8305b9f82fc83ad4ed55c83efa1bfd
https://github.com/alexchartrand/IoT/tree/2cc0d40b7f8305b9f82fc83ad4ed55c83efa1bfd
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, in_feature, out_feature, kernel): super().__init__() self.conv = nn.Conv1d(in_feature, out_feature, kernel_size=kernel, stride=2, padding=kernel // 2, groups=in_feature) self._init_weigth() def _init_weigth(self): nn.init.xavier_uniform_(self.conv.weight) nn.init.zeros_(self.conv.bias) def forward(self, x): x = self.conv(x) return nn.ReLU()(x) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4, 4]
Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3i/c3iahaec5pb6sirkwkcomrpurca6kdwlbapwy7tphk7f3x443klh.py # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # inputs => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [2, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = (-2) + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((-8) + y0 + (4*x2) + (16*y1)), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + (7*y3)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/au/cau4pihcaptiev5y2ewn2o2nvrwhk7hogc72cofmmtbyv4rxc2oy.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [inputs], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 7, grid=grid(16, 7), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils.data class Conv(nn.Module): """ Convenience class that does padding and convolution for inputs in the format [batch_size, sequence length, hidden size] """ def __init__(self, input_size, output_size, kernel_size, pad_type): """ Parameters: input_size: Input feature size output_size: Output feature size kernel_size: Kernel width pad_type: left -> pad on the left side (to mask future data), both -> pad on both sides """ super(Conv, self).__init__() padding = (kernel_size - 1, 0) if pad_type == 'left' else ( kernel_size // 2, (kernel_size - 1) // 2) self.pad = nn.ConstantPad1d(padding, 0) self.conv = nn.Conv1d(input_size, output_size, kernel_size= kernel_size, padding=0) def forward(self, inputs): inputs = self.pad(inputs.permute(0, 2, 1)) outputs = self.conv(inputs).permute(0, 2, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'kernel_size': 4, 'pad_type': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = -2 + x2 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1, 1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (-8 + y0 + 4 * x2 + 16 * y1), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x2 + 7 * y3), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(16, 7)](primals_1, buf0, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0 class ConvNew(nn.Module): """ Convenience class that does padding and convolution for inputs in the format [batch_size, sequence length, hidden size] """ def __init__(self, input_size, output_size, kernel_size, pad_type): """ Parameters: input_size: Input feature size output_size: Output feature size kernel_size: Kernel width pad_type: left -> pad on the left side (to mask future data), both -> pad on both sides """ super(ConvNew, self).__init__() padding = (kernel_size - 1, 0) if pad_type == 'left' else ( kernel_size // 2, (kernel_size - 1) // 2) self.pad = nn.ConstantPad1d(padding, 0) self.conv = nn.Conv1d(input_size, output_size, kernel_size= kernel_size, padding=0) def forward(self, input_0): primals_1 = self.conv.weight primals_3 = self.conv.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
alifkurniawan/tesis
Conv
false
1,412
[ "MIT" ]
0
6330dba32f5dc12785e956875c94d83344d788a8
https://github.com/alifkurniawan/tesis/tree/6330dba32f5dc12785e956875c94d83344d788a8
import torch import torch.nn as nn import torch.utils.data class Model(nn.Module): """ Convenience class that does padding and convolution for inputs in the format [batch_size, sequence length, hidden size] """ def __init__(self, input_size, output_size, kernel_size, pad_type): """ Parameters: input_size: Input feature size output_size: Output feature size kernel_size: Kernel width pad_type: left -> pad on the left side (to mask future data), both -> pad on both sides """ super().__init__() padding = (kernel_size - 1, 0) if pad_type == 'left' else ( kernel_size // 2, (kernel_size - 1) // 2) self.pad = nn.ConstantPad1d(padding, 0) self.conv = nn.Conv1d(input_size, output_size, kernel_size= kernel_size, padding=0) def forward(self, inputs): inputs = self.pad(inputs.permute(0, 2, 1)) outputs = self.conv(inputs).permute(0, 2, 1) return outputs def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4, 'kernel_size': 4, 'pad_type': 4}]
TorchModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/a2/ca2wr2cvkya5clovpxidv7ia56pdcyp7uq4omtpg5m2nr7ya3ryn.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_1 => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ku/ckukyw44hxxcrcpyqqe6auljaf54daimtcs6kbykg5nkqzpxqi7c.py # Topologically Sorted Source Nodes: [tanh_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh_2 => tanh_2 # Graph fragment: # %tanh_2 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (1, 4, 4, 4, 64), (4096, 1024, 256, 64, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 4096, grid=grid(4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (1, 4, 4, 4, 64), (4096, 1024, 256, 64, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf3, primals_5, 4096, grid=grid(4096), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf3, buf4, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 64), (64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn class TorchLinearModule(torch.nn.Module): def __init__(self, in_size, out_size): super(TorchLinearModule, self).__init__() self._linear = torch.nn.Linear(in_size, out_size) def forward(self, x): return self._linear(x) class TorchModule(torch.nn.Module): def __init__(self, in_size, out_size, dev=None, hidden_size=64): super(TorchModule, self).__init__() self._linear0 = TorchLinearModule(in_size, hidden_size) self._linear1 = TorchLinearModule(hidden_size, hidden_size) self._linear2 = TorchLinearModule(hidden_size, out_size) def forward(self, x): x = x.unsqueeze(0) x = torch.tanh(self._linear0(x)) x = torch.tanh(self._linear1(x)) return torch.tanh(self._linear2(x))[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, None) @triton.jit def triton_poi_fused_tanh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (64, 4), (4, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (64, 64), (64, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (4, 64), (64, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (1, 4, 4, 4, 64), (4096, 1024, 256, 64, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(4096)](buf1, primals_3, 4096, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (1, 4, 4, 4, 64), (4096, 1024, 256, 64, 1), 0) del buf2 triton_poi_fused_tanh_0[grid(4096)](buf3, primals_5, 4096, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 64), (64, 1), 0), reinterpret_tensor(primals_6, (64, 4), (1, 64), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_tanh_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, buf3, buf4, primals_6, primals_4 class TorchLinearModule(torch.nn.Module): def __init__(self, in_size, out_size): super(TorchLinearModule, self).__init__() self._linear = torch.nn.Linear(in_size, out_size) def forward(self, x): return self._linear(x) class TorchModuleNew(torch.nn.Module): def __init__(self, in_size, out_size, dev=None, hidden_size=64): super(TorchModuleNew, self).__init__() self._linear0 = TorchLinearModule(in_size, hidden_size) self._linear1 = TorchLinearModule(hidden_size, hidden_size) self._linear2 = TorchLinearModule(hidden_size, out_size) def forward(self, input_0): primals_2 = self._linear0._linear.weight primals_3 = self._linear0._linear.bias primals_4 = self._linear1._linear.weight primals_5 = self._linear1._linear.bias primals_6 = self._linear2._linear.weight primals_7 = self._linear2._linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
alierenak/ivy
TorchModule
false
1,413
[ "Apache-2.0" ]
0
6e91bae159101abbac904a0dd37d0f59daaa75e3
https://github.com/alierenak/ivy/tree/6e91bae159101abbac904a0dd37d0f59daaa75e3
import torch import torch.nn class TorchLinearModule(torch.nn.Module): def __init__(self, in_size, out_size): super().__init__() self._linear = torch.nn.Linear(in_size, out_size) def forward(self, x): return self._linear(x) class Model(torch.nn.Module): def __init__(self, in_size, out_size, dev=None, hidden_size=64): super().__init__() self._linear0 = TorchLinearModule(in_size, hidden_size) self._linear1 = TorchLinearModule(hidden_size, hidden_size) self._linear2 = TorchLinearModule(hidden_size, out_size) def forward(self, x): x = x.unsqueeze(0) x = torch.tanh(self._linear0(x)) x = torch.tanh(self._linear1(x)) return torch.tanh(self._linear2(x))[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
PSNRLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/bz/cbz4jfqnivmqo3kagpgcw2e6ojdrfmyv6p6tqz7c2t57rwabulea.py # Topologically Sorted Source Nodes: [mul, mse_val, truediv, log10, mul_1], Original ATen: [aten.mul, aten.mse_loss, aten.div, aten.log10] # Source node to ATen node mapping: # log10 => log10 # mse_val => mean, pow_1, sub # mul => full_default_1 # mul_1 => mul_1 # truediv => div # Graph fragment: # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 16.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%full_default_1, %mean), kwargs = {}) # %log10 : [num_users=1] = call_function[target=torch.ops.aten.log10.default](args = (%div,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%log10, 10), kwargs = {}) triton_per_fused_div_log10_mse_loss_mul_0 = async_compile.triton('triton_per_fused_div_log10_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_log10_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_log10_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 16.0 tmp10 = tmp9 / tmp8 tmp11 = libdevice.log10(tmp10) tmp12 = 10.0 tmp13 = tmp11 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mse_val, truediv, log10, mul_1], Original ATen: [aten.mul, aten.mse_loss, aten.div, aten.log10] stream0 = get_raw_stream(0) triton_per_fused_div_log10_mse_loss_mul_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn.functional import mse_loss def psnr_loss(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Function that computes PSNR See :class:`~kornia.losses.PSNRLoss` for details. """ if not torch.is_tensor(input) or not torch.is_tensor(target): raise TypeError( f'Expected 2 torch tensors but got {type(input)} and {type(target)}' ) if input.shape != target.shape: raise TypeError( f'Expected tensors of equal shapes, but got {input.shape} and {target.shape}' ) mse_val = mse_loss(input, target, reduction='mean') max_val_tensor: 'torch.Tensor' = torch.tensor(max_val).to(input.device).to( input.dtype) return 10 * torch.log10(max_val_tensor * max_val_tensor / mse_val) class PSNRLoss(nn.Module): """Creates a criterion that calculates the PSNR between 2 images. Given an m x n image, the PSNR is: .. math:: \\text{PSNR} = 10 \\log_{10} \\bigg(\\frac{\\text{MAX}_I^2}{MSE(I,T)}\\bigg) where .. math:: \\text{MSE}(I,T) = \\frac{1}{mn}\\sum_{i=0}^{m-1}\\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\\text{MAX}_I=1`). Arguments: max_val (float): Maximum value of input Shape: - input: :math:`(*)` - approximation: :math:`(*)` same shape as input - output: :math:`()` a scalar Examples: >>> kornia.losses.psnr_loss(torch.ones(1), 1.2*torch.ones(1), 2) tensor(20.0000) # 10 * log(4/((1.2-1)**2)) / log(10) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ def __init__(self, max_val: 'float') ->None: super(PSNRLoss, self).__init__() self.max_val: 'float' = max_val def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: return psnr_loss(input, target, self.max_val) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'max_val': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.functional import mse_loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_log10_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 16.0 tmp10 = tmp9 / tmp8 tmp11 = libdevice.log10(tmp10) tmp12 = 10.0 tmp13 = tmp11 * tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_log10_mse_loss_mul_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def psnr_loss(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Function that computes PSNR See :class:`~kornia.losses.PSNRLoss` for details. """ if not torch.is_tensor(input) or not torch.is_tensor(target): raise TypeError( f'Expected 2 torch tensors but got {type(input)} and {type(target)}' ) if input.shape != target.shape: raise TypeError( f'Expected tensors of equal shapes, but got {input.shape} and {target.shape}' ) mse_val = mse_loss(input, target, reduction='mean') max_val_tensor: 'torch.Tensor' = torch.tensor(max_val).to(input.device).to( input.dtype) return 10 * torch.log10(max_val_tensor * max_val_tensor / mse_val) class PSNRLossNew(nn.Module): """Creates a criterion that calculates the PSNR between 2 images. Given an m x n image, the PSNR is: .. math:: \\text{PSNR} = 10 \\log_{10} \\bigg(\\frac{\\text{MAX}_I^2}{MSE(I,T)}\\bigg) where .. math:: \\text{MSE}(I,T) = \\frac{1}{mn}\\sum_{i=0}^{m-1}\\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\\text{MAX}_I=1`). Arguments: max_val (float): Maximum value of input Shape: - input: :math:`(*)` - approximation: :math:`(*)` same shape as input - output: :math:`()` a scalar Examples: >>> kornia.losses.psnr_loss(torch.ones(1), 1.2*torch.ones(1), 2) tensor(20.0000) # 10 * log(4/((1.2-1)**2)) / log(10) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ def __init__(self, max_val: 'float') ->None: super(PSNRLossNew, self).__init__() self.max_val: 'float' = max_val def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
alopezgit/kornia
PSNRLoss
false
1,414
[ "ECL-2.0", "Apache-2.0" ]
0
7bf47ae472012d2d6cf24463a76e8089daa65d0b
https://github.com/alopezgit/kornia/tree/7bf47ae472012d2d6cf24463a76e8089daa65d0b
import torch import torch.nn as nn from torch.nn.functional import mse_loss def psnr_loss(input: 'torch.Tensor', target: 'torch.Tensor', max_val: 'float' ) ->torch.Tensor: """Function that computes PSNR See :class:`~kornia.losses.PSNRLoss` for details. """ if not torch.is_tensor(input) or not torch.is_tensor(target): raise TypeError( f'Expected 2 torch tensors but got {type(input)} and {type(target)}' ) if input.shape != target.shape: raise TypeError( f'Expected tensors of equal shapes, but got {input.shape} and {target.shape}' ) mse_val = mse_loss(input, target, reduction='mean') max_val_tensor: 'torch.Tensor' = torch.tensor(max_val).to(input.device).to( input.dtype) return 10 * torch.log10(max_val_tensor * max_val_tensor / mse_val) class Model(nn.Module): """Creates a criterion that calculates the PSNR between 2 images. Given an m x n image, the PSNR is: .. math:: \\text{PSNR} = 10 \\log_{10} \\bigg(\\frac{\\text{MAX}_I^2}{MSE(I,T)}\\bigg) where .. math:: \\text{MSE}(I,T) = \\frac{1}{mn}\\sum_{i=0}^{m-1}\\sum_{j=0}^{n-1} [I(i,j) - T(i,j)]^2 and :math:`\\text{MAX}_I` is the maximum possible input value (e.g for floating point images :math:`\\text{MAX}_I=1`). Arguments: max_val (float): Maximum value of input Shape: - input: :math:`(*)` - approximation: :math:`(*)` same shape as input - output: :math:`()` a scalar Examples: >>> kornia.losses.psnr_loss(torch.ones(1), 1.2*torch.ones(1), 2) tensor(20.0000) # 10 * log(4/((1.2-1)**2)) / log(10) Reference: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Definition """ def __init__(self, max_val: 'float') ->None: super().__init__() self.max_val: 'float' = max_val def forward(self, input: 'torch.Tensor', target: 'torch.Tensor' ) ->torch.Tensor: return psnr_loss(input, target, self.max_val) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
LayerNormalization
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/tc/ctcoccnojrifwsjhb4gqgfu5kxpt6dvdpv4qwca7cbgn27ktptbk.py # Topologically Sorted Source Nodes: [mean, std, sub, add, ln_out, mul, ln_out_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # ln_out => div # ln_out_1 => add_1 # mean => mean # mul => mul # std => sqrt, var # sub => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 1.0, keepdim: True}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = 1e-06 tmp27 = tmp25 + tmp26 tmp28 = tmp11 / tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x2), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, std, sub, add, ln_out, mul, ln_out_1], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormalization(nn.Module): def __init__(self, d_hid, eps=1e-06): super(LayerNormalization, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean) / (std + self.eps) ln_out = self.gamma * ln_out + self.beta return ln_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_hid': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = libdevice.sqrt(tmp24) tmp26 = 1e-06 tmp27 = tmp25 + tmp26 tmp28 = tmp11 / tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x2, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class LayerNormalizationNew(nn.Module): def __init__(self, d_hid, eps=1e-06): super(LayerNormalizationNew, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
alisure-fork/CONTA
LayerNormalization
false
1,415
[ "MIT" ]
0
dde3e5083f45598d859dde889de3ae85c7a416e9
https://github.com/alisure-fork/CONTA/tree/dde3e5083f45598d859dde889de3ae85c7a416e9
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, d_hid, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean) / (std + self.eps) ln_out = self.gamma * ln_out + self.beta return ln_out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
BoxFilter
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qg/cqgzgwtwqpzdpetlpdifihk6y6r2gnxk2ponshza7b6jdkdfixdj.py # Topologically Sorted Source Nodes: [kernel_x], Original ATen: [aten.full] # Source node to ATen node mapping: # kernel_x => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1, 9], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_full_0 = async_compile.triton('triton_poi_fused_full_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_full_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_full_0(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.1111111111111111 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gj/cgjxnxjrmucjcc5yudvgvrtyomzvxsxj4uw6wzirtfcyv4ium7dc.py # Topologically Sorted Source Nodes: [kernel_x, x], Original ATen: [aten.full, aten.convolution] # Source node to ATen node mapping: # kernel_x => full_default # x => convolution # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1, 9], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg0_1, %full_default, None, [1, 1], [0, 4], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_full_1 = async_compile.triton('triton_poi_fused_convolution_full_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_full_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_full_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ai/caignoavbhw6m3b57wrg4dqldudpoblyyoact2fsm72y54rljscz.py # Topologically Sorted Source Nodes: [kernel_y, x_1], Original ATen: [aten.full, aten.convolution] # Source node to ATen node mapping: # kernel_y => full_default_1 # x_1 => convolution_1 # Graph fragment: # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 9, 1], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %full_default_1, None, [1, 1], [4, 0], [1, 1], False, [0, 0], 4), kwargs = {}) triton_poi_fused_convolution_full_2 = async_compile.triton('triton_poi_fused_convolution_full_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_full_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_full_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (64*y1)), xmask & ymask) tl.store(out_ptr0 + (x2 + (16*y3)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 9), (9, 9, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [kernel_x], Original ATen: [aten.full] stream0 = get_raw_stream(0) triton_poi_fused_full_0.run(buf0, 36, grid=grid(36), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [kernel_x, x], Original ATen: [aten.full, aten.convolution] triton_poi_fused_convolution_full_1.run(arg0_1, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del arg0_1 # Topologically Sorted Source Nodes: [kernel_x, x], Original ATen: [aten.full, aten.convolution] buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 1, 16, 4)) del buf1 buf3 = reinterpret_tensor(buf0, (4, 1, 9, 1), (9, 9, 1, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [kernel_y], Original ATen: [aten.full] triton_poi_fused_full_0.run(buf3, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_y, x_1], Original ATen: [aten.full, aten.convolution] buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4)) del buf3 buf5 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [kernel_y, x_1], Original ATen: [aten.full, aten.convolution] triton_poi_fused_convolution_full_2.run(buf4, buf5, 16, 16, grid=grid(16, 16), stream=stream0) del buf4 return (buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F class BoxFilter(nn.Module): def __init__(self, r): super(BoxFilter, self).__init__() self.r = r def forward(self, x): kernel_size = 2 * self.r + 1 kernel_x = torch.full((x.data.shape[1], 1, 1, kernel_size), 1 / kernel_size, device=x.device, dtype=x.dtype) kernel_y = torch.full((x.data.shape[1], 1, kernel_size, 1), 1 / kernel_size, device=x.device, dtype=x.dtype) x = F.conv2d(x, kernel_x, padding=(0, self.r), groups=x.data.shape[1]) x = F.conv2d(x, kernel_y, padding=(self.r, 0), groups=x.data.shape[1]) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'r': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_full_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.1111111111111111 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_convolution_full_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_full_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tl.store(out_ptr0 + (x2 + 16 * y3), tmp0, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 1, 9), (9, 9, 9, 1), torch.float32) get_raw_stream(0) triton_poi_fused_full_0[grid(36)](buf0, 36, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_convolution_full_1[grid(16, 16)](arg0_1, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del arg0_1 buf2 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 1, 16, 4)) del buf1 buf3 = reinterpret_tensor(buf0, (4, 1, 9, 1), (9, 9, 1, 1), 0) del buf0 triton_poi_fused_full_0[grid(36)](buf3, 36, XBLOCK=64, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4)) del buf3 buf5 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_convolution_full_2[grid(16, 16)](buf4, buf5, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del buf4 return buf5, class BoxFilterNew(nn.Module): def __init__(self, r): super(BoxFilterNew, self).__init__() self.r = r def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
allen0125/RobustVideoMatting
BoxFilter
false
1,416
[ "Apache-2.0" ]
0
c0f17ca45a9de7586c570753064187200dec487a
https://github.com/allen0125/RobustVideoMatting/tree/c0f17ca45a9de7586c570753064187200dec487a
import torch from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, r): super().__init__() self.r = r def forward(self, x): kernel_size = 2 * self.r + 1 kernel_x = torch.full((x.data.shape[1], 1, 1, kernel_size), 1 / kernel_size, device=x.device, dtype=x.dtype) kernel_y = torch.full((x.data.shape[1], 1, kernel_size, 1), 1 / kernel_size, device=x.device, dtype=x.dtype) x = F.conv2d(x, kernel_x, padding=(0, self.r), groups=x.data.shape[1]) x = F.conv2d(x, kernel_y, padding=(self.r, 0), groups=x.data.shape[1]) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
ScModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ct/cctkkvozb7bbtwro74xyr3nelrb43drrk2nh3u7rtkrj5hoowovz.py # Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus] # Source node to ATen node mapping: # softplus => exp, gt, log1p, where # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%primals_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%primals_1, 20), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %primals_1, %log1p), kwargs = {}) triton_poi_fused_softplus_0 = async_compile.triton('triton_poi_fused_softplus_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/g5/cg5vjab4tgfcvlipoo6kyzdvnecwsb6yvgoa3gy5w2mmeweujz6a.py # Topologically Sorted Source Nodes: [getitem, mul, neg, log_sigmoid, mul_1, log_sigmoid_1, mul_2, log_unnormalized_prob, add_1, lgamma, neg_1, add_2, lgamma_1, add_3, lgamma_2, log_normalization, sub, ll, neg_2], Original ATen: [aten.index, aten.mul, aten.neg, aten.log_sigmoid_forward, aten.add, aten.lgamma, aten.sub, aten.sum] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # add_3 => add_3 # getitem => index # lgamma => lgamma # lgamma_1 => lgamma_1 # lgamma_2 => lgamma_2 # ll => sum_1 # log_normalization => add_4 # log_sigmoid => abs_1, exp_1, full_default, log1p_1, minimum, neg_1, sub # log_sigmoid_1 => abs_2, exp_2, log1p_2, minimum_1, neg_2, sub_1 # log_unnormalized_prob => add # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # neg => neg # neg_1 => neg_3 # neg_2 => neg_4 # sub => sub_2 # Graph fragment: # %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%where, [None, %primals_3]), kwargs = {}) # %mul : [num_users=3] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %index), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%primals_5,), kwargs = {}) # %full_default : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %neg), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%neg,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sub), kwargs = {}) # %minimum_1 : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default, %primals_5), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%primals_5,), kwargs = {}) # %neg_2 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_2,), kwargs = {}) # %exp_2 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_2,), kwargs = {}) # %log1p_2 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_2,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum_1, %log1p_2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %sub_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %mul_2), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %permute), kwargs = {}) # %lgamma : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_1,), kwargs = {}) # %neg_3 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%lgamma,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute, 1.0), kwargs = {}) # %lgamma_1 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%add_2,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg_3, %lgamma_1), kwargs = {}) # %lgamma_2 : [num_users=1] = call_function[target=torch.ops.aten.lgamma.default](args = (%mul,), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %lgamma_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %add_4), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub_2,), kwargs = {}) # %neg_4 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1 = async_compile.triton('triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.reduction( size_hints=[1, 256], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i64', 3: '*fp32', 4: '*fp32', 5: '*i64', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {6: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=(6,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr, RBLOCK : tl.constexpr): xnumel = 1 rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp40 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex r0 = rindex % 4 r1 = (rindex // 4) % 4 tmp0 = tl.load(in_ptr0 + (r3), rmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + (r0), rmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + (r1), rmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr4 + (r1 + (4*r0)), rmask, eviction_policy='evict_last', other=0.0) tmp2 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert(((0 <= tmp5) & (tmp5 < 4)) | ~(rmask), "index out of bounds: 0 <= tmp5 < 4") tmp7 = tl.load(in_ptr2 + (tmp5 + (4*r1)), rmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp0 * tmp7 tmp10 = -tmp9 tmp11 = 0.0 tmp12 = triton_helpers.minimum(tmp11, tmp10) tmp13 = tl_math.abs(tmp10) tmp14 = -tmp13 tmp15 = tl_math.exp(tmp14) tmp16 = libdevice.log1p(tmp15) tmp17 = tmp12 - tmp16 tmp18 = tmp8 * tmp17 tmp20 = tmp19.to(tl.float32) tmp21 = triton_helpers.minimum(tmp11, tmp9) tmp22 = tl_math.abs(tmp9) tmp23 = -tmp22 tmp24 = tl_math.exp(tmp23) tmp25 = libdevice.log1p(tmp24) tmp26 = tmp21 - tmp25 tmp27 = tmp20 * tmp26 tmp28 = tmp18 + tmp27 tmp29 = tmp8 + tmp20 tmp30 = libdevice.lgamma(tmp29) tmp31 = -tmp30 tmp32 = 1.0 tmp33 = tmp20 + tmp32 tmp34 = libdevice.lgamma(tmp33) tmp35 = tmp31 + tmp34 tmp36 = libdevice.lgamma(tmp8) tmp37 = tmp35 + tmp36 tmp38 = tmp28 - tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = _tmp40 + tmp39 _tmp40 = tl.where(rmask, tmp41, _tmp40) tmp40 = tl.sum(_tmp40, 1)[:, None] tmp42 = -tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp42, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus], Original ATen: [aten.softplus] stream0 = get_raw_stream(0) triton_poi_fused_softplus_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [getitem, mul, neg, log_sigmoid, mul_1, log_sigmoid_1, mul_2, log_unnormalized_prob, add_1, lgamma, neg_1, add_2, lgamma_1, add_3, lgamma_2, log_normalization, sub, ll, neg_2], Original ATen: [aten.index, aten.mul, aten.neg, aten.log_sigmoid_forward, aten.add, aten.lgamma, aten.sub, aten.sum] triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1.run(buf3, primals_4, primals_3, buf0, primals_5, primals_2, 1, 256, grid=grid(1), stream=stream0) return (buf3, buf0, primals_1, primals_2, primals_3, primals_4, primals_5, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch as t import torch.nn as nn from torch.nn.parameter import Parameter class ScModel(nn.Module): """ Model for singel cell data """ def __init__(self, n_genes: 'int', n_celltypes: 'int', device: 't.device' ) ->None: super().__init__() self.K = n_celltypes self.G = n_genes self.theta = Parameter(t.Tensor(self.G, self.K)) self.R = t.Tensor(self.G, self.K) self.o = Parameter(t.Tensor(self.G, 1)) nn.init.normal_(self.o, mean=0.0, std=1.0) nn.init.normal_(self.theta, mean=0.0, std=1.0) self.nb = t.distributions.NegativeBinomial self.softpl = nn.functional.softplus self.logsig = nn.functional.logsigmoid def _llnb(self, x: 't.Tensor', meta: 't.LongTensor', sf: 't.Tensor' ) ->t.Tensor: """Log Likelihood for NB-model Returns the log likelihood for rates and logodds taken as a function of the observed counts. Assumes that single cell data is negative binomial distributed. Returns ------- The log likelihood """ log_unnormalized_prob = sf * self.R[:, meta] * self.logsig(-self.o ) + x * self.logsig(self.o) log_normalization = -t.lgamma(sf * self.R[:, meta] + x) + t.lgamma( 1.0 + x) + t.lgamma(sf * self.R[:, meta]) ll = t.sum(log_unnormalized_prob - log_normalization) return ll def forward(self, x: 't.Tensor', meta: 't.LongTensor', sf: 't.Tensor', **kwargs) ->t.Tensor: """Forward pass during optimization""" self.R = self.softpl(self.theta) self.loss = -self._llnb(x.transpose(1, 0), meta, sf) return self.loss def __str__(self): return 'sc_model' def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4], dtype= torch.int64), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_genes': 4, 'n_celltypes': 4, 'device': 0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch as t import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 256 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] _tmp40 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r3 = rindex r0 = rindex % 4 r1 = rindex // 4 % 4 tmp0 = tl.load(in_ptr0 + r3, rmask, eviction_policy='evict_first', other=0.0) tmp1 = tl.load(in_ptr1 + r0, rmask, eviction_policy='evict_last', other=0.0) tmp9 = tl.load(in_ptr3 + r1, rmask, eviction_policy='evict_last', other=0.0) tmp19 = tl.load(in_ptr4 + (r1 + 4 * r0), rmask, eviction_policy= 'evict_last', other=0.0) tmp2 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~rmask, 'index out of bounds: 0 <= tmp5 < 4') tmp7 = tl.load(in_ptr2 + (tmp5 + 4 * r1), rmask, eviction_policy= 'evict_last', other=0.0) tmp8 = tmp0 * tmp7 tmp10 = -tmp9 tmp11 = 0.0 tmp12 = triton_helpers.minimum(tmp11, tmp10) tmp13 = tl_math.abs(tmp10) tmp14 = -tmp13 tmp15 = tl_math.exp(tmp14) tmp16 = libdevice.log1p(tmp15) tmp17 = tmp12 - tmp16 tmp18 = tmp8 * tmp17 tmp20 = tmp19.to(tl.float32) tmp21 = triton_helpers.minimum(tmp11, tmp9) tmp22 = tl_math.abs(tmp9) tmp23 = -tmp22 tmp24 = tl_math.exp(tmp23) tmp25 = libdevice.log1p(tmp24) tmp26 = tmp21 - tmp25 tmp27 = tmp20 * tmp26 tmp28 = tmp18 + tmp27 tmp29 = tmp8 + tmp20 tmp30 = libdevice.lgamma(tmp29) tmp31 = -tmp30 tmp32 = 1.0 tmp33 = tmp20 + tmp32 tmp34 = libdevice.lgamma(tmp33) tmp35 = tmp31 + tmp34 tmp36 = libdevice.lgamma(tmp8) tmp37 = tmp35 + tmp36 tmp38 = tmp28 - tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = _tmp40 + tmp39 _tmp40 = tl.where(rmask, tmp41, _tmp40) tmp40 = tl.sum(_tmp40, 1)[:, None] tmp42 = -tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp42, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_0[grid(16)](primals_1, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_red_fused_add_index_lgamma_log_sigmoid_forward_mul_neg_sub_sum_1[ grid(1)](buf3, primals_4, primals_3, buf0, primals_5, primals_2, 1, 256, XBLOCK=1, RBLOCK=256, num_warps=8, num_stages=1) return (buf3, buf0, primals_1, primals_2, primals_3, primals_4, primals_5, buf0) class ScModelNew(nn.Module): """ Model for singel cell data """ def __init__(self, n_genes: 'int', n_celltypes: 'int', device: 't.device' ) ->None: super().__init__() self.K = n_celltypes self.G = n_genes self.theta = Parameter(t.Tensor(self.G, self.K)) self.R = t.Tensor(self.G, self.K) self.o = Parameter(t.Tensor(self.G, 1)) nn.init.normal_(self.o, mean=0.0, std=1.0) nn.init.normal_(self.theta, mean=0.0, std=1.0) self.nb = t.distributions.NegativeBinomial self.softpl = nn.functional.softplus self.logsig = nn.functional.logsigmoid def _llnb(self, x: 't.Tensor', meta: 't.LongTensor', sf: 't.Tensor' ) ->t.Tensor: """Log Likelihood for NB-model Returns the log likelihood for rates and logodds taken as a function of the observed counts. Assumes that single cell data is negative binomial distributed. Returns ------- The log likelihood """ log_unnormalized_prob = sf * self.R[:, meta] * self.logsig(-self.o ) + x * self.logsig(self.o) log_normalization = -t.lgamma(sf * self.R[:, meta] + x) + t.lgamma( 1.0 + x) + t.lgamma(sf * self.R[:, meta]) ll = t.sum(log_unnormalized_prob - log_normalization) return ll def __str__(self): return 'sc_model' def forward(self, input_0, input_1, input_2): primals_1 = self.theta primals_5 = self.o primals_2 = input_0 primals_3 = input_1 primals_4 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
