content
stringlengths
5
1.05M
my_name = 'Zed A. Show' my_age = 35 # not a lie my_height = 74 # inches my_weight = 180 #lbs my_eyes = 'blue' my_teeth = 'white' my_hair = 'brown' print(f"Let's talk about {my_name}.") print(f"He's {my_height} inches tall.") print(f"He's {my_weight} pounds heavy.") print("Actually that's not too heavy.") print(f"He's got {my_eyes} eyes and {my_hair} hair.") print(f"He's teeth are usually {my_teeth} depending onthe coffee.") #this line is tricky, try to get it exactly right total = my_age + my_height + my_weight print(f"if I add {my_age}, {my_height}, and {my_weight} I get {total}.")
#!/usr/bin/env python from PyQt4 import QtGui from PyQt4 import QtCore from PyQt4 import Qt import PyQt4.Qwt5 as Qwt import os class Relay_Frame_Vertical(QtGui.QFrame): def __init__(self, cfg): super(Relay_Frame_Vertical, self).__init__() #self.parent = parent self.rel_idx = cfg['idx'] #self.value = value self.name = cfg['name'] self.device = cfg['device'] self.groups = cfg['groups'] self.state = False self.initUI() def initUI(self): self.setFrameShape(QtGui.QFrame.StyledPanel) self.initWidgets() def initWidgets(self): #btn_hbox = QtGui.QHBoxLayout() self.on_btn = QtGui.QPushButton() self.on_btn.setCheckable(True) self.on_btn.setFixedWidth(60) self.on_btn.setFixedHeight(25) self.on_btn.setStyleSheet("QPushButton {background-color:rgb(0,0,0);}") icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(os.getcwd() + '/gui/icons/led-green-off-oval.png')) icon.addPixmap(QtGui.QPixmap(os.getcwd() + '/gui/icons/led-green-on-oval.png'), \ QtGui.QIcon.Normal, \ QtGui.QIcon.On) self.on_btn.setIcon(icon) self.on_btn.setIconSize(QtCore.QSize(50,25)) self.on_btn.toggled.connect(self.onButtonClicked) self.idx_lbl = QtGui.QLabel(self.rel_idx) self.idx_lbl.setAlignment(QtCore.Qt.AlignCenter|QtCore.Qt.AlignVCenter) self.idx_lbl.setStyleSheet("QLabel {font-size:12px; color:rgb(255,255,255);}") self.name_lbl = QtGui.QLabel(self.name) self.name_lbl.setAlignment(QtCore.Qt.AlignCenter|QtCore.Qt.AlignVCenter) self.name_lbl.setStyleSheet("QLabel {font-size:12px; color:rgb(255,255,255);}") self.device_lbl = QtGui.QLabel(self.device) self.device_lbl.setAlignment(QtCore.Qt.AlignCenter|QtCore.Qt.AlignVCenter) self.device_lbl.setStyleSheet("QLabel {font-size:12px; color:rgb(255,255,255);}") str_groups = "" if (type(self.groups) is list): str_groups = ",".join(self.groups) elif type(self.groups) is unicode: str_groups = self.groups self.groups_lbl = QtGui.QLabel(str_groups) self.groups_lbl.setAlignment(QtCore.Qt.AlignCenter|QtCore.Qt.AlignVCenter) self.groups_lbl.setStyleSheet("QLabel {font-size:12px; color:rgb(255,255,255);}") self.grid = QtGui.QGridLayout() self.grid.addWidget(self.name_lbl ,1,0,1,1) self.grid.addWidget(self.groups_lbl ,2,0,1,1) self.grid.addWidget(self.on_btn ,0,0,1,1) #self.grid.setColumnStretch(1,1) self.grid.setColumnStretch(3,10) self.grid.setSpacing(1) self.grid.setContentsMargins(1,1,1,1) self.setLayout(self.grid) #btn_hbox.addWidget(self.on_btn) #btn_hbox.addWidget(self.off_btn) #btn_hbox.setContentsMargins(0, 0, 0, 0) #self.setLayout(btn_hbox) def onButtonClicked(self, state): print state self.state = state def offButtonClicked(self): self.buttonClicked(False) class Relay_Frame(QtGui.QFrame): def __init__(self, cfg): super(Relay_Frame, self).__init__() #self.parent = parent self.rel_idx = cfg['idx'] #self.value = value self.name = cfg['name'] self.device = cfg['device'] self.groups = cfg['groups'] self.state = False self.initUI() def initUI(self): self.setFrameShape(QtGui.QFrame.StyledPanel) self.initWidgets() def initWidgets(self): #btn_hbox = QtGui.QHBoxLayout() self.on_btn = QtGui.QPushButton("ON") self.on_btn.setCheckable(True) self.on_btn.setFixedWidth(40) self.on_btn.setStyleSheet("QPushButton {font-size: 14px; \ font-weight:bold; \ background-color:rgb(0,255,0); \ color:rgb(0,0,0);} ") self.off_btn = QtGui.QPushButton("OFF") self.off_btn.setCheckable(True) self.off_btn.setChecked(True) self.off_btn.setEnabled(False) self.off_btn.setFixedWidth(40) self.off_btn.setStyleSheet("QPushButton {font-size: 14px; \ font-weight:bold; \ background-color:rgb(255,0,0); \ color:rgb(0,0,0);} ") self.on_btn.clicked.connect(self.onButtonClicked) self.off_btn.clicked.connect(self.offButtonClicked) self.idx_lbl = QtGui.QLabel(self.rel_idx) self.idx_lbl.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignVCenter) self.idx_lbl.setStyleSheet("QLabel {font-size:18px; color:rgb(255,255,255);}") self.name_lbl = QtGui.QLabel(self.name) self.name_lbl.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignVCenter) self.name_lbl.setStyleSheet("QLabel {font-size:18px; color:rgb(255,255,255);}") self.device_lbl = QtGui.QLabel(self.device) self.device_lbl.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignVCenter) self.device_lbl.setStyleSheet("QLabel {font-size:18px; color:rgb(255,255,255);}") str_groups = "" if (type(self.groups) is list): str_groups = ",".join(self.groups) elif type(self.groups) is unicode: str_groups = self.groups self.groups_lbl = QtGui.QLabel(str_groups) self.groups_lbl.setAlignment(QtCore.Qt.AlignLeft|QtCore.Qt.AlignVCenter) self.groups_lbl.setStyleSheet("QLabel {font-size:18px; color:rgb(255,255,255);}") self.grid = QtGui.QGridLayout() self.grid.addWidget(self.name_lbl ,0,0,1,1) self.grid.addWidget(self.groups_lbl ,0,1,1,1) self.grid.addWidget(self.on_btn ,0,2,1,1) self.grid.addWidget(self.off_btn ,0,3,1,1) #self.grid.setColumnStretch(1,1) #self.grid.setColumnStretch(0,10) #self.grid.setSpacing(0) self.grid.setContentsMargins(0, 0, 0, 0) self.setLayout(self.grid) #btn_hbox.addWidget(self.on_btn) #btn_hbox.addWidget(self.off_btn) #btn_hbox.setContentsMargins(0, 0, 0, 0) #self.setLayout(btn_hbox) def onButtonClicked(self): self.buttonClicked(True) def offButtonClicked(self): self.buttonClicked(False) def buttonClicked(self, btn_id): if btn_id: #ON #print "on btn clicked" self.on_btn.setEnabled(False) self.off_btn.setEnabled(True) self.off_btn.setChecked(False) self.state = True else:#OFF #print "off btn clicked" self.on_btn.setEnabled(True) self.off_btn.setEnabled(False) self.on_btn.setChecked(False) self.state = False print self.name, self.state
class WorldObject(object): def __init__(self): self.is_player = False self.is_crate = False self.is_wall = False self.is_goal = False def is_empty(self): return (not self.is_player) and (not self.is_crate) and (not self.is_wall) and (not self.is_goal) class World(object): def __init__(self): self.height = 0 self.width = 0 self.map = [] def has_player_won(self): pass
# Crie um programa que leia quanto dinheiro uma pessoa tem na carteira. # E mostre quantos dólares ela pode comprar. r = float(input('Quantos R$ você tem na carteira ? ')) d = r / 3.27 print(f'Com R${r:.2f} você pode comprar US${d:.2f}')
import logging import unittest from unittest.mock import Mock from MyPiEye.Storage import S3Storage from MyPiEye.CLI import load_config logging.basicConfig(level=logging.INFO) class S3Tests(unittest.TestCase): def test_upload(self): config = load_config(Mock(), Mock(), 'D:\\Data\\projects\\python\\tmp\\mypieye.ini') config['credential_folder'] = 'D:\\Data\\projects\\python\\tmp' s3 = S3Storage(config) ret = s3.upload('test/this', 'data/test_image.jpg') self.assertTrue(ret)
def function(): foo = 1 gen_expr = (bar for bar in xrange(10)) print foo
def reverse_string(str1): return str1[::-1] def capitalize_string(str1): return str1.capitalize()
from utop.pane import PaneSet, Pane from utop.views.footer import Footer as FooterView from utop.views.header import Header as HeaderView from utop.views.content import Content as ContentView class DefaultPaneSet(PaneSet): def set_panes(self): stdscr = self.model.stdscr maxx = self.model.maxx maxy = self.model.maxy header_size = 8 footer_size = 2 header = Pane(stdscr, maxx, header_size) header.set_view(HeaderView(self.model)) content = Pane(stdscr, maxx, maxy - (header_size + footer_size), 0, header_size) content.set_view(ContentView(self.model)) footer = Pane(stdscr, maxx, footer_size, 0, maxy - footer_size) footer.set_view(FooterView(self.model)) self.panes.append(header) self.panes.append(content) self.panes.append(footer) self.header = header self.content = content self.footer = footer
#!/usr/bin/env python # In[11]: # OBJECTS AS A METAPHOR from datetime import date today = date(2011, 9, 2) str(date(2011, 12, 2) - today) today.year today.strftime("%A, %B %d") # Objects, class, instances ofclass, attributes, # methods (function valued attributes),behaviour and information. # Dot notation-combined expression in Python # In[12]: # NATIVE DATA TYPES type(today) # Native data type properties, literals, native numeric types,float vs int # In[15]: # DATA ABSTRACTION # compund structure, compound data value, lat long regarded as single # conceptual unit,technique of isolating how data is represented vs how # data is maniplated, assupmtions about data should be minimum # Selectors and Constructors, finite binary expansion, # wishful thinking """make_rat(n, d) returns the rational number with numerator n and denominator d. #constructor numer(x) returns the numerator of the rational number x. #selector denom(x) returns the denominator of the rational number x. #selector""" def add_rat(x, y): nx, dx = numer(x), denom(x) ny, dy = numer(y), denom(y) return make_rat(nx * dy + ny * dx, dx * dy) def mul_rat(x, y): return make_rat(numer(x) * numer(y), denom(x) * denom(y)) def eq_rat(x, y): return numer(x) * denom(y) == numer(y) * denom(x) # we have defined operations on rational numbers defined, in terms of numer and # denom and the constructor fxn make_rat. Need to glue together num & denom. # In[18]: # Tuples - a compound structure pair = (1, 2) x, y = pair x y pair[0] pair[1] # indexing from 0 because we want to see how far is an element from the # beginning of the tuple from operator import getitem getitem(pair, 0) # In[19]: def make_rat(n, d): return (n, d) def numer(x): return getitem(x, 0) def denom(x): return getitem(x, 1) def str_rat(x): return "{}/{}".format(numer(x), denom(x)) # In[21]: half = make_rat(1, 2) str_rat(half) # In[22]: third = make_rat(1, 3) str_rat(third) # In[24]: str_rat(mul_rat(half, third)) # In[25]: str_rat(add_rat(third, third)) # In[29]: # final evaluation above shows our implementation does not reduce rational numbers. # need a function to compute greatest common denominator of integers from fractions import gcd from math import gcd def make_rat(n, d): g = gcd(n, d) return (n // g, d // g) # "//" expresses integer division , rounds down to fractional part of result of division. str_rat(add_rat(third, third)) # In[55]: # DIVE INTO PYTHON (FURTHER READING) uid = "sa" pwd = "secret" print(pwd, "is not a passowrd for", uid) usercount = (6,) print("Users connected: %s" % (usercount)) # In[74]: def make_pair(x, y): def dispatch(m): if