almaan/STereoSCope
ScModel
false
1,417
[ "MIT" ]
0
8f6a2021b6cb73aecda14f6bbbd25e26bfc9301a
https://github.com/almaan/STereoSCope/tree/8f6a2021b6cb73aecda14f6bbbd25e26bfc9301a
import torch import torch as t import torch.nn as nn from torch.nn.parameter import Parameter class Model(nn.Module): """ Model for singel cell data """ def __init__(self, n_genes: 'int', n_celltypes: 'int', device: 't.device' ) ->None: super().__init__() self.K = n_celltypes self.G = n_genes self.theta = Parameter(t.Tensor(self.G, self.K)) self.R = t.Tensor(self.G, self.K) self.o = Parameter(t.Tensor(self.G, 1)) nn.init.normal_(self.o, mean=0.0, std=1.0) nn.init.normal_(self.theta, mean=0.0, std=1.0) self.nb = t.distributions.NegativeBinomial self.softpl = nn.functional.softplus self.logsig = nn.functional.logsigmoid def _llnb(self, x: 't.Tensor', meta: 't.LongTensor', sf: 't.Tensor' ) ->t.Tensor: """Log Likelihood for NB-model Returns the log likelihood for rates and logodds taken as a function of the observed counts. Assumes that single cell data is negative binomial distributed. Returns ------- The log likelihood """ log_unnormalized_prob = sf * self.R[:, meta] * self.logsig(-self.o ) + x * self.logsig(self.o) log_normalization = -t.lgamma(sf * self.R[:, meta] + x) + t.lgamma( 1.0 + x) + t.lgamma(sf * self.R[:, meta]) ll = t.sum(log_unnormalized_prob - log_normalization) return ll def forward(self, x: 't.Tensor', meta: 't.LongTensor', sf: 't.Tensor', **kwargs) ->t.Tensor: """Forward pass during optimization""" self.R = self.softpl(self.theta) self.loss = -self._llnb(x.transpose(1, 0), meta, sf) return self.loss def __str__(self): return 'sc_model' def get_inputs(): return [torch.ones([4, 4], dtype=torch.int64), torch.ones([4], dtype= torch.int64), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 0]
PoswiseFeedForwardNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv1d => convolution # output => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d_1 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xh/cxh4iyrddqmxt3enz74gv2f7xmktjj3z24wtgocbfmulcllknj6v.py # Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std] # Source node to ATen node mapping: # add => add # mean => mean # std => var # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %permute_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True}) triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (16*x1)), xmask) tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (4 + x0 + (16*x1)), xmask) tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (8 + x0 + (16*x1)), xmask) tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (12 + x0 + (16*x1)), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + (x2), tmp29, xmask) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ph/cphd6gxp6uaiqmkhrvqtnnvgobfzdg6o3xz5p5oggdxf5rxg53gr.py # Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # add_1 => add_1 # ln_out => div # ln_out_1 => add_2 # mean => mean # mul => mul # std => sqrt # sub => sub # Graph fragment: # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %permute_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %mean), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_6, %div), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_7), kwargs = {}) triton_poi_fused_add_div_mean_mul_std_sub_4 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (y3), ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (y3), ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x2), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = libdevice.sqrt(tmp6) tmp8 = 1e-06 tmp9 = tmp7 + tmp8 tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + (4*y3)), tmp13, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = buf5; del buf5 # reuse buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [add, mean, std], Original ATen: [aten.add, aten.mean, aten.std] triton_poi_fused_add_mean_std_3.run(buf6, primals_1, buf4, buf7, 16, grid=grid(16), stream=stream0) buf8 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, mean, std, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.mean, aten.std, aten.sub, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_std_sub_4.run(primals_6, primals_1, buf4, buf7, buf6, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0) del buf6 del buf7 del primals_7 return (buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class LayerNormalization(nn.Module): def __init__(self, d_hid, eps=1e-06): super(LayerNormalization, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean) / (std + self.eps) ln_out = self.gamma * ln_out + self.beta return ln_out class PoswiseFeedForwardNet(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(PoswiseFeedForwardNet, self).__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.dropout = nn.Dropout(dropout) self.layer_norm = LayerNormalization(d_model) def forward(self, inputs): residual = inputs output = self.relu(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) output = self.dropout(output) return self.layer_norm(residual + output) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'd_ff': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 16 * x1), xmask) tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (4 + x0 + 16 * x1), xmask) tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (8 + x0 + 16 * x1), xmask) tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (12 + x0 + 16 * x1), xmask) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = 3.0 tmp29 = tmp27 / tmp28 tl.store(in_out_ptr0 + x2, tmp29, xmask) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_std_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + y3, ymask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + y3, ymask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = libdevice.sqrt(tmp6) tmp8 = 1e-06 tmp9 = tmp7 + tmp8 tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + 4 * y3), tmp13, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = buf5 del buf5 buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_mean_std_3[grid(16)](buf6, primals_1, buf4, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) buf8 = buf0 del buf0 triton_poi_fused_add_div_mean_mul_std_sub_4[grid(16, 4)](primals_6, primals_1, buf4, buf7, buf6, primals_7, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf6 del buf7 del primals_7 return buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4 class LayerNormalization(nn.Module): def __init__(self, d_hid, eps=1e-06): super(LayerNormalization, self).__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean) / (std + self.eps) ln_out = self.gamma * ln_out + self.beta return ln_out class PoswiseFeedForwardNetNew(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super(PoswiseFeedForwardNetNew, self).__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.dropout = nn.Dropout(dropout) self.layer_norm = LayerNormalization(d_model) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.layer_norm.gamma primals_7 = self.layer_norm.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
alisure-fork/CONTA
PoswiseFeedForwardNet
false
1,418
[ "MIT" ]
0
dde3e5083f45598d859dde889de3ae85c7a416e9
https://github.com/alisure-fork/CONTA/tree/dde3e5083f45598d859dde889de3ae85c7a416e9
import torch import torch.nn as nn class LayerNormalization(nn.Module): def __init__(self, d_hid, eps=1e-06): super().__init__() self.gamma = nn.Parameter(torch.ones(d_hid)) self.beta = nn.Parameter(torch.zeros(d_hid)) self.eps = eps def forward(self, z): mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) ln_out = (z - mean) / (std + self.eps) ln_out = self.gamma * ln_out + self.beta return ln_out class Model(nn.Module): def __init__(self, d_model, d_ff, dropout=0.1): super().__init__() self.relu = nn.ReLU() self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1) self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1) self.dropout = nn.Dropout(dropout) self.layer_norm = LayerNormalization(d_model) def forward(self, inputs): residual = inputs output = self.relu(self.conv1(inputs.transpose(1, 2))) output = self.conv2(output).transpose(1, 2) output = self.dropout(output) return self.layer_norm(residual + output) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [4, 4]
Pool
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/to/cto3hetssiu6iynwmtjzgzisyalxm3aya3fjikuu7ykswjm6incq.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_2 => getitem # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 2) % 2 x0 = xindex % 2 x3 = (xindex // 2) x4 = xindex tmp0 = (-1) + (2*x1) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x3)), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr0 + ((-3) + (2*x0) + (8*x3)), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tl.load(in_ptr0 + ((2*x0) + (8*x3)), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp8, tmp5) tmp10 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x3)), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp10, tmp9) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices] stream0 = get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class Pool(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, x): if self.blind: x = self.shift(x) x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 2 % 2 x0 = xindex % 2 x3 = xindex // 2 x4 = xindex tmp0 = -1 + 2 * x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x3), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp4 = tl.load(in_ptr0 + (-3 + 2 * x0 + 8 * x3), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tl.load(in_ptr0 + (2 * x0 + 8 * x3), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp8, tmp5) tmp10 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x3), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp10, tmp9) tl.store(out_ptr0 + x4, tmp11, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class PoolNew(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
amonod/udvd
Pool
false
1,419
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class Model(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, x): if self.blind: x = self.shift(x) x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FastGuidedFilter
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3r/c3ruugrssjeotkhf7fv27m2rtjb53xsmxmlmvdzimfnbygtkizq7.py # Topologically Sorted Source Nodes: [mul, kernel_x, x, kernel_x_1, x_2, mul_2], Original ATen: [aten.mul, aten.full, aten.convolution] # Source node to ATen node mapping: # kernel_x => full_default # kernel_x_1 => full_default_2 # mul => mul # mul_2 => mul_2 # x => convolution # x_2 => convolution_2 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1, 9], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg0_1, %full_default, None, [1, 1], [0, 4], [1, 1], False, [0, 0], 4), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1, 9], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%arg1_1, %full_default_2, None, [1, 1], [0, 4], [1, 1], False, [0, 0], 4), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {}) triton_poi_fused_convolution_full_mul_0 = async_compile.triton('triton_poi_fused_convolution_full_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_full_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_full_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tmp1 = tl.load(in_ptr1 + (x2 + (16*y3)), xmask & ymask) tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp2, xmask & ymask) tl.store(out_ptr1 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) tl.store(out_ptr2 + (y0 + (4*x2) + (64*y1)), tmp3, xmask & ymask) tl.store(out_ptr3 + (y0 + (4*x2) + (64*y1)), tmp1, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uk/cuk6zsiu7on5n3ksarskcsiaoxwadseex4jboo2izrcixblty4pt.py # Topologically Sorted Source Nodes: [kernel_x_2], Original ATen: [aten.full] # Source node to ATen node mapping: # kernel_x_2 => full_default_4 # Graph fragment: # %full_default_4 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1, 1, 9], 0.1111111111111111), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_full_1 = async_compile.triton('triton_poi_fused_full_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_full_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_full_1(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.1111111111111111 tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/vo/cvo22swagpbqdg6titpa4rxq2twhty3h2yo42aimrc4otekjupzh.py # Topologically Sorted Source Nodes: [mul_1, cov_xy, mul_3, var_x, add, A, A_1, mul_5, mul_4, b, b_1, add_1], Original ATen: [aten.mul, aten.sub, aten.add, aten.div, aten._to_copy, aten.arange, aten.clamp, aten._unsafe_index] # Source node to ATen node mapping: # A => div # A_1 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_3, add_5, add_6, add_7, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_6, mul_7, mul_8, mul_9, sub_4, sub_5, sub_6, sub_7, sub_8, sub_9 # add => add # add_1 => add_15 # b => sub_2 # b_1 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_10, add_12, add_13, add_14, clamp_max_6, clamp_max_7, clamp_min_5, clamp_min_6, clamp_min_7, convert_element_type_5, convert_element_type_6, convert_element_type_7, iota_3, mul_11, mul_12, mul_13, mul_14, sub_11, sub_12, sub_13, sub_14, sub_15, sub_16 # cov_xy => sub # mul_1 => mul_1 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_15 # var_x => sub_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %convolution_3), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_5, %mul_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %convolution_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_7, %mul_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, 1e-05), kwargs = {}) # %div : [num_users=5] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {}) # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_3, 1.0), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_4, 0.0), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%div, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%div, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_2), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_8), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%div, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%div, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_7), kwargs = {}) # %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_6, %add_5), kwargs = {}) # %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_8, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_3), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_9), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_7, %arg2_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %convolution_1), kwargs = {}) # %sub_2 : [num_users=4] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_3, %mul_4), kwargs = {}) # %convert_element_type_5 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {}) # %iota_3 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_6 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_3, torch.float32), kwargs = {}) # %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_6, 0.5), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_10, 1.0), kwargs = {}) # %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_11, 0.5), kwargs = {}) # %clamp_min_5 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_11, 0.0), kwargs = {}) # %convert_element_type_7 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_5, torch.int64), kwargs = {}) # %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%sub_2, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {}) # %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%sub_2, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {}) # %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {}) # %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_5, %convert_element_type_7), kwargs = {}) # %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_12, 0.0), kwargs = {}) # %clamp_max_6 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_6), kwargs = {}) # %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_13), kwargs = {}) # %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%sub_2, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%sub_2, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {}) # %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_6), kwargs = {}) # %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_12), kwargs = {}) # %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {}) # %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %convert_element_type_5), kwargs = {}) # %clamp_min_7 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {}) # %clamp_max_7 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_7, 1.0), kwargs = {}) # %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_7), kwargs = {}) # %add_14 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_12, %mul_14), kwargs = {}) # %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_15, %add_14), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2', 'mutated_arg_names': ['in_out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2(in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x5 = xindex tmp97 = tl.load(in_ptr4 + (x5), xmask) tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 3, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (x2 + (4*tmp22) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (x2 + (4*tmp22) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x2 + (4*tmp22) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp26 = tmp24 * tmp25 tmp27 = tmp23 - tmp26 tmp28 = tl.load(in_ptr3 + (x2 + (4*tmp22) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp29 = tmp24 * tmp24 tmp30 = tmp28 - tmp29 tmp31 = 1e-05 tmp32 = tmp30 + tmp31 tmp33 = tmp27 / tmp32 tmp34 = tl.load(in_ptr0 + (x2 + (4*tmp20) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (x2 + (4*tmp20) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (x2 + (4*tmp20) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp37 = tmp35 * tmp36 tmp38 = tmp34 - tmp37 tmp39 = tl.load(in_ptr3 + (x2 + (4*tmp20) + (16*tmp13) + (64*x3)), xmask, eviction_policy='evict_last') tmp40 = tmp35 * tmp35 tmp41 = tmp39 - tmp40 tmp42 = tmp41 + tmp31 tmp43 = tmp38 / tmp42 tmp44 = tl.load(in_ptr0 + (x2 + (4*tmp22) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (x2 + (4*tmp22) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp46 = tl.load(in_ptr2 + (x2 + (4*tmp22) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp47 = tmp45 * tmp46 tmp48 = tmp44 - tmp47 tmp49 = tl.load(in_ptr3 + (x2 + (4*tmp22) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp50 = tmp45 * tmp45 tmp51 = tmp49 - tmp50 tmp52 = tmp51 + tmp31 tmp53 = tmp48 / tmp52 tmp54 = tl.load(in_ptr0 + (x2 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (x2 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (x2 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp57 = tmp55 * tmp56 tmp58 = tmp54 - tmp57 tmp59 = tl.load(in_ptr3 + (x2 + (4*tmp20) + (16*tmp9) + (64*x3)), xmask, eviction_policy='evict_last') tmp60 = tmp55 * tmp55 tmp61 = tmp59 - tmp60 tmp62 = tmp61 + tmp31 tmp63 = tmp58 / tmp62 tmp64 = tmp53 - tmp63 tmp65 = tmp20.to(tl.float32) tmp66 = tmp19 - tmp65 tmp67 = triton_helpers.maximum(tmp66, tmp7) tmp68 = triton_helpers.minimum(tmp67, tmp4) tmp69 = tmp64 * tmp68 tmp70 = tmp63 + tmp69 tmp71 = tmp33 * tmp24 tmp72 = tmp25 - tmp71 tmp73 = tmp43 * tmp35 tmp74 = tmp36 - tmp73 tmp75 = tmp53 * tmp45 tmp76 = tmp46 - tmp75 tmp77 = tmp63 * tmp55 tmp78 = tmp56 - tmp77 tmp79 = tmp76 - tmp78 tmp80 = tmp79 * tmp68 tmp81 = tmp78 + tmp80 tmp82 = tmp33 - tmp43 tmp83 = tmp82 * tmp68 tmp84 = tmp43 + tmp83 tmp85 = tmp84 - tmp70 tmp86 = tmp9.to(tl.float32) tmp87 = tmp8 - tmp86 tmp88 = triton_helpers.maximum(tmp87, tmp7) tmp89 = triton_helpers.minimum(tmp88, tmp4) tmp90 = tmp85 * tmp89 tmp91 = tmp72 - tmp74 tmp92 = tmp91 * tmp68 tmp93 = tmp74 + tmp92 tmp94 = tmp93 - tmp81 tmp95 = tmp94 * tmp89 tmp96 = tmp70 + tmp90 tmp98 = tmp96 * tmp97 tmp99 = tmp81 + tmp95 tmp100 = tmp98 + tmp99 tl.store(in_out_ptr2 + (x5), tmp100, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Topologically Sorted Source Nodes: [mul, kernel_x, x, kernel_x_1, x_2, mul_2], Original ATen: [aten.mul, aten.full, aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_full_mul_0.run(arg0_1, arg1_1, buf0, buf6, buf15, buf11, 16, 16, grid=grid(16, 16), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 1, 1, 9), (9, 9, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [kernel_x_2], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf1, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [mul, kernel_x_2, x_4], Original ATen: [aten.mul, aten.full, aten.convolution] buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 1, 16, 4)) del buf0 buf3 = reinterpret_tensor(buf1, (4, 1, 9, 1), (9, 9, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [kernel_y_2], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf3, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_y_2, x_5], Original ATen: [aten.full, aten.convolution] buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4)) del buf2 buf5 = reinterpret_tensor(buf3, (4, 1, 1, 9), (9, 9, 9, 1), 0); del buf3 # reuse # Topologically Sorted Source Nodes: [kernel_x], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf5, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_x, x], Original ATen: [aten.full, aten.convolution] buf7 = extern_kernels.convolution(buf6, buf5, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 1, 16, 4)) del buf6 buf8 = reinterpret_tensor(buf5, (4, 1, 9, 1), (9, 9, 1, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [kernel_y], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf8, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_y, x_1], Original ATen: [aten.full, aten.convolution] buf9 = extern_kernels.convolution(buf7, buf8, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 1, 16, 4)) del buf7 buf10 = reinterpret_tensor(buf8, (4, 1, 1, 9), (9, 9, 9, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [kernel_x_1], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf10, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_x_1, x_2], Original ATen: [aten.full, aten.convolution] buf12 = extern_kernels.convolution(buf11, buf10, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 1, 16, 4)) del buf11 buf13 = reinterpret_tensor(buf10, (4, 1, 9, 1), (9, 9, 1, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [kernel_y_1], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf13, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_y_1, x_3], Original ATen: [aten.full, aten.convolution] buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4)) del buf12 buf16 = reinterpret_tensor(buf13, (4, 1, 1, 9), (9, 9, 9, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [kernel_x_3], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf16, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [mul_2, kernel_x_3, x_6], Original ATen: [aten.mul, aten.full, aten.convolution] buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4)) del buf15 buf18 = reinterpret_tensor(buf16, (4, 1, 9, 1), (9, 9, 1, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [kernel_y_3], Original ATen: [aten.full] triton_poi_fused_full_1.run(buf18, 36, grid=grid(36), stream=stream0) # Topologically Sorted Source Nodes: [kernel_y_3, x_7], Original ATen: [aten.full, aten.convolution] buf19 = extern_kernels.convolution(buf17, buf18, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf19, (4, 4, 4, 4), (64, 1, 16, 4)) del buf18 buf20 = reinterpret_tensor(buf17, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf17 # reuse buf25 = buf20; del buf20 # reuse buf32 = buf25; del buf25 # reuse # Topologically Sorted Source Nodes: [mul_1, cov_xy, mul_3, var_x, add, A, A_1, mul_5, mul_4, b, b_1, add_1], Original ATen: [aten.mul, aten.sub, aten.add, aten.div, aten._to_copy, aten.arange, aten.clamp, aten._unsafe_index] triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2.run(buf32, buf4, buf9, buf14, buf19, arg2_1, 256, grid=grid(256), stream=stream0) del arg2_1 del buf14 del buf19 del buf4 del buf9 return (buf32, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F class BoxFilter(nn.Module): def __init__(self, r): super(BoxFilter, self).__init__() self.r = r def forward(self, x): kernel_size = 2 * self.r + 1 kernel_x = torch.full((x.data.shape[1], 1, 1, kernel_size), 1 / kernel_size, device=x.device, dtype=x.dtype) kernel_y = torch.full((x.data.shape[1], 1, kernel_size, 1), 1 / kernel_size, device=x.device, dtype=x.dtype) x = F.conv2d(x, kernel_x, padding=(0, self.r), groups=x.data.shape[1]) x = F.conv2d(x, kernel_y, padding=(self.r, 0), groups=x.data.shape[1]) return x class FastGuidedFilter(nn.Module): def __init__(self, r: 'int', eps: 'float'=1e-05): super().__init__() self.r = r self.eps = eps self.boxfilter = BoxFilter(r) def forward(self, lr_x, lr_y, hr_x): mean_x = self.boxfilter(lr_x) mean_y = self.boxfilter(lr_y) cov_xy = self.boxfilter(lr_x * lr_y) - mean_x * mean_y var_x = self.boxfilter(lr_x * lr_x) - mean_x * mean_x A = cov_xy / (var_x + self.eps) b = mean_y - A * mean_x A = F.interpolate(A, hr_x.shape[2:], mode='bilinear', align_corners =False) b = F.interpolate(b, hr_x.shape[2:], mode='bilinear', align_corners =False) return A * hr_x + b def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'r': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_full_mul_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (x2 + 16 * y3), xmask & ymask) tmp2 = tmp0 * tmp1 tmp3 = tmp0 * tmp0 tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp2, xmask & ymask) tl.store(out_ptr1 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) tl.store(out_ptr2 + (y0 + 4 * x2 + 64 * y1), tmp3, xmask & ymask) tl.store(out_ptr3 + (y0 + 4 * x2 + 64 * y1), tmp1, xmask & ymask) @triton.jit def triton_poi_fused_full_1(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 36 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.1111111111111111 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2( in_out_ptr2, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x5 = xindex tmp97 = tl.load(in_ptr4 + x5, xmask) tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 3, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (x2 + 4 * tmp22 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr1 + (x2 + 4 * tmp22 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr2 + (x2 + 4 * tmp22 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp26 = tmp24 * tmp25 tmp27 = tmp23 - tmp26 tmp28 = tl.load(in_ptr3 + (x2 + 4 * tmp22 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp29 = tmp24 * tmp24 tmp30 = tmp28 - tmp29 tmp31 = 1e-05 tmp32 = tmp30 + tmp31 tmp33 = tmp27 / tmp32 tmp34 = tl.load(in_ptr0 + (x2 + 4 * tmp20 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp35 = tl.load(in_ptr1 + (x2 + 4 * tmp20 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (x2 + 4 * tmp20 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp37 = tmp35 * tmp36 tmp38 = tmp34 - tmp37 tmp39 = tl.load(in_ptr3 + (x2 + 4 * tmp20 + 16 * tmp13 + 64 * x3), xmask, eviction_policy='evict_last') tmp40 = tmp35 * tmp35 tmp41 = tmp39 - tmp40 tmp42 = tmp41 + tmp31 tmp43 = tmp38 / tmp42 tmp44 = tl.load(in_ptr0 + (x2 + 4 * tmp22 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr1 + (x2 + 4 * tmp22 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp46 = tl.load(in_ptr2 + (x2 + 4 * tmp22 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp47 = tmp45 * tmp46 tmp48 = tmp44 - tmp47 tmp49 = tl.load(in_ptr3 + (x2 + 4 * tmp22 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp50 = tmp45 * tmp45 tmp51 = tmp49 - tmp50 tmp52 = tmp51 + tmp31 tmp53 = tmp48 / tmp52 tmp54 = tl.load(in_ptr0 + (x2 + 4 * tmp20 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp55 = tl.load(in_ptr1 + (x2 + 4 * tmp20 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp56 = tl.load(in_ptr2 + (x2 + 4 * tmp20 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp57 = tmp55 * tmp56 tmp58 = tmp54 - tmp57 tmp59 = tl.load(in_ptr3 + (x2 + 4 * tmp20 + 16 * tmp9 + 64 * x3), xmask, eviction_policy='evict_last') tmp60 = tmp55 * tmp55 tmp61 = tmp59 - tmp60 tmp62 = tmp61 + tmp31 tmp63 = tmp58 / tmp62 tmp64 = tmp53 - tmp63 tmp65 = tmp20.to(tl.float32) tmp66 = tmp19 - tmp65 tmp67 = triton_helpers.maximum(tmp66, tmp7) tmp68 = triton_helpers.minimum(tmp67, tmp4) tmp69 = tmp64 * tmp68 tmp70 = tmp63 + tmp69 tmp71 = tmp33 * tmp24 tmp72 = tmp25 - tmp71 tmp73 = tmp43 * tmp35 tmp74 = tmp36 - tmp73 tmp75 = tmp53 * tmp45 tmp76 = tmp46 - tmp75 tmp77 = tmp63 * tmp55 tmp78 = tmp56 - tmp77 tmp79 = tmp76 - tmp78 tmp80 = tmp79 * tmp68 tmp81 = tmp78 + tmp80 tmp82 = tmp33 - tmp43 tmp83 = tmp82 * tmp68 tmp84 = tmp43 + tmp83 tmp85 = tmp84 - tmp70 tmp86 = tmp9.to(tl.float32) tmp87 = tmp8 - tmp86 tmp88 = triton_helpers.maximum(tmp87, tmp7) tmp89 = triton_helpers.minimum(tmp88, tmp4) tmp90 = tmp85 * tmp89 tmp91 = tmp72 - tmp74 tmp92 = tmp91 * tmp68 tmp93 = tmp74 + tmp92 tmp94 = tmp93 - tmp81 tmp95 = tmp94 * tmp89 tmp96 = tmp70 + tmp90 tmp98 = tmp96 * tmp97 tmp99 = tmp81 + tmp95 tmp100 = tmp98 + tmp99 tl.store(in_out_ptr2 + x5, tmp100, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf15 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_full_mul_0[grid(16, 16)](arg0_1, arg1_1, buf0, buf6, buf15, buf11, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 1, 1, 9), (9, 9, 9, 1), torch.float32) triton_poi_fused_full_1[grid(36)](buf1, 36, XBLOCK=64, num_warps=1, num_stages=1) buf2 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 1, 16, 4)) del buf0 buf3 = reinterpret_tensor(buf1, (4, 1, 9, 1), (9, 9, 1, 1), 0) del buf1 triton_poi_fused_full_1[grid(36)](buf3, 36, XBLOCK=64, num_warps=1, num_stages=1) buf4 = extern_kernels.convolution(buf2, buf3, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 1, 16, 4)) del buf2 buf5 = reinterpret_tensor(buf3, (4, 1, 1, 9), (9, 9, 9, 1), 0) del buf3 triton_poi_fused_full_1[grid(36)](buf5, 36, XBLOCK=64, num_warps=1, num_stages=1) buf7 = extern_kernels.convolution(buf6, buf5, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf7, (4, 4, 4, 4), (64, 1, 16, 4)) del buf6 buf8 = reinterpret_tensor(buf5, (4, 1, 9, 1), (9, 9, 1, 1), 0) del buf5 triton_poi_fused_full_1[grid(36)](buf8, 36, XBLOCK=64, num_warps=1, num_stages=1) buf9 = extern_kernels.convolution(buf7, buf8, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf9, (4, 4, 4, 4), (64, 1, 16, 4)) del buf7 buf10 = reinterpret_tensor(buf8, (4, 1, 1, 9), (9, 9, 9, 1), 0) del buf8 triton_poi_fused_full_1[grid(36)](buf10, 36, XBLOCK=64, num_warps=1, num_stages=1) buf12 = extern_kernels.convolution(buf11, buf10, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf12, (4, 4, 4, 4), (64, 1, 16, 4)) del buf11 buf13 = reinterpret_tensor(buf10, (4, 1, 9, 1), (9, 9, 1, 1), 0) del buf10 triton_poi_fused_full_1[grid(36)](buf13, 36, XBLOCK=64, num_warps=1, num_stages=1) buf14 = extern_kernels.convolution(buf12, buf13, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf14, (4, 4, 4, 4), (64, 1, 16, 4)) del buf12 buf16 = reinterpret_tensor(buf13, (4, 1, 1, 9), (9, 9, 9, 1), 0) del buf13 triton_poi_fused_full_1[grid(36)](buf16, 36, XBLOCK=64, num_warps=1, num_stages=1) buf17 = extern_kernels.convolution(buf15, buf16, stride=(1, 1), padding=(0, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf17, (4, 4, 4, 4), (64, 1, 16, 4)) del buf15 buf18 = reinterpret_tensor(buf16, (4, 1, 9, 1), (9, 9, 1, 1), 0) del buf16 triton_poi_fused_full_1[grid(36)](buf18, 36, XBLOCK=64, num_warps=1, num_stages=1) buf19 = extern_kernels.convolution(buf17, buf18, stride=(1, 1), padding=(4, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None) assert_size_stride(buf19, (4, 4, 4, 4), (64, 1, 16, 4)) del buf18 buf20 = reinterpret_tensor(buf17, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf17 buf25 = buf20 del buf20 buf32 = buf25 del buf25 triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_div_mul_sub_2[ grid(256)](buf32, buf4, buf9, buf14, buf19, arg2_1, 256, XBLOCK =128, num_warps=4, num_stages=1) del arg2_1 del buf14 del buf19 del buf4 del buf9 return buf32, class BoxFilter(nn.Module): def __init__(self, r): super(BoxFilter, self).__init__() self.r = r def forward(self, x): kernel_size = 2 * self.r + 1 kernel_x = torch.full((x.data.shape[1], 1, 1, kernel_size), 1 / kernel_size, device=x.device, dtype=x.dtype) kernel_y = torch.full((x.data.shape[1], 1, kernel_size, 1), 1 / kernel_size, device=x.device, dtype=x.dtype) x = F.conv2d(x, kernel_x, padding=(0, self.r), groups=x.data.shape[1]) x = F.conv2d(x, kernel_y, padding=(self.r, 0), groups=x.data.shape[1]) return x class FastGuidedFilterNew(nn.Module): def __init__(self, r: 'int', eps: 'float'=1e-05): super().__init__() self.r = r self.eps = eps self.boxfilter = BoxFilter(r) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
allen0125/RobustVideoMatting
FastGuidedFilter
false
1,420
[ "Apache-2.0" ]
0
c0f17ca45a9de7586c570753064187200dec487a
https://github.com/allen0125/RobustVideoMatting/tree/c0f17ca45a9de7586c570753064187200dec487a