m == 0: return x elif m == 1: return y return dispatch def getitem_pair(p, i): return p(i) p = make_pair(3, 7) getitem_pair(p, 1) # In[77]: k = (1, (2, (3, (4, None)))) type(k) # In[4]: empty_rlist = None def make_rlist(first, rest): """Make a recursive list from its first element and the rest.""" return (first, rest) def first(s): """Return the first element of a recursive list s.""" return s[0] def rest(s): """Return the rest of the elements of a recursive list s.""" return s[1] # In[5]: counts = make_rlist(1, make_rlist(2, make_rlist(3, make_rlist(4, empty_rlist)))) counts # In[6]: def len_rlist(s): length = 0 while s != empty_rlist: s, length = rest(s), length + 1 return length def getitem_rlist(s, i): while i > 0: s, i = rest(s), i - 1 return first(s) # In[16]: getitem_rlist(counts, 3) # In[25]: def count(s, value): total, index = 0, 0 while index < len(s): if s[index] == value: total = total + 1 index = index + 1 return total digits = (2, 5, 6, 7, 7, 8, 9, 9, 0, 9, 2, 1, 3, 4) count(digits, 9) # In[29]: def count(s, value): total = 0 for j in s: # s is iterable if j == value: total = total + 1 return total count(digits, 7) # In[42]: # sequence unpacking, rememember x,y=2,2 works. Similar syntax in For: mypairs = ((2, 1), (2, 2), (6, 7), (8, 8), (3, 4)) # Count number of same value pairs def countsame(s): total = 0 for x, y in s: if x == y: total = total + 1 return total countsame(mypairs) # In[46]: tuple(range(1, 10)) # In[69]: # LISTS chinese_suits = ["coin", "string", "myriad"] suits = chinese_suits alphasuits = suits betasuits = alphasuits suits.pop() suits.remove("string") suits.append("cup") suits.extend(("sword", "club")) suits[2] = "spade" suits[0:2] = ("heart", "diamond") nest = list(suits) nest[0] = suits suits.insert(2, "joker") nest # In[72]: # nest[0].pop(2) suits # In[66]: suits is nest[0] # In[78]: suits is [ "heart", "diamond", "spade", "club", ] # because suits is a list object not just # its values, which are compared here [....] # In[76]: suits is suits # In[77]: suits == nest[0] # In[79]: suits == ["heart", "diamond", "spade", "club"] # In[87]: # LIST IMPLEMENTATION WITH RECRUSIVE PROGRAMMING. ACTUAL IMPLEMENTATION IS HIDDEN IN PYTHON # empty list, unique list empty_rlist = None # In[89]: # first & rest concept of a sequene def make_rlist(first, rest): return (first, rest) def first(s): return s[0] def rest(s): return s[1] # In[92]: # now to make a list, use nested function: counts = make_rlist( 1, make_rlist( 2, make_rlist(7, make_rlist(5, make_rlist(8, make_rlist(12, empty_rlist)))) ), ) counts # In[97]: def len_rlist(s): length = 0 while s != empty_rlist: s, length = rest(s), length + 1 return length def getitem_rlist(s, i): while i > 0: s, i = rest(s), i - 1 return first(s) getitem_rlist(counts, 2) # In[120]: # len,getitem,pushfirst,popfirst,string,a convenience fxn def make_mutable_rlist(): contents = empty_rlist def dispatch(message, value=None): nonlocal contents if message == "length": return len_rlist(contents) elif message == "getitem": return getitem_rlist(contents, value) elif message == "push_first": contents = make_rlist(value, contents) elif message == "pop_first": f = first(contents) contents = rest(contents) return f elif message == "str": return str(contents) return dispatch # CONVENIENCE FUNCTION / ADDING ELEMENTS THE LIST def to_mutable_rlist(source): s = make_mutable_rlist() for element in reversed(source): s("push_first", element) return s # In[122]: s = to_mutable_rlist(counts) type(s) # In[125]: s("length") # In[126]: len_rlist(counts) # In[130]: mylist = ["google", "amazon", "microsoft", "apple", "netflix"] mys = to_mutable_rlist(mylist) type(mys) # In[132]: mys("length") # In[146]: counts = make_rlist( 1, make_rlist( 2, make_rlist(7, make_rlist(5, make_rlist(8, make_rlist(12, empty_rlist)))) ), ) len(counts) len_rlist(counts) s("length") suits = ["heart", "diamond", "spade", "club"] # In[149]: # MYISSUE counts = make_rlist( 1, make_rlist( 2, make_rlist(7, make_rlist(5, make_rlist(8, make_rlist(12, empty_rlist)))) ), ) counts # inbuilt function sees the comma outside the inner brackets hence counts only 2 len(counts) # this function doesn't stop counting till it reached the 'empt_rlist' value at the end of the list, hence counts recursively = 6 def len_rlist(s): length = 0 while s != empty_rlist: s, length = rest(s), length + 1 return length len_rlist(counts) # built a message based function that calculates length based on 'len_rlist' and fit it into below program: def make_mutable_rlist(): contents = empty_rlist def dispatch(message, value=None): nonlocal contents if message == "length": return len_rlist(contents) elif message == "getitem": return getitem_rlist(contents, value) elif message == "push_first": contents = make_rlist(value, contents) elif message == "pop_first": f = first(contents) contents = rest(contents) return f elif message == "str": return str(contents) return dispatch # to use this program used below function def to_mutable_rlist(source): s = make_mutable_rlist() for element in reversed(source): s("push_first", element) return s s = to_mutable_rlist(suits) # new function s=... should give us the length based on 'length message using len_rlist function s("str") s("length") # <font color = green>__My issue__</font> was that I was getting different results for **len** and **len_rlist** for the same list. But this was happening when I was using the message function to fetch the length of the list, which uses **len_rlist**. When I was using **len_rlist** directly on the list, it was giving me the correct result. What I didn't realize, I was appling **to_mutable_rlist** to use the message fxn **len_rlist** on a list, that was already a mutable recursive list, made by *counts=make_rlist(...(..))))*. Using **to_mutable_rlist** on this rlist gave me a new recursive list, which had the length 2. # In[152]: # Dictionaries # getitem, setitem, # dispatch - keys and values def make_dict(): records = [] # v is stored according to k , hence, if k=key return (remember wishful thinking). Iterable value here is records which is called (k,v) a pair. # hence return v will return corresponding value. def getitem(key): for k, v in records: if k == key: return v # setitem will take key, value and attach new value to the key, wether or not key already exists. def setitem(key, value): for item in records: if item[0] == key: item[1] = value return records.append([key, value]) def dispatch(message, key=None, value=None): if message == "getitem": return getitem(key) elif message == "setitem": return setitem(key, value) elif message == "keys": return tuple(k for k, _ in records) elif message == "values": return tuple(v for _, v in records) elif message == "string": return str(records) return dispatch # In[160]: mydict = make_dict() mydict("setitem", 3, 4) mydict("setitem", ("angel", "misha", "CMD"), ("42", "Rstudio", "Bash")) mydict("string") # ### Propogating constraints, Example # # <font color = blue>__Keywords:__</font> Constraints, Connectors, nonlocal, dictionaries, general linear method, association, dispatch # In[ ]: from operator import add, mul, sub, truediv def inform_all_except(source, message, constraints): """Inform all constraints of the message except source""" for c in constraints: if c != source: c[message]() def make_ternary_constraints(a, b, c, ab, ca, cb): """The constraint that ab(a,b)=c and ca(c,a)=b and cb(c,b)=a""" def new_value(): av, bv, cv = [connector["has_val"]() for connector in (a, b, c)] if av and bv: c["set_val"](constraint, ab(a["val"], b["val"])) elif av and cv: b["set_val"](constraint, ac(a["val"], c["val"])) elif cv and bv: a["set_val"](constraint, cb(c["val"], b["val"])) def forget_value(): for connector in (a, b, c): connector["forget"](constraint) constraint = {"new_val": new_value, "forget": forget_value} for connector in (a, b, c): connector["connect"](constraint) return constraint def adder(a, b, c): """the constraint that a+b=c""" return make_ternary_constraints(a, b, c, add, sub, sub) def multiplier(a, b, c): """the constraint that a*b=c""" return make_ternary_constraints(a, b, c, mul, truediv, truediv) def constant(connector, value): """the constraint that connector=value""" constraint = {} connector["set_val"](constraint, value) return constraint def make_connector(name=None): """A connector between constraints""" informant = None constraints = [] def set_value(source, value): nonlocal informant val = connector["val"] if val is None: informant, connector["val"] = source, value if name is not None: print(name, "=", value) inform_all_except(source, "new_val", constraints) elif val != value: print("Contradiction detected", val, "vs", value) def forget_value(source): nonlocal informant if informant == source: informant, connector["val"] = None, None if name is not None: print(name, "is forgotten") inform_all_except(source, "forget", constraints) connector = { "val": None, "set_val": set_value, "forget": forget_value, "has_val": lambda: connector["val"] is not None, "connect": lambda source: constraints.append(source), } return connector celsius = make_connector("Celsius") fahrenheit = make_connector("Fahrenheit") def make_converter(c, f): """connect c to f with constraints from celsius to fahrenheit""" u, v, w, x, y = [make_connector() for _ in range(5)] multiplier(c, w, u) multiplier(v, x, u) adder(v, y, f) constant(w, 9) constant(x, 5) constant(y, 32) make_converter(celsius, fahrenheit) # ## Implementing Classes and Objects # # # In[2]: def make_instance(cls): """return a new object instance, which is a dispatch dictionary""" def get_value(name): if name in attributes: return attributes[name] else: value = cls["get"](name) return bind_method(value, instance) def set_value(name, value): attributes[name] = value attributes = {} instance = {"get": get_value, "set": set_value} return instance # In[3]: def bind_method(value, instance): """Return a bound method if value is callable, or value otherwise""" if callable(value): def method(*args): return value(instance, *args) return method else: return value # In[4]: def make_class(attributes, base_class=None): """Return a new class, which is a dispatch dictionary.""" def get_value(name): if name in attributes: return attributes[name] elif base_class is not None: return base_class["get"](name) def set_value(name, value): attributes[name] = value def new(*args): return init_instance(cls, *args) cls = {"get": get_value, "set": set_value, "new": new} return cls # In[5]: def init_instance(cls, *args): """Return a new object with type cls, initialized with args""" instance = make_instance(cls) init = cls["get"]("__init__") if init: init(instance, *args) return instance # In[6]: def make_account_class(): """Return the Account class, which has deposit and withdraw methods.""" def __init__(self, account_holder): self["set"]("holder", account_holder) self["set"]("balance", 0) def deposit(self, amount): """Increase the account balance by amount and return the new balance.""" new_balance = self["get"]("balance") + amount self["set"]("balance", new_balance) return self["get"]("balance") def withdraw(self, amount): """Decrease the account balance by amount and return the new balance.""" balance = self["get"]("balance") if amount > balance: return "Insufficient funds" self["set"]("balance", balance - amount) return self["get"]("balance") return make_class( { "__init__": __init__, "deposit": deposit, "withdraw": withdraw, "interest": 0.02, } ) # In[9]: def init_instance1(cls, *args): """Return a new object with type cls, initialized with args""" instance = make_instance(cls) init = cls["get"]("__init__") # if init: # init (instance, *args) return init # In[ ]: # In[10]: jim_acct = Account["new"]("Jim") type(jim_acct) # In[12]: jim_acct["get"]("holder") # In[13]: jim_acct["get"]("interest") # In[15]: jim_acct["get"]("deposit")(20) # In[16]: jim_acct["get"]("withdraw")(5) # In[20]: jim_acct["set"]("interest", 0.04) Account["get"]("interest") # In[21]: jim_acct["get"]("interest") # ### Inheritance # In[22]: def make_checking_account_class(): """Return the CheckingAccount class, which imposes a $1 withdrawal fee.""" def withdraw(self, amount): return Account["get"]("withdraw")(self, amount + 1) return make_class({"withdraw": withdraw, "interest": 0.01}, Account) # In[23]: CheckingAcc = make_checking_account_class() jack_acct = CheckingAcc["new"]("jack") # In[24]: print(jack_acct["get"]("interest")) print(jack_acct["get"]("deposit")(20)) print(jack_acct["get"]("withdraw")(9)) # ### Generic Operations # # Combining and manipulating objects of different types to build a large program. Till now we have used message functions, with dot expressions was what we have used till now. # # Using message passing, we endowed our abstract data types with behaviour directly. Using the object methaphor, we bundled together the representation of data and the methods used to manipulate that data to modularize data-driven programs with local state. # # In[1]: def hexid(obj): return hex(id(obj)) def make_instance(cls): # good with this """ Return a new object instance, which is a dispatch dictionary """ def get_value(name): print("INSTANCE GET_VALUE", name, "from", hexid(attributes)) if name in attributes: return attributes[name] else: value = cls["get"](name) return bind_method(value, instance) def set_value(name, value): attributes[name] = value attributes = {"test": "Default Test"} print("Created instance attributes", hexid(attributes)) instance = {"get": get_value, "set": set_value} return instance def bind_method(value, instance): # good with this """ Return a bound method if value is callable, or value otherwise """ if callable(value): def method(*args): return value(instance, *args) return method else: return value def make_class(attributes, base_class=None): """ Return a new class, which is a dispatch dictionary. """ def get_value(name): print("\nCLASS GET_VALUE", name, "from", hexid(attributes)) if name in attributes: return attributes[name] elif base_class is not None: return base_class["get"](name) def set_value(name, value): attributes[name] = value def new(*args): return init_instance(cls, *args) print("Creating class with attributes", hexid(attributes)) cls = {"get": get_value, "set": set_value, "new": new} return cls def init_instance(cls, *args): # problem here """ Return a new object with type cls, initialized with args """ instance = make_instance(cls) init = cls["get"]("__init__") if init: print("Calling init of", hexid(cls), "on", hexid(instance), "with", args) init(instance, *args) # No return here return instance def make_my_class(): # define a custom class # Create a simple __init__ for the class def __init__(inst, *args): print("INIT", hexid(inst), args) inst["set"]("data", args) # return a dict that implements class return make_class({"__init__": __init__}) # test # create a class my_class = make_my_class() # create some class instances jim = my_class["new"]("Jim") jim["set"]("test", "Hello") fred = my_class["new"]("Fred") print("CLASS", hexid(my_class)) print("\nINSTANCE", hexid(jim)) print(jim["get"]("data")) print(jim["get"]("test")) print("\nINSTANCE", hexid(fred)) print(fred["get"]("data")) print(fred["get"]("test")) # In[3]: help(hex) # # Super SO References # # https://stackoverflow.com/questions/50769327/class-instance-implementation-initializing-instance-from-sicp-python/50871026#50871026 # # # https://stackoverflow.com/questions/4020419/why-arent-python-nested-functions-called-closures/20898085#20898085 # # # https://stackoverflow.com/questions/12919278/how-to-define-free-variable-in-python # In[ ]:
"""Tests for `osxphotos exiftool` command.""" import glob import json import os import pytest from click.testing import CliRunner from osxphotos.cli.exiftool_cli import exiftool from osxphotos.cli.export import export from osxphotos.exiftool import ExifTool, get_exiftool_path from .test_cli import CLI_EXIFTOOL, PHOTOS_DB_15_7 # determine if exiftool installed so exiftool tests can be skipped try: exiftool_path = get_exiftool_path() except FileNotFoundError: exiftool_path = None @pytest.mark.skipif(exiftool_path is None, reason="exiftool not installed") def test_export_exiftool(): """Test osxphotos exiftool""" runner = CliRunner() cwd = os.getcwd() with runner.isolated_filesystem() as temp_dir: uuid_option = [] for uuid in CLI_EXIFTOOL: uuid_option.extend(("--uuid", uuid)) # first, export without --exiftool result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", *uuid_option, ], ) assert result.exit_code == 0 files = glob.glob("*") assert sorted(files) == sorted( [CLI_EXIFTOOL[uuid]["File:FileName"] for uuid in CLI_EXIFTOOL] ) # now, run exiftool command to update exiftool metadata result = runner.invoke( exiftool, ["--db", os.path.join(cwd, PHOTOS_DB_15_7), "-V", "--db-config", temp_dir], ) assert result.exit_code == 0 exif = ExifTool(CLI_EXIFTOOL[uuid]["File:FileName"]).asdict() for key in CLI_EXIFTOOL[uuid]: if type(exif[key]) == list: assert sorted(exif[key]) == sorted(CLI_EXIFTOOL[uuid][key]) else: assert exif[key] == CLI_EXIFTOOL[uuid][key] # now, export with --exiftool --update, no files should be updated result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--exiftool", "--update", *uuid_option, ], ) assert result.exit_code == 0 assert f"exported: 0, updated: 0, skipped: {len(CLI_EXIFTOOL)}" in result.output @pytest.mark.skipif(exiftool_path is None, reason="exiftool not installed") def test_export_exiftool_album_keyword(): """Test osxphotos exiftool with --album-template.""" runner = CliRunner() cwd = os.getcwd() with runner.isolated_filesystem() as temp_dir: # first, export without --exiftool result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--album", "Pumpkin Farm", ], ) assert result.exit_code == 0 files = glob.glob("*") assert len(files) == 3 # now, run exiftool command to update exiftool metadata result = runner.invoke( exiftool, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), "-V", "--db-config", "--report", "exiftool.json", "--album-keyword", temp_dir, ], ) assert result.exit_code == 0 report = json.load(open("exiftool.json", "r")) assert len(report) == 3 # verify exiftool metadata was updated for file in report: exif = ExifTool(file["filename"]).asdict() assert "Pumpkin Farm" in exif["IPTC:Keywords"] # now, export with --exiftool --update, no files should be updated result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--exiftool", "--update", "--album", "Pumpkin Farm", "--album-keyword", ], ) assert result.exit_code == 0 assert f"exported: 0, updated: 0, skipped: 3" in result.output @pytest.mark.skipif(exiftool_path is None, reason="exiftool not installed") def test_export_exiftool_keyword_template(): """Test osxphotos exiftool with --keyword-template.""" runner = CliRunner() cwd = os.getcwd() with runner.isolated_filesystem() as temp_dir: uuid_option = [] for uuid in CLI_EXIFTOOL: uuid_option.extend(("--uuid", uuid)) # first, export without --exiftool result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", *uuid_option, ], ) assert result.exit_code == 0 # now, run exiftool command to update exiftool metadata result = runner.invoke( exiftool, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), "-V", "--db-config", "--keyword-template", "FOO", temp_dir, "--report", "exiftool.json", ], ) assert result.exit_code == 0 report = json.load(open("exiftool.json", "r")) for file in report: exif = ExifTool(file["filename"]).asdict() assert "FOO" in exif["IPTC:Keywords"] # now, export with --exiftool --update, no files should be updated result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--exiftool", "--keyword-template", "FOO", "--update", *uuid_option, ], ) assert result.exit_code == 0 assert f"exported: 0, updated: 0, skipped: {len(CLI_EXIFTOOL)}" in result.output @pytest.mark.skipif(exiftool_path is None, reason="exiftool not installed") def test_export_exiftool_load_config(): """Test osxphotos exiftool with --load-config""" runner = CliRunner() cwd = os.getcwd() with runner.isolated_filesystem() as temp_dir: uuid_option = [] for uuid in CLI_EXIFTOOL: uuid_option.extend(("--uuid", uuid)) # first, export without --exiftool result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--save-config", "config.toml", *uuid_option, ], ) assert result.exit_code == 0 # now, run exiftool command to update exiftool metadata result = runner.invoke( exiftool, ["-V", "--load-config", "config.toml", temp_dir], ) assert result.exit_code == 0 exif = ExifTool(CLI_EXIFTOOL[uuid]["File:FileName"]).asdict() for key in CLI_EXIFTOOL[uuid]: if type(exif[key]) == list: assert sorted(exif[key]) == sorted(CLI_EXIFTOOL[uuid][key]) else: assert exif[key] == CLI_EXIFTOOL[uuid][key] # now, export with --exiftool --update, no files should be updated result = runner.invoke( export, [ "--db", os.path.join(cwd, PHOTOS_DB_15_7), temp_dir, "-V", "--exiftool", "--update", *uuid_option, ], ) assert result.exit_code == 0 assert f"exported: 0, updated: 0, skipped: {len(CLI_EXIFTOOL)}" in result.output