import torch from torchvision.transforms import functional as F from torch import nn from torch.nn import functional as F class BoxFilter(nn.Module): def __init__(self, r): super().__init__() self.r = r def forward(self, x): kernel_size = 2 * self.r + 1 kernel_x = torch.full((x.data.shape[1], 1, 1, kernel_size), 1 / kernel_size, device=x.device, dtype=x.dtype) kernel_y = torch.full((x.data.shape[1], 1, kernel_size, 1), 1 / kernel_size, device=x.device, dtype=x.dtype) x = F.conv2d(x, kernel_x, padding=(0, self.r), groups=x.data.shape[1]) x = F.conv2d(x, kernel_y, padding=(self.r, 0), groups=x.data.shape[1]) return x class Model(nn.Module): def __init__(self, r: 'int', eps: 'float'=1e-05): super().__init__() self.r = r self.eps = eps self.boxfilter = BoxFilter(r) def forward(self, lr_x, lr_y, hr_x): mean_x = self.boxfilter(lr_x) mean_y = self.boxfilter(lr_y) cov_xy = self.boxfilter(lr_x * lr_y) - mean_x * mean_y var_x = self.boxfilter(lr_x * lr_x) - mean_x * mean_x A = cov_xy / (var_x + self.eps) b = mean_y - A * mean_x A = F.interpolate(A, hr_x.shape[2:], mode='bilinear', align_corners =False) b = F.interpolate(b, hr_x.shape[2:], mode='bilinear', align_corners =False) return A * hr_x + b def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [4]
MaxMarginCriterion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/dr/cdrckjisfb4cbpsf3e426dedfjbm6nkrtn4zum2xlgv5uihfw464.py # Topologically Sorted Source Nodes: [add, sub, clamp, visual_rank_loss, add_1, sub_1, clamp_1, lang_rank_loss, add_2, sum_1, loss], Original ATen: [aten.add, aten.sub, aten.clamp, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # clamp => clamp_min # clamp_1 => clamp_min_1 # lang_rank_loss => mul_1 # loss => div # sub => sub # sub_1 => sub_1 # sum_1 => sum_1 # visual_rank_loss => mul # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, 4), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %slice_1), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min, 4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_3, 4), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %slice_1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_min_1, 4), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%add_2,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 1), kwargs = {}) triton_per_fused_add_clamp_div_mul_sub_sum_0 = async_compile.triton('triton_per_fused_add_clamp_div_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_div_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_div_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (r0), None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (128 + r2), None) tmp1 = 4.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp6 * tmp1 tmp9 = tmp8 + tmp1 tmp10 = tmp9 - tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp5) tmp12 = tmp11 * tmp1 tmp13 = tmp7 + tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = 1.0 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, sub, clamp, visual_rank_loss, add_1, sub_1, clamp_1, lang_rank_loss, add_2, sum_1, loss], Original ATen: [aten.add, aten.sub, aten.clamp, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_div_mul_sub_sum_0.run(buf1, arg0_1, 1, 128, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class MaxMarginCriterion(nn.Module): def __init__(self, visual_rank_weight, lang_rank_weight, margin): super(MaxMarginCriterion, self).__init__() self.visual_rank = visual_rank_weight > 0 self.lang_rank = lang_rank_weight > 0 self.visual_rank_weight = visual_rank_weight self.lang_rank_weight = lang_rank_weight self.margin = margin def forward(self, cossim): N = cossim.size(0) batch_size = 0 if self.visual_rank and not self.lang_rank: batch_size = N // 2 assert isinstance(batch_size, int) paired = cossim[:batch_size] unpaired = cossim[batch_size:] visual_rank_loss = self.visual_rank_weight * torch.clamp(self. margin + unpaired - paired, min=0) lang_rank_loss = 0.0 elif not self.visual_rank and self.lang_rank: batch_size = N // 2 assert isinstance(batch_size, int) cossim[:batch_size] unpaired = cossim[batch_size:] lang_rank_loss = self.lang_rank_weight * torch.clamp(self. margin + unpaired - paired, min=0) visual_rank_loss = 0.0 elif self.visual_rank and self.lang_rank: batch_size = N // 3 assert isinstance(batch_size, int) paired = cossim[:batch_size] visual_unpaired = cossim[batch_size:batch_size * 2] lang_unpaired = cossim[batch_size * 2:] visual_rank_loss = self.visual_rank_weight * torch.clamp(self. margin + visual_unpaired - paired, 0) lang_rank_loss = self.lang_rank_weight * torch.clamp(self. margin + lang_unpaired - paired, 0) else: raise NotImplementedError loss = (visual_rank_loss + lang_rank_loss).sum() / batch_size return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'visual_rank_weight': 4, 'lang_rank_weight': 4, 'margin': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_div_mul_sub_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 64 r2 = rindex tmp0 = tl.load(in_ptr0 + (64 + r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (128 + r2), None) tmp1 = 4.0 tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tmp6 * tmp1 tmp9 = tmp8 + tmp1 tmp10 = tmp9 - tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp5) tmp12 = tmp11 * tmp1 tmp13 = tmp7 + tmp12 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = 1.0 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp18, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_div_mul_sub_sum_0[grid(1)](buf1, arg0_1, 1, 128, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, class MaxMarginCriterionNew(nn.Module): def __init__(self, visual_rank_weight, lang_rank_weight, margin): super(MaxMarginCriterionNew, self).__init__() self.visual_rank = visual_rank_weight > 0 self.lang_rank = lang_rank_weight > 0 self.visual_rank_weight = visual_rank_weight self.lang_rank_weight = lang_rank_weight self.margin = margin def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
andfoy/MAttNet
MaxMarginCriterion
false
1,421
[ "MIT" ]
0
defa58649951ab8f6a7dcca25475e91f5e53ffcf
https://github.com/andfoy/MAttNet/tree/defa58649951ab8f6a7dcca25475e91f5e53ffcf
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, visual_rank_weight, lang_rank_weight, margin): super().__init__() self.visual_rank = visual_rank_weight > 0 self.lang_rank = lang_rank_weight > 0 self.visual_rank_weight = visual_rank_weight self.lang_rank_weight = lang_rank_weight self.margin = margin def forward(self, cossim): N = cossim.size(0) batch_size = 0 if self.visual_rank and not self.lang_rank: batch_size = N // 2 assert isinstance(batch_size, int) paired = cossim[:batch_size] unpaired = cossim[batch_size:] visual_rank_loss = self.visual_rank_weight * torch.clamp(self. margin + unpaired - paired, min=0) lang_rank_loss = 0.0 elif not self.visual_rank and self.lang_rank: batch_size = N // 2 assert isinstance(batch_size, int) cossim[:batch_size] unpaired = cossim[batch_size:] lang_rank_loss = self.lang_rank_weight * torch.clamp(self. margin + unpaired - paired, min=0) visual_rank_loss = 0.0 elif self.visual_rank and self.lang_rank: batch_size = N // 3 assert isinstance(batch_size, int) paired = cossim[:batch_size] visual_unpaired = cossim[batch_size:batch_size * 2] lang_unpaired = cossim[batch_size * 2:] visual_rank_loss = self.visual_rank_weight * torch.clamp(self. margin + visual_unpaired - paired, 0) lang_rank_loss = self.lang_rank_weight * torch.clamp(self. margin + lang_unpaired - paired, 0) else: raise NotImplementedError loss = (visual_rank_loss + lang_rank_loss).sum() / batch_size return loss def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
SoftTree
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/kw/ckwnmj23k6l6ysn4mwknwkold5bfw7vy6d5kqcndifbpltihrvve.py # Topologically Sorted Source Nodes: [gw_], Original ATen: [aten.clone] # Source node to ATen node mapping: # gw_ => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/g3/cg3dkcgnvsssdgwe56vkn5lmavy6v755rm3ew3mzh6ul4dlmyzmz.py # Topologically Sorted Source Nodes: [parent_gating_1, parent_density_1], Original ATen: [aten.rsub, aten.clone] # Source node to ATen node mapping: # parent_density_1 => clone_2 # parent_gating_1 => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %select), kwargs = {}) # %clone_2 : [num_users=2] = call_function[target=torch.ops.aten.clone.default](args = (%select_7,), kwargs = {}) triton_poi_fused_clone_rsub_1 = async_compile.triton('triton_poi_fused_clone_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_rsub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp7 == tmp8 tmp10 = tmp5 * tmp4 tmp11 = tl.where(tmp9, tmp10, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qf/cqfxyshap2we5yxv54i45cr3xfqlgd5j2usidttyul5fjvhpcq4n.py # Topologically Sorted Source Nodes: [node_densities, parent_density, mul, setitem, mul_1, setitem_1], Original ATen: [aten.ones, aten.clone, aten.mul, aten.copy] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # node_densities => full_default # parent_density => clone_1 # setitem => copy # setitem_1 => copy_1 # Graph fragment: # %full_default : [num_users=3] = call_function[target=torch.ops.aten.full.default](args = ([4, 3], 1), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone_1, %select), kwargs = {}) # %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_2, %mul), kwargs = {}) # %select_scatter_default : [num_users=3] = call_function[target=torch.ops.aten.select_scatter.default](args = (%full_default, %copy, 1, 1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clone_2, %sub), kwargs = {}) # %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%select_9, %mul_1), kwargs = {}) # %select_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.select_scatter.default](args = (%select_scatter_default, %copy_1, 1, 2), kwargs = {}) triton_poi_fused_clone_copy_mul_ones_2 = async_compile.triton('triton_poi_fused_clone_copy_mul_ones_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_copy_mul_ones_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_copy_mul_ones_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = (xindex // 3) x2 = xindex tmp3 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + (0)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tmp3 * tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp0 == tmp6 tmp11 = tmp8 + tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 * tmp12 tmp15 = tl.where(tmp7, tmp14, tmp13) tmp16 = tl.where(tmp2, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1), (1, 4)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 2), (2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [gw_], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 4, grid=grid(4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [gw_, matmul], Original ATen: [aten.clone, aten.mm] extern_kernels.mm(primals_2, buf0, out=buf1) buf2 = reinterpret_tensor(buf0, (4, ), (1, ), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [parent_gating_1, parent_density_1], Original ATen: [aten.rsub, aten.clone] triton_poi_fused_clone_rsub_1.run(buf1, primals_3, buf2, buf3, 4, grid=grid(4), stream=stream0) buf4 = empty_strided_cuda((4, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [node_densities, parent_density, mul, setitem, mul_1, setitem_1], Original ATen: [aten.ones, aten.clone, aten.mul, aten.copy] triton_poi_fused_clone_copy_mul_ones_2.run(buf3, buf2, buf1, primals_3, buf4, 12, grid=grid(12), stream=stream0) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.mm] extern_kernels.mm(primals_4, reinterpret_tensor(buf4, (2, 4), (1, 3), 1), out=buf5) return (reinterpret_tensor(buf5, (4, 4), (1, 4), 0), primals_3, buf1, buf2, buf3, reinterpret_tensor(primals_4, (2, 4), (1, 2), 0), reinterpret_tensor(buf4, (4, 2), (3, 1), 1), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1), (1, 4), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 2), (2, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np class SoftTree(torch.nn.Module): """Soft decision tree.""" def __init__(self, in_features, out_features, depth, projection= 'constant', dropout=0.0): super(SoftTree, self).__init__() self.proj = projection self.depth = depth self.in_features = in_features self.out_features = out_features self.leaf_count = int(2 ** depth) self.gate_count = int(self.leaf_count - 1) self.gw = torch.nn.Parameter(torch.nn.init.kaiming_normal_(torch. empty(self.gate_count, in_features), nonlinearity='sigmoid').T) self.gb = torch.nn.Parameter(torch.zeros(self.gate_count)) self.drop = torch.nn.Dropout(p=dropout) if self.proj == 'linear': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(0, 2, 1)) self.pb = torch.nn.Parameter(torch.zeros(out_features, self. leaf_count)) elif self.proj == 'linear2': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(1, 2, 0)) self.pb = torch.nn.Parameter(torch.zeros(self.leaf_count, 1, out_features)) elif self.proj == 'constant': self.z = torch.nn.Parameter(torch.randn(out_features, self. leaf_count)) def forward(self, x): node_densities = self.node_densities(x) leaf_probs = node_densities[:, -self.leaf_count:].t() if self.proj == 'linear': gated_projection = torch.matmul(self.pw, leaf_probs).permute(2, 0, 1) gated_bias = torch.matmul(self.pb, leaf_probs).permute(1, 0) result = torch.matmul(gated_projection, x.view(-1, self. in_features, 1))[:, :, 0] + gated_bias elif self.proj == 'linear2': x = x.view(1, x.shape[0], x.shape[1]) out = torch.matmul(x, self.pw) + self.pb result = out, leaf_probs elif self.proj == 'constant': result = torch.matmul(self.z, leaf_probs).permute(1, 0) return result def extra_repr(self): return 'in_features=%d, out_features=%d, depth=%d, projection=%s' % ( self.in_features, self.out_features, self.depth, self.proj) def node_densities(self, x): gw_ = self.drop(self.gw) gatings = torch.sigmoid(torch.add(torch.matmul(x, gw_), self.gb)) node_densities = torch.ones(x.shape[0], 2 ** (self.depth + 1) - 1, device=x.device) it = 1 for d in range(1, self.depth + 1): for i in range(2 ** d): parent_index = (it + 1) // 2 - 1 child_way = (it + 1) % 2 if child_way == 0: parent_gating = gatings[:, parent_index] else: parent_gating = 1 - gatings[:, parent_index] parent_density = node_densities[:, parent_index].clone() node_densities[:, it] = parent_density * parent_gating it += 1 return node_densities def gatings(self, x): return torch.sigmoid(torch.add(torch.matmul(x, self.gw), self.gb)) def total_path_value(self, x, index, level=None): gatings = self.gatings(x) gateways = np.binary_repr(index, width=self.depth) L = 0.0 current = 0 if level is None: level = self.depth for i in range(level): if int(gateways[i]) == 0: L += gatings[:, current].mean() current = 2 * current + 1 else: L += (1 - gatings[:, current]).mean() current = 2 * current + 2 return L def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4, 'depth': 1}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_clone_rsub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tmp5 = 1.0 tmp6 = tmp5 - tmp4 tmp7 = tl.full([1], 0, tl.int32) tmp8 = tl.full([1], 1, tl.int32) tmp9 = tmp7 == tmp8 tmp10 = tmp5 * tmp4 tmp11 = tl.where(tmp9, tmp10, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) @triton.jit def triton_poi_fused_clone_copy_mul_ones_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 x2 = xindex tmp3 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr3 + 0) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 2, tl.int32) tmp2 = tmp0 == tmp1 tmp5 = tmp3 * tmp4 tmp6 = tl.full([1], 1, tl.int32) tmp7 = tmp0 == tmp6 tmp11 = tmp8 + tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = 1.0 tmp14 = tmp13 * tmp12 tmp15 = tl.where(tmp7, tmp14, tmp13) tmp16 = tl.where(tmp2, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 1), (1, 4)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 2), (2, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(4)](primals_1, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32) extern_kernels.mm(primals_2, buf0, out=buf1) buf2 = reinterpret_tensor(buf0, (4,), (1,), 0) del buf0 buf3 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_clone_rsub_1[grid(4)](buf1, primals_3, buf2, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 3), (3, 1), torch.float32) triton_poi_fused_clone_copy_mul_ones_2[grid(12)](buf3, buf2, buf1, primals_3, buf4, 12, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_4, reinterpret_tensor(buf4, (2, 4), (1, 3 ), 1), out=buf5) return reinterpret_tensor(buf5, (4, 4), (1, 4), 0 ), primals_3, buf1, buf2, buf3, reinterpret_tensor(primals_4, (2, 4 ), (1, 2), 0), reinterpret_tensor(buf4, (4, 2), (3, 1), 1 ), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0) class SoftTreeNew(torch.nn.Module): """Soft decision tree.""" def __init__(self, in_features, out_features, depth, projection= 'constant', dropout=0.0): super(SoftTreeNew, self).__init__() self.proj = projection self.depth = depth self.in_features = in_features self.out_features = out_features self.leaf_count = int(2 ** depth) self.gate_count = int(self.leaf_count - 1) self.gw = torch.nn.Parameter(torch.nn.init.kaiming_normal_(torch. empty(self.gate_count, in_features), nonlinearity='sigmoid').T) self.gb = torch.nn.Parameter(torch.zeros(self.gate_count)) self.drop = torch.nn.Dropout(p=dropout) if self.proj == 'linear': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(0, 2, 1)) self.pb = torch.nn.Parameter(torch.zeros(out_features, self. leaf_count)) elif self.proj == 'linear2': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(1, 2, 0)) self.pb = torch.nn.Parameter(torch.zeros(self.leaf_count, 1, out_features)) elif self.proj == 'constant': self.z = torch.nn.Parameter(torch.randn(out_features, self. leaf_count)) def extra_repr(self): return 'in_features=%d, out_features=%d, depth=%d, projection=%s' % ( self.in_features, self.out_features, self.depth, self.proj) def node_densities(self, x): gw_ = self.drop(self.gw) gatings = torch.sigmoid(torch.add(torch.matmul(x, gw_), self.gb)) node_densities = torch.ones(x.shape[0], 2 ** (self.depth + 1) - 1, device=x.device) it = 1 for d in range(1, self.depth + 1): for i in range(2 ** d): parent_index = (it + 1) // 2 - 1 child_way = (it + 1) % 2 if child_way == 0: parent_gating = gatings[:, parent_index] else: parent_gating = 1 - gatings[:, parent_index] parent_density = node_densities[:, parent_index].clone() node_densities[:, it] = parent_density * parent_gating it += 1 return node_densities def gatings(self, x): return torch.sigmoid(torch.add(torch.matmul(x, self.gw), self.gb)) def total_path_value(self, x, index, level=None): gatings = self.gatings(x) gateways = np.binary_repr(index, width=self.depth) L = 0.0 current = 0 if level is None: level = self.depth for i in range(level): if int(gateways[i]) == 0: L += gatings[:, current].mean() current = 2 * current + 1 else: L += (1 - gatings[:, current]).mean() current = 2 * current + 2 return L def forward(self, input_0): primals_1 = self.gw primals_3 = self.gb primals_4 = self.z primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
alper111/symbol-emergence
SoftTree
false
1,422
[ "MIT" ]
0
a4abd5d26b6fb36fe1ab3d6304a257df29be8e2c
https://github.com/alper111/symbol-emergence/tree/a4abd5d26b6fb36fe1ab3d6304a257df29be8e2c
import torch import numpy as np class Model(torch.nn.Module): """Soft decision tree.""" def __init__(self, in_features, out_features, depth, projection= 'constant', dropout=0.0): super().__init__() self.proj = projection self.depth = depth self.in_features = in_features self.out_features = out_features self.leaf_count = int(2 ** depth) self.gate_count = int(self.leaf_count - 1) self.gw = torch.nn.Parameter(torch.nn.init.kaiming_normal_(torch. empty(self.gate_count, in_features), nonlinearity='sigmoid').T) self.gb = torch.nn.Parameter(torch.zeros(self.gate_count)) self.drop = torch.nn.Dropout(p=dropout) if self.proj == 'linear': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(0, 2, 1)) self.pb = torch.nn.Parameter(torch.zeros(out_features, self. leaf_count)) elif self.proj == 'linear2': self.pw = torch.nn.init.kaiming_normal_(torch.empty( out_features * self.leaf_count, in_features), nonlinearity= 'linear') self.pw = torch.nn.Parameter(self.pw.view(out_features, self. leaf_count, in_features).permute(1, 2, 0)) self.pb = torch.nn.Parameter(torch.zeros(self.leaf_count, 1, out_features)) elif self.proj == 'constant': self.z = torch.nn.Parameter(torch.randn(out_features, self. leaf_count)) def forward(self, x): node_densities = self.node_densities(x) leaf_probs = node_densities[:, -self.leaf_count:].t() if self.proj == 'linear': gated_projection = torch.matmul(self.pw, leaf_probs).permute(2, 0, 1) gated_bias = torch.matmul(self.pb, leaf_probs).permute(1, 0) result = torch.matmul(gated_projection, x.view(-1, self. in_features, 1))[:, :, 0] + gated_bias elif self.proj == 'linear2': x = x.view(1, x.shape[0], x.shape[1]) out = torch.matmul(x, self.pw) + self.pb result = out, leaf_probs elif self.proj == 'constant': result = torch.matmul(self.z, leaf_probs).permute(1, 0) return result def extra_repr(self): return 'in_features=%d, out_features=%d, depth=%d, projection=%s' % ( self.in_features, self.out_features, self.depth, self.proj) def node_densities(self, x): gw_ = self.drop(self.gw) gatings = torch.sigmoid(torch.add(torch.matmul(x, gw_), self.gb)) node_densities = torch.ones(x.shape[0], 2 ** (self.depth + 1) - 1, device=x.device) it = 1 for d in range(1, self.depth + 1): for i in range(2 ** d): parent_index = (it + 1) // 2 - 1 child_way = (it + 1) % 2 if child_way == 0: parent_gating = gatings[:, parent_index] else: parent_gating = 1 - gatings[:, parent_index] parent_density = node_densities[:, parent_index].clone() node_densities[:, it] = parent_density * parent_gating it += 1 return node_densities def gatings(self, x): return torch.sigmoid(torch.add(torch.matmul(x, self.gw), self.gb)) def total_path_value(self, x, index, level=None): gatings = self.gatings(x) gateways = np.binary_repr(index, width=self.depth) L = 0.0 current = 0 if level is None: level = self.depth for i in range(level): if int(gateways[i]) == 0: L += gatings[:, current].mean() current = 2 * current + 1 # ... truncated (>4000 chars) for memory efficiency
RobertaClassificationHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ly/clynxq46ncy6ukowaqp3tfqiz27g662pwf3mwg2qunp25amnvhsm.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # x_2 => tanh # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_3), kwargs = {}) # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 8), (8, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (32, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_3, 128, grid=grid(128), stream=stream0) del primals_3 buf2 = empty_strided_cuda((32, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (buf2, reinterpret_tensor(primals_1, (32, 8), (8, 1), 0), buf1, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class RobertaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, 2) def forward(self, x, **kwargs): x = x.reshape(-1, x.size(-1) * 2) x = self.dense(x) x = torch.tanh(x) x = self.out_proj(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(hidden_size=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 8), (8, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (2, 4), (4, 1)) assert_size_stride(primals_5, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((32, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (32, 8), (8, 1), 0), reinterpret_tensor(primals_2, (8, 4), (1, 8), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(128)](buf1, primals_3, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((32, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return buf2, reinterpret_tensor(primals_1, (32, 8), (8, 1), 0 ), buf1, primals_4 class RobertaClassificationHeadNew(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, 2) def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_4 = self.out_proj.weight primals_5 = self.out_proj.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
MCplayerFromPRC/CodeT5
RobertaClassificationHead
false
1,423
[ "BSD-3-Clause" ]
0
726ed4a4221be125b6083439667573ef5fef6984
https://github.com/MCplayerFromPRC/CodeT5/tree/726ed4a4221be125b6083439667573ef5fef6984
from _paritybench_helpers import _mock_config import torch import torch.nn as nn class Model(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) self.out_proj = nn.Linear(config.hidden_size, 2) def forward(self, x, **kwargs): x = x.reshape(-1, x.size(-1) * 2) x = self.dense(x) x = torch.tanh(x) x = self.out_proj(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
FractionProposalModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # x_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ay/cay35kjnlnailcihobam7ni4n2dfi7xasjzym6ujrls3xllqyghg.py # Topologically Sorted Source Nodes: [x_1, taus], Original ATen: [aten._softmax, aten.cumsum] # Source node to ATen node mapping: # taus => cumsum # x_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=4] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %cumsum : [num_users=1] = call_function[target=torch.ops.aten.cumsum.default](args = (%div, -1), kwargs = {}) triton_per_fused__softmax_cumsum_1 = async_compile.triton('triton_per_fused__softmax_cumsum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton_heuristics.persistent_reduction( size_hints=[4, 4], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_cumsum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (4*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + (4*x0)), tmp8, xmask) tl.store(out_ptr1 + (r1 + (5*x0)), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gz/cgztjxak6cbbnu7jo6zpjqobqm6gprdjgbibkvlljrez6pcmrabx.py # Topologically Sorted Source Nodes: [log, mul, sum_1, ent], Original ATen: [aten.log, aten.mul, aten.sum, aten.neg] # Source node to ATen node mapping: # ent => neg # log => log # mul => mul # sum_1 => sum_2 # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%div,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %log), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [-1]), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) triton_poi_fused_log_mul_neg_sum_2 = async_compile.triton('triton_poi_fused_log_mul_neg_sum_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_log_mul_neg_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_log_mul_neg_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp4 = tl_math.log(tmp3) tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tl_math.log(tmp7) tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp12 = tl_math.log(tmp11) tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = -tmp14 tl.store(out_ptr0 + (x0), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/id/cidk6wbpnsfwwvnvaakmdqewezbky3gjulavbg352zmpfyg4lmym.py # Topologically Sorted Source Nodes: [tau_0], Original ATen: [aten.zeros] # Source node to ATen node mapping: # tau_0 => full_default # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 1], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) triton_poi_fused_zeros_3 = async_compile.triton('triton_poi_fused_zeros_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_zeros_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_zeros_3(out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + (5*x0), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4e/c4ej6cqdqupsk2ftuhfedjoq2yfradahrbrm45vwbxaem44logtt.py # Topologically Sorted Source Nodes: [add, tau_hats], Original ATen: [aten.add, aten.div] # Source node to ATen node mapping: # add => add # tau_hats => div_1 # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%slice_2, %slice_4), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2), kwargs = {}) triton_poi_fused_add_div_4 = async_compile.triton('triton_poi_fused_add_div_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (5*x1)), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + (5*x1)), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 16, grid=grid(16), stream=stream0) buf2 = buf0; del buf0 # reuse buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32) buf4 = reinterpret_tensor(buf6, (4, 4), (5, 1), 1) # alias # Topologically Sorted Source Nodes: [x_1, taus], Original ATen: [aten._softmax, aten.cumsum] triton_per_fused__softmax_cumsum_1.run(buf1, buf2, buf4, 4, 4, grid=grid(4), stream=stream0) buf3 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [log, mul, sum_1, ent], Original ATen: [aten.log, aten.mul, aten.sum, aten.neg] triton_poi_fused_log_mul_neg_sum_2.run(buf2, buf3, 4, grid=grid(4), stream=stream0) buf5 = reinterpret_tensor(buf6, (4, 1), (5, 1), 0) # alias # Topologically Sorted Source Nodes: [tau_0], Original ATen: [aten.zeros] triton_poi_fused_zeros_3.run(buf5, 4, grid=grid(4), stream=stream0) buf7 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [add, tau_hats], Original ATen: [aten.add, aten.div] triton_poi_fused_add_div_4.run(buf6, buf7, 16, grid=grid(16), stream=stream0) return (buf6, buf7, buf3, primals_3, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from torch.nn import functional as F class FractionProposalModel(nn.Module): def __init__(self, in_dim, out_dim): super(FractionProposalModel, self).__init__() self.in_dim = in_dim self.out_dim = out_dim self.layer = nn.Linear(self.in_dim, self.out_dim) nn.init.xavier_uniform_(self.layer.weight) self.layer.bias.data.zero_() def forward(self, x): x = self.layer(x) x = F.softmax(x, dim=-1) ent = -torch.sum(x * torch.log(x), dim=-1) taus = torch.cumsum(x, -1) tau_0 = torch.zeros((x.size(0), 1), device=taus.device) taus = torch.concat([tau_0, taus], -1) tau_hats = (taus[:, :-1] + taus[:, 1:]) / 2 return taus, tau_hats, ent def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_dim': 4, 'out_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def _triton_helper_fn_add0(arg0_0, arg1_0): tmp0 = arg0_0 + arg1_0 return tmp0 @triton.jit def triton_per_fused__softmax_cumsum_1(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tmp9 = tmp8.to(tl.float32) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp11, = tl.associative_scan((tmp10,), 1, _triton_helper_fn_add0) tl.store(out_ptr0 + (r1 + 4 * x0), tmp8, xmask) tl.store(out_ptr1 + (r1 + 5 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_log_mul_neg_sum_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = tl_math.log(tmp0) tmp2 = tmp0 * tmp1 tmp4 = tl_math.log(tmp3) tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp8 = tl_math.log(tmp7) tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp12 = tl_math.log(tmp11) tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp15 = -tmp14 tl.store(out_ptr0 + x0, tmp15, xmask) @triton.jit def triton_poi_fused_zeros_3(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + 5 * x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_div_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 5 * x1), xmask) tmp1 = tl.load(in_ptr0 + (1 + x0 + 5 * x1), xmask) tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, primals_3, reinterpret_tensor( primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(16)](buf0, buf1, 16, XBLOCK=16, num_warps=1, num_stages=1) buf2 = buf0 del buf0 buf6 = empty_strided_cuda((4, 5), (5, 1), torch.float32) buf4 = reinterpret_tensor(buf6, (4, 4), (5, 1), 1) triton_per_fused__softmax_cumsum_1[grid(4)](buf1, buf2, buf4, 4, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_log_mul_neg_sum_2[grid(4)](buf2, buf3, 4, XBLOCK=4, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf6, (4, 1), (5, 1), 0) triton_poi_fused_zeros_3[grid(4)](buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = buf1 del buf1 triton_poi_fused_add_div_4[grid(16)](buf6, buf7, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf6, buf7, buf3, primals_3, buf2 class FractionProposalModelNew(nn.Module): def __init__(self, in_dim, out_dim): super(FractionProposalModelNew, self).__init__() self.in_dim = in_dim self.out_dim = out_dim self.layer = nn.Linear(self.in_dim, self.out_dim) nn.init.xavier_uniform_(self.layer.weight) self.layer.bias.data.zero_() def forward(self, input_0): primals_1 = self.layer.weight primals_2 = self.layer.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1], output[2]
alirezakazemipour/Distributional-RL
FractionProposalModel
false
1,424
[ "MIT" ]
0
a3de3a1707bdd57a420f85c6d64a3fb84fb075af
https://github.com/alirezakazemipour/Distributional-RL/tree/a3de3a1707bdd57a420f85c6d64a3fb84fb075af
import torch from torch import nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.layer = nn.Linear(self.in_dim, self.out_dim) nn.init.xavier_uniform_(self.layer.weight) self.layer.bias.data.zero_() def forward(self, x): x = self.layer(x) x = F.softmax(x, dim=-1) ent = -torch.sum(x * torch.log(x), dim=-1) taus = torch.cumsum(x, -1) tau_0 = torch.zeros((x.size(0), 1), device=taus.device) taus = torch.concat([tau_0, taus], -1) tau_hats = (taus[:, :-1] + taus[:, 1:]) / 2 return taus, tau_hats, ent def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [4, 4]
unrotate
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/5p/c5ps5a7eixwzvcbipfgso4ttpbjtlmcfllyvqgfapdiaonbizxsd.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %rev, %rev_2, %rev_3], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x1 = (xindex // 4) % 4 x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (67 + ((-1)*x1) + (4*x0) + (16*((-4) + x2))), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (143 + ((-1)*x3) + (16*((-8) + x2))), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (204 + x1 + ((-4)*x0) + (16*((-12) + x2))), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x4), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4, 4), (256, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class unrotate(nn.Module): def __init__(self): super().__init__() def forward(self, x): x0, x90, x180, x270 = torch.chunk(x, 4, dim=0) x90 = x90.transpose(2, 3).flip(2) x180 = x180.flip(2).flip(3) x270 = x270.transpose(2, 3).flip(3) x = torch.cat((x0, x90, x180, x270), dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x1 = xindex // 4 % 4 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (67 + -1 * x1 + 4 * x0 + 16 * (-4 + x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (143 + -1 * x3 + 16 * (-8 + x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (204 + x1 + -4 * x0 + 16 * (-12 + x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x4, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 16, 4, 4), (256, 16, 4, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class unrotateNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
amonod/udvd
unrotate
false
1,425
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): x0, x90, x180, x270 = torch.chunk(x, 4, dim=0) x90 = x90.transpose(2, 3).flip(2) x180 = x180.flip(2).flip(3) x270 = x270.transpose(2, 3).flip(3) x = torch.cat((x0, x90, x180, x270), dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
SEModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] # Source node to ATen node mapping: # mean => mean # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [-1]), kwargs = {}) triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ad/cadccuyhl7stcp3nyqfgohiwbiv5ckfzxsye27ithwsill6dvmh4.py # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x_1 => convolution # x_2 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/lp/clprvnh5p6cmadxtwzizwydrpjlwxohxixbw4ntucp6srbu6gtis.py # Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # x_4 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, ), (1, )) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mean], Original ATen: [aten.mean] stream0 = get_raw_stream(0) triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 0, 0), 0), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 4, grid=grid(4), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_2.run(buf5, primals_5, 16, grid=grid(16), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_4, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_3.run(primals_1, buf5, buf6, 256, grid=grid(256), stream=stream0) return (buf6, primals_1, primals_2, primals_4, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf3, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class SEModule(nn.Module): def __init__(self, channels, reduction): super(SEModule, self).__init__() self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, x): module_input = x x = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x. size(1), 1, 1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channels': 4, 'reduction': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tl.store(in_out_ptr0 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 0, 0), 0), primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 1, 1), (1, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_3 buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(16)](buf5, primals_5, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf6, primals_1, primals_2, primals_4, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), buf3, buf5 class SEModuleNew(nn.Module): def __init__(self, channels, reduction): super(SEModuleNew, self).__init__() self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
amajidsinar/seer
SEModule
false
1,426
[ "Apache-2.0" ]
0
35f25b3fbf22968f0b09c266b8fd66a44fcc4d9c
https://github.com/amajidsinar/seer/tree/35f25b3fbf22968f0b09c266b8fd66a44fcc4d9c
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, channels, reduction): super().__init__() self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid() def forward(self, x): module_input = x x = x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x. size(1), 1, 1) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.sigmoid(x) return module_input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MNIST_CNN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xd/cxdqslrdqajmcxikxhvxi7lkzd2yepfzcwkkltrpstapeq35h632.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (4*x2) + (36*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/j5/cj5nf2owtsdm2zwcezqxpyn63iwddjyadpotkhm2ua52inoqxdcl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = (yindex // 4) tmp0 = tl.load(in_ptr0 + (x2 + (16*y3)), xmask & ymask) tl.store(out_ptr0 + (y0 + (4*x2) + (64*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ra/crarmf7s2qf36jg27hprl42qtwcxcnnoyrgzgevtstzj4qgsdzwl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/e4/ce4nidkyu2gtcdpalogjljsg5wvmcfnzpr4d7mxmzgqhcik7e3zy.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_4 = async_compile.triton('triton_poi_fused_convolution_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uo/cuoq67x7pplkn56jmv4egzgakdmdolviuhclk6uuvy2isp3yvvam.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_2 => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused_native_group_norm_5 = async_compile.triton('triton_per_fused_native_group_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[32, 128], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 32 rnumel = 128 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 8 r3 = (rindex // 8) x0 = xindex % 8 x1 = (xindex // 8) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (8*x0) + (64*r3) + (1024*x1)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 128, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 128.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + (x4), tmp23, xmask) tl.store(out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr1 + (x4), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/t3/ct3qwupet5zpwc3rrfmucbarfddm4ezt2y7zf5ute5oce57arckm.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_2 => add_1, mul_1 # Graph fragment: # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {}) # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {}) triton_poi_fused_native_group_norm_6 = async_compile.triton('triton_poi_fused_native_group_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = (xindex // 1024) tmp0 = tl.load(in_ptr0 + (x3), None) tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 8)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 128.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/bo/cboj3lo2ix24qbhixyncx6gvd7fcgojynowxk4mu7hyobzavs4tx.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_6, %primals_7, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_7 = async_compile.triton('triton_poi_fused_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7q/c7q6tque53rs7lodp6ydfpgpqa75zh7pikmsrf2pnpy6czejrkpz.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_5 => add_2, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_2,), kwargs = {}) triton_per_fused_native_group_norm_8 = async_compile.triton('triton_per_fused_native_group_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[32, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 32 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = (rindex // 16) x0 = xindex % 8 x1 = (xindex // 8) x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + (16*x0) + (128*r3) + (512*x1)), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + (x4), tmp23, xmask) tl.store(out_ptr0 + (x4), tmp12, xmask) tl.store(out_ptr1 + (x4), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uu/cuu4nxa6fxukpo23zd5i5bbo3jmi4tcdz5jxk75g5k63t4k6dxob.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] # Source node to ATen node mapping: # x_5 => add_3, mul_3 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %unsqueeze_11), kwargs = {}) # %add_3 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %unsqueeze_8), kwargs = {}) triton_poi_fused_native_group_norm_9 = async_compile.triton('triton_poi_fused_native_group_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_group_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2048 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = (xindex // 512) tmp0 = tl.load(in_ptr0 + (x3), None) tmp3 = tl.load(in_ptr1 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((8*x2) + (x0 // 16)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xr/cxrvhmzov25motoxdbptp5xb5kgxlq4dxjyz2c5uqkf2isadwdos.py # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean] # Source node to ATen node mapping: # x_11 => add_7, mul_7 # x_12 => mean # Graph fragment: # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_7, %unsqueeze_23), kwargs = {}) # %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_7, %unsqueeze_20), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_7, [-1, -2], True), kwargs = {}) triton_poi_fused_mean_native_group_norm_10 = async_compile.triton('triton_poi_fused_mean_native_group_norm_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_native_group_norm_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 128 x1 = (xindex // 128) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1)), xmask) tmp3 = tl.load(in_ptr1 + ((x2 // 16)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + ((x2 // 16)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (128 + x0 + (512*x1)), xmask) tmp23 = tl.load(in_ptr0 + (256 + x0 + (512*x1)), xmask) tmp30 = tl.load(in_ptr0 + (384 + x0 + (512*x1)), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = tmp17 - tmp3 tmp19 = tmp18 * tmp10 tmp20 = tmp19 * tmp12 tmp21 = tmp20 + tmp14 tmp22 = tmp15 + tmp21 tmp24 = triton_helpers.maximum(tmp1, tmp23) tmp25 = tmp24 - tmp3 tmp26 = tmp25 * tmp10 tmp27 = tmp26 * tmp12 tmp28 = tmp27 + tmp14 tmp29 = tmp22 + tmp28 tmp31 = triton_helpers.maximum(tmp1, tmp30) tmp32 = tmp31 - tmp3 tmp33 = tmp32 * tmp10 tmp34 = tmp33 * tmp12 tmp35 = tmp34 + tmp14 tmp36 = tmp29 + tmp35 tmp37 = 4.0 tmp38 = tmp36 / tmp37 tl.store(out_ptr0 + (x2), tmp38, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64, ), (1, )) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128, ), (1, )) assert_size_stride(primals_8, (128, ), (1, )) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128, ), (1, )) assert_size_stride(primals_12, (128, ), (1, )) assert_size_stride(primals_13, (128, ), (1, )) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128, ), (1, )) assert_size_stride(primals_16, (128, ), (1, )) assert_size_stride(primals_17, (128, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 256, 9, grid=grid(256, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 16, 16, grid=grid(16, 16), stream=stream0) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_6, buf2, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_6 buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_10, buf3, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_14, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_14 # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] triton_poi_fused_convolution_4.run(buf6, primals_2, 4096, grid=grid(4096), stream=stream0) del primals_2 buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_5.run(buf6, buf7, buf8, buf11, 32, 128, grid=grid(32), stream=stream0) buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_6.run(buf6, buf7, buf8, primals_4, primals_5, buf10, 4096, grid=grid(4096), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128)) buf13 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf13, primals_7, 2048, grid=grid(2048), stream=stream0) del primals_7 buf14 = buf8; del buf8 # reuse buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf13, buf14, buf15, buf18, 32, 64, grid=grid(32), stream=stream0) buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_9.run(buf13, buf14, buf15, primals_8, primals_9, buf17, 2048, grid=grid(2048), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128)) buf20 = buf19; del buf19 # reuse # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf20, primals_11, 2048, grid=grid(2048), stream=stream0) del primals_11 buf21 = buf15; del buf15 # reuse buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf20, buf21, buf22, buf25, 32, 64, grid=grid(32), stream=stream0) buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.native_group_norm] triton_poi_fused_native_group_norm_9.run(buf20, buf21, buf22, primals_12, primals_13, buf24, 2048, grid=grid(2048), stream=stream0) del primals_13 # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128)) buf27 = buf26; del buf26 # reuse # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.convolution] triton_poi_fused_convolution_7.run(buf27, primals_15, 2048, grid=grid(2048), stream=stream0) del primals_15 buf28 = buf22; del buf22 # reuse buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.native_group_norm] triton_per_fused_native_group_norm_8.run(buf27, buf28, buf29, buf31, 32, 64, grid=grid(32), stream=stream0) buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_11, x_12], Original ATen: [aten.native_group_norm, aten.mean] triton_poi_fused_mean_native_group_norm_10.run(buf27, buf28, buf29, primals_16, primals_17, buf32, 512, grid=grid(512), stream=stream0) del buf29 del primals_17 return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1, primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16, buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0), reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17, reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor(buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21, (4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0), buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0), reinterpret_tensor(buf31, (4, 8), (8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class MNIST_CNN(nn.Module): """ Hand-tuned architecture for MNIST. Weirdness I've noticed so far with this architecture: - adding a linear layer after the mean-pool in features hurts RotatedMNIST-100 generalization severely. """ n_outputs = 128 def __init__(self, input_shape): super(MNIST_CNN, self).__init__() self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1) self.bn0 = nn.GroupNorm(8, 64) self.bn1 = nn.GroupNorm(8, 128) self.bn2 = nn.GroupNorm(8, 128) self.bn3 = nn.GroupNorm(8, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.bn0(x) x = self.conv2(x) x = F.relu(x) x = self.bn1(x) x = self.conv3(x) x = F.relu(x) x = self.bn2(x) x = self.conv4(x) x = F.relu(x) x = self.bn3(x) x = self.avgpool(x) x = x.view(len(x), -1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_shape': [4, 4]}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 4 * x2 + 36 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_5(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 32 RBLOCK: tl.constexpr = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 8 r3 = rindex // 8 x0 = xindex % 8 x1 = xindex // 8 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 8 * x0 + 64 * r3 + 1024 * x1), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 128, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 128.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + x4, tmp23, xmask) tl.store(out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr1 + x4, tmp18, xmask) @triton.jit def triton_poi_fused_native_group_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 64 x2 = xindex // 1024 tmp0 = tl.load(in_ptr0 + x3, None) tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 8), None, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 128.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_convolution_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_per_fused_native_group_norm_8(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 32 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex % 16 r3 = rindex // 16 x0 = xindex % 8 x1 = xindex // 8 x4 = xindex tmp0 = tl.load(in_ptr0 + (r2 + 16 * x0 + 128 * r3 + 512 * x1), xmask, other=0.0) tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr2 + x4, tmp23, xmask) tl.store(out_ptr0 + x4, tmp12, xmask) tl.store(out_ptr1 + x4, tmp18, xmask) @triton.jit def triton_poi_fused_native_group_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 128 x2 = xindex // 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp3 = tl.load(in_ptr1 + (8 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr2 + (8 * x2 + x0 // 16), None, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr3 + x0, None, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_mean_native_group_norm_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 128 x1 = xindex // 128 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1), xmask) tmp3 = tl.load(in_ptr1 + x2 // 16, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + x2 // 16, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (128 + x0 + 512 * x1), xmask) tmp23 = tl.load(in_ptr0 + (256 + x0 + 512 * x1), xmask) tmp30 = tl.load(in_ptr0 + (384 + x0 + 512 * x1), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 - tmp3 tmp6 = 64.0 tmp7 = tmp5 / tmp6 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp4 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tmp17 = triton_helpers.maximum(tmp1, tmp16) tmp18 = tmp17 - tmp3 tmp19 = tmp18 * tmp10 tmp20 = tmp19 * tmp12 tmp21 = tmp20 + tmp14 tmp22 = tmp15 + tmp21 tmp24 = triton_helpers.maximum(tmp1, tmp23) tmp25 = tmp24 - tmp3 tmp26 = tmp25 * tmp10 tmp27 = tmp26 * tmp12 tmp28 = tmp27 + tmp14 tmp29 = tmp22 + tmp28 tmp31 = triton_helpers.maximum(tmp1, tmp30) tmp32 = tmp31 - tmp3 tmp33 = tmp32 * tmp10 tmp34 = tmp33 * tmp12 tmp35 = tmp34 + tmp14 tmp36 = tmp29 + tmp35 tmp37 = 4.0 tmp38 = tmp36 / tmp37 tl.store(out_ptr0 + x2, tmp38, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (64,), (1,)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128,), (1,)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (128,), (1,)) assert_size_stride(primals_12, (128,), (1,)) assert_size_stride(primals_13, (128,), (1,)) assert_size_stride(primals_14, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (128,), (1,)) assert_size_stride(primals_16, (128,), (1,)) assert_size_stride(primals_17, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4, 3, 3), (36, 1, 12, 4), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(256, 9)](primals_1, buf0, 256, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32) triton_poi_fused_1[grid(16, 16)](primals_3, buf1, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(8192, 9)](primals_6, buf2, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_10, buf3, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_14, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf5 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 64, 4, 4), (1024, 1, 256, 64)) buf6 = buf5 del buf5 triton_poi_fused_convolution_4[grid(4096)](buf6, primals_2, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf7 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf8 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf11 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_5[grid(32)](buf6, buf7, buf8, buf11, 32, 128, XBLOCK=1, num_warps=2, num_stages=1) buf10 = empty_strided_cuda((4, 64, 4, 4), (1024, 1, 256, 64), torch .float32) triton_poi_fused_native_group_norm_6[grid(4096)](buf6, buf7, buf8, primals_4, primals_5, buf10, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf12 = extern_kernels.convolution(buf10, buf2, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 2, 2), (512, 1, 256, 128)) buf13 = buf12 del buf12 triton_poi_fused_convolution_7[grid(2048)](buf13, primals_7, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf14 = buf8 del buf8 buf15 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf18 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf13, buf14, buf15, buf18, 32, 64, XBLOCK=1, num_warps=2, num_stages=1) buf17 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) triton_poi_fused_native_group_norm_9[grid(2048)](buf13, buf14, buf15, primals_8, primals_9, buf17, 2048, XBLOCK=256, num_warps =4, num_stages=1) del primals_9 buf19 = extern_kernels.convolution(buf17, buf3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 128, 2, 2), (512, 1, 256, 128)) buf20 = buf19 del buf19 triton_poi_fused_convolution_7[grid(2048)](buf20, primals_11, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_11 buf21 = buf15 del buf15 buf22 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf25 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf20, buf21, buf22, buf25, 32, 64, XBLOCK=1, num_warps=2, num_stages=1) buf24 = empty_strided_cuda((4, 128, 2, 2), (512, 1, 256, 128), torch.float32) triton_poi_fused_native_group_norm_9[grid(2048)](buf20, buf21, buf22, primals_12, primals_13, buf24, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_13 buf26 = extern_kernels.convolution(buf24, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 128, 2, 2), (512, 1, 256, 128)) buf27 = buf26 del buf26 triton_poi_fused_convolution_7[grid(2048)](buf27, primals_15, 2048, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf28 = buf22 del buf22 buf29 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) buf31 = empty_strided_cuda((4, 8, 1, 1), (8, 1, 32, 32), torch.float32) triton_per_fused_native_group_norm_8[grid(32)](buf27, buf28, buf29, buf31, 32, 64, XBLOCK=1, num_warps=2, num_stages=1) buf32 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch. float32) triton_poi_fused_mean_native_group_norm_10[grid(512)](buf27, buf28, buf29, primals_16, primals_17, buf32, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf29 del primals_17 return (reinterpret_tensor(buf32, (4, 128), (128, 1), 0), buf0, buf1, primals_4, buf2, primals_8, buf3, primals_12, buf4, primals_16, buf6, buf10, reinterpret_tensor(buf7, (4, 8), (8, 1), 0), reinterpret_tensor(buf11, (4, 8), (8, 1), 0), buf13, buf17, reinterpret_tensor(buf14, (4, 8), (8, 1), 0), reinterpret_tensor( buf18, (4, 8), (8, 1), 0), buf20, buf24, reinterpret_tensor(buf21, (4, 8), (8, 1), 0), reinterpret_tensor(buf25, (4, 8), (8, 1), 0), buf27, reinterpret_tensor(buf28, (4, 8), (8, 1), 0), reinterpret_tensor(buf31, (4, 8), (8, 1), 0)) class MNIST_CNNNew(nn.Module): """ Hand-tuned architecture for MNIST. Weirdness I've noticed so far with this architecture: - adding a linear layer after the mean-pool in features hurts RotatedMNIST-100 generalization severely. """ n_outputs = 128 def __init__(self, input_shape): super(MNIST_CNNNew, self).__init__() self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1) self.bn0 = nn.GroupNorm(8, 64) self.bn1 = nn.GroupNorm(8, 128) self.bn2 = nn.GroupNorm(8, 128) self.bn3 = nn.GroupNorm(8, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_6 = self.conv2.weight primals_7 = self.conv2.bias primals_10 = self.conv3.weight primals_8 = self.conv3.bias primals_14 = self.conv4.weight primals_9 = self.conv4.bias primals_4 = self.bn0.weight primals_5 = self.bn0.bias primals_11 = self.bn1.weight primals_12 = self.bn1.bias primals_13 = self.bn2.weight primals_15 = self.bn2.bias primals_16 = self.bn3.weight primals_17 = self.bn3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
alceubissoto/DomainBed
MNIST_CNN
false
1,427
[ "MIT" ]
0
80d54050f52fb5349e2a47c0674046e6d0674f3d
https://github.com/alceubissoto/DomainBed/tree/80d54050f52fb5349e2a47c0674046e6d0674f3d
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Model(nn.Module): """ Hand-tuned architecture for MNIST. Weirdness I've noticed so far with this architecture: - adding a linear layer after the mean-pool in features hurts RotatedMNIST-100 generalization severely. """ n_outputs = 128 def __init__(self, input_shape): super().__init__() self.conv1 = nn.Conv2d(input_shape[0], 64, 3, 1, padding=1) self.conv2 = nn.Conv2d(64, 128, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(128, 128, 3, 1, padding=1) self.conv4 = nn.Conv2d(128, 128, 3, 1, padding=1) self.bn0 = nn.GroupNorm(8, 64) self.bn1 = nn.GroupNorm(8, 128) self.bn2 = nn.GroupNorm(8, 128) self.bn3 = nn.GroupNorm(8, 128) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.bn0(x) x = self.conv2(x) x = F.relu(x) x = self.bn1(x) x = self.conv3(x) x = F.relu(x) x = self.bn2(x) x = self.conv4(x) x = F.relu(x) x = self.bn3(x) x = self.avgpool(x) x = x.view(len(x), -1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
shift
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/to/ctok5xpzvzzspgzbb4ppw5exunijjjynrq6wq7yp5kvmjrbkbcn5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [0, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x2 = (xindex // 20) x3 = xindex % 20 x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + x3 + (16*x2)), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 320, grid=grid(320), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (80, 20, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x2 = xindex // 20 x3 = xindex % 20 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + x3 + 16 * x2), tmp2 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(320)](arg0_1, buf0, 320, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 4), (80, 20, 4, 1), 0), class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shiftNew(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
amonod/udvd
shift
false
1,428
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Model(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
rotate
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rh/crhzcqrwbyogxtx6iij4cyuwv26rbclb7wzicwvct6bk7vhoj3fo.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] # Source node to ATen node mapping: # x => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %rev, %rev_2, %rev_3],), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 64 x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x5 = xindex % 16 x6 = xindex tmp0 = x3 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + (64*x3)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (12 + x1 + ((-4)*x0) + (16*x2) + (64*((-4) + x3))), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (15 + ((-1)*x5) + (16*x2) + (64*((-8) + x3))), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tmp17 = tl.full([1], 16, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (3 + ((-1)*x1) + (4*x0) + (16*x2) + (64*((-12) + x3))), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + (x6), tmp22, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class rotate(nn.Module): def __init__(self): super().__init__() def forward(self, x): x90 = x.transpose(2, 3).flip(3) x180 = x.flip(2).flip(3) x270 = x.transpose(2, 3).flip(2) x = torch.cat((x, x90, x180, x270), dim=0) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 64 x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x5 = xindex % 16 x6 = xindex tmp0 = x3 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x4 + 64 * x3), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (12 + x1 + -4 * x0 + 16 * x2 + 64 * (-4 + x3) ), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (15 + -1 * x5 + 16 * x2 + 64 * (-8 + x3)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (3 + -1 * x1 + 4 * x0 + 16 * x2 + 64 * (-12 + x3)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x6, tmp22, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class rotateNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
amonod/udvd
rotate
false
1,429
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): x90 = x.transpose(2, 3).flip(3) x180 = x.flip(2).flip(3) x270 = x.transpose(2, 3).flip(2) x = torch.cat((x, x90, x180, x270), dim=0) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CmapPafHead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf1, buf3, primals_1, primals_3, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn import torch.optim class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super(UpsampleCBR, self).__init__(*layers) class CmapPafHead(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super(CmapPafHead, self).__init__() if num_upsample > 0: self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0)) self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0)) else: self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): return self.cmap_conv(x), self.paf_conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_channels': 4, 'cmap_channels': 4, 'paf_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf1, buf3, primals_1, primals_3, primals_4 class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super(UpsampleCBR, self).__init__(*layers) class CmapPafHeadNew(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super(CmapPafHeadNew, self).__init__() if num_upsample > 0: self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0)) self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0)) else: self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_0): primals_1 = self.cmap_conv.weight primals_2 = self.cmap_conv.bias primals_4 = self.paf_conv.weight primals_5 = self.paf_conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0], output[1]
andreiday/trt_pose_motion_tracking_robot_arm
CmapPafHead
false
1,430
[ "MIT" ]
0
4ada47f6f12e18ce14ee53a22540e02923745dd8
https://github.com/andreiday/trt_pose_motion_tracking_robot_arm/tree/4ada47f6f12e18ce14ee53a22540e02923745dd8
import torch import torch.utils.data import torch.nn import torch.optim class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super().__init__(*layers) class Model(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super().__init__() if num_upsample > 0: self.cmap_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0)) self.paf_conv = torch.nn.Sequential(UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat), torch.nn.Conv2d (upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0)) else: self.cmap_conv = torch.nn.Conv2d(input_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(input_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): return self.cmap_conv(x), self.paf_conv(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
MAP_Linear_Layer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/v6/cv6odvhmmcyvquog4eo62pdliew53orxzwe2wfzampr64jy3ppa7.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn class MAP_Linear_Layer(nn.Module): def __init__(self, n_input, n_output): super(MAP_Linear_Layer, self).__init__() self.weight = nn.Parameter(torch.Tensor(n_input, n_output).normal_( 0, 1 / np.sqrt(4 * n_output))) self.bias = nn.Parameter(torch.Tensor(n_output).normal_(0, 1e-10)) def forward(self, x): return torch.matmul(x, self.weight) + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'n_input': 4, 'n_output': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_1, out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (4, 64), (1, 4), 0) class MAP_Linear_LayerNew(nn.Module): def __init__(self, n_input, n_output): super(MAP_Linear_LayerNew, self).__init__() self.weight = nn.Parameter(torch.Tensor(n_input, n_output).normal_( 0, 1 / np.sqrt(4 * n_output))) self.bias = nn.Parameter(torch.Tensor(n_output).normal_(0, 1e-10)) def forward(self, input_0): primals_1 = self.weight primals_3 = self.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
andrewfoongyk/cs230-code-examples
MAP_Linear_Layer
false
1,431
[ "MIT" ]
0
8e12aa3414bdada6ec6002bedf919a6816ba237c
https://github.com/andrewfoongyk/cs230-code-examples/tree/8e12aa3414bdada6ec6002bedf919a6816ba237c
import torch import numpy as np import torch.nn as nn class Model(nn.Module): def __init__(self, n_input, n_output): super().__init__() self.weight = nn.Parameter(torch.Tensor(n_input, n_output).normal_( 0, 1 / np.sqrt(4 * n_output))) self.bias = nn.Parameter(torch.Tensor(n_output).normal_(0, 1e-10)) def forward(self, x): return torch.matmul(x, self.weight) + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
LossD
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/i3/ci3c7fnw5rczknd4h5glbo65h6twmktguqvs4izweqqc2cxqtzyn.py # Topologically Sorted Source Nodes: [add, relu, sub, relu_1, add_1, mean], Original ATen: [aten.add, aten.relu, aten.rsub, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # mean => mean # relu => relu # relu_1 => relu_1 # sub => sub # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%relu, %relu_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_mean_relu_rsub_0 = async_compile.triton('triton_per_fused_add_mean_relu_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_relu_rsub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_relu_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp5 = tl.load(in_ptr1 + (r0), None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp1 - tmp5 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 + tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 256.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp13, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [add, relu, sub, relu_1, add_1, mean], Original ATen: [aten.add, aten.relu, aten.rsub, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_add_mean_relu_rsub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (reinterpret_tensor(buf1, (1, ), (1, ), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn from torch.nn import functional as F class LossD(nn.Module): def __init__(self, gpu=None): super(LossD, self).__init__() self.gpu = gpu if gpu is not None: self def forward(self, r_x, r_x_hat): if self.gpu is not None: r_x = r_x r_x_hat = r_x_hat return (F.relu(1 + r_x_hat) + F.relu(1 - r_x)).mean().reshape(1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_mean_relu_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp1 - tmp5 tmp7 = triton_helpers.maximum(tmp3, tmp6) tmp8 = tmp4 + tmp7 tmp9 = tl.broadcast_to(tmp8, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 256.0 tmp13 = tmp11 / tmp12 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp13, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_relu_rsub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return reinterpret_tensor(buf1, (1,), (1,), 0), class LossDNew(nn.Module): def __init__(self, gpu=None): super(LossDNew, self).__init__() self.gpu = gpu if gpu is not None: self def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
andy6804tw/talking-hands-API
LossD
false
1,432
[ "MIT" ]
0
4895c980565082b0fdcabbc704ee871855e6d5f5
https://github.com/andy6804tw/talking-hands-API/tree/4895c980565082b0fdcabbc704ee871855e6d5f5
import torch import torch.nn as nn from torch.nn import functional as F class Model(nn.Module): def __init__(self, gpu=None): super().__init__() self.gpu = gpu if gpu is not None: self def forward(self, r_x, r_x_hat): if self.gpu is not None: r_x = r_x r_x_hat = r_x_hat return (F.relu(1 + r_x_hat) + F.relu(1 - r_x)).mean().reshape(1) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CompActor