from django.core.exceptions import ImproperlyConfigured from django.test.utils import override_settings from django.urls import NoReverseMatch from django_hosts.resolvers import (get_host, get_host_patterns, get_hostconf, get_hostconf_module, reverse, reverse_host) from .base import HostsTestCase from .hosts import simple class ReverseTest(HostsTestCase): @override_settings(ROOT_HOSTCONF='tests.hosts.simple') def test_reverse_host(self): self.assertRaises(ValueError, reverse_host, 'with_kwargs', ['spam'], dict(eggs='spam')) self.assertRaises(NoReverseMatch, reverse_host, 'with_kwargs', ['spam', 'eggs']) self.assertRaises(NoReverseMatch, reverse_host, 'with_kwargs', [], dict(eggs='spam', spam='eggs')) self.assertEqual('johndoe', reverse_host('with_kwargs', None, dict(username='johndoe'))) self.assertEqual(reverse_host('with_args', ['johndoe']), 'johndoe') with self.settings(PARENT_HOST='spam.eggs'): self.assertEqual(reverse_host('with_args', ['johndoe']), 'johndoe.spam.eggs') @override_settings( ROOT_HOSTCONF='tests.hosts.simple', PARENT_HOST='spam.eggs') def test_reverse(self): self.assertEqual(reverse('simple-direct', host='static'), '//static.spam.eggs/simple/') @override_settings( ROOT_HOSTCONF='tests.hosts.simple', PARENT_HOST='example.com') def test_reverse_without_www(self): self.assertEqual(reverse('simple-direct', host='without_www'), '//example.com/simple/') @override_settings( ROOT_HOSTCONF='tests.hosts.blank', PARENT_HOST='example.com') def test_reverse_blank(self): self.assertEqual(reverse('simple-direct', host='blank_or_www'), '//example.com/simple/') @override_settings( ROOT_HOSTCONF='tests.hosts.simple', PARENT_HOST='spam.eggs') def test_reverse_custom_scheme(self): self.assertEqual(reverse('simple-direct', host='scheme'), 'https://scheme.spam.eggs/simple/') self.assertEqual(reverse('simple-direct', host='scheme', scheme='ftp'), 'ftp://scheme.spam.eggs/simple/') @override_settings( ROOT_HOSTCONF='tests.hosts.simple', PARENT_HOST='spam.eggs') def test_reverse_custom_port(self): self.assertEqual(reverse('simple-direct', host='port'), '//port.spam.eggs:12345/simple/') self.assertEqual(reverse('simple-direct', host='port', port='1337'), '//port.spam.eggs:1337/simple/') class UtilityTests(HostsTestCase): @override_settings(ROOT_HOSTCONF='tests.hosts.simple') def test_get_hostconf_module(self): self.assertEqual(get_hostconf_module(), simple) def test_get_hostconf_module_no_default(self): self.assertEqual( get_hostconf_module('tests.hosts.simple'), simple) def test_missing_host_patterns(self): self.assertRaisesMessage(ImproperlyConfigured, 'Missing ROOT_HOSTCONF setting', get_host_patterns) @override_settings(ROOT_HOSTCONF='tests.hosts') def test_missing_host_patterns_in_module(self): self.assertRaisesMessage(ImproperlyConfigured, "Missing host_patterns in 'tests.hosts'", get_host_patterns) @override_settings(ROOT_HOSTCONF='tests.hosts.simple') def test_get_working_host_patterns(self): self.assertEqual(get_host_patterns(), simple.host_patterns) @override_settings(ROOT_HOSTCONF='tests.hosts.simple') def test_get_host(self): self.assertEqual(get_host('static').name, 'static') self.assertRaisesMessage(NoReverseMatch, "No host called 'non-existent' exists", get_host, 'non-existent') @override_settings(ROOT_HOSTCONF='tests.hosts.appended') def test_appended_patterns(self): self.assertEqual(get_host('special').name, 'special') @override_settings( ROOT_HOSTCONF='tests.hosts.simple', DEFAULT_HOST='www', ) class SettingChangedClearCacheTests(HostsTestCase): def test_root_hostconf(self): self.assertEqual(get_hostconf(), 'tests.hosts.simple') with self.settings(ROOT_HOSTCONF='tests.hosts.appended'): self.assertEqual(get_hostconf(), 'tests.hosts.appended') self.assertEqual(get_hostconf(), 'tests.hosts.simple') def test_default_host(self): self.assertEqual(get_host().name, 'www') with self.settings(DEFAULT_HOST='static'): self.assertEqual(get_host().name, 'static') self.assertEqual(get_host().name, 'www')
from .simple_pick_and_place import SimplePickAndPlace from .machine_blocking_process import MachineBlockingProcess from .close_gripper import CloseGripper from .initialize import Initialize from .open_gripper import OpenGripper
""" """ CASSANDRA_1 = "192.168.59.103" CASSANDRA_KEYSPACE = "test" NUMBER_OF_NODES = 1 PROVIDERS = [ 'dataone', 'arxiv_oai', 'crossref', 'pubmed', 'figshare', 'scitech', 'clinicaltrials', 'plos', 'mit', 'vtech', 'cmu', 'columbia', 'calpoly', 'opensiuc', 'doepages', 'stcloud', 'spdataverse', 'trinity', 'texasstate', 'valposcholar', 'utaustin', 'uwashington', 'uiucideals', 'ucescholarship', 'upennsylvania', 'utaustin', 'waynestate', ]
#!/usr/bin/env python # coding: utf-8 # # # Tutorial 1: "What" models # __Content creators:__ Matt Laporte, Byron Galbraith, Konrad Kording # # __Content reviewers:__ Dalin Guo, Aishwarya Balwani, Madineh Sarvestani, Maryam Vaziri-Pashkam, Michael Waskom # # We would like to acknowledge [Steinmetz _et al._ (2019)](https://www.nature.com/articles/s41586-019-1787-x) for sharing their data, a subset of which is used here. # # ___ # # Tutorial Objectives # This is tutorial 1 of a 3-part series on different flavors of models used to understand neural data. In this tutorial we will explore 'What' models, used to describe the data. To understand what our data looks like, we will visualize it in different ways. Then we will compare it to simple mathematical models. Specifically, we will: # # - Load a dataset with spiking activity from hundreds of neurons and understand how it is organized # - Make plots to visualize characteristics of the spiking activity across the population # - Compute the distribution of "inter-spike intervals" (ISIs) for a single neuron # - Consider several formal models of this distribution's shape and fit them to the data "by hand" # In[ ]: #@title Video 1: "What" Models from IPython.display import YouTubeVideo video = YouTubeVideo(id='KgqR_jbjMQg', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video # # Setup # # # Python requires you to explictly "import" libraries before their functions are available to use. We will always specify our imports at the beginning of each notebook or script. # In[ ]: import numpy as np import matplotlib.pyplot as plt # Tutorial notebooks typically begin with several set-up steps that are hidden from view by default. # # **Important:** Even though the code is hidden, you still need to run it so that the rest of the notebook can work properly. Step through each cell, either by pressing the play button in the upper-left-hand corner or with a keyboard shortcut (`Cmd-Return` on a Mac, `Ctrl-Enter` otherwise). A number will appear inside the brackets (e.g. `[3]`) to tell you that the cell was executed and what order that happened in. # # If you are curious to see what is going on inside each cell, you can double click to expand. Once expanded, double-click the white space to the right of the editor to collapse again. # In[ ]: #@title Figure Settings import ipywidgets as widgets #interactive display get_ipython().run_line_magic('matplotlib', 'inline') get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") plt.style.use("https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/nma.mplstyle") # In[ ]: #@title Helper functions #@markdown Most of the tutorials make use of helper functions #@markdown to simplify the code that you need to write. They are defined here. # Please don't edit these, or worry about understanding them now! def restrict_spike_times(spike_times, interval): """Given a spike_time dataset, restrict to spikes within given interval. Args: spike_times (sequence of np.ndarray): List or array of arrays, each inner array has spike times for a single neuron. interval (tuple): Min, max time values; keep min <= t < max. Returns: np.ndarray: like `spike_times`, but only within `interval` """ interval_spike_times = [] for spikes in spike_times: interval_mask = (spikes >= interval[0]) & (spikes < interval[1]) interval_spike_times.append(spikes[interval_mask]) return np.array(interval_spike_times, object) # In[ ]: #@title Data retrieval #@markdown This cell downloads the example dataset that we will use in this tutorial. import io import requests r = requests.get('https://osf.io/sy5xt/download') if r.status_code != 200: print('Failed to download data') else: spike_times = np.load(io.BytesIO(r.content), allow_pickle=True)['spike_times'] # --- # # # Section 1: Exploring the Steinmetz dataset # # In this tutorial we will explore the structure of a neuroscience dataset. # # We consider a subset of data from a study of [Steinmetz _et al._ (2019)](https://www.nature.com/articles/s41586-019-1787-x). In this study, Neuropixels probes were implanted in the brains of mice. Electrical potentials were measured by hundreds of electrodes along the length of each probe. Each electrode's measurements captured local variations in the electric field due to nearby spiking neurons. A spike sorting algorithm was used to infer spike times and cluster spikes according to common origin: a single cluster of sorted spikes is causally attributed to a single neuron. # # In particular, a single recording session of spike times and neuron assignments was loaded and assigned to `spike_times` in the preceding setup. # # Typically a dataset comes with some information about its structure. However, this information may be incomplete. You might also apply some transformations or "pre-processing" to create a working representation of the data of interest, which might go partly undocumented depending on the circumstances. In any case it is important to be able to use the available tools to investigate unfamiliar aspects of a data structure. # # Let's see what our data looks like... # ## Section 1.1: Warming up with `spike_times` # What is the Python type of our variable? # In[ ]: type(spike_times) # You should see `numpy.ndarray`, which means that it's a normal NumPy array. # # If you see an error message, it probably means that you did not execute the set-up cells at the top of the notebook. So go ahead and make sure to do that. # # Once everything is running properly, we can ask the next question about the dataset: what's its shape? # In[ ]: spike_times.shape # There are 734 entries in one dimension, and no other dimensions. What is the Python type of the first entry, and what is *its* shape? # In[ ]: idx = 0 print( type(spike_times[idx]), spike_times[idx].shape, sep="\n", ) # It's also a NumPy array with a 1D shape! Why didn't this show up as a second dimension in the shape of `spike_times`? That is, why not `spike_times.shape == (734, 826)`? # # To investigate, let's check another entry. # In[ ]: idx = 321 print( type(spike_times[idx]), spike_times[idx].shape, sep="\n", ) # It's also a 1D NumPy array, but it has a different shape. Checking the NumPy types of the values in these arrays, and their first few elements, we see they are composed of floating point numbers (not another level of `np.ndarray`): # In[ ]: i_neurons = [0, 321] i_print = slice(0, 5) for i in i_neurons: print( "Neuron {}:".format(i), spike_times[i].dtype, spike_times[i][i_print], "\n", sep="\n" ) # Note that this time we've checked the NumPy `dtype` rather than the Python variable type. These two arrays contain floating point numbers ("floats") with 32 bits of precision. # # The basic picture is coming together: # - `spike_times` is 1D, its entries are NumPy arrays, and its length is the number of neurons (734): by indexing it, we select a subset of neurons. # - An array in `spike_times` is also 1D and corresponds to a single neuron; its entries are floating point numbers, and its length is the number of spikes attributed to that neuron. By indexing it, we select a subset of spike times for that neuron. # # Visually, you can think of the data structure as looking something like this: # # ``` # | . . . . . | # | . . . . . . . . | # | . . . | # | . . . . . . . | # ``` # # Before moving on, we'll calculate and store the number of neurons in the dataset and the number of spikes per neuron: # In[ ]: n_neurons = len(spike_times) total_spikes_per_neuron = [len(spike_times_i) for spike_times_i in spike_times] print(f"Number of neurons: {n_neurons}") print(f"Number of spikes for first five neurons: {total_spikes_per_neuron[:5]}") # In[ ]: #@title Video 2: Exploring the dataset from IPython.display import YouTubeVideo video = YouTubeVideo(id='oHwYWUI_o1U', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video # ## Section 1.2: Getting warmer: counting and plotting total spike counts # # As we've seen, the number of spikes over the entire recording is variable between neurons. More generally, some neurons tend to spike more than others in a given period. Lets explore what the distribution of spiking looks like across all the neurons in the dataset. # Are most neurons "loud" or "quiet", compared to the average? To see, we'll define bins of constant width in terms of total spikes and count the neurons that fall in each bin. This is known as a "histogram". # # You can plot a histogram with the matplotlib function `plt.hist`. If you just need to compute it, you can use the numpy function `np.histogram` instead. # In[ ]: plt.hist(total_spikes_per_neuron, bins=50, histtype="stepfilled") plt.xlabel("Total spikes per neuron") plt.ylabel("Number of neurons"); # Let's see what percentage of neurons have a below-average spike count: # In[ ]: mean_spike_count = np.mean(total_spikes_per_neuron) frac_below_mean = (total_spikes_per_neuron < mean_spike_count).mean() print(f"{frac_below_mean:2.1%} of neurons are below the mean") # We can also see this by adding the average spike count to the histogram plot: # In[ ]: plt.hist(total_spikes_per_neuron, bins=50, histtype="stepfilled") plt.xlabel("Total spikes per neuron") plt.ylabel("Number of neurons") plt.axvline(mean_spike_count, color="orange", label="Mean neuron") plt.legend(); # This shows that the majority of neurons are relatively "quiet" compared to the mean, while a small number of neurons are exceptionally "loud": they must have spiked more often to reach a large count. # # ### Exercise 1: Comparing mean and median neurons # # If the mean neuron is more active than 68% of the population, what does that imply about the relationship between the mean neuron and the median neuron? # # *Exercise objective:* Reproduce the plot above, but add the median neuron. # # In[ ]: # To complete the exercise, fill in the missing parts (...) and uncomment the code median_spike_count = ... # Hint: Try the function np.median # plt.hist(..., bins=50, histtype="stepfilled") # plt.axvline(..., color="limegreen", label="Median neuron") # plt.axvline(mean_spike_count, color="orange", label="Mean neuron") # plt.xlabel("Total spikes per neuron") # plt.ylabel("Number of neurons") # plt.legend() # [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D1_ModelTypes/solutions/W1D1_Tutorial1_Solution_b3411d5d.py) # # *Example output:* # # <img alt='Solution hint' align='left' width=558 height=413 src=https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_b3411d5d_0.png> # # # # *Bonus:* The median is the 50th percentile. What about other percentiles? Can you show the interquartile range on the histogram? # --- # # # Section 2: Visualizing neuronal spiking activity # ## Section 2.1: Getting a subset of the data # # Now we'll visualize trains of spikes. Because the recordings are long, we will first define a short time interval and restrict the visualization to only the spikes in this interval. We defined a utility function, `restrict_spike_times`, to do this for you. If you call `help()` on the function, it will tell you a little bit about itself: # In[ ]: help(restrict_spike_times) # In[ ]: t_interval = (5, 15) # units are seconds after start of recording interval_spike_times = restrict_spike_times(spike_times, t_interval) # Is this a representative interval? What fraction of the total spikes fall in this interval? # In[ ]: original_counts = sum([len(spikes) for spikes in spike_times]) interval_counts = sum([len(spikes) for spikes in interval_spike_times]) frac_interval_spikes = interval_counts / original_counts print(f"{frac_interval_spikes:.2%} of the total spikes are in the interval") # How does this compare to the ratio between the interval duration and the experiment duration? (What fraction of the total time is in this interval?) # # We can approximate the experiment duration by taking the minimum and maximum spike time in the whole dataset. To do that, we "concatenate" all of the neurons into one array and then use `np.ptp` ("peak-to-peak") to get the difference between the maximum and minimum value: # In[ ]: spike_times_flat = np.concatenate(spike_times) experiment_duration = np.ptp(spike_times_flat) interval_duration = t_interval[1] - t_interval[0] frac_interval_time = interval_duration / experiment_duration print(f"{frac_interval_time:.2%} of the total time is in the interval") # These two values—the fraction of total spikes and the fraction of total time—are similar. This suggests the average spike rate of the neuronal population is not very different in this interval compared to the entire recording. # # ## Section 2.2: Plotting spike trains and rasters # # Now that we have a representative subset, we're ready to plot the spikes, using the matplotlib `plt.eventplot` function. Let's look at a single neuron first: # In[ ]: neuron_idx = 1 plt.eventplot(interval_spike_times[neuron_idx], color=".2") plt.xlabel("Time (s)") plt.yticks([]); # We can also plot multiple neurons. Here are three: # In[ ]: neuron_idx = [1, 11, 51] plt.eventplot(interval_spike_times[neuron_idx], color=".2") plt.xlabel("Time (s)") plt.yticks([]); # This makes a "raster" plot, where the spikes from each neuron appear in a different row. # # Plotting a large number of neurons can give you a sense for the characteristics in the population. Let's show every 5th neuron that was recorded: # In[ ]: neuron_idx = np.arange(0, len(spike_times), 5) plt.eventplot(interval_spike_times[neuron_idx], color=".2") plt.xlabel("Time (s)") plt.yticks([]); # *Question*: How does the information in this plot relate to the histogram of total spike counts that you saw above? # In[ ]: #@title Video 3: Visualizing activity from IPython.display import YouTubeVideo video = YouTubeVideo(id='QGA5FCW7kkA', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video # --- # # # Section 3: Inter-spike intervals and their distributions # Given the ordered arrays of spike times for each neuron in `spike_times`, which we've just visualized, what can we ask next? # # Scientific questions are informed by existing models. So, what knowledge do we already have that can inform questions about this data? # # We know that there are physical constraints on neuron spiking. Spiking costs energy, which the neuron's cellular machinery can only obtain at a finite rate. Therefore neurons should have a refractory period: they can only fire as quickly as their metabolic processes can support, and there is a minimum delay between consecutive spikes of the same neuron. # # More generally, we can ask "how long does a neuron wait to spike again?" or "what is the longest a neuron will wait?" Can we transform spike times into something else, to address questions like these more directly? # # We can consider the inter-spike times (or interspike intervals: ISIs). These are simply the time differences between consecutive spikes of the same neuron. # # ### Exercise 2: Plot the distribution of ISIs for a single neuron # # *Exercise objective:* make a histogram, like we did for spike counts, to show the distribution of ISIs for one of the neurons in the dataset. # # Do this in three steps: # # 1. Extract the spike times for one of the neurons # 2. Compute the ISIs (the amount of time between spikes, or equivalently, the difference between adjacent spike times) # 3. Plot a histogram with the array of individual ISIs # In[ ]: def compute_single_neuron_isis(spike_times, neuron_idx): """Compute a vector of ISIs for a single neuron given spike times. Args: spike_times (list of 1D arrays): Spike time dataset, with the first dimension corresponding to different neurons. neuron_idx (int): Index of the unit to compute ISIs for. Returns: isis (1D array): Duration of time between each spike from one neuron. """ ############################################################################# # Students: Fill in missing code (...) and comment or remove the next line raise NotImplementedError("Exercise: compute single neuron ISIs") ############################################################################# # Extract the spike times for the specified neuron single_neuron_spikes = ... # Compute the ISIs for this set of spikes # Hint: the function np.diff computes discrete differences along an array isis = ... return isis # Uncomment the following lines when you are ready to test your function # single_neuron_isis = compute_single_neuron_isis(spike_times, neuron_idx=283) # plt.hist(single_neuron_isis, bins=50, histtype="stepfilled") # plt.axvline(single_neuron_isis.mean(), color="orange", label="Mean ISI") # plt.xlabel("ISI duration (s)") # plt.ylabel("Number of spikes") # plt.legend() # [*Click for solution*](https://github.com/NeuromatchAcademy/course-content/tree/master//tutorials/W1D1_ModelTypes/solutions/W1D1_Tutorial1_Solution_4792dbfa.py) # # *Example output:* # # <img alt='Solution hint' align='left' width=558 height=414 src=https://raw.githubusercontent.com/NeuromatchAcademy/course-content/master/tutorials/W1D1_ModelTypes/static/W1D1_Tutorial1_Solution_4792dbfa_0.png> # # # --- # # In general, the shorter ISIs are predominant, with counts decreasing rapidly (and smoothly, more or less) with increasing ISI. However, counts also rapidly decrease to zero with _decreasing_ ISI, below the maximum of the distribution (8-11 ms). The absence of these very low ISIs agrees with the refractory period hypothesis: the neuron cannot fire quickly enough to populate this region of the ISI distribution. # # Check the distributions of some other neurons. To resolve various features of the distributions, you might need to play with the value of `n_bins`. Using too few bins might smooth over interesting details, but if you use too many bins, the