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # z => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py # Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # z_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {}) triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4, ), (1, )) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 256, grid=grid(256), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 256, grid=grid(256), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_1.run(buf6, primals_9, 256, grid=grid(256), stream=stream0) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [z_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_11 return (reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, buf6, primals_10, primals_8, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch class CompActor(torch.nn.Module): def __init__(self, state_dim: 'int', hidden_dim: 'int', action_dim: 'int'): super(CompActor, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim) self.fc3 = torch.nn.Linear(hidden_dim, action_dim) self.fc4 = torch.nn.Linear(action_dim, action_dim) self.fc5 = torch.nn.Linear(action_dim, action_dim) torch.nn.init.constant_(self.fc4.weight, 0) torch.nn.init.constant_(self.fc4.bias, 0) torch.nn.init.constant_(self.fc5.weight, 0) torch.nn.init.constant_(self.fc5.bias, -1) with torch.no_grad(): for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 def forward(self, x): z = torch.relu(self.fc1(x)) z = torch.relu(self.fc2(z)) z = self.fc3(z) z = torch.sigmoid(self.fc4(z)) z = self.fc5(z) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'hidden_dim': 4, 'action_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4, 4), (4, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 4), (1, 4 ), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_sigmoid_1[grid(256)](buf6, primals_9, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7) del primals_11 return reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0 ), buf4, buf6, primals_10, primals_8, primals_6, buf8, primals_4, buf9 class CompActorNew(torch.nn.Module): def __init__(self, state_dim: 'int', hidden_dim: 'int', action_dim: 'int'): super(CompActorNew, self).__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim) self.fc3 = torch.nn.Linear(hidden_dim, action_dim) self.fc4 = torch.nn.Linear(action_dim, action_dim) self.fc5 = torch.nn.Linear(action_dim, action_dim) torch.nn.init.constant_(self.fc4.weight, 0) torch.nn.init.constant_(self.fc4.bias, 0) torch.nn.init.constant_(self.fc5.weight, 0) torch.nn.init.constant_(self.fc5.bias, -1) with torch.no_grad(): for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
andreabradpitto/turtlex
CompActor
false
1,433
[ "Apache-2.0" ]
0
37a2315450f896d10dcb9ebc8968207e476dcf82
https://github.com/andreabradpitto/turtlex/tree/37a2315450f896d10dcb9ebc8968207e476dcf82
import torch class Model(torch.nn.Module): def __init__(self, state_dim: 'int', hidden_dim: 'int', action_dim: 'int'): super().__init__() self.fc1 = torch.nn.Linear(state_dim, hidden_dim) self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim) self.fc3 = torch.nn.Linear(hidden_dim, action_dim) self.fc4 = torch.nn.Linear(action_dim, action_dim) self.fc5 = torch.nn.Linear(action_dim, action_dim) torch.nn.init.constant_(self.fc4.weight, 0) torch.nn.init.constant_(self.fc4.bias, 0) torch.nn.init.constant_(self.fc5.weight, 0) torch.nn.init.constant_(self.fc5.bias, -1) with torch.no_grad(): for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 for idx, elem in enumerate(self.fc4.weight): elem[idx] = 2 def forward(self, x): z = torch.relu(self.fc1(x)) z = torch.relu(self.fc2(z)) z = self.fc3(z) z = torch.sigmoid(self.fc4(z)) z = self.fc5(z) return z def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3w/c3wk4dew6hre2j5pafyhvw4d4ejdth475l2pb4uou3ln3hu2ijdf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.replication_pad2d] # Source node to ATen node mapping: # x => constant_pad_nd # x_1 => _unsafe_index, _unsafe_index_1 # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [0, 0, 1, 0], 0.0), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%constant_pad_nd, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_constant_pad_nd_replication_pad2d_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_replication_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 7 x0 = xindex % 6 x2 = (xindex // 42) x3 = xindex tmp0 = (-1) + ((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4))) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + (4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/sc/cscl36nzv3adkfvzo3nbv2knix4cx3n454oapm6d6qnldfqqu4es.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_3 => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.1), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_1 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.replication_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_replication_pad2d_0.run(primals_1, buf0, 672, grid=grid(672), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 4), (80, 20, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_1.run(buf1, buf2, buf3, 320, grid=grid(320), stream=stream0) del buf1 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 20, 4, 1), 0), primals_2, buf0, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 7 x0 = xindex % 6 x2 = xindex // 42 x3 = xindex tmp0 = -1 + (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + 4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 16 * x2 + (3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + ( 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + x3, tmp3, xmask) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_replication_pad2d_0[grid(672)]( primals_1, buf0, 672, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 4), (80, 20, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_leaky_relu_leaky_relu_backward_1[grid(320)](buf1, buf2, buf3, 320, XBLOCK=256, num_warps=4, num_stages=1) del buf1 return reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 20, 4, 1), 0 ), primals_2, buf0, buf2 class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class ConvNew(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
amonod/udvd
Conv
false
1,434
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Model(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
MLP
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_2 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # input_4 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) # Topologically Sorted Source Nodes: [input_2], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 16384, grid=grid(16384), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) # Topologically Sorted Source Nodes: [input_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf5, 8192, grid=grid(8192), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), primals_6, buf5, primals_4, buf6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 128), (128, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.optim as optim from collections import OrderedDict class MLP(nn.Module): def __init__(self, input_size, output_size): super(MLP, self).__init__() self.input_size = input_size self.output_size = output_size self.mlp = nn.Sequential(OrderedDict([('linear1', nn.Linear(self. input_size, 256)), ('relu1', nn.ReLU()), ('linear2', nn.Linear( 256, 128)), ('relu2', nn.ReLU()), ('linear3', nn.Linear(128, self.output_size))])) def forward(self, text): out = self.mlp(text) return out def construct_sparse_tensor(self, coo): """import torch import numpy as np from scipy.sparse import coo_matrix""" values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense() def train_mlp(self, x_train: 'torch.Tensor', x_val: 'torch.Tensor', x_test: 'torch.Tensor', y_train: 'torch.Tensor', y_val: 'torch.Tensor', y_test: 'torch.Tensor', hparams: 'dict'): lr = hparams['lr'] epochs = hparams['epochs'] batch_size = hparams['batch_size'] patience = hparams['patience'] optimizer = optim.Adam(self.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() best_acc = np.NINF trace_train = [] trace_val = [] for epoch in range(epochs): running_train_loss = 0.0 running_train_acc = 0.0 None for i in tqdm(range(0, x_train.shape[0], batch_size)): batch = x_train[i:i + batch_size] label = y_train[i:i + batch_size] output = self.forward(batch) loss = criterion(output, label) predictions = output.argmax(axis=1) running_train_acc += (predictions == label).sum() optimizer.zero_grad() loss.backward() running_train_loss += loss.item() optimizer.step() running_val_loss = 0.0 running_val_acc = 0.0 for i in tqdm(range(0, x_val.shape[0], batch_size)): batch = x_val[i:i + batch_size] label = y_val[i:i + batch_size] output = self.forward(batch) predictions = output.argmax(axis=1) running_val_acc += (predictions == label).sum() loss = criterion(output, label) running_val_loss += loss.item() None trace_train.append(running_train_loss) trace_val.append(running_val_loss) if running_val_acc > best_acc: best_acc = running_val_acc best_epoch = epoch best_state = {key: value.cpu() for key, value in self. state_dict().items()} elif epoch >= best_epoch + patience: break self.load_state_dict(best_state) torch.save(best_state, 'model.pt') predictions = self.forward(x_test).argmax(axis=1) (predictions == y_test).sum() None None return trace_train, trace_val def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn import torch.optim as optim from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (4, 128), (128, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf6, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf5, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 4), (1, 128), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), reinterpret_tensor(buf3, (64, 128), (128, 1), 0 ), primals_6, buf5, primals_4, buf6 class MLPNew(nn.Module): def __init__(self, input_size, output_size): super(MLPNew, self).__init__() self.input_size = input_size self.output_size = output_size self.mlp = nn.Sequential(OrderedDict([('linear1', nn.Linear(self. input_size, 256)), ('relu1', nn.ReLU()), ('linear2', nn.Linear( 256, 128)), ('relu2', nn.ReLU()), ('linear3', nn.Linear(128, self.output_size))])) def construct_sparse_tensor(self, coo): """import torch import numpy as np from scipy.sparse import coo_matrix""" values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense() def train_mlp(self, x_train: 'torch.Tensor', x_val: 'torch.Tensor', x_test: 'torch.Tensor', y_train: 'torch.Tensor', y_val: 'torch.Tensor', y_test: 'torch.Tensor', hparams: 'dict'): lr = hparams['lr'] epochs = hparams['epochs'] batch_size = hparams['batch_size'] patience = hparams['patience'] optimizer = optim.Adam(self.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() best_acc = np.NINF trace_train = [] trace_val = [] for epoch in range(epochs): running_train_loss = 0.0 running_train_acc = 0.0 None for i in tqdm(range(0, x_train.shape[0], batch_size)): batch = x_train[i:i + batch_size] label = y_train[i:i + batch_size] output = self.forward(batch) loss = criterion(output, label) predictions = output.argmax(axis=1) running_train_acc += (predictions == label).sum() optimizer.zero_grad() loss.backward() running_train_loss += loss.item() optimizer.step() running_val_loss = 0.0 running_val_acc = 0.0 for i in tqdm(range(0, x_val.shape[0], batch_size)): batch = x_val[i:i + batch_size] label = y_val[i:i + batch_size] output = self.forward(batch) predictions = output.argmax(axis=1) running_val_acc += (predictions == label).sum() loss = criterion(output, label) running_val_loss += loss.item() None trace_train.append(running_train_loss) trace_val.append(running_val_loss) if running_val_acc > best_acc: best_acc = running_val_acc best_epoch = epoch best_state = {key: value.cpu() for key, value in self. state_dict().items()} elif epoch >= best_epoch + patience: break self.load_state_dict(best_state) torch.save(best_state, 'model.pt') predictions = self.forward(x_test).argmax(axis=1) (predictions == y_test).sum() None None return trace_train, trace_val def forward(self, input_0): primals_1 = self.mlp.linear1.weight primals_2 = self.mlp.linear1.bias primals_4 = self.mlp.linear2.weight primals_5 = self.mlp.linear2.bias primals_6 = self.mlp.linear3.weight primals_7 = self.mlp.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
andreasbinder/Stochastic-Graph-assisted-Genre-Classification
MLP
false
1,435
[ "MIT" ]
0
78752716030466f02424dcf1cbe5a66d756a13c4
https://github.com/andreasbinder/Stochastic-Graph-assisted-Genre-Classification/tree/78752716030466f02424dcf1cbe5a66d756a13c4
import torch import numpy as np import torch.nn as nn import torch.optim as optim from collections import OrderedDict class Model(nn.Module): def __init__(self, input_size, output_size): super().__init__() self.input_size = input_size self.output_size = output_size self.mlp = nn.Sequential(OrderedDict([('linear1', nn.Linear(self. input_size, 256)), ('relu1', nn.ReLU()), ('linear2', nn.Linear( 256, 128)), ('relu2', nn.ReLU()), ('linear3', nn.Linear(128, self.output_size))])) def forward(self, text): out = self.mlp(text) return out def construct_sparse_tensor(self, coo): """import torch import numpy as np from scipy.sparse import coo_matrix""" values = coo.data indices = np.vstack((coo.row, coo.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = coo.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)).to_dense() def train_mlp(self, x_train: 'torch.Tensor', x_val: 'torch.Tensor', x_test: 'torch.Tensor', y_train: 'torch.Tensor', y_val: 'torch.Tensor', y_test: 'torch.Tensor', hparams: 'dict'): lr = hparams['lr'] epochs = hparams['epochs'] batch_size = hparams['batch_size'] patience = hparams['patience'] optimizer = optim.Adam(self.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() best_acc = np.NINF trace_train = [] trace_val = [] for epoch in range(epochs): running_train_loss = 0.0 running_train_acc = 0.0 None for i in tqdm(range(0, x_train.shape[0], batch_size)): batch = x_train[i:i + batch_size] label = y_train[i:i + batch_size] output = self.forward(batch) loss = criterion(output, label) predictions = output.argmax(axis=1) running_train_acc += (predictions == label).sum() optimizer.zero_grad() loss.backward() running_train_loss += loss.item() optimizer.step() running_val_loss = 0.0 running_val_acc = 0.0 for i in tqdm(range(0, x_val.shape[0], batch_size)): batch = x_val[i:i + batch_size] label = y_val[i:i + batch_size] output = self.forward(batch) predictions = output.argmax(axis=1) running_val_acc += (predictions == label).sum() loss = criterion(output, label) running_val_loss += loss.item() None trace_train.append(running_train_loss) trace_val.append(running_val_loss) if running_val_acc > best_acc: best_acc = running_val_acc best_epoch = epoch best_state = {key: value.cpu() for key, value in self. state_dict().items()} elif epoch >= best_epoch + patience: break self.load_state_dict(best_state) torch.save(best_state, 'model.pt') predictions = self.forward(x_test).argmax(axis=1) (predictions == y_test).sum() None None return trace_train, trace_val def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
N3
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ec/cecxaevczwpjfvlnvww6xb3zvhrfy6jf4angrqvnnpihnqxivk4m.py # Topologically Sorted Source Nodes: [abs_1, pow_1, sum_1, mul, norm, abs_2, pow_2, sum_2, mul_1, norm_1, abs_3, pow_3, sum_3, mul_2, norm_2, abs_4, pow_4, sum_4, mul_3, norm_3, truediv], Original ATen: [aten.abs, aten.pow, aten.sum, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # abs_3 => abs_3 # abs_4 => abs_4 # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # norm => add # norm_1 => add_1 # norm_2 => add_2 # norm_3 => add_3 # pow_1 => pow_1 # pow_2 => pow_2 # pow_3 => pow_3 # pow_4 => pow_4 # sum_1 => sum_1 # sum_2 => sum_2 # sum_3 => sum_3 # sum_4 => sum_4 # truediv => div # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select,), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 3), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_1,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_2, 3), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_2,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_2,), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_3, 3), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_3,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_3, 4), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%select_3,), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_4, 3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_4,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 4), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused_abs_add_div_mul_pow_sum_0 = async_compile.triton('triton_per_fused_abs_add_div_mul_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mul_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mul_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp7 = tl.load(in_ptr0 + (64 + r0), None) tmp14 = tl.load(in_ptr0 + (128 + r0), None) tmp21 = tl.load(in_ptr0 + (192 + r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = tmp1 * tmp1 tmp3 = tmp2 * tmp1 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp8 = tl_math.abs(tmp7) tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp8 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp15 = tl_math.abs(tmp14) tmp16 = tmp15 * tmp15 tmp17 = tmp16 * tmp15 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp22 = tl_math.abs(tmp21) tmp23 = tmp22 * tmp22 tmp24 = tmp23 * tmp22 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 4.0 tmp29 = tmp6 * tmp28 tmp30 = 0.0 tmp31 = tmp29 + tmp30 tmp32 = tmp13 * tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp20 * tmp28 tmp35 = tmp33 + tmp34 tmp36 = tmp27 * tmp28 tmp37 = tmp35 + tmp36 tmp38 = 0.25 tmp39 = tmp37 * tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp39, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [abs_1, pow_1, sum_1, mul, norm, abs_2, pow_2, sum_2, mul_1, norm_1, abs_3, pow_3, sum_3, mul_2, norm_2, abs_4, pow_4, sum_4, mul_3, norm_3, truediv], Original ATen: [aten.abs, aten.pow, aten.sum, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mul_pow_sum_0.run(buf4, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class N3(Regularizer): def __init__(self, weight: 'float'): super(N3, self).__init__() self.weight = weight def forward(self, factors): norm = 0 for f in factors: norm += self.weight * torch.sum(torch.abs(f) ** 3) return norm / factors[0].shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mul_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp7 = tl.load(in_ptr0 + (64 + r0), None) tmp14 = tl.load(in_ptr0 + (128 + r0), None) tmp21 = tl.load(in_ptr0 + (192 + r0), None) tmp1 = tl_math.abs(tmp0) tmp2 = tmp1 * tmp1 tmp3 = tmp2 * tmp1 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp8 = tl_math.abs(tmp7) tmp9 = tmp8 * tmp8 tmp10 = tmp9 * tmp8 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp15 = tl_math.abs(tmp14) tmp16 = tmp15 * tmp15 tmp17 = tmp16 * tmp15 tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp22 = tl_math.abs(tmp21) tmp23 = tmp22 * tmp22 tmp24 = tmp23 * tmp22 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 4.0 tmp29 = tmp6 * tmp28 tmp30 = 0.0 tmp31 = tmp29 + tmp30 tmp32 = tmp13 * tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp20 * tmp28 tmp35 = tmp33 + tmp34 tmp36 = tmp27 * tmp28 tmp37 = tmp35 + tmp36 tmp38 = 0.25 tmp39 = tmp37 * tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp39, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_mul_pow_sum_0[grid(1)](buf4, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf4, class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class N3New(Regularizer): def __init__(self, weight: 'float'): super(N3New, self).__init__() self.weight = weight def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
angusl95/darts-kbc
N3
false
1,436
[ "Apache-2.0" ]
0
85fc6f4bdb7ba73c07d96ce47e96634599b346f9
https://github.com/angusl95/darts-kbc/tree/85fc6f4bdb7ba73c07d96ce47e96634599b346f9
import torch import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class Model(Regularizer): def __init__(self, weight: 'float'): super().__init__() self.weight = weight def forward(self, factors): norm = 0 for f in factors: norm += self.weight * torch.sum(torch.abs(f) ** 3) return norm / factors[0].shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
Stack
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/6d/c6dttqk6xutp77btpuo4ywspudms2jqt6a26lv6ujp22nczd4jrp.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone] # Source node to ATen node mapping: # x => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 1024, grid=grid(1024), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 16, 4, 4), (256, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils import torch.utils.data class Stack(torch.nn.Module): def __init__(self, repeats): super(Stack, self).__init__() self.repeats = repeats def forward(self, x): x = torch.repeat_interleave(x, self.repeats, dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'repeats': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(1024)](arg0_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 16, 4, 4), (256, 16, 4, 1), 0), class StackNew(torch.nn.Module): def __init__(self, repeats): super(StackNew, self).__init__() self.repeats = repeats def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
angusl95/darts-kbc
Stack
false
1,437
[ "Apache-2.0" ]
0
85fc6f4bdb7ba73c07d96ce47e96634599b346f9
https://github.com/angusl95/darts-kbc/tree/85fc6f4bdb7ba73c07d96ce47e96634599b346f9
import torch import torch.utils import torch.utils.data class Model(torch.nn.Module): def __init__(self, repeats): super().__init__() self.repeats = repeats def forward(self, x): x = torch.repeat_interleave(x, self.repeats, dim=1) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
StatsNet
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7r/c7ropiifeibl5ynmvclnzdbugv3jj2chhjkp6274o2examg2m3ba.py # Topologically Sorted Source Nodes: [mean, std], Original ATen: [aten.mean, aten.std] # Source node to ATen node mapping: # mean => mean # std => sqrt, var # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [2]), kwargs = {correction: 1.0}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {}) triton_per_fused_mean_std_0 = async_compile.triton('triton_per_fused_mean_std_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_std_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tl.store(out_ptr2 + (x2 + (8*x3)), tmp20, xmask) tl.store(out_ptr3 + (x2 + (8*x3)), tmp23, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf4 = reinterpret_tensor(buf6, (4, 4), (8, 1), 0) # alias buf5 = reinterpret_tensor(buf6, (4, 4), (8, 1), 4) # alias # Topologically Sorted Source Nodes: [mean, std], Original ATen: [aten.mean, aten.std] stream0 = get_raw_stream(0) triton_per_fused_mean_std_0.run(arg0_1, buf4, buf5, 16, 16, grid=grid(16), stream=stream0) del arg0_1 return (reinterpret_tensor(buf6, (4, 2, 4), (8, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class StatsNet(nn.Module): def __init__(self): super(StatsNet, self).__init__() def forward(self, x): x = x.view(x.data.shape[0], x.data.shape[1], x.data.shape[2] * x. data.shape[3]) mean = torch.mean(x, 2) std = torch.std(x, 2) return torch.stack((mean, std), dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_std_0(in_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tl.store(out_ptr2 + (x2 + 8 * x3), tmp20, xmask) tl.store(out_ptr3 + (x2 + 8 * x3), tmp23, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf6 = empty_strided_cuda((4, 8), (8, 1), torch.float32) buf4 = reinterpret_tensor(buf6, (4, 4), (8, 1), 0) buf5 = reinterpret_tensor(buf6, (4, 4), (8, 1), 4) get_raw_stream(0) triton_per_fused_mean_std_0[grid(16)](arg0_1, buf4, buf5, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 return reinterpret_tensor(buf6, (4, 2, 4), (8, 4, 1), 0), class StatsNetNew(nn.Module): def __init__(self): super(StatsNetNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
angelicagardner/ensemble-cnn-deepfakes-detection
StatsNet
false
1,438
[ "BSD-3-Clause" ]
0
8740d2317848250249c741e0af5c4cbbe2d8af46
https://github.com/angelicagardner/ensemble-cnn-deepfakes-detection/tree/8740d2317848250249c741e0af5c4cbbe2d8af46
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() def forward(self, x): x = x.view(x.data.shape[0], x.data.shape[1], x.data.shape[2] * x. data.shape[3]) mean = torch.mean(x, 2) std = torch.std(x, 2) return torch.stack((mean, std), dim=1) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
AdaIn
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ug/cugwqquvdhtlzmyut6zeharqyibz2rr5f3ehhgl5us26wbpqrczv.py # Topologically Sorted Source Nodes: [mean, sub, mul, std, truediv, adain], Original ATen: [aten.mean, aten.sub, aten.mul, aten.std, aten.div, aten.add] # Source node to ATen node mapping: # adain => add_1 # mean => mean # mul => mul # std => var # sub => sub # truediv => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [2]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %view_2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %sub), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%view, [2]), kwargs = {correction: 1.0}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %arg2_1), kwargs = {}) triton_per_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_per_fused_add_div_mean_mul_std_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp19 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0) tmp30 = tl.load(in_ptr2 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = 16.0 tmp21 = tmp4 / tmp20 tmp22 = tmp0 - tmp21 tmp23 = tmp19 * tmp22 tmp24 = 15.0 tmp25 = tmp18 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-05 tmp28 = tmp26 + tmp27 tmp29 = tmp23 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr2 + (r1 + (16*x0)), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 16), (64, 16, 1)) assert_size_stride(arg2_1, (4, 4, 16), (64, 16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sub, mul, std, truediv, adain], Original ATen: [aten.mean, aten.sub, aten.mul, aten.std, aten.div, aten.add] stream0 = get_raw_stream(0) triton_per_fused_add_div_mean_mul_std_sub_0.run(arg0_1, arg1_1, arg2_1, buf4, 16, 16, grid=grid(16), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 16), (64, 16, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 16), (64, 16, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class AdaIn(nn.Module): def __init__(self): super(AdaIn, self).__init__() self.eps = 1e-05 def forward(self, x, mean_style, std_style): B, C, H, W = x.shape feature = x.view(B, C, -1) std_feat = (torch.std(feature, dim=2) + self.eps).view(B, C, 1) mean_feat = torch.mean(feature, dim=2).view(B, C, 1) adain = std_style * (feature - mean_feat) / std_feat + mean_style adain = adain.view(B, C, H, W) return adain def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 16]), torch.rand([4, 4, 16])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp19 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp30 = tl.load(in_ptr2 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp20 = 16.0 tmp21 = tmp4 / tmp20 tmp22 = tmp0 - tmp21 tmp23 = tmp19 * tmp22 tmp24 = 15.0 tmp25 = tmp18 / tmp24 tmp26 = libdevice.sqrt(tmp25) tmp27 = 1e-05 tmp28 = tmp26 + tmp27 tmp29 = tmp23 / tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr2 + (r1 + 16 * x0), tmp31, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 16), (64, 16, 1)) assert_size_stride(arg2_1, (4, 4, 16), (64, 16, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_std_sub_0[grid(16)](arg0_1, arg1_1, arg2_1, buf4, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), class AdaInNew(nn.Module): def __init__(self): super(AdaInNew, self).__init__() self.eps = 1e-05 def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
andy6804tw/talking-hands-API
AdaIn
false
1,439
[ "MIT" ]
0
4895c980565082b0fdcabbc704ee871855e6d5f5
https://github.com/andy6804tw/talking-hands-API/tree/4895c980565082b0fdcabbc704ee871855e6d5f5
import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.eps = 1e-05 def forward(self, x, mean_style, std_style): B, C, H, W = x.shape feature = x.view(B, C, -1) std_feat = (torch.std(feature, dim=2) + self.eps).view(B, C, 1) mean_feat = torch.mean(feature, dim=2).view(B, C, 1) adain = std_style * (feature - mean_feat) / std_feat + mean_style adain = adain.view(B, C, H, W) return adain def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 16]), torch.rand([4, 4, 16])] def get_init_inputs(): return []
DEC_Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/c5/cc5y6xkdqhzhg7mu3y2nor5pfztbc2eoeyxfvy4cbcl22ncs4hmw.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten._unsafe_index, aten.constant_pad_nd] # Source node to ATen node mapping: # x => _unsafe_index # x_1 => constant_pad_nd # Graph fragment: # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%_unsafe_index, [-2, -2, -2, -2], 0.0), kwargs = {}) triton_poi_fused__unsafe_index_constant_pad_nd_0 = async_compile.triton('triton_poi_fused__unsafe_index_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 4 x0 = xindex % 4 x2 = (xindex // 16) x5 = xindex tmp0 = 2 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 2 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tmp0.to(tl.float32) tmp12 = 0.5 tmp13 = tmp11 * tmp12 tmp14 = tmp13.to(tl.int32) tmp15 = tmp5.to(tl.float32) tmp16 = tmp15 * tmp12 tmp17 = tmp16.to(tl.int32) tmp18 = tl.load(in_ptr0 + (tmp17 + (4*tmp14) + (16*x2)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x5), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ur/curbyve7d3snnweffjbgmv7r4hdnyurumpeiwyskxsipaqv7nba4.py # Topologically Sorted Source Nodes: [x_2, x_3, x_4], Original ATen: [aten.cat, aten.constant_pad_nd, aten.replication_pad2d] # Source node to ATen node mapping: # x_2 => cat # x_3 => constant_pad_nd_1 # x_4 => _unsafe_index_1, _unsafe_index_2 # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%constant_pad_nd, %primals_2], 1), kwargs = {}) # %constant_pad_nd_1 : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%cat, [0, 0, 1, 0], 0.0), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%constant_pad_nd_1, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_1, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1 = async_compile.triton('triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 7 x2 = (xindex // 42) % 4 x0 = xindex % 6 x3 = (xindex // 168) x5 = xindex tmp0 = (-1) + ((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4))) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = x2 tmp4 = tmp3 >= tmp1 tmp5 = tl.full([1], 1, tl.int64) tmp6 = tmp3 < tmp5 tmp7 = tmp6 & tmp2 tmp8 = tl.load(in_ptr0 + ((-4) + (4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (16*x3) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp3 >= tmp5 tmp10 = tl.full([1], 4, tl.int64) tmp11 = tmp3 < tmp10 tmp12 = tmp9 & tmp2 tmp13 = tl.load(in_ptr1 + ((-4) + (4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (16*((-1) + x2)) + (48*x3) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp6, tmp8, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tl.store(out_ptr0 + (x5), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/tf/ctfzvbahrv23jmpe2yopmvu5lnb4uqak6pdottlr22met7i7w2oa.py # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_8 => constant_pad_nd_2 # Graph fragment: # %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_2, [0, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_2 = async_compile.triton('triton_poi_fused_constant_pad_nd_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x3 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + x3), tmp2 & xmask, other=0.0) tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.1 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp2, tmp8, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/5l/c5lfrde5jay5wguumut2ygr2uwoj274ig772b6ur5mo33wola3fe.py # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.replication_pad2d] # Source node to ATen node mapping: # x_9 => _unsafe_index_3, _unsafe_index_4 # Graph fragment: # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%constant_pad_nd_2, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_replication_pad2d_3 = async_compile.triton('triton_poi_fused_replication_pad2d_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_replication_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 7 x2 = (xindex // 42) x3 = xindex tmp0 = tl.load(in_ptr0 + ((4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (20*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ce/ccel7cpr5sdul7ce3m6tshtskeuxks6mquw3t6e3lpiaruhw6wxt.py # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_21 => gt_3, mul_7, where_3 # Graph fragment: # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.1), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_7), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_3, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_4 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + (x0), tmp6, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/wj/cwj6bijtxnckw467udrvu5e7mpuklkk5yv4734l2hdbkkmu5swzf.py # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_16 => gt_2, mul_6, where_2 # Graph fragment: # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_6), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten._unsafe_index, aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_constant_pad_nd_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2, x_3, x_4], Original ATen: [aten.cat, aten.constant_pad_nd, aten.replication_pad2d] triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1.run(buf0, primals_2, buf1, 672, grid=grid(672), stream=stream0) del buf0 del primals_2 # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 5, 4), (80, 20, 4, 1)) buf3 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_2.run(buf2, buf3, 320, grid=grid(320), stream=stream0) buf4 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.replication_pad2d] triton_poi_fused_replication_pad2d_3.run(buf3, buf4, 