random variability will start to dominate. # # You might also want to restrict the range to see the shape of the distribution when focusing on relatively short or long ISIs. *Hint:* `plt.hist` takes a `range` argument # --- # # # Section 4: What is the functional form of an ISI distribution? # In[ ]: #@title Video 4: ISI distribution from IPython.display import YouTubeVideo video = YouTubeVideo(id='DHhM80MOTe8', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video # The ISI histograms seem to follow continuous, monotonically decreasing functions above their maxima. The function is clearly non-linear. Could it belong to a single family of functions? # # To motivate the idea of using a mathematical function to explain physiological phenomena, let's define a few different function forms that we might expect the relationship to follow: exponential, inverse, and linear. # In[ ]: def exponential(xs, scale, rate, x0): """A simple parametrized exponential function, applied element-wise. Args: xs (np.ndarray or float): Input(s) to the function. scale (float): Linear scaling factor. rate (float): Exponential growth (positive) or decay (negative) rate. x0 (float): Horizontal offset. """ ys = scale * np.exp(rate * (xs - x0)) return ys def inverse(xs, scale, x0): """A simple parametrized inverse function (`1/x`), applied element-wise. Args: xs (np.ndarray or float): Input(s) to the function. scale (float): Linear scaling factor. x0 (float): Horizontal offset. """ ys = scale / (xs - x0) return ys def linear(xs, slope, y0): """A simple linear function, applied element-wise. Args: xs (np.ndarray or float): Input(s) to the function. slope (float): Slope of the line. y0 (float): y-intercept of the line. """ ys = slope * xs + y0 return ys # ### Interactive Demo: ISI functions explorer # # Here is an interactive demo where you can vary the parameters of these functions and see how well the resulting outputs correspond to the data. Adjust the parameters by moving the sliders and see how close you can get the lines to follow the falling curve of the histogram. This will give you a taste of what you're trying to do when you *fit a model* to data. # # "Interactive demo" cells have hidden code that defines an interface where you can play with the parameters of some function using sliders. You don't need to worry about how the code works – but you do need to **run the cell** to enable the sliders. # # In[ ]: #@title #@markdown Be sure to run this cell to enable the demo # Don't worry about understanding this code! It's to setup an interactive plot. single_neuron_idx = 283 single_neuron_spikes = spike_times[single_neuron_idx] single_neuron_isis = np.diff(single_neuron_spikes) counts, edges = np.histogram( single_neuron_isis, bins=50, range=(0, single_neuron_isis.max()) ) functions = dict( exponential=exponential, inverse=inverse, linear=linear, ) colors = dict( exponential="C1", inverse="C2", linear="C4", ) @widgets.interact( exp_scale=widgets.FloatSlider(1000, min=0, max=20000, step=250), exp_rate=widgets.FloatSlider(-10, min=-200, max=50, step=1), exp_x0=widgets.FloatSlider(0.1, min=-0.5, max=0.5, step=0.005), inv_scale=widgets.FloatSlider(1000, min=0, max=3e2, step=10), inv_x0=widgets.FloatSlider(0, min=-0.2, max=0.2, step=0.01), lin_slope=widgets.FloatSlider(-1e5, min=-6e5, max=1e5, step=10000), lin_y0=widgets.FloatSlider(10000, min=0, max=4e4, step=1000), ) def fit_plot( exp_scale=1000, exp_rate=-10, exp_x0=0.1, inv_scale=1000, inv_x0=0, lin_slope=-1e5, lin_y0=2000, ): """Helper function for plotting function fits with interactive sliders.""" func_params = dict( exponential=(exp_scale, exp_rate, exp_x0), inverse=(inv_scale, inv_x0), linear=(lin_slope, lin_y0), ) f, ax = plt.subplots() ax.fill_between(edges[:-1], counts, step="post", alpha=.5) xs = np.linspace(1e-10, edges.max()) for name, function in functions.items(): ys = function(xs, *func_params[name]) ax.plot(xs, ys, lw=3, color=colors[name], label=name); ax.set( xlim=(edges.min(), edges.max()), ylim=(0, counts.max() * 1.1), xlabel="ISI (s)", ylabel="Number of spikes", ) ax.legend() # In[ ]: #@title Video 5: Fitting models by hand from IPython.display import YouTubeVideo video = YouTubeVideo(id='uW2HDk_4-wk', width=854, height=480, fs=1) print("Video available at https://youtube.com/watch?v=" + video.id) video # # Summary # # In this tutorial, we loaded some neural data and poked at it to understand how the dataset is organized. Then we made some basic plots to visualize (1) the average level of activity across the population and (2) the distribution of ISIs for an individual neuron. In the very last bit, we started to think about using mathematical formalisms to understand or explain some physiological phenomenon. All of this only allowed us to understand "What" the data looks like. # # This is the first step towards developing models that can tell us something about the brain. That's what we'll focus on in the next two tutorials.
import math import numpy as np import string import json import os import sys import logging import boto3 import nltk from dotenv import load_dotenv from nltk.corpus import stopwords from fastprogress.fastprogress import progress_bar from nltk.tokenize import word_tokenize from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import Embedding nltk.download('punkt') nltk.download('stopwords') chars = '' maxlen = 60 def setup(): logging.basicConfig(stream=sys.stdout, level=logging.INFO) load_dotenv('.env') def shutdown(seconds=0, os='linux'): if os == 'linux': os.system(f'sudo shutdown -h -t sec {seconds}') elif os == 'windows': os.system(f'shutdown -s -t {seconds}') def downloadDataset(): s3 = boto3.client('s3') bucket = os.getenv('S3_DATASET_BUCKET') file = os.getenv('DATASET') s3.download_file(bucket, file, file) logging.info(f'dataset downloaded') def prepareData(dataFile): f = open(dataFile,) data = json.load(f) content = list(data[x] for x in data.keys()) text = '' for c in content: for i in c: text += i logging.info(f'Corpus length: {len(text)}') tokens = word_tokenize(text) tokens = [w.lower() for w in tokens] table = str.maketrans('', '', string.punctuation) stripped = [w.translate(table) for w in tokens] words = [word for word in stripped if word.isalpha()] stop_words = set(stopwords.words('english')) words = [w for w in words if not w in stop_words] text = '' for c in words: text += c text += ' ' text = text.strip() logging.info(f'Finished to load file') return text def prepareTrainingData(text): global chars step = 3 sentences = [] next_chars = [] for i in range(0, len(text) - maxlen, step): sentences.append(text[i: i + maxlen]) next_chars.append(text[i + maxlen]) logging.info(f'Number of sequences: {len(sentences)}') chars = sorted(list(set(text))) logging.info(f'Unique characters: {len(chars)}') char_indices = dict((char, chars.index(char)) for char in chars) logging.info(f'Vectorizing text') x = np.zeros((len(sentences), maxlen, len(chars)), dtype=np.bool) y = np.zeros((len(sentences), len(chars)), dtype=np.bool) for i, sentence in enumerate(sentences): for t, char in enumerate(sentence): x[i, t, char_indices[char]] = 1 y[i, char_indices[next_chars[i]]] = 1 logging.info(f'Finished to prepare data') return x, y def prepareTrainModel(x, y): model = Sequential([ LSTM(len(chars), return_sequences=True, input_shape=(maxlen, len(chars))), LSTM(len(chars), return_sequences=True), LSTM(len(chars)), Dense(len(chars), activation='relu'), Dropout(0.2), Dense(len(chars), activation='softmax') ]) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) logging.info(f'Starting to train model') for epoch in progress_bar(range(100)): model.fit(x, y, batch_size=128, epochs=1) logging.info(f'Training epoch: {epoch}') logging.info(f'Finished to train model') return model def saveModel(model): logging.info(f'Saving model to S3') s3 = boto3.client('s3') file = 'wikipedia-nlp.h5' gen = os.getenv('GENERATION') bucket = os.getenv('S3_BUCKET') model.save(file) s3.upload_file(file, bucket, gen+'/'+file) return 0 def main(): setup() downloadDataset() text = prepareData('wikipedia-reduced-content-dataset.json') x, y = prepareTrainingData(text) model = prepareTrainModel(x, y) saveModel(model) logging.info(f'Model training finished and file saved to s3.') shutdown() if __name__ == "__main__": main()
from django.shortcuts import render from django.conf import settings import jwt, requests from .models import User from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status, serializers from rest_framework import permissions, generics from .serializers import UserLoginSerializer, UserRegistrationSerializer # Create your views here. class UserRegistration(APIView): permission_classes = (permissions.AllowAny,) serializer_class = UserRegistrationSerializer def post(self, request): regno = request.data['regno'] try: category = User.objects.get(regno = regno).category except: return Response('Invalid Registration Number Entered', status = 403) serializer = self.serializer_class(data=request.data) try: serializer.is_valid(raise_exception = True) serializer.save() return Response({"email" : serializer.data["email"],"token" : serializer.data["token"], "category" : category}, status=status.HTTP_201_CREATED) except: return Response({"error" : "Username already exists"}, status = 403) class UserLogin(APIView): permission_classes = (permissions.AllowAny,) serializer_class = UserLoginSerializer def post(self, request): serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) email = serializer.data['email'] regno = User.objects.get(email = email).regno category = User.objects.get(regno = regno).category return Response({"email" : serializer.data["email"],"token" : serializer.data["token"], "category" : category}, status=status.HTTP_200_OK)