672, grid=grid(672), stream=stream0) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 5, 4), (80, 20, 4, 1)) buf6 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_2.run(buf5, buf6, 320, grid=grid(320), stream=stream0) buf7 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.replication_pad2d] triton_poi_fused_replication_pad2d_3.run(buf6, buf7, 672, grid=grid(672), stream=stream0) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 5, 4), (80, 20, 4, 1)) buf9 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_2.run(buf8, buf9, 320, grid=grid(320), stream=stream0) buf10 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_19], Original ATen: [aten.replication_pad2d] triton_poi_fused_replication_pad2d_3.run(buf9, buf10, 672, grid=grid(672), stream=stream0) # Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 5, 4), (80, 20, 4, 1)) buf12 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) buf16 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_21], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_4.run(buf11, buf12, buf16, 320, grid=grid(320), stream=stream0) del buf11 buf13 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_5.run(buf8, buf13, 320, grid=grid(320), stream=stream0) del buf8 buf14 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_5.run(buf5, buf14, 320, grid=grid(320), stream=stream0) del buf5 buf15 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_5.run(buf2, buf15, 320, grid=grid(320), stream=stream0) del buf2 return (reinterpret_tensor(buf16, (4, 4, 4, 4), (80, 20, 4, 1), 0), primals_3, primals_4, primals_5, primals_6, buf1, buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class DEC_Conv(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, blind=True): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv4 = Conv(mid_channels, out_channels, bias=bias, blind=blind) def forward(self, x, x_in): x = self.upsample(x) diffY = x_in.size()[2] - x.size()[2] diffX = x_in.size()[3] - x.size()[3] x = F.pad(x, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat((x, x_in), dim=1) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) return x def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'mid_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__unsafe_index_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 4 x0 = xindex % 4 x2 = xindex // 16 x5 = xindex tmp0 = 2 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 8, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 2 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tmp0.to(tl.float32) tmp12 = 0.5 tmp13 = tmp11 * tmp12 tmp14 = tmp13.to(tl.int32) tmp15 = tmp5.to(tl.float32) tmp16 = tmp15 * tmp12 tmp17 = tmp16.to(tl.int32) tmp18 = tl.load(in_ptr0 + (tmp17 + 4 * tmp14 + 16 * x2), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + x5, tmp18, xmask) @triton.jit def triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 7 x2 = xindex // 42 % 4 x0 = xindex % 6 x3 = xindex // 168 x5 = xindex tmp0 = -1 + (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = x2 tmp5 = tl.full([1], 1, tl.int64) tmp6 = tmp3 < tmp5 tmp7 = tmp6 & tmp2 tmp8 = tl.load(in_ptr0 + (-4 + 4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 16 * x3 + (3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + ( 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), tmp7 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp3 >= tmp5 tl.full([1], 4, tl.int64) tmp12 = tmp9 & tmp2 tmp13 = tl.load(in_ptr1 + (-4 + 4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 16 * (-1 + x2) + 48 * x3 + (3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * ( -1 + x0 > 0)) + (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp6, tmp8, tmp13) tmp15 = tl.full(tmp14.shape, 0.0, tmp14.dtype) tmp16 = tl.where(tmp2, tmp14, tmp15) tl.store(out_ptr0 + x5, tmp16, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x3 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + x3), tmp2 & xmask, other=0.0) tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.1 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp2, tmp8, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_replication_pad2d_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 7 x2 = xindex // 42 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 20 * x2 + ( 3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_4(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + x0, tmp6, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 1, 4, 4), (16, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_constant_pad_nd_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) triton_poi_fused_cat_constant_pad_nd_replication_pad2d_1[grid(672)]( buf0, primals_2, buf1, 672, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 buf2 = extern_kernels.convolution(buf1, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 5, 4), (80, 20, 4, 1)) buf3 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_2[grid(320)](buf2, buf3, 320, XBLOCK=128, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) triton_poi_fused_replication_pad2d_3[grid(672)](buf3, buf4, 672, XBLOCK=256, num_warps=4, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 5, 4), (80, 20, 4, 1)) buf6 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_2[grid(320)](buf5, buf6, 320, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) triton_poi_fused_replication_pad2d_3[grid(672)](buf6, buf7, 672, XBLOCK=256, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 5, 4), (80, 20, 4, 1)) buf9 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_2[grid(320)](buf8, buf9, 320, XBLOCK=128, num_warps=4, num_stages=1) buf10 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32 ) triton_poi_fused_replication_pad2d_3[grid(672)](buf9, buf10, 672, XBLOCK=256, num_warps=4, num_stages=1) buf11 = extern_kernels.convolution(buf10, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 5, 4), (80, 20, 4, 1)) buf12 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) buf16 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_leaky_relu_leaky_relu_backward_4[grid(320)](buf11, buf12, buf16, 320, XBLOCK=256, num_warps=4, num_stages=1) del buf11 buf13 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_5[grid(320)](buf8, buf13, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf8 buf14 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_5[grid(320)](buf5, buf14, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf5 buf15 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_5[grid(320)](buf2, buf15, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf2 return (reinterpret_tensor(buf16, (4, 4, 4, 4), (80, 20, 4, 1), 0), primals_3, primals_4, primals_5, primals_6, buf1, buf3, buf4, buf6, buf7, buf9, buf10, buf12, buf13, buf14, buf15) class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class DEC_ConvNew(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, blind=True): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv4 = Conv(mid_channels, out_channels, bias=bias, blind=blind) def forward(self, input_0, input_1): primals_3 = self.conv1.conv.weight primals_4 = self.conv2.conv.weight primals_5 = self.conv3.conv.weight primals_6 = self.conv4.conv.weight primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
amonod/udvd
DEC_Conv
false
1,440
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn import torch.nn.functional as F class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class Model(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, blind=True): super().__init__() self.upsample = nn.Upsample(scale_factor=2, mode='nearest') self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv4 = Conv(mid_channels, out_channels, bias=bias, blind=blind) def forward(self, x, x_in): x = self.upsample(x) diffY = x_in.size()[2] - x.size()[2] diffX = x_in.size()[3] - x.size()[3] x = F.pad(x, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat((x, x_in), dim=1) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) return x def get_inputs(): return [torch.rand([4, 1, 4, 4]), torch.rand([4, 3, 4, 4])] def get_init_inputs(): return [4, 4, 4]
ENC_Conv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/3w/c3wk4dew6hre2j5pafyhvw4d4ejdth475l2pb4uou3ln3hu2ijdf.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.replication_pad2d] # Source node to ATen node mapping: # x => constant_pad_nd # x_1 => _unsafe_index, _unsafe_index_1 # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [0, 0, 1, 0], 0.0), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%constant_pad_nd, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_constant_pad_nd_replication_pad2d_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_replication_pad2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 7 x0 = xindex % 6 x2 = (xindex // 42) x3 = xindex tmp0 = (-1) + ((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4))) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + (4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cc/cccpkubblluk36jvv6oqiojnkppj6bxk4oiu6k3nrnpz6jxgu4qj.py # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_5 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%slice_2, [0, 0, 1, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) % 5 x3 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + ((-4) + x3), tmp2 & xmask, other=0.0) tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.1 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp2, tmp8, tmp9) tl.store(out_ptr0 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hn/chnalup26s6lgcblmcl4xikkuevluh7hftrvle2gighaxjbamslr.py # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.replication_pad2d] # Source node to ATen node mapping: # x_6 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%constant_pad_nd_1, [None, None, %clamp_max, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %clamp_max_1]), kwargs = {}) triton_poi_fused_replication_pad2d_2 = async_compile.triton('triton_poi_fused_replication_pad2d_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_replication_pad2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = (xindex // 6) % 7 x2 = (xindex // 42) x3 = xindex tmp0 = tl.load(in_ptr0 + ((4*((4) * ((4) <= (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0))))) + (((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) * ((((0) * ((0) >= ((-1) + x1)) + ((-1) + x1) * (((-1) + x1) > (0)))) < (4)))) + (20*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0))))) + (((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) * ((((0) * ((0) >= ((-1) + x0)) + ((-1) + x0) * (((-1) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x3), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ag/cagk74urbrcn2gjg6rztm2n6im27mkibrbwsfdnzy4pee5nhpyxd.py # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_17 => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) % 2 x2 = (xindex // 4) x3 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (20*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (20*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (20*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (20*x2)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qk/cqkavfpfujtfoihfgqrldjwtxnrfqhenynqh6iwdkbdjp2mykavf.py # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] # Source node to ATen node mapping: # x_13 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.1), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {}) triton_poi_fused_leaky_relu_leaky_relu_backward_4 = async_compile.triton('triton_poi_fused_leaky_relu_leaky_relu_backward_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_leaky_relu_backward_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.replication_pad2d] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_replication_pad2d_0.run(primals_1, buf0, 672, grid=grid(672), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 4), (80, 20, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_1.run(buf1, buf2, 320, grid=grid(320), stream=stream0) buf3 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.replication_pad2d] triton_poi_fused_replication_pad2d_2.run(buf2, buf3, 672, grid=grid(672), stream=stream0) # Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 5, 4), (80, 20, 4, 1)) buf5 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_1.run(buf4, buf5, 320, grid=grid(320), stream=stream0) buf6 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.replication_pad2d] triton_poi_fused_replication_pad2d_2.run(buf5, buf6, 672, grid=grid(672), stream=stream0) # Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 5, 4), (80, 20, 4, 1)) buf8 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_15], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_1.run(buf7, buf8, 320, grid=grid(320), stream=stream0) buf9 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) # Topologically Sorted Source Nodes: [x_17], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf8, buf9, buf10, 64, grid=grid(64), stream=stream0) buf11 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_13], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_4.run(buf7, buf11, 320, grid=grid(320), stream=stream0) del buf7 buf12 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_4.run(buf4, buf12, 320, grid=grid(320), stream=stream0) del buf4 buf13 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu, aten.leaky_relu_backward] triton_poi_fused_leaky_relu_leaky_relu_backward_4.run(buf1, buf13, 320, grid=grid(320), stream=stream0) del buf1 return (buf9, primals_2, primals_3, primals_4, buf0, buf2, buf3, buf5, buf6, reinterpret_tensor(buf8, (4, 4, 4, 4), (80, 20, 4, 1), 0), buf10, buf11, buf12, buf13, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class Pool(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, x): if self.blind: x = self.shift(x) x = self.pool(x) return x class ENC_Conv(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, reduce=True, blind=True): super().__init__() self.reduce = reduce self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, out_channels, bias=bias, blind=blind) if reduce: self.pool = Pool(blind=blind) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) if self.reduce: x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'mid_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 7 x0 = xindex % 6 x2 = xindex // 42 x3 = xindex tmp0 = -1 + (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + 4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 16 * x2 + (3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + ( 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), tmp2 & xmask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + x3, tmp3, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 5 x3 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.load(in_ptr0 + (-4 + x3), tmp2 & xmask, other=0.0) tmp4 = 0.0 tmp5 = tmp3 > tmp4 tmp6 = 0.1 tmp7 = tmp3 * tmp6 tmp8 = tl.where(tmp5, tmp3, tmp7) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp2, tmp8, tmp9) tl.store(out_ptr0 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_replication_pad2d_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 672 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 7 x2 = xindex // 42 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 * (4 * (4 <= 0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) + (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0)) * (0 * (0 >= -1 + x1) + (-1 + x1) * (-1 + x1 > 0) < 4)) + 20 * x2 + ( 3 * (3 <= 0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) + (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0)) * (0 * (0 >= -1 + x0) + (-1 + x0) * (-1 + x0 > 0) < 3))), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x3, tmp0, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 % 2 x2 = xindex // 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 20 * x2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 20 * x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 20 * x2), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 20 * x2), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp16, xmask) @triton.jit def triton_poi_fused_leaky_relu_leaky_relu_backward_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.1 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = tmp5 > tmp1 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_replication_pad2d_0[grid(672)]( primals_1, buf0, 672, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 5, 4), (80, 20, 4, 1)) buf2 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_1[grid(320)](buf1, buf2, 320, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) triton_poi_fused_replication_pad2d_2[grid(672)](buf2, buf3, 672, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 5, 4), (80, 20, 4, 1)) buf5 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_1[grid(320)](buf4, buf5, 320, XBLOCK=256, num_warps=4, num_stages=1) buf6 = empty_strided_cuda((4, 4, 7, 6), (168, 42, 6, 1), torch.float32) triton_poi_fused_replication_pad2d_2[grid(672)](buf5, buf6, 672, XBLOCK=128, num_warps=4, num_stages=1) buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 5, 4), (80, 20, 4, 1)) buf8 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.float32) triton_poi_fused_constant_pad_nd_1[grid(320)](buf7, buf8, 320, XBLOCK=256, num_warps=4, num_stages=1) buf9 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf10 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(64)](buf8, buf9, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) buf11 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_4[grid(320)](buf7, buf11, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf7 buf12 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_4[grid(320)](buf4, buf12, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf4 buf13 = empty_strided_cuda((4, 4, 5, 4), (80, 20, 4, 1), torch.bool) triton_poi_fused_leaky_relu_leaky_relu_backward_4[grid(320)](buf1, buf13, 320, XBLOCK=128, num_warps=4, num_stages=1) del buf1 return (buf9, primals_2, primals_3, primals_4, buf0, buf2, buf3, buf5, buf6, reinterpret_tensor(buf8, (4, 4, 4, 4), (80, 20, 4, 1), 0), buf10, buf11, buf12, buf13) class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class Pool(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, x): if self.blind: x = self.shift(x) x = self.pool(x) return x class ENC_ConvNew(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, reduce=True, blind=True): super().__init__() self.reduce = reduce self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, out_channels, bias=bias, blind=blind) if reduce: self.pool = Pool(blind=blind) def forward(self, input_0): primals_2 = self.conv1.conv.weight primals_3 = self.conv2.conv.weight primals_4 = self.conv3.conv.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
amonod/udvd
ENC_Conv
false
1,441
[ "MIT" ]
0
a1ccb777d205255ac68c40efb93dd3996f562c45
https://github.com/amonod/udvd/tree/a1ccb777d205255ac68c40efb93dd3996f562c45
import torch import torch.nn as nn class crop(nn.Module): def __init__(self): super().__init__() def forward(self, x): N, C, H, W = x.shape x = x[0:N, 0:C, 0:H - 1, 0:W] return x class shift(nn.Module): def __init__(self): super().__init__() self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() def forward(self, x): x = self.shift_down(x) x = self.crop(x) return x class Conv(nn.Module): def __init__(self, in_channels, out_channels, bias=False, blind=True): super().__init__() self.blind = blind if blind: self.shift_down = nn.ZeroPad2d((0, 0, 1, 0)) self.crop = crop() self.replicate = nn.ReplicationPad2d(1) self.conv = nn.Conv2d(in_channels, out_channels, 3, bias=bias) self.relu = nn.LeakyReLU(0.1, inplace=True) def forward(self, x): if self.blind: x = self.shift_down(x) x = self.replicate(x) x = self.conv(x) x = self.relu(x) if self.blind: x = self.crop(x) return x class Pool(nn.Module): def __init__(self, blind=True): super().__init__() self.blind = blind if blind: self.shift = shift() self.pool = nn.MaxPool2d(2) def forward(self, x): if self.blind: x = self.shift(x) x = self.pool(x) return x class Model(nn.Module): def __init__(self, in_channels, mid_channels, out_channels, bias=False, reduce=True, blind=True): super().__init__() self.reduce = reduce self.conv1 = Conv(in_channels, mid_channels, bias=bias, blind=blind) self.conv2 = Conv(mid_channels, mid_channels, bias=bias, blind=blind) self.conv3 = Conv(mid_channels, out_channels, bias=bias, blind=blind) if reduce: self.pool = Pool(blind=blind) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) if self.reduce: x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4, 4]
N2
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qu/cqus46ccg6zxy23dy53q5ruz2v7a6tr32ti6ki3ofym6a7x3xwoa.py # Topologically Sorted Source Nodes: [norm, pow_1, sum_1, mul, norm_1, norm_2, pow_2, sum_2, mul_1, norm_3, norm_4, pow_3, sum_3, mul_2, norm_5, norm_6, pow_4, sum_4, mul_3, norm_7, truediv], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.sum, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # norm => pow_1, pow_2, sum_1 # norm_1 => add # norm_2 => pow_4, pow_5, sum_3 # norm_3 => add_1 # norm_4 => pow_7, pow_8, sum_5 # norm_5 => add_2 # norm_6 => pow_10, pow_11, sum_7 # norm_7 => add_3 # pow_1 => pow_3 # pow_2 => pow_6 # pow_3 => pow_9 # pow_4 => pow_12 # sum_1 => sum_2 # sum_2 => sum_4 # sum_3 => sum_6 # sum_4 => sum_8 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 3), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_3,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_2, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_1, 2), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_4, [1]), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 0.5), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_5, 3), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_6,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_4, 4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {}) # %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_2, 2), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_7, [1]), kwargs = {}) # %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_5, 0.5), kwargs = {}) # %pow_9 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_8, 3), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_9,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_6, 4), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {}) # %pow_10 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%select_3, 2), kwargs = {}) # %sum_7 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_10, [1]), kwargs = {}) # %pow_11 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_7, 0.5), kwargs = {}) # %pow_12 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_11, 3), kwargs = {}) # %sum_8 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_12,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_8, 4), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = (rindex // 4) tmp0 = tl.load(in_ptr0 + (r0 + (16*r1)), None) tmp2 = tl.load(in_ptr0 + (4 + r0 + (16*r1)), None) tmp5 = tl.load(in_ptr0 + (8 + r0 + (16*r1)), None) tmp8 = tl.load(in_ptr0 + (12 + r0 + (16*r1)), None) tmp17 = tl.load(in_ptr0 + (64 + r0 + (16*r1)), None) tmp19 = tl.load(in_ptr0 + (68 + r0 + (16*r1)), None) tmp22 = tl.load(in_ptr0 + (72 + r0 + (16*r1)), None) tmp25 = tl.load(in_ptr0 + (76 + r0 + (16*r1)), None) tmp34 = tl.load(in_ptr0 + (128 + r0 + (16*r1)), None) tmp36 = tl.load(in_ptr0 + (132 + r0 + (16*r1)), None) tmp39 = tl.load(in_ptr0 + (136 + r0 + (16*r1)), None) tmp42 = tl.load(in_ptr0 + (140 + r0 + (16*r1)), None) tmp51 = tl.load(in_ptr0 + (192 + r0 + (16*r1)), None) tmp53 = tl.load(in_ptr0 + (196 + r0 + (16*r1)), None) tmp56 = tl.load(in_ptr0 + (200 + r0 + (16*r1)), None) tmp59 = tl.load(in_ptr0 + (204 + r0 + (16*r1)), None) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp11 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp28 * tmp28 tmp30 = tmp29 * tmp28 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp35 = tmp34 * tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp40 = tmp39 * tmp39 tmp41 = tmp38 + tmp40 tmp43 = tmp42 * tmp42 tmp44 = tmp41 + tmp43 tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp45 * tmp45 tmp47 = tmp46 * tmp45 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp52 = tmp51 * tmp51 tmp54 = tmp53 * tmp53 tmp55 = tmp52 + tmp54 tmp57 = tmp56 * tmp56 tmp58 = tmp55 + tmp57 tmp60 = tmp59 * tmp59 tmp61 = tmp58 + tmp60 tmp62 = libdevice.sqrt(tmp61) tmp63 = tmp62 * tmp62 tmp64 = tmp63 * tmp62 tmp65 = tl.broadcast_to(tmp64, [XBLOCK, RBLOCK]) tmp67 = tl.sum(tmp65, 1)[:, None] tmp68 = 4.0 tmp69 = tmp16 * tmp68 tmp70 = 0.0 tmp71 = tmp69 + tmp70 tmp72 = tmp33 * tmp68 tmp73 = tmp71 + tmp72 tmp74 = tmp50 * tmp68 tmp75 = tmp73 + tmp74 tmp76 = tmp67 * tmp68 tmp77 = tmp75 + tmp76 tmp78 = 0.25 tmp79 = tmp77 * tmp78 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp79, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [norm, pow_1, sum_1, mul, norm_1, norm_2, pow_2, sum_2, mul_1, norm_3, norm_4, pow_3, sum_3, mul_2, norm_5, norm_6, pow_4, sum_4, mul_3, norm_7, truediv], Original ATen: [aten.linalg_vector_norm, aten.pow, aten.sum, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0.run(buf4, arg0_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class N2(Regularizer): def __init__(self, weight: 'float'): super(N2, self).__init__() self.weight = weight def forward(self, factors): norm = 0 for f in factors: norm += self.weight * torch.sum(torch.norm(f, 2, 1) ** 3) return norm / factors[0].shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 4 r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + (r0 + 16 * r1), None) tmp2 = tl.load(in_ptr0 + (4 + r0 + 16 * r1), None) tmp5 = tl.load(in_ptr0 + (8 + r0 + 16 * r1), None) tmp8 = tl.load(in_ptr0 + (12 + r0 + 16 * r1), None) tmp17 = tl.load(in_ptr0 + (64 + r0 + 16 * r1), None) tmp19 = tl.load(in_ptr0 + (68 + r0 + 16 * r1), None) tmp22 = tl.load(in_ptr0 + (72 + r0 + 16 * r1), None) tmp25 = tl.load(in_ptr0 + (76 + r0 + 16 * r1), None) tmp34 = tl.load(in_ptr0 + (128 + r0 + 16 * r1), None) tmp36 = tl.load(in_ptr0 + (132 + r0 + 16 * r1), None) tmp39 = tl.load(in_ptr0 + (136 + r0 + 16 * r1), None) tmp42 = tl.load(in_ptr0 + (140 + r0 + 16 * r1), None) tmp51 = tl.load(in_ptr0 + (192 + r0 + 16 * r1), None) tmp53 = tl.load(in_ptr0 + (196 + r0 + 16 * r1), None) tmp56 = tl.load(in_ptr0 + (200 + r0 + 16 * r1), None) tmp59 = tl.load(in_ptr0 + (204 + r0 + 16 * r1), None) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp12 = tmp11 * tmp11 tmp13 = tmp12 * tmp11 tmp14 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp28 * tmp28 tmp30 = tmp29 * tmp28 tmp31 = tl.broadcast_to(tmp30, [XBLOCK, RBLOCK]) tmp33 = tl.sum(tmp31, 1)[:, None] tmp35 = tmp34 * tmp34 tmp37 = tmp36 * tmp36 tmp38 = tmp35 + tmp37 tmp40 = tmp39 * tmp39 tmp41 = tmp38 + tmp40 tmp43 = tmp42 * tmp42 tmp44 = tmp41 + tmp43 tmp45 = libdevice.sqrt(tmp44) tmp46 = tmp45 * tmp45 tmp47 = tmp46 * tmp45 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.sum(tmp48, 1)[:, None] tmp52 = tmp51 * tmp51 tmp54 = tmp53 * tmp53 tmp55 = tmp52 + tmp54 tmp57 = tmp56 * tmp56 tmp58 = tmp55 + tmp57 tmp60 = tmp59 * tmp59 tmp61 = tmp58 + tmp60 tmp62 = libdevice.sqrt(tmp61) tmp63 = tmp62 * tmp62 tmp64 = tmp63 * tmp62 tmp65 = tl.broadcast_to(tmp64, [XBLOCK, RBLOCK]) tmp67 = tl.sum(tmp65, 1)[:, None] tmp68 = 4.0 tmp69 = tmp16 * tmp68 tmp70 = 0.0 tmp71 = tmp69 + tmp70 tmp72 = tmp33 * tmp68 tmp73 = tmp71 + tmp72 tmp74 = tmp50 * tmp68 tmp75 = tmp73 + tmp74 tmp76 = tmp67 * tmp68 tmp77 = tmp75 + tmp76 tmp78 = 0.25 tmp79 = tmp77 * tmp78 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp79, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_linalg_vector_norm_mul_pow_sum_0[grid(1)](buf4 , arg0_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf4, class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class N2New(Regularizer): def __init__(self, weight: 'float'): super(N2New, self).__init__() self.weight = weight def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
angusl95/darts-kbc
N2
false
1,442
[ "Apache-2.0" ]
0
85fc6f4bdb7ba73c07d96ce47e96634599b346f9
https://github.com/angusl95/darts-kbc/tree/85fc6f4bdb7ba73c07d96ce47e96634599b346f9
import torch import torch.nn as nn import torch.utils from typing import Tuple from abc import ABC from abc import abstractmethod import torch.utils.data class Regularizer(nn.Module, ABC): @abstractmethod def forward(self, factors: 'Tuple[torch.Tensor]'): pass class Model(Regularizer): def __init__(self, weight: 'float'): super().__init__() self.weight = weight def forward(self, factors): norm = 0 for f in factors: norm += self.weight * torch.sum(torch.norm(f, 2, 1) ** 3) return norm / factors[0].shape[0] def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4]
_Residual_Block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/7o/c7o5ttyweofz42kjophypjktbctv6rlvcw3xdxc4lcl7kzkau6rb.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 256 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/cg/ccgjbjra22jzcgrej4cregu4qnsuv4valsbpzazlnyx6d4zadmny.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4096 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ra/crarmf7s2qf36jg27hprl42qtwcxcnnoyrgzgevtstzj4qgsdzwl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ih/cihu7ohoiwwrblocurozhw6ihpzbq4oc43mseo4n6wd7ronp74tw.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ks/ckseolxcn4us7f7nstfb5fcnac3setezrwkzoer7icg2hkznld3f.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/gb/cgbgdvu6dbspyyhnsmpzfukazt2ppl6i64rxeg4eon6csfalrolz.py # Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d => convolution # prelu => gt, mul, where # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_6 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mv/cmvnowfb3oy3pbt7flo5qjqnjh7k3o4nvj3j352gyt4xogtyiqhr.py # Topologically Sorted Source Nodes: [conv2d_1, out, out_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # out => gt_1, mul_1, where_1 # out_1 => add # Graph fragment: # %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) # %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %where_1), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_7 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), None) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7w/c7w73gmmkdsirnvywtc4ajcpxvvxqgvvm4brbqqcjmmdkokgpdim.py # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # out_2 => gt_2, mul_2, where_2 # Graph fragment: # %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {}) # %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_8 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/zk/czkkxdgtlyqrqdvrseox24se7djiklw4ywwqg5deataobvbixncw.py # Topologically Sorted Source Nodes: [conv2d_3, out_3, out_4], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # out_3 => gt_3, mul_3, where_3 # out_4 => add_1 # Graph fragment: # %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_11, %primals_12, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %convolution_3), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) # %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_2, %where_3), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_9 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), None) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fi/cfix2abznyuwifr2phemvjcx6o7zb25abcp4m24ipozb6rcuhaft.py # Topologically Sorted Source Nodes: [conv2d_4, out_5], Original ATen: [aten.convolution, aten._prelu_kernel] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # out_5 => gt_4, mul_4, where_4 # Graph fragment: # %convolution_4 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_14, %primals_15, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %convolution_4), kwargs = {}) # %where_4 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {}) triton_poi_fused__prelu_kernel_convolution_10 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_convolution_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uo/cuozfwqvuszxwhln4ecmax73rh2magjexf3mcj56cuthbp7saobb.py # Topologically Sorted Source Nodes: [conv2d_5, out_6, out_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] # Source node to ATen node mapping: # conv2d_5 => convolution_5 # out_6 => gt_5, mul_5, where_5 # out_7 => add_2 # Graph fragment: # %convolution_5 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_17, %primals_18, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_5, 0), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %convolution_5), kwargs = {}) # %where_5 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_5, %mul_5), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_4, %where_5), kwargs = {}) triton_poi_fused__prelu_kernel_add_convolution_11 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), None) tmp6 = tl.load(in_ptr2 + (0)) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(out_ptr0 + (x2), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uz/cuzovxgz3xpshhaf3gtwzhdoklaeircgoc5xwk6ilmx6gxtmwsce.py # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.cat] # Source node to ATen node mapping: # out_9 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%view_7, %add_1], 1), kwargs = {}) triton_poi_fused_cat_12 = async_compile.triton('triton_poi_fused_cat_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 32 x2 = (xindex // 8192) % 32 x3 = (xindex // 262144) x4 = (xindex // 256) x5 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*(x2 % 2)) + (4*x0) + (512*(x1 // 2)) + (8192*(x2 // 2)) + (131072*x3) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((2*(x2 % 2)) + (4*x0) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 256, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + ((128*x4) + ((-128) + x0)), tmp10, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x5), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/le/clekkenw5icxsovzemdjklozrlbwhcapkmsbd6e5grknqd6xsyvy.py # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_10 => convolution_7 # Graph fragment: # %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_13 = async_compile.triton('triton_poi_fused_convolution_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 524288 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jo/cjoj4oqa3cykwpnoykynnq6m5n2tz6k6ogfuy7o5zmo6oogghuzw.py # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.cat] # Source node to ATen node mapping: # out_14 => cat_1 # Graph fragment: # %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%view_10, %add], 1), kwargs = {}) triton_poi_fused_cat_14 = async_compile.triton('triton_poi_fused_cat_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2097152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 64 x2 = (xindex // 8192) % 64 x3 = (xindex // 524288) x4 = (xindex // 128) x5 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((2*(x2 % 2)) + (4*x0) + (256*(x1 // 2)) + (8192*(x2 // 2)) + (262144*x3) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((2*(x2 % 2)) + (4*x0) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 128, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tl.load(in_ptr2 + ((64*x4) + ((-64) + x0)), tmp10, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + (x5), tmp14, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yy/cyyjsyxytcxq2twk3gzpswngag7dkwauaesis6dj3xgdhf2nzlxr.py # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution] # Source node to ATen node mapping: # out_15 => convolution_10 # Graph fragment: # %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_29, %primals_30, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_15 = async_compile.triton('triton_poi_fused_convolution_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1048576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/oj/cojkkojtv4ngahkvad7zqurayjljjzpmcfzqr44legm2r2bdfyfb.py # Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # out_18 => convolution_13 # out_19 => add_5 # Graph fragment: # %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_37, %primals_38, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_13, %primals_1), kwargs = {}) triton_poi_fused_add_convolution_16 = async_compile.triton('triton_poi_fused_add_convolution_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_16(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16384 xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4096 y1 = (yindex // 4096) tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + (64*y3)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (y0 + (4096*x2) + (262144*y1)), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38 = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_6, (64, ), (1, )) assert_size_stride(primals_7, (1, ), (1, )) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128, ), (1, )) assert_size_stride(primals_10, (1, ), (1, )) assert_size_stride(primals_11, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_12, (128, ), (1, )) assert_size_stride(primals_13, (1, ), (1, )) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256, ), (1, )) assert_size_stride(primals_16, (1, ), (1, )) assert_size_stride(primals_17, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_18, (256, ), (1, )) assert_size_stride(primals_19, (1, ), (1, )) assert_size_stride(primals_20, (512, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (512, ), (1, )) assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (128, ), (1, )) assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_25, (128, ), (1, )) assert_size_stride(primals_26, (1, ), (1, )) assert_size_stride(primals_27, (256, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_28, (256, ), (1, )) assert_size_stride(primals_29, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_30, (64, ), (1, )) assert_size_stride(primals_31, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_32, (64, ), (1, )) assert_size_stride(primals_33, (1, ), (1, )) assert_size_stride(primals_34, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_35, (64, ), (1, )) assert_size_stride(primals_36, (1, ), (1, )) assert_size_stride(primals_37, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_38, (64, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 256, 4096, grid=grid(256, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_5, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_5 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_8, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_8 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_11, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_11 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_14, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_14 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_17, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_17 buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_24, buf7, 16384, 9, grid=grid(16384, 9), stream=stream0) del primals_24 buf8 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_31, buf8, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_31 buf9 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_34, buf9, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_34 buf10 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_37, buf10, 4096, 9, grid=grid(4096, 9), stream=stream0) del primals_37 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf12 = buf11; del buf11 # reuse buf13 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_6.run(buf12, primals_3, primals_4, buf13, 1048576, grid=grid(1048576), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf14 = extern_kernels.convolution(buf13, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14; del buf14 # reuse buf16 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_1, out, out_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_7.run(buf15, primals_6, buf0, primals_7, buf16, 1048576, grid=grid(1048576), stream=stream0) del primals_6 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf18 = buf17; del buf17 # reuse buf19 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_8.run(buf18, primals_9, primals_10, buf19, 524288, grid=grid(524288), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf20 = extern_kernels.convolution(buf19, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20; del buf20 # reuse buf22 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32) # Topologically Sorted Source Nodes: [conv2d_3, out_3, out_4], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_9.run(buf21, primals_12, buf19, primals_13, buf22, 524288, grid=grid(524288), stream=stream0) del primals_12 # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf23 = extern_kernels.convolution(buf22, buf5, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf24 = buf23; del buf23 # reuse buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, out_5], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_10.run(buf24, primals_15, primals_16, buf25, 262144, grid=grid(262144), stream=stream0) del primals_15 # Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution] buf26 = extern_kernels.convolution(buf25, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26; del buf26 # reuse buf28 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_5, out_6, out_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_11.run(buf27, primals_18, buf25, primals_19, buf28, 262144, grid=grid(262144), stream=stream0) del primals_18 # Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution] buf29 = extern_kernels.convolution(buf28, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 512, 16, 16), (131072, 1, 8192, 512)) buf30 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256), torch.float32) # Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.cat] triton_poi_fused_cat_12.run(buf29, primals_21, buf22, buf30, 1048576, grid=grid(1048576), stream=stream0) del primals_21 # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution] buf31 = extern_kernels.convolution(buf30, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf32 = buf31; del buf31 # reuse # Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution] triton_poi_fused_convolution_13.run(buf32, primals_23, 524288, grid=grid(524288), stream=stream0) del primals_23 # Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution] buf33 = extern_kernels.convolution(buf32, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf34 = buf33; del buf33 # reuse buf35 = reinterpret_tensor(buf29, (4, 128, 32, 32), (131072, 1, 4096, 128), 0); del buf29 # reuse # Topologically Sorted Source Nodes: [conv2d_8, out_11, out_12], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_9.run(buf34, primals_25, buf32, primals_26, buf35, 524288, grid=grid(524288), stream=stream0) del primals_25 # Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution] buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf37 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) # Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.cat] triton_poi_fused_cat_14.run(buf36, primals_28, buf16, buf37, 2097152, grid=grid(2097152), stream=stream0) del primals_28 # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution] buf38 = extern_kernels.convolution(buf37, primals_29, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf39 = buf38; del buf38 # reuse # Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution] triton_poi_fused_convolution_15.run(buf39, primals_30, 1048576, grid=grid(1048576), stream=stream0) del primals_30 # Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution] buf40 = extern_kernels.convolution(buf39, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf41 = buf40; del buf40 # reuse buf42 = reinterpret_tensor(buf36, (4, 64, 64, 64), (262144, 1, 4096, 64), 0); del buf36 # reuse # Topologically Sorted Source Nodes: [conv2d_11, prelu_7], Original ATen: [aten.convolution, aten._prelu_kernel] triton_poi_fused__prelu_kernel_convolution_6.run(buf41, primals_32, primals_33, buf42, 1048576, grid=grid(1048576), stream=stream0) del primals_32 # Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution] buf43 = extern_kernels.convolution(buf42, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf44 = buf43; del buf43 # reuse buf45 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) # Topologically Sorted Source Nodes: [conv2d_12, out_16, out_17], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add] triton_poi_fused__prelu_kernel_add_convolution_7.run(buf44, primals_35, buf39, primals_36, buf45, 1048576, grid=grid(1048576), stream=stream0) del primals_35 # Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution] buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf47 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_16.run(buf46, primals_38, buf0, buf47, 16384, 64, grid=grid(16384, 64), stream=stream0) del buf46 del primals_38 return (buf47, buf0, buf1, primals_4, buf2, primals_7, buf3, primals_10, buf4, primals_13, buf5, primals_16, buf6, primals_19, primals_20, primals_22, buf7, primals_26, primals_27, primals_29, buf8, primals_33, buf9, primals_36, buf10, buf12, buf13, buf15, buf16, buf18, buf19, buf21, buf22, buf24, buf25, buf27, buf28, buf30, buf32, buf34, buf35, buf37, buf39, buf41, buf42, buf44, buf45, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((512, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((256, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_31 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_32 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_33 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_34 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_35 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_36 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_37 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_38 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn class _Residual_Block(nn.Module): def __init__(self, num_chans=64): super(_Residual_Block, self).__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans * 2, kernel_size=3, stride=2, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=3, stride=2, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans * 4, num_chans * 4, kernel_size=3, stride=1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans * 4, num_chans * 8, kernel_size=1, stride=1, padding=0, bias=bias) self.up14 = nn.PixelShuffle(2) self.conv15 = nn.Conv2d(num_chans * 4, num_chans * 2, kernel_size=1, stride=1, padding=0, bias=bias) self.conv16 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu17 = nn.PReLU() self.conv18 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=1, stride=1, padding=0, bias=bias) self.up19 = nn.PixelShuffle(2) self.conv20 = nn.Conv2d(num_chans * 2, num_chans, kernel_size=1, stride=1, padding=0, bias=bias) self.conv21 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu22 = nn.PReLU() self.conv23 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu24 = nn.PReLU() self.conv25 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, x): res1 = x out = self.relu4(self.conv3(self.relu2(self.conv1(x)))) out = torch.add(res1, out) cat1 = out out = self.relu6(self.conv5(out)) res2 = out out = self.relu8(self.conv7(out)) out = torch.add(res2, out) cat2 = out out = self.relu10(self.conv9(out)) res3 = out out = self.relu12(self.conv11(out)) out = torch.add(res3, out) out = self.up14(self.conv13(out)) out = torch.cat([out, cat2], 1) out = self.conv15(out) res4 = out out = self.relu17(self.conv16(out)) out = torch.add(res4, out) out = self.up19(self.conv18(out)) out = torch.cat([out, cat1], 1) out = self.conv20(out) res5 = out out = self.relu24(self.conv23(self.relu22(self.conv21(out)))) out = torch.add(res5, out) out = self.conv25(out) out = torch.add(out, res1) return out def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, None) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp10, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, None) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp10, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp8, None) @triton.jit def triton_poi_fused__prelu_kernel_add_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, None) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp4 = 0.0 tmp5 = tmp2 > tmp4 tmp8 = tmp7 * tmp2 tmp9 = tl.where(tmp5, tmp2, tmp8) tmp10 = tmp3 + tmp9 tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(out_ptr0 + x2, tmp10, None) @triton.jit def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 32 x2 = xindex // 8192 % 32 x3 = xindex // 262144 x4 = xindex // 256 x5 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 128, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * (x2 % 2) + 4 * x0 + 512 * (x1 // 2) + 8192 * (x2 // 2) + 131072 * x3 + x1 % 2), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (2 * (x2 % 2) + 4 * x0 + x1 % 2), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 256, tl.int64) tmp13 = tl.load(in_ptr2 + (128 * x4 + (-128 + x0)), tmp10, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x5, tmp14, None) @triton.jit def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 64 x2 = xindex // 8192 % 64 x3 = xindex // 524288 x4 = xindex // 128 x5 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 64, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (2 * (x2 % 2) + 4 * x0 + 256 * (x1 // 2) + 8192 * (x2 // 2) + 262144 * x3 + x1 % 2), tmp4, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (2 * (x2 % 2) + 4 * x0 + x1 % 2), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tl.full([1], 128, tl.int64) tmp13 = tl.load(in_ptr2 + (64 * x4 + (-64 + x0)), tmp10, eviction_policy='evict_last', other=0.0) tmp14 = tl.where(tmp4, tmp9, tmp13) tl.store(out_ptr0 + x5, tmp14, None) @triton.jit def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, None) @triton.jit def triton_poi_fused_add_convolution_16(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 64 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4096 y1 = yindex // 4096 tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x2 + 64 * y3), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (y0 + 4096 * x2 + 262144 * y1), tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38 ) = args args.clear() assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1)) assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_6, (64,), (1,)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (1,), (1,)) assert_size_stride(primals_11, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_12, (128,), (1,)) assert_size_stride(primals_13, (1,), (1,)) assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (1,), (1,)) assert_size_stride(primals_17, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_18, (256,), (1,)) assert_size_stride(primals_19, (1,), (1,)) assert_size_stride(primals_20, (512, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_23, (128,), (1,)) assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_25, (128,), (1,)) assert_size_stride(primals_26, (1,), (1,)) assert_size_stride(primals_27, (256, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_28, (256,), (1,)) assert_size_stride(primals_29, (64, 128, 1, 1), (128, 1, 1, 1)) assert_size_stride(primals_30, (64,), (1,)) assert_size_stride(primals_31, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_32, (64,), (1,)) assert_size_stride(primals_33, (1,), (1,)) assert_size_stride(primals_34, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_35, (64,), (1,)) assert_size_stride(primals_36, (1,), (1,)) assert_size_stride(primals_37, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_38, (64,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(256, 4096)](primals_1, buf0, 256, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_1[grid(4096, 9)](primals_2, buf1, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_1[grid(4096, 9)](primals_5, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_5 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(8192, 9)](primals_8, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_11, buf4, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_11 buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_4[grid(32768, 9)](primals_14, buf5, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_14 buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_5[grid(65536, 9)](primals_17, buf6, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_17 buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(16384, 9)](primals_24, buf7, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_24 buf8 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_1[grid(4096, 9)](primals_31, buf8, 4096, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_31 buf9 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_1[grid(4096, 9)](primals_34, buf9, 4096, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_34 buf10 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_1[grid(4096, 9)](primals_37, buf10, 4096, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_37 buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf12 = buf11 del buf11 buf13 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused__prelu_kernel_convolution_6[grid(1048576)](buf12, primals_3, primals_4, buf13, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf14 = extern_kernels.convolution(buf13, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf15 = buf14 del buf14 buf16 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_7[grid(1048576)](buf15, primals_6, buf0, primals_7, buf16, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_6 buf17 = extern_kernels.convolution(buf16, buf3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf18 = buf17 del buf17 buf19 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32) triton_poi_fused__prelu_kernel_convolution_8[grid(524288)](buf18, primals_9, primals_10, buf19, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf20 = extern_kernels.convolution(buf19, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf21 = buf20 del buf20 buf22 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_9[grid(524288)](buf21, primals_12, buf19, primals_13, buf22, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_12 buf23 = extern_kernels.convolution(buf22, buf5, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf23, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf24 = buf23 del buf23 buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused__prelu_kernel_convolution_10[grid(262144)](buf24, primals_15, primals_16, buf25, 262144, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf26 = extern_kernels.convolution(buf25, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf27 = buf26 del buf26 buf28 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_11[grid(262144)](buf27, primals_18, buf25, primals_19, buf28, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_18 buf29 = extern_kernels.convolution(buf28, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 512, 16, 16), (131072, 1, 8192, 512)) buf30 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256), torch.float32) triton_poi_fused_cat_12[grid(1048576)](buf29, primals_21, buf22, buf30, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_21 buf31 = extern_kernels.convolution(buf30, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf31, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf32 = buf31 del buf31 triton_poi_fused_convolution_13[grid(524288)](buf32, primals_23, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_23 buf33 = extern_kernels.convolution(buf32, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf33, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf34 = buf33 del buf33 buf35 = reinterpret_tensor(buf29, (4, 128, 32, 32), (131072, 1, 4096, 128), 0) del buf29 triton_poi_fused__prelu_kernel_add_convolution_9[grid(524288)](buf34, primals_25, buf32, primals_26, buf35, 524288, XBLOCK=512, num_warps=8, num_stages=1) del primals_25 buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 256, 32, 32), (262144, 1, 8192, 256)) buf37 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_cat_14[grid(2097152)](buf36, primals_28, buf16, buf37, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_28 buf38 = extern_kernels.convolution(buf37, primals_29, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf39 = buf38 del buf38 triton_poi_fused_convolution_15[grid(1048576)](buf39, primals_30, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_30 buf40 = extern_kernels.convolution(buf39, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf40, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf41 = buf40 del buf40 buf42 = reinterpret_tensor(buf36, (4, 64, 64, 64), (262144, 1, 4096, 64), 0) del buf36 triton_poi_fused__prelu_kernel_convolution_6[grid(1048576)](buf41, primals_32, primals_33, buf42, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_32 buf43 = extern_kernels.convolution(buf42, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf43, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf44 = buf43 del buf43 buf45 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32) triton_poi_fused__prelu_kernel_add_convolution_7[grid(1048576)](buf44, primals_35, buf39, primals_36, buf45, 1048576, XBLOCK=512, num_warps=8, num_stages=1) del primals_35 buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf47 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32) triton_poi_fused_add_convolution_16[grid(16384, 64)](buf46, primals_38, buf0, buf47, 16384, 64, XBLOCK=64, YBLOCK=64, num_warps=8, num_stages=1) del buf46 del primals_38 return (buf47, buf0, buf1, primals_4, buf2, primals_7, buf3, primals_10, buf4, primals_13, buf5, primals_16, buf6, primals_19, primals_20, primals_22, buf7, primals_26, primals_27, primals_29, buf8, primals_33, buf9, primals_36, buf10, buf12, buf13, buf15, buf16, buf18, buf19, buf21, buf22, buf24, buf25, buf27, buf28, buf30, buf32, buf34, buf35, buf37, buf39, buf41, buf42, buf44, buf45) class _Residual_BlockNew(nn.Module): def __init__(self, num_chans=64): super(_Residual_BlockNew, self).__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans * 2, kernel_size=3, stride=2, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=3, stride=2, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans * 4, num_chans * 4, kernel_size=3, stride=1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans * 4, num_chans * 8, kernel_size=1, stride=1, padding=0, bias=bias) self.up14 = nn.PixelShuffle(2) self.conv15 = nn.Conv2d(num_chans * 4, num_chans * 2, kernel_size=1, stride=1, padding=0, bias=bias) self.conv16 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu17 = nn.PReLU() self.conv18 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=1, stride=1, padding=0, bias=bias) self.up19 = nn.PixelShuffle(2) self.conv20 = nn.Conv2d(num_chans * 2, num_chans, kernel_size=1, stride=1, padding=0, bias=bias) self.conv21 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu22 = nn.PReLU() self.conv23 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu24 = nn.PReLU() self.conv25 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.relu2.weight primals_5 = self.conv3.weight primals_6 = self.conv3.bias primals_7 = self.relu4.weight primals_8 = self.conv5.weight primals_9 = self.conv5.bias primals_10 = self.relu6.weight primals_11 = self.conv7.weight primals_12 = self.conv7.bias primals_13 = self.relu8.weight primals_14 = self.conv9.weight primals_15 = self.conv9.bias primals_16 = self.relu10.weight primals_17 = self.conv11.weight primals_18 = self.conv11.bias primals_19 = self.relu12.weight primals_20 = self.conv13.weight primals_21 = self.conv13.bias primals_22 = self.conv15.weight primals_23 = self.conv15.bias primals_24 = self.conv16.weight primals_25 = self.conv16.bias primals_26 = self.relu17.weight primals_27 = self.conv18.weight primals_28 = self.conv18.bias primals_29 = self.conv20.weight primals_30 = self.conv20.bias primals_31 = self.conv21.weight primals_32 = self.conv21.bias primals_33 = self.relu22.weight primals_34 = self.conv23.weight primals_35 = self.conv23.bias primals_36 = self.relu24.weight primals_37 = self.conv25.weight primals_38 = self.conv25.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38]) return output[0]
albangossard/Course-inverse-problems-and-unrolled-networks
_Residual_Block
false
1,443
[ "MIT" ]
0
0d4161c905149817e3abff9e70c101f36fac4270
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/tree/0d4161c905149817e3abff9e70c101f36fac4270
import torch import torch.nn as nn class Model(nn.Module): def __init__(self, num_chans=64): super().__init__() bias = True self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu2 = nn.PReLU() self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride= 1, padding=1, bias=bias) self.relu4 = nn.PReLU() self.conv5 = nn.Conv2d(num_chans, num_chans * 2, kernel_size=3, stride=2, padding=1, bias=bias) self.relu6 = nn.PReLU() self.conv7 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu8 = nn.PReLU() self.conv9 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=3, stride=2, padding=1, bias=bias) self.relu10 = nn.PReLU() self.conv11 = nn.Conv2d(num_chans * 4, num_chans * 4, kernel_size=3, stride=1, padding=1, bias=bias) self.relu12 = nn.PReLU() self.conv13 = nn.Conv2d(num_chans * 4, num_chans * 8, kernel_size=1, stride=1, padding=0, bias=bias) self.up14 = nn.PixelShuffle(2) self.conv15 = nn.Conv2d(num_chans * 4, num_chans * 2, kernel_size=1, stride=1, padding=0, bias=bias) self.conv16 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3, stride=1, padding=1, bias=bias) self.relu17 = nn.PReLU() self.conv18 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=1, stride=1, padding=0, bias=bias) self.up19 = nn.PixelShuffle(2) self.conv20 = nn.Conv2d(num_chans * 2, num_chans, kernel_size=1, stride=1, padding=0, bias=bias) self.conv21 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu22 = nn.PReLU() self.conv23 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) self.relu24 = nn.PReLU() self.conv25 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride =1, padding=1, bias=bias) def forward(self, x): res1 = x out = self.relu4(self.conv3(self.relu2(self.conv1(x)))) out = torch.add(res1, out) cat1 = out out = self.relu6(self.conv5(out)) res2 = out out = self.relu8(self.conv7(out)) out = torch.add(res2, out) cat2 = out out = self.relu10(self.conv9(out)) res3 = out out = self.relu12(self.conv11(out)) out = torch.add(res3, out) out = self.up14(self.conv13(out)) out = torch.cat([out, cat2], 1) out = self.conv15(out) res4 = out out = self.relu17(self.conv16(out)) out = torch.add(res4, out) out = self.up19(self.conv18(out)) out = torch.cat([out, cat1], 1) out = self.conv20(out) res5 = out out = self.relu24(self.conv23(self.relu22(self.conv21(out)))) out = torch.add(res5, out) out = self.conv25(out) out = torch.add(out, res1) return out def get_inputs(): return [torch.rand([4, 64, 64, 64])] def get_init_inputs(): return []
PredictionConvolutions
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/wt/cwt5qmtvc7yxu72iuj2iy3dboxfdnpjie7tsbva6mk7drgkwx5ae.py # Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat] # Source node to ATen node mapping: # locs => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %view_1, %view_2, %view_3, %view_4, %view_5], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2097152], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1966080 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x1 = (xindex // 4) % 122880 x0 = xindex % 4 x2 = (xindex // 491520) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 16384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4096*((x0 + (4*x1)) % 16)) + (65536*(((x0 + (4*x1) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*x1)) // 16) % 4096)), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + ((x0 + (4*x1)) % 16), tmp4, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 40960, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + ((4096*((x0 + (4*((-16384) + x1))) % 24)) + (98304*(((x0 + (4*((-16384) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-16384) + x1))) // 24) % 4096)), tmp13, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + ((x0 + (4*((-16384) + x1))) % 24), tmp13, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 65536, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + ((4096*((x0 + (4*((-40960) + x1))) % 24)) + (98304*(((x0 + (4*((-40960) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-40960) + x1))) // 24) % 4096)), tmp22, eviction_policy='evict_last', other=0.0) tmp24 = tl.load(in_ptr5 + ((x0 + (4*((-40960) + x1))) % 24), tmp22, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 90112, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tmp28 & tmp30 tmp32 = tl.load(in_ptr6 + ((4096*((x0 + (4*((-65536) + x1))) % 24)) + (98304*(((x0 + (4*((-65536) + x1)) + (98304*x2)) // 98304) % 4)) + (((x0 + (4*((-65536) + x1))) // 24) % 4096)), tmp31, eviction_policy='evict_last', other=0.0) tmp33 = tl.load(in_ptr7 + ((x0 + (4*((-65536) + x1))) % 24), tmp31, eviction_policy='evict_last', other=0.0) tmp34 = tmp32 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp31, tmp34, tmp35) tmp37 = tmp0 >= tmp29 tmp38 = tl.full([1], 106496, tl.int64) tmp39 = tmp0 < tmp38 tmp40 = tmp37 & tmp39 tmp41 = tl.load(in_ptr8 + ((4096*((x0 + (4*((-90112) + x1))) % 16)) + (65536*(((x0 + (4*((-90112) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-90112) + x1))) // 16) % 4096)), tmp40, eviction_policy='evict_last', other=0.0) tmp42 = tl.load(in_ptr9 + ((x0 + (4*((-90112) + x1))) % 16), tmp40, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 + tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp40, tmp43, tmp44) tmp46 = tmp0 >= tmp38 tmp47 = tl.full([1], 122880, tl.int64) tmp48 = tmp0 < tmp47 tmp49 = tl.load(in_ptr10 + ((4096*((x0 + (4*((-106496) + x1))) % 16)) + (65536*(((x0 + (4*((-106496) + x1)) + (65536*x2)) // 65536) % 4)) + (((x0 + (4*((-106496) + x1))) // 16) % 4096)), tmp46, eviction_policy='evict_last', other=0.0) tmp50 = tl.load(in_ptr11 + ((x0 + (4*((-106496) + x1))) % 16), tmp46, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp46, tmp51, tmp52) tmp54 = tl.where(tmp40, tmp45, tmp53) tmp55 = tl.where(tmp31, tmp36, tmp54) tmp56 = tl.where(tmp22, tmp27, tmp55) tmp57 = tl.where(tmp13, tmp18, tmp56) tmp58 = tl.where(tmp4, tmp9, tmp57) tl.store(out_ptr0 + (x3), tmp58, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30 = args args.clear() assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (16, ), (1, )) assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_5, (24, ), (1, )) assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_8, (24, ), (1, )) assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (24, ), (1, )) assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_14, (16, ), (1, )) assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (16, ), (1, )) assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_20, (16, ), (1, )) assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_22, (24, ), (1, )) assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_24, (24, ), (1, )) assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_26, (24, ), (1, )) assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_28, (16, ), (1, )) assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_30, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [l_conv4_3], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv7], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv8_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv9_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv10_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [l_conv11_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv4_3], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv7], Original ATen: [aten.convolution] buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv8_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv9_2], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv10_2], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(primals_15, primals_27, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1)) # Topologically