#!/usr/bin/python3 # coding: utf-8 """ This module is to download subtitle from Disney+ """ import re import os import logging import shutil from common.utils import Platform, get_locale, http_request, HTTPMethod, download_files from common.subtitle import convert_subtitle, merge_subtitle_fragments from services.service import Service class Viu(Service): def __init__(self, args): super().__init__(args) self.logger = logging.getLogger(__name__) self._ = get_locale(__name__, self.locale) self.subtitle_language = args.subtitle_language self.language_list = [] self.api = { 'ott': 'https://www.viu.com/ott/{region}/index.php?area_id={area_id}&language_flag_id={language_flag_id}&r=vod/ajax-detail&platform_flag_label=web&area_id={area_id}&language_flag_id={language_flag_id}&product_id={product_id}' } def get_language_code(self, lang): language_code = { 'en': 'en', 'zh': 'zh-Hans', 'zh-Hant': 'zh-Hant', 'ms': 'ms', 'th': 'th', 'id': 'id', 'my': 'my' } if language_code.get(lang): return language_code.get(lang) def get_language_list(self): if not self.subtitle_language: self.subtitle_language = 'zh-Hant' self.language_list = tuple([ language for language in self.subtitle_language.split(',')]) def get_all_languages(self, data): available_languages = tuple([self.get_language_code( sub['code']) for sub in data]) if 'all' in self.language_list: self.language_list = available_languages if not set(self.language_list).intersection(set(available_languages)): self.logger.error( self._("\nSubtitle available languages: %s"), available_languages) exit(0) def download_subtitle(self): product_id_search = re.search(r'vod\/(\d+)\/', self.url) product_id = product_id_search.group(1) response = http_request( session=self.session, url=self.url, method=HTTPMethod.GET, raw=True) match = re.search( r'href=\"\/ott\/(.+)\/index\.php\?r=campaign\/connectwithus\&language_flag_id=(\d+)\&area_id=(\d+)\"', response) if match: region = match.group(1) language_flag_id = match.group(2) area_id = match.group(3) else: # region = 'sg' # language_flag_id = '3' # area_id = '2' region = 'hk' language_flag_id = '1' area_id = '1' meta_url = self.api['ott'].format( region=region, area_id=area_id, language_flag_id=language_flag_id, product_id=product_id) self.logger.debug(meta_url) data = http_request( session=self.session, url=meta_url, method=HTTPMethod.GET)['data'] title = data['series']['name'] if data['series']['name'].split(' ')[-1].isdecimal(): title = title.replace( data['series']['name'].split(' ')[-1], '').strip() season_name = data['series']['name'].split(' ')[-1].zfill(2) else: season_name = '01' self.logger.info(self._("\n%s Season %s"), title, int(season_name)) folder_path = os.path.join( self.output, f'{title}.S{season_name}') if os.path.exists(folder_path): shutil.rmtree(folder_path) episode_num = data['series']['product_total'] current_eps = data['current_product']['released_product_total'] episode_list = reversed(data['series']['product']) if self.last_episode: episode_list = [list(episode_list)[-1]] self.logger.info(self._("\nSeason %s total: %s episode(s)\tdownload season %s last episode\n---------------------------------------------------------------"), int(season_name), current_eps, int(season_name)) else: if current_eps != episode_num: self.logger.info(self._("\nSeason %s total: %s episode(s)\tupdate to episode %s\tdownload all episodes\n---------------------------------------------------------------"), int(season_name), episode_num, current_eps) else: self.logger.info(self._("\nSeason %s total: %s episode(s)\tdownload all episodes\n---------------------------------------------------------------"), int(season_name), current_eps) languages = set() subtitles = [] for episode in episode_list: episode_name = str(episode['number']).zfill(2) episode_url = re.sub(r'(.+product_id=).+', '\\1', meta_url) + episode['product_id'] file_name = f'{title}.S{season_name}E{episode_name}.WEB-DL.{Platform.VIU}.vtt' self.logger.info(self._("Finding %s ..."), file_name) episode_data = http_request(session=self.session, url=episode_url, method=HTTPMethod.GET)['data']['current_product']['subtitle'] self.get_all_languages(episode_data) subs, lang_paths = self.get_subtitle( episode_data, folder_path, file_name) subtitles += subs languages = set.union(languages, lang_paths) download_files(subtitles) display = True for lang_path in sorted(languages): if 'tmp' in lang_path: merge_subtitle_fragments( folder_path=lang_path, file_name=os.path.basename(lang_path.replace('tmp_', '')), lang=self.locale, display=display) display = False convert_subtitle(folder_path=lang_path, lang=self.locale) convert_subtitle(folder_path=folder_path, platform=Platform.VIU, lang=self.locale) def get_subtitle(self, data, folder_path, file_name): lang_paths = set() subtitles = [] for sub in data: self.logger.debug(sub['code']) sub_lang = self.get_language_code(sub['code']) if sub_lang in self.language_list: subtitle = dict() if len(self.language_list) > 1: lang_folder_path = os.path.join(folder_path, sub_lang) else: lang_folder_path = folder_path subtitle_file_name = file_name.replace( '.vtt', f'.{sub_lang}.vtt') subtitle['url'] = sub['subtitle_url'].replace('\\/', '/') subtitle['segment'] = False if 'second_subtitle_url' in sub and sub['second_subtitle_url']: lang_folder_path = os.path.join( lang_folder_path, f"tmp_{subtitle_file_name.replace('.vtt', '.srt')}") subtitle['segment'] = True subtitle['name'] = subtitle_file_name subtitle['path'] = lang_folder_path subtitles.append(subtitle) if 'second_subtitle_url' in sub and sub['second_subtitle_url']: second_subtitle = dict() second_subtitle['segment'] = True second_subtitle['url'] = sub['second_subtitle_url'].replace( '\\/', '/') second_subtitle['name'] = subtitle_file_name second_subtitle['path'] = lang_folder_path subtitles.append(second_subtitle) lang_paths.add(lang_folder_path) os.makedirs(lang_folder_path, exist_ok=True) return subtitles, lang_paths def main(self): self.get_language_list() self.download_subtitle()
# Copyright 2021 Uday Vidyadharan # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import config from config import KEY_SELF_HOSTING_LIMITS MAX_VIDEO_RESOLUTION_WIDTH = 3840 MAX_VIDEO_RESOLUTION_HEIGHT = 2160 if config.config[KEY_SELF_HOSTING_LIMITS]: MAX_DESCRIPTION_LENGTH = 60 MAX_VIDEOS_PER_TEAM = 100 MAX_VIDEO_SIZE_MB = 500 MAX_VIDEO_SIZE_BYTES = MAX_VIDEO_SIZE_MB * 1000 * 1000 MAX_VIDEO_LENGTH_SECONDS = 300 MAX_FRAMES_PER_VIDEO = 5000 MAX_VIDEOS_TRACKING_PER_TEAM = 5 MAX_BOUNDING_BOX_PER_FRAME = 20 MAX_DATASETS_PER_TEAM = 50 else: MAX_DESCRIPTION_LENGTH = 30 MAX_VIDEOS_PER_TEAM = 50 MAX_VIDEO_SIZE_MB = 100 MAX_VIDEO_SIZE_BYTES = MAX_VIDEO_SIZE_MB * 1000 * 1000 MAX_VIDEO_LENGTH_SECONDS = 120 MAX_FRAMES_PER_VIDEO = 1000 MAX_VIDEOS_TRACKING_PER_TEAM = 3 MAX_BOUNDING_BOX_PER_FRAME = 10 MAX_DATASETS_PER_TEAM = 20
# coding=utf-8 """ Core Commands plugin for DecoraterBot. """ import traceback import time import discord from discord.ext import commands from DecoraterBotUtils.BotErrors import CogUnloadError from DecoraterBotUtils.utils import * class CoreCommands: """ Core Commands class for DecoraterBot. """ def __init__(self): self.corecommands_text = PluginTextReader( file='corecommands.json') @commands.command(name='uptime', pass_context=True, no_pm=False) async def uptime_command(self, ctx): """ Command. """ if ctx.message.channel.id in ctx.bot.ignoreslist["channels"]: return if ctx.message.author.id in ctx.bot.banlist['Users']: return else: stop = time.time() seconds = stop - ctx.bot.uptime_count_begin days = int(((seconds / 60) / 60) / 24) hours = str(int((seconds / 60) / 60 - (days * 24))) minutes = str(int((seconds / 60) % 60)) seconds = str(int(seconds % 60)) days = str(days) time_001 = str(self.corecommands_text['Uptime_command_data'][0] ).format(days, hours, minutes, seconds) time_parse = time_001 try: await ctx.bot.send_message(ctx.message.channel, content=time_parse) except discord.Forbidden: return @commands.command(name='load', pass_context=True, no_pm=True) async def load_command(self, ctx): """ Command. """ if ctx.message.author.id == ctx.bot.BotConfig.discord_user_id: desmod_new = ctx.message.content.lower()[len( ctx.prefix + 'load '):].strip() ctx.bot._somebool = False ret = "" if desmod_new is not None: ctx.bot._somebool = True try: ret = ctx.bot.load_plugin(desmod_new) except ImportError: ret = str(traceback.format_exc()) if ctx.bot._somebool is True: if ret is not None: try: reload_data = str( self.corecommands_text['reload_command_data'][1] ).format(ret).replace('Reloading', 'Loading Plugin') await ctx.bot.send_message(ctx.message.channel, content=reload_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: msgdata = str( self.corecommands_text['reload_command_data'][0]) message_data = msgdata + ' Loaded ' + desmod_new + '.' await ctx.bot.send_message(ctx.message.channel, content=message_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message(ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data'][ 2])) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message( ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data' ][3]).replace('reload', 'load')) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) @commands.command(name='unload', pass_context=True, no_pm=True) async def unload_command(self, ctx): """ Command. """ if ctx.message.author.id == ctx.bot.BotConfig.discord_user_id: desmod_new = ctx.message.content.lower()[len( ctx.prefix + 'unload '):].strip() ctx.bot._somebool = False ret = "" if desmod_new is not None: ctx.bot._somebool = True try: ret = ctx.bot.unload_plugin(desmod_new) except CogUnloadError: ret = str(traceback.format_exc()) if ctx.bot._somebool is True: if ret is not None: try: reload_data = str( self.corecommands_text['reload_command_data'][1] ).format(ret).replace('Reloading', 'Unloading Plugin') await ctx.bot.send_message(ctx.message.channel, content=reload_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: msgdata = str( self.corecommands_text['reload_command_data'][0]) message_data = msgdata + ' Unloaded ' + desmod_new +\ '.' await ctx.bot.send_message(ctx.message.channel, content=message_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message(ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data'][ 2])) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message( ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data' ][3]).replace('reload', 'unload')) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) @commands.command(name='reload', pass_context=True, no_pm=True) async def reload_plugin_command(self, ctx): """ Command. """ if ctx.message.author.id == ctx.bot.BotConfig.discord_user_id: desmod_new = ctx.message.content.lower()[len( ctx.prefix + 'reload '):].strip() ctx.bot._somebool = False ret = "" if desmod_new is not None: ctx.bot._somebool = True try: ret = ctx.bot.reload_plugin(desmod_new) except ImportError: ret = str(traceback.format_exc()) if ctx.bot._somebool is True: if ret is not None: try: reload_data = str( self.corecommands_text['reload_command_data'][1] ).format(ret).replace('Reloading', 'Reloading Plugin') await ctx.bot.send_message(ctx.message.channel, content=reload_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: msgdata = str( self.corecommands_text['reload_command_data'][0]) message_data = msgdata + ' Reloaded ' + desmod_new +\ '.' await ctx.bot.send_message(ctx.message.channel, content=message_data) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message( ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data' ][2])) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) else: try: await ctx.bot.send_message(ctx.message.channel, content=str( self.corecommands_text[ 'reload_command_data'][3])) except discord.Forbidden: await ctx.bot.BotPMError.resolve_send_message_error( ctx) @commands.command(name='install', pass_context=True, no_pm=True) async def install_command(self, ctx): # TODO: finish command. pass @commands.command(name='uninstall', pass_context=True, no_pm=True) async def uninstall_command(self, ctx): # TODO: finish command. pass def setup(bot): """ DecoraterBot's Core Commands Plugin. """ bot.add_cog(CoreCommands())
#!opt/anaconda3/bin/python python # -*- coding: utf-8 -*- from os import listdir from os.path import isfile from posixpath import join import numpy as np from scipy.io.wavfile import write from systems.cubic_map import cubic_map from systems.cyclostationary import cyclostationary from systems.freitas import freitas from systems.gen_henon import gen_henon from systems.gopy import gopy from systems.granulocyte import granulocyte from systems.henon import henon from systems.ikeda import ikeda from systems.izhikevich import izhikevich from systems.logistic import logistic from systems.lorenz import lorenz from systems.mackey_glass import mackey_glass from systems.noise_sine import noise_sine from systems.random_arma import random_arma from systems.randomwalk import randomwalk from systems.rossler import rossler # all scripts for dataset creation script_path = 'systems' files = [f for f in listdir(script_path) if isfile(join(script_path, f))] print(files) n = 1024 # number of points to simulate data = np.zeros([len(files)*10-24, n+1]) # (1) generate cubic map regimes = ['periodic', 'chaotic', 'Heagy-Hammel', 'S3', '2T', '1T'] for i, regime in enumerate(regimes): time_series = cubic_map(length=n, regime=regime, level=0, discard=int(n/10)) data[i, :] = np.concatenate(([1], time_series), axis=0) # (2) generate cyclostationary m1 = 10 # number of different time series of the same system t = np.linspace(10, 500, num=m1) for i, t in zip(range(m1), t): time_series = cyclostationary(length=n, t=t) data[i+6, :] = np.concatenate(([2], time_series), axis=0) # (3) generate freitas level = np.linspace(0, 0.75, num=m1) for i, level, in zip(range(m1), level): time_series = freitas(length=n, level=level, discard=int(n/10)) data[i+16, :] = np.concatenate(([3], time_series), axis=0) # (4) generate gen. henon a = np.linspace(1.51, 0.89, num=m1) b = np.linspace(0.05, 0.15, num=m1) for i, a, b, in zip(range(m1), a, b): time_series = gen_henon(length=n, a=a, b=b, level=0, discard=int(n/10)) data[i+26, :] = np.concatenate(([4], time_series), axis=0) # (5) generate gopy sigma = np.linspace(0.5, 2, num=m1) for i, sigma, in zip(range(m1), sigma): time_series = gopy(length=n, sigma=1.5, level=0, discard=int(n/10)) data[i+36, :] = np.concatenate(([5], time_series), axis=0) # (6) generate granulocyte a = np.linspace(0.1, 0.4, num=m1) b = np.linspace(0.05, 0.2, num=m1) c = np.linspace(5, 20, num=m1) s = np.linspace(1, 20, num=m1) for i, a, b, c, s in zip(range(m1), a, b, c, s): time_series = granulocyte(length=n, a=0.2, b=0.1, c=10, s=10, level=0, discard=int(n/10)) data[i+46, :] = np.concatenate(([6], time_series), axis=0) # (7) generate henon a = np.linspace(1, 1.5, num=m1) b = np.linspace(0.1, 0.5, num=m1) for i, a, b in zip(range(5), a, b): x, y = henon(length=n, a=a, b=b, level=0, discard=int(n/10)) data[i+56, :] = np.concatenate(([7], x), axis=0) data[i+61, :] = np.concatenate(([7], y), axis=0) # (8) generate ikeda mu = np.linspace(0.51, 0.89, num=5) for i, mu in zip(range(5), mu): x, y = ikeda(length=n, level=0, mu=mu, discard=int(n/10)) data[i+66, :] = np.concatenate(([8], x), axis=0) data[i+71, :] = np.concatenate(([8], y), axis=0) # (9) generate izhikevich a = np.linspace(0.21, 0.24, num=m1) b = np.linspace(2, 2.5, num=m1) c = np.linspace(-55, -57, num=m1) d = np.linspace(-15, -17, num=m1) for i, a, b, c, d in zip(range(m1), a, b, c, d): time_series = izhikevich(length=n, a=a, b=b, c=c, d=d, level=0, discard=int(n/10)) data[i+76, :] = np.concatenate(([9], time_series), axis=0) # (10) generate logistic r = np.linspace(3.5, 3.9, num=m1) for i, r in zip(range(m1), r): time_series = logistic(length=n, r=r, level=0, discard=int(n/10)) data[i+86, :] = np.concatenate(([10], time_series), axis=0) # (11) generate lorenz sigma = np.linspace(12, 17, num=5) beta = np.linspace(1.5, 4.5, num=5) rho = np.linspace(41, 49, num=5) for i, sigma, beta, rho in zip(range(5), sigma, beta, rho): time_series = lorenz(length=n, sigma=sigma, beta=beta, rho=rho, discard=int(n/10)) x, y, z = time_series[:, 0], time_series[:, 1], time_series[:, 2] data[i+96, :] = np.concatenate(([11], x), axis=0) data[i+101, :] = np.concatenate(([11], y), axis=0) # (12) generate mackey glass a = np.linspace(0.3, 0.5, num=m1) b = np.linspace(0.1, 0.4, num=m1) c = np.linspace(10, 15, num=m1) for i, a, b, c in zip(range(m1), a, b, c): time_series = mackey_glass(length=n, a=a, b=b, c=c, discard=int(n/10)) data[i+106, :] = np.concatenate(([12], time_series), axis=0) # (13) generate noise sine mu = np.linspace(1, 2.5, num=m1) for i, mu in zip(range(m1), mu): time_series = noise_sine(length=n, mu=mu, level=0, discard=int(n/10)) data[i+116, :] = np.concatenate(([13], time_series), axis=0) # (14) generate randomwalk arma p = np.linspace(0.1, 0.9, num=m1) theta = np.linspace(0.1, 0.9, num=m1) for i, p, theta in zip(range(m1), p, theta): time_series = random_arma(length=n, level=0, p=p, theta=theta, discard=int(n/10)) data[i+126, :] = np.concatenate(([14], time_series), axis=0) # (15) generate randomwalk for i in range(m1): time_series = randomwalk(length=n, level=0, discard=int(n/10)) data[i+136, :] = np.concatenate(([15], time_series), axis=0) # (16) generate rossler a = np.linspace(0.1, 0.3, num=5) b = np.linspace(0.1, 0.3, num=5) c = np.linspace(4, 7, num=5) for i, a, b, c in zip(range(5), a, b, c): time_series = rossler(length=n, a=a, b=b, c=c, discard=int(n/10)) x, y, z = time_series[:, 0], time_series[:, 1], time_series[:, 2] data[i+146, :] = np.concatenate(([16], x), axis=0) data[i+151, :] = np.concatenate(([16], y), axis=0) # save dataset to txt file np.savetxt(f'data/data.txt', data, delimiter=',')
import logging from django.conf import settings from django.db import transaction from django.contrib.auth.models import User, Group, ContentType from django.core.exceptions import PermissionDenied from django.http import HttpRequest, HttpResponseRedirect, HttpResponse, \ HttpResponseForbidden, HttpResponseNotFound, JsonResponse, \ HttpResponseNotAllowed, HttpResponseServerError from django.views.decorators.csrf import csrf_exempt from django.contrib.auth.decorators import user_passes_test from tardis.tardis_portal.auth import decorators as authz from tardis.tardis_portal.models import Experiment, ExperimentParameter, \ DatafileParameter, DatasetParameter, ObjectACL, DataFile, \ DatafileParameterSet, ParameterName, GroupAdmin, Schema, \ Dataset, ExperimentParameterSet, DatasetParameterSet, \ License, UserProfile, UserAuthentication, Token from tardis.tardis_portal.api import MyTardisAuthentication import tasks logger = logging.getLogger(__name__) # we use the same custom tastypie Authentication class used by the core REST API authentication = MyTardisAuthentication() def require_authentication(f): def wrap(*args, **kwargs): request = args[0] if not isinstance(request, HttpRequest): request = args[1] if not authentication.is_authenticated(request): return jsend_fail_response('Unauthorized', 401, None) return f(*args, **kwargs) wrap.__doc__ = f.__doc__ wrap.__name__ = f.__name__ return wrap def _jsend_response(status, message, status_code, data): """ Send a simple JSend-style JSON response with an HTTP status code. https://labs.omniti.com/labs/jsend """ return JsonResponse({'status': status, 'message': message, 'data': data, status: status_code}) def jsend_success_response(message, status_code=200, data=None): return _jsend_response('success', message, status_code, data) def jsend_error_response(message, status_code, data=None): return _jsend_response('error', message, status_code, data) def jsend_fail_response(message, status_code, data=None): return _jsend_response('fail', message, status_code, data) def get_version_json(request): from . import __version__ return JsonResponse({'version': __version__}) def stats_ingestion_timeline(include_titles=False, as_csv=False): """ Returns JSON or CSV summarizing title, number and size of files in all runs. Could be used to render a Javascript timeline of ingestion. (eg, like this: https://plot.ly/javascript/range-slider/ ) :param include_titles: :type include_titles: :param as_csv: :type as_csv: :return: :rtype: """ import json from datetime import datetime import csv from StringIO import StringIO from .views import _get_paramset_by_subtype # custom datetime formatter, vanilla json.dumps can't serialize datetimes class DateTimeEncoder(json.JSONEncoder): def default(self, o): if isinstance(o, datetime): return o.isoformat() return json.JSONEncoder.default(self, o) trash_username = '__trashman__' runs = [] projects = [] datafile_size_cum = 0 datafile_count_cum = 0 for e in Experiment.objects.all().order_by('end_time'): trashed = False for user in e.get_owners(): if user.username == trash_username: trashed = True break if not trashed: datafiles_size = e.get_size() datafiles_count = e.get_datafiles().count() datafile_size_cum += datafiles_size datafile_count_cum += datafiles_count title = '' if include_titles: title = e.title row = (e.end_time, title, datafiles_count, datafiles_size, datafile_count_cum, datafile_size_cum) if _get_paramset_by_subtype(e, 'illumina-sequencing-run'): runs.append(row) if _get_paramset_by_subtype(e, 'demultiplexed-samples'): projects.append(row) if as_csv: header = 'Date,Title,Files,Size,Files(Cumulative),Size(Cumulative)' run_csv = StringIO() run_csvwriter = csv.writer(run_csv, delimiter=',', quotechar='"', quoting=csv.QUOTE_NONNUMERIC) run_csvwriter.writerow(header.split(',')) for r in runs: run_csvwriter.writerow(r) project_csv = StringIO() project_csvwriter = csv.writer(run_csv, delimiter=',', quotechar='"', quoting=csv.QUOTE_NONNUMERIC) project_csvwriter.writerow(header.split(',')) for p in projects: project_csvwriter.writerow(p) return run_csv.getvalue(), project_csv.getvalue() else: jdict = {'runs': runs, 'projects': projects} return json.dumps(jdict, cls=DateTimeEncoder) # @authz.experiment_access_required # won't do tastypie API key auth ? @csrf_exempt # so we can use the PUT method without a csrf_token @require_authentication def trash_experiment(request, experiment_id=None): if request.method != 'PUT': raise HttpResponseNotAllowed() try: expt = Experiment.safe.get(request.user, experiment_id) except PermissionDenied as ex: return jsend_fail_response('Permission denied', 401, {'id': experiment_id}) if expt: ct = expt.get_ct() user_acls = ObjectACL.objects.filter(content_type=ct, object_id=expt.id, pluginId='django_user') group_acls = ObjectACL.objects.filter(content_type=ct, object_id=expt.id, pluginId='django_group') else: return jsend_fail_response('Experiment %s not found' % experiment_id