Sorted Source Nodes: [c_conv11_2], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(primals_18, primals_29, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [locs], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, primals_3, buf1, primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14, buf5, primals_17, buf12, 1966080, grid=grid(1966080), stream=stream0) del buf0 del buf1 del buf2 del buf3 del buf4 del buf5 del primals_11 del primals_14 del primals_17 del primals_3 del primals_5 del primals_8 buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [classes_scores], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf6, primals_20, buf7, primals_22, buf8, primals_24, buf9, primals_26, buf10, primals_28, buf11, primals_30, buf13, 1966080, grid=grid(1966080), stream=stream0) del buf10 del buf11 del buf6 del buf7 del buf8 del buf9 del primals_20 del primals_22 del primals_24 del primals_26 del primals_28 del primals_30 return (buf12, buf13, primals_1, primals_2, primals_4, primals_6, primals_7, primals_9, primals_10, primals_12, primals_13, primals_15, primals_16, primals_18, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 1024, 64, 64), (4194304, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 512, 64, 64), (2097152, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((16, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_21 = rand_strided((24, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_22 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_23 = rand_strided((24, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_24 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_25 = rand_strided((24, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_26 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32) primals_27 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_28 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_29 = rand_strided((16, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_30 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import nn from itertools import product as product import torch.optim import torch.utils.data class PredictionConvolutions(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutions, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) l_conv10_2 = self.loc_conv10_2(conv10_2_feats) l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous() l_conv10_2 = l_conv10_2.view(batch_size, -1, 4) l_conv11_2 = self.loc_conv11_2(conv11_2_feats) l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous() l_conv11_2 = l_conv11_2.view(batch_size, -1, 4) c_conv4_3 = self.cl_conv4_3(conv4_3_feats) c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) c_conv7 = self.cl_conv7(conv7_feats) c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) c_conv8_2 = self.cl_conv8_2(conv8_2_feats) c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) c_conv9_2 = self.cl_conv9_2(conv9_2_feats) c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) c_conv10_2 = self.cl_conv10_2(conv10_2_feats) c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) c_conv11_2 = self.cl_conv11_2(conv11_2_feats) c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1) classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2], dim=1) return locs, classes_scores def get_inputs(): return [torch.rand([4, 512, 64, 64]), torch.rand([4, 1024, 64, 64]), torch.rand([4, 512, 64, 64]), torch.rand([4, 256, 64, 64]), torch. rand([4, 256, 64, 64]), torch.rand([4, 256, 64, 64])] def get_init_inputs(): return [[], {'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from itertools import product as product import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4 % 122880 x0 = xindex % 4 x2 = xindex // 491520 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 + 4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096), tmp4, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 40960, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (4096 * ((x0 + 4 * (-16384 + x1)) % 24) + 98304 * ((x0 + 4 * (-16384 + x1) + 98304 * x2) // 98304 % 4) + (x0 + 4 * (-16384 + x1)) // 24 % 4096), tmp13, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 65536, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + (4096 * ((x0 + 4 * (-40960 + x1)) % 24) + 98304 * ((x0 + 4 * (-40960 + x1) + 98304 * x2) // 98304 % 4) + (x0 + 4 * (-40960 + x1)) // 24 % 4096), tmp22, eviction_policy= 'evict_last', other=0.0) tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-40960 + x1)) % 24, tmp22, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 90112, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tmp28 & tmp30 tmp32 = tl.load(in_ptr6 + (4096 * ((x0 + 4 * (-65536 + x1)) % 24) + 98304 * ((x0 + 4 * (-65536 + x1) + 98304 * x2) // 98304 % 4) + (x0 + 4 * (-65536 + x1)) // 24 % 4096), tmp31, eviction_policy= 'evict_last', other=0.0) tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-65536 + x1)) % 24, tmp31, eviction_policy='evict_last', other=0.0) tmp34 = tmp32 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp31, tmp34, tmp35) tmp37 = tmp0 >= tmp29 tmp38 = tl.full([1], 106496, tl.int64) tmp39 = tmp0 < tmp38 tmp40 = tmp37 & tmp39 tmp41 = tl.load(in_ptr8 + (4096 * ((x0 + 4 * (-90112 + x1)) % 16) + 65536 * ((x0 + 4 * (-90112 + x1) + 65536 * x2) // 65536 % 4) + (x0 + 4 * (-90112 + x1)) // 16 % 4096), tmp40, eviction_policy= 'evict_last', other=0.0) tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-90112 + x1)) % 16, tmp40, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 + tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp40, tmp43, tmp44) tmp46 = tmp0 >= tmp38 tl.full([1], 122880, tl.int64) tmp49 = tl.load(in_ptr10 + (4096 * ((x0 + 4 * (-106496 + x1)) % 16) + 65536 * ((x0 + 4 * (-106496 + x1) + 65536 * x2) // 65536 % 4) + (x0 + 4 * (-106496 + x1)) // 16 % 4096), tmp46, eviction_policy= 'evict_last', other=0.0) tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-106496 + x1)) % 16, tmp46, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp46, tmp51, tmp52) tmp54 = tl.where(tmp40, tmp45, tmp53) tmp55 = tl.where(tmp31, tmp36, tmp54) tmp56 = tl.where(tmp22, tmp27, tmp55) tmp57 = tl.where(tmp13, tmp18, tmp56) tmp58 = tl.where(tmp4, tmp9, tmp57) tl.store(out_ptr0 + x3, tmp58, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30) = args args.clear() assert_size_stride(primals_1, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_2, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_3, (16,), (1,)) assert_size_stride(primals_4, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_5, (24,), (1,)) assert_size_stride(primals_6, (4, 1024, 64, 64), (4194304, 4096, 64, 1)) assert_size_stride(primals_7, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_8, (24,), (1,)) assert_size_stride(primals_9, (4, 512, 64, 64), (2097152, 4096, 64, 1)) assert_size_stride(primals_10, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (24,), (1,)) assert_size_stride(primals_12, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_13, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_14, (16,), (1,)) assert_size_stride(primals_15, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_16, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (16,), (1,)) assert_size_stride(primals_18, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_19, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_20, (16,), (1,)) assert_size_stride(primals_21, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_22, (24,), (1,)) assert_size_stride(primals_23, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_24, (24,), (1,)) assert_size_stride(primals_25, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_26, (24,), (1,)) assert_size_stride(primals_27, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_28, (16,), (1,)) assert_size_stride(primals_29, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_30, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf2 = extern_kernels.convolution(primals_9, primals_7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf3 = extern_kernels.convolution(primals_12, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf4 = extern_kernels.convolution(primals_15, primals_13, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf5 = extern_kernels.convolution(primals_18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf6 = extern_kernels.convolution(primals_1, primals_19, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf7 = extern_kernels.convolution(primals_6, primals_21, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf8 = extern_kernels.convolution(primals_9, primals_23, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf9 = extern_kernels.convolution(primals_12, primals_25, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 24, 64, 64), (98304, 4096, 64, 1)) buf10 = extern_kernels.convolution(primals_15, primals_27, stride=( 1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf11 = extern_kernels.convolution(primals_18, primals_29, stride=( 1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf12 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1966080)](buf0, primals_3, buf1, primals_5, buf2, primals_8, buf3, primals_11, buf4, primals_14, buf5, primals_17, buf12, 1966080, XBLOCK=1024, num_warps=4, num_stages=1) del buf0 del buf1 del buf2 del buf3 del buf4 del buf5 del primals_11 del primals_14 del primals_17 del primals_3 del primals_5 del primals_8 buf13 = empty_strided_cuda((4, 122880, 4), (491520, 4, 1), torch. float32) triton_poi_fused_cat_0[grid(1966080)](buf6, primals_20, buf7, primals_22, buf8, primals_24, buf9, primals_26, buf10, primals_28, buf11, primals_30, buf13, 1966080, XBLOCK=1024, num_warps=4, num_stages=1) del buf10 del buf11 del buf6 del buf7 del buf8 del buf9 del primals_20 del primals_22 del primals_24 del primals_26 del primals_28 del primals_30 return (buf12, buf13, primals_1, primals_2, primals_4, primals_6, primals_7, primals_9, primals_10, primals_12, primals_13, primals_15, primals_16, primals_18, primals_19, primals_21, primals_23, primals_25, primals_27, primals_29) class PredictionConvolutionsNew(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutionsNew, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, input_0, input_1, input_2, input_3, input_4, input_5): primals_2 = self.loc_conv4_3.weight primals_3 = self.loc_conv4_3.bias primals_4 = self.loc_conv7.weight primals_5 = self.loc_conv7.bias primals_7 = self.loc_conv8_2.weight primals_8 = self.loc_conv8_2.bias primals_10 = self.loc_conv9_2.weight primals_11 = self.loc_conv9_2.bias primals_13 = self.loc_conv10_2.weight primals_14 = self.loc_conv10_2.bias primals_16 = self.loc_conv11_2.weight primals_17 = self.loc_conv11_2.bias primals_19 = self.cl_conv4_3.weight primals_20 = self.cl_conv4_3.bias primals_21 = self.cl_conv7.weight primals_22 = self.cl_conv7.bias primals_23 = self.cl_conv8_2.weight primals_24 = self.cl_conv8_2.bias primals_25 = self.cl_conv9_2.weight primals_26 = self.cl_conv9_2.bias primals_27 = self.cl_conv10_2.weight primals_28 = self.cl_conv10_2.bias primals_29 = self.cl_conv11_2.weight primals_30 = self.cl_conv11_2.bias primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 primals_12 = input_3 primals_15 = input_4 primals_18 = input_5 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30]) return output[0], output[1]
aarashfeizi/a-PyTorch-Tutorial-to-Object-Detection
PredictionConvolutions
false
1,444
[ "MIT" ]
0
a9e1f3092d4b8c094bff5cd0897e0e3c1e0bc9c2
https://github.com/aarashfeizi/a-PyTorch-Tutorial-to-Object-Detection/tree/a9e1f3092d4b8c094bff5cd0897e0e3c1e0bc9c2
import torch from torch import nn from itertools import product as product import torch.optim import torch.utils.data class Model(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super().__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) # ... truncated (>4000 chars) for memory efficiency
residualUnit
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/w2/cw23sxahiao23shoty6aralwbjlgswuoghgwkn6wmugklirv7nz3.py # Topologically Sorted Source Nodes: [conv2d, elu], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # conv2d => convolution # elu => expm1, gt, mul, mul_2, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/l3/cl3kktfjbfxvoqsgvjon5fk5ycnqjp7n2a3dk3gk4gw4n2jfe25m.py # Topologically Sorted Source Nodes: [conv2d_1, add, relu], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # add => add # conv2d_1 => convolution_1 # relu => relu # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_add_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_add_convolution_relu_threshold_backward_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d, elu], Original ATen: [aten.convolution, aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_elu_0.run(buf1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3; del buf3 # reuse buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_1, add, relu], Original ATen: [aten.convolution, aten.add, aten.relu, aten.threshold_backward] triton_poi_fused_add_convolution_relu_threshold_backward_1.run(buf4, primals_5, primals_3, buf5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import torch.nn.init class conv23DUnit(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True, dilation=1, nd=2): super(conv23DUnit, self).__init__() assert nd == 1 or nd == 2 or nd == 3, 'nd is not correctly specified!!!!, it should be {1,2,3}' if nd == 2: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) elif nd == 3: self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) else: self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) init.xavier_uniform(self.conv.weight, gain=np.sqrt(2.0)) init.constant(self.conv.bias, 0) def forward(self, x): return self.conv(x) class residualUnit(nn.Module): def __init__(self, in_size, out_size, kernel_size=3, stride=1, padding= 1, activation=F.relu, nd=2): super(residualUnit, self).__init__() self.conv1 = conv23DUnit(in_size, out_size, kernel_size, stride, padding, nd=nd) self.conv2 = conv23DUnit(out_size, out_size, kernel_size, stride, padding, nd=nd) def forward(self, x): return F.relu(self.conv2(F.elu(self.conv1(x))) + x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_size': 4, 'out_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0 tmp6 = tmp2 * tmp5 tmp7 = libdevice.expm1(tmp6) tmp8 = tmp7 * tmp5 tmp9 = tl.where(tmp4, tmp6, tmp8) tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp9, xmask) @triton.jit def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = tl.full([1], 0, tl.int32) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = 0.0 tmp8 = tmp6 <= tmp7 tl.store(in_out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr0 + x3, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_elu_0[grid(256)](buf1, primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf3 del buf3 buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)]( buf4, primals_5, primals_3, buf5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf2, buf5 class conv23DUnit(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True, dilation=1, nd=2): super(conv23DUnit, self).__init__() assert nd == 1 or nd == 2 or nd == 3, 'nd is not correctly specified!!!!, it should be {1,2,3}' if nd == 2: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) elif nd == 3: self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) else: self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) init.xavier_uniform(self.conv.weight, gain=np.sqrt(2.0)) init.constant(self.conv.bias, 0) def forward(self, x): return self.conv(x) class residualUnitNew(nn.Module): def __init__(self, in_size, out_size, kernel_size=3, stride=1, padding= 1, activation=F.relu, nd=2): super(residualUnitNew, self).__init__() self.conv1 = conv23DUnit(in_size, out_size, kernel_size, stride, padding, nd=nd) self.conv2 = conv23DUnit(out_size, out_size, kernel_size, stride, padding, nd=nd) def forward(self, input_0): primals_1 = self.conv1.conv.weight primals_2 = self.conv1.conv.bias primals_4 = self.conv2.conv.weight primals_5 = self.conv2.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
andry900/NN-Project
residualUnit
false
1,445
[ "MIT" ]
0
e04a83029f5990d9b65216ab0648a8826a8ebca7
https://github.com/andry900/NN-Project/tree/e04a83029f5990d9b65216ab0648a8826a8ebca7
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import torch.nn.init class conv23DUnit(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True, dilation=1, nd=2): super().__init__() assert nd == 1 or nd == 2 or nd == 3, 'nd is not correctly specified!!!!, it should be {1,2,3}' if nd == 2: self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) elif nd == 3: self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) else: self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride=stride, padding=padding, groups=groups, bias=bias, dilation=dilation) init.xavier_uniform(self.conv.weight, gain=np.sqrt(2.0)) init.constant(self.conv.bias, 0) def forward(self, x): return self.conv(x) class Model(nn.Module): def __init__(self, in_size, out_size, kernel_size=3, stride=1, padding= 1, activation=F.relu, nd=2): super().__init__() self.conv1 = conv23DUnit(in_size, out_size, kernel_size, stride, padding, nd=nd) self.conv2 = conv23DUnit(out_size, out_size, kernel_size, stride, padding, nd=nd) def forward(self, x): return F.relu(self.conv2(F.elu(self.conv1(x))) + x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [4, 4]
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/lh/clhtaboxxs526aw4bqcb7s6xoig5vzwco55tfg6waaga3ao3elgd.py # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] # Source node to ATen node mapping: # euclidean_distance => add, pow_1, pow_2, sub, sum_1 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=2] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) triton_poi_fused_add_norm_sub_0 = async_compile.triton('triton_poi_fused_add_norm_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_norm_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + (x0), tmp24, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/2l/c2l2efhstxzxtce6u6qjwkvh7vawevxafq4szecegv75l7dernch.py # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] # Source node to ATen node mapping: # add => add_1 # clamp => clamp_min # loss_contrastive => mean # mul => mul # mul_1 => mul_1 # pow_1 => pow_3 # pow_2 => pow_4 # sub => sub_1 # sub_1 => sub_2 # Graph fragment: # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg2_1), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %pow_3), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (2.0, %pow_2), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%clamp_min, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %pow_4), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_clamp_mean_mul_pow_rsub_1 = async_compile.triton('triton_per_fused_add_clamp_mean_mul_pow_rsub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_mean_mul_pow_rsub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp3 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [euclidean_distance], Original ATen: [aten.sub, aten.add, aten.norm] stream0 = get_raw_stream(0) triton_poi_fused_add_norm_sub_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [sub, pow_1, mul, sub_1, clamp, pow_2, mul_1, add, loss_contrastive], Original ATen: [aten.rsub, aten.pow, aten.mul, aten.clamp, aten.add, aten.mean] triton_per_fused_add_clamp_mean_mul_pow_rsub_1.run(buf2, arg2_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg2_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim class ContrastiveLoss(nn.Module): def __init__(self, margin=2.0): super(ContrastiveLoss, self).__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((1 - label) * torch.pow( euclidean_distance, 2) + label * torch.pow(torch.clamp(self. margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mean_mul_pow_rsub_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp3 * tmp3 tmp5 = tmp2 * tmp4 tmp6 = 2.0 tmp7 = tmp6 - tmp3 tmp8 = 0.0 tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tmp9 * tmp9 tmp11 = tmp0 * tmp10 tmp12 = tmp5 + tmp11 tmp13 = tl.broadcast_to(tmp12, [RBLOCK]) tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0)) tmp16 = 256.0 tmp17 = tmp15 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_clamp_mean_mul_pow_rsub_1[grid(1)](buf2, arg2_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf2, class ContrastiveLossNew(nn.Module): def __init__(self, margin=2.0): super(ContrastiveLossNew, self).__init__() self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
ani0075/learning-pytorch
ContrastiveLoss
false
1,446
[ "MIT" ]
0
c50e4126751821075e94c4cc3950dd8780370fce
https://github.com/ani0075/learning-pytorch/tree/c50e4126751821075e94c4cc3950dd8780370fce
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim class Model(nn.Module): def __init__(self, margin=2.0): super().__init__() self.margin = margin def forward(self, output1, output2, label): euclidean_distance = F.pairwise_distance(output1, output2) loss_contrastive = torch.mean((1 - label) * torch.pow( euclidean_distance, 2) + label * torch.pow(torch.clamp(self. margin - euclidean_distance, min=0.0), 2)) return loss_contrastive def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return []
h_swish
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/jj/cjjcpa4jfom3kmx4ufnxtda3bmq466cpemkegyhzep2ymmlsg35l.py # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # mul => mul # relu6 => clamp_max, clamp_min # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %clamp_max), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6.0), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, relu6, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn.functional as F import torch.nn as nn class h_swish(nn.Module): def __init__(self, inplace=False): super(h_swish, self).__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_swishNew(nn.Module): def __init__(self, inplace=False): super(h_swishNew, self).__init__() self.inplace = inplace def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
anonymous2022ijcai/RGSL
h_swish
false
1,447
[ "MIT" ]
0
11c38ee50d50127c0f7c2a137bdb21ca5f7f3644
https://github.com/anonymous2022ijcai/RGSL/tree/11c38ee50d50127c0f7c2a137bdb21ca5f7f3644
import torch import torch.utils.data import torch.nn.functional as F import torch.nn as nn class Model(nn.Module): def __init__(self, inplace=False): super().__init__() self.inplace = inplace def forward(self, x): return x * F.relu6(x + 3.0, inplace=self.inplace) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []
CmapPafHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/ca/ccalm3hakjc3y6pyouzotjhedyolmiuxj66frcn7j2bllcgh7gjc.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 1024 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), None, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (1048576*y1)), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pi/cpiqq6ydqends5jgnpbakdwghpnovztoymnjrsnfd3ycpt6b7cp7.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/4q/c4qmtshyh2quqp4mfbem56kakgs5tn4mkrnwi3suy4oa6joff42a.py # Topologically Sorted Source Nodes: [conv2d, ac, conv2d_1, ap, mul, mul_1], Original ATen: [aten.convolution, aten.sigmoid, aten.tanh, aten.mul] # Source node to ATen node mapping: # ac => sigmoid # ap => tanh # conv2d => convolution # conv2d_1 => convolution_1 # mul => mul # mul_1 => mul_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %tanh), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_tanh_2 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4194304], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_tanh_2', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_tanh_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4194304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x2), None) tmp4 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + (x2), None) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tl.sigmoid(tmp5) tmp8 = tmp6 * tmp7 tmp9 = libdevice.tanh(tmp2) tmp10 = tmp6 * tmp9 tl.store(in_out_ptr0 + (x2), tmp2, None) tl.store(in_out_ptr1 + (x2), tmp5, None) tl.store(out_ptr0 + (x2), tmp8, None) tl.store(out_ptr1 + (x2), tmp10, None) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/pn/cpngdclw7lzjwmfou3d3kip6qoxuvwgrgxlt5gs2kd5udjsfz5ny.py # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16384*y1)), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4096*y3)), tmp2, ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_3, (256, ), (1, )) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (4, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 1024, 4096, grid=grid(1024, 4096), stream=stream0) del primals_1 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_2, buf1, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_2 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_4, buf2, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_4 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 64, 64), (1048576, 1, 16384, 256)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf6 = buf5; del buf5 # reuse buf4 = buf3; del buf3 # reuse buf7 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) buf10 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d, ac, conv2d_1, ap, mul, mul_1], Original ATen: [aten.convolution, aten.sigmoid, aten.tanh, aten.mul] triton_poi_fused_convolution_mul_sigmoid_tanh_2.run(buf6, buf4, primals_5, primals_3, buf0, buf7, buf10, 4194304, grid=grid(4194304), stream=stream0) del primals_3 del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 64, 64), (16384, 1, 256, 4)) buf9 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf8, primals_7, buf9, 16, 4096, grid=grid(16, 4096), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 64, 64), (16384, 1, 256, 4)) buf12 = reinterpret_tensor(buf8, (4, 4, 64, 64), (16384, 4096, 64, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_3.run(buf11, primals_9, buf12, 16, 4096, grid=grid(16, 4096), stream=stream0) del buf11 del primals_9 return (buf9, buf12, buf0, buf1, buf2, primals_6, primals_8, buf4, buf6, buf7, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 256, 64, 64), (1048576, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn import torch.optim class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super(UpsampleCBR, self).__init__(*layers) class CmapPafHeadAttention(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super(CmapPafHeadAttention, self).__init__() self.cmap_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.paf_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.cmap_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.paf_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.cmap_conv = torch.nn.Conv2d(upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): xc = self.cmap_up(x) ac = torch.sigmoid(self.cmap_att(xc)) xp = self.paf_up(x) ap = torch.tanh(self.paf_att(xp)) return self.cmap_conv(xc * ac), self.paf_conv(xp * ap) def get_inputs(): return [torch.rand([4, 256, 64, 64])] def get_init_inputs(): return [[], {'input_channels': 4, 'cmap_channels': 4, 'paf_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), None, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 256 * x2 + 1048576 * y1), tmp0, None) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_tanh_2(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x2, None) tmp4 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr2 + x2, None) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp7 = tl.sigmoid(tmp5) tmp8 = tmp6 * tmp7 tmp9 = libdevice.tanh(tmp2) tmp10 = tmp6 * tmp9 tl.store(in_out_ptr0 + x2, tmp2, None) tl.store(in_out_ptr1 + x2, tmp5, None) tl.store(out_ptr0 + x2, tmp8, None) tl.store(out_ptr1 + x2, tmp10, None) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16384 * y1), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 256, 64, 64), (1048576, 4096, 64, 1)) assert_size_stride(primals_2, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_3, (256,), (1,)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (4, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256 ), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(1024, 4096)](primals_1, buf0, 1024, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_1[grid(65536, 9)](primals_2, buf1, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_1[grid(65536, 9)](primals_4, buf2, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf5 = extern_kernels.convolution(buf0, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 256, 64, 64), (1048576, 1, 16384, 256)) buf6 = buf5 del buf5 buf4 = buf3 del buf3 buf7 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256 ), torch.float32) buf10 = empty_strided_cuda((4, 256, 64, 64), (1048576, 1, 16384, 256), torch.float32) triton_poi_fused_convolution_mul_sigmoid_tanh_2[grid(4194304)](buf6, buf4, primals_5, primals_3, buf0, buf7, buf10, 4194304, XBLOCK= 512, num_warps=8, num_stages=1) del primals_3 del primals_5 buf8 = extern_kernels.convolution(buf7, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 64, 64), (16384, 1, 256, 4)) buf9 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_3[grid(16, 4096)](buf8, primals_7, buf9, 16, 4096, XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1) del primals_7 buf11 = extern_kernels.convolution(buf10, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 64, 64), (16384, 1, 256, 4)) buf12 = reinterpret_tensor(buf8, (4, 4, 64, 64), (16384, 4096, 64, 1), 0) del buf8 triton_poi_fused_convolution_3[grid(16, 4096)](buf11, primals_9, buf12, 16, 4096, XBLOCK=32, YBLOCK=16, num_warps=4, num_stages=1) del buf11 del primals_9 return (buf9, buf12, buf0, buf1, buf2, primals_6, primals_8, buf4, buf6, buf7, buf10) class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super(UpsampleCBR, self).__init__(*layers) class CmapPafHeadAttentionNew(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super(CmapPafHeadAttentionNew, self).__init__() self.cmap_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.paf_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.cmap_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.paf_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.cmap_conv = torch.nn.Conv2d(upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, input_0): primals_2 = self.cmap_att.weight primals_3 = self.cmap_att.bias primals_4 = self.paf_att.weight primals_5 = self.paf_att.bias primals_6 = self.cmap_conv.weight primals_7 = self.cmap_conv.bias primals_8 = self.paf_conv.weight primals_9 = self.paf_conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
andreiday/trt_pose_motion_tracking_robot_arm
CmapPafHeadAttention
false
1,448
[ "MIT" ]
0
4ada47f6f12e18ce14ee53a22540e02923745dd8
https://github.com/andreiday/trt_pose_motion_tracking_robot_arm/tree/4ada47f6f12e18ce14ee53a22540e02923745dd8
import torch import torch.utils.data import torch.nn import torch.optim class UpsampleCBR(torch.nn.Sequential): def __init__(self, input_channels, output_channels, count=1, num_flat=0): layers = [] for i in range(count): if i == 0: inch = input_channels else: inch = output_channels layers += [torch.nn.ConvTranspose2d(inch, output_channels, kernel_size=4, stride=2, padding=1), torch.nn.BatchNorm2d( output_channels), torch.nn.ReLU()] for i in range(num_flat): layers += [torch.nn.Conv2d(output_channels, output_channels, kernel_size=3, stride=1, padding=1), torch.nn. BatchNorm2d(output_channels), torch.nn.ReLU()] super().__init__(*layers) class Model(torch.nn.Module): def __init__(self, input_channels, cmap_channels, paf_channels, upsample_channels=256, num_upsample=0, num_flat=0): super().__init__() self.cmap_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.paf_up = UpsampleCBR(input_channels, upsample_channels, num_upsample, num_flat) self.cmap_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.paf_att = torch.nn.Conv2d(upsample_channels, upsample_channels, kernel_size=3, stride=1, padding=1) self.cmap_conv = torch.nn.Conv2d(upsample_channels, cmap_channels, kernel_size=1, stride=1, padding=0) self.paf_conv = torch.nn.Conv2d(upsample_channels, paf_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): xc = self.cmap_up(x) ac = torch.sigmoid(self.cmap_att(xc)) xp = self.paf_up(x) ap = torch.tanh(self.paf_att(xp)) return self.cmap_conv(xc * ac), self.paf_conv(xp * ap) def get_inputs(): return [torch.rand([4, 256, 64, 64])] def get_init_inputs(): return [4, 4, 4]
h_sigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/rm/crm72qx6rsghhfnyhuw5kfn2z6uwrgv7td4c2blpcrynbklz2exg.py # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] # Source node to ATen node mapping: # add => add # hardtanh => clamp_max, clamp_min # mul => mul # truediv => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6.0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 6), kwargs = {}) triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, hardtanh, mul, truediv], Original ATen: [aten.add, aten.hardtanh, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import torch.utils.data import torch.nn as nn class h_sigmoid(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, x): return self.relu(x + 3) * self.h_max / 6 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 1.0 tmp8 = tmp6 * tmp7 tmp9 = 0.16666666666666666 tmp10 = tmp8 * tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_sigmoidNew(nn.Module): def __init__(self, inplace=True, h_max=1): super(h_sigmoidNew, self).__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
anonymous2022ijcai/RGSL
h_sigmoid
false
1,449
[ "MIT" ]
0
11c38ee50d50127c0f7c2a137bdb21ca5f7f3644
https://github.com/anonymous2022ijcai/RGSL/tree/11c38ee50d50127c0f7c2a137bdb21ca5f7f3644
import torch import torch.utils.data import torch.nn as nn class Model(nn.Module): def __init__(self, inplace=True, h_max=1): super().__init__() self.relu = nn.ReLU6(inplace=inplace) self.h_max = h_max def forward(self, x): return self.relu(x + 3) * self.h_max / 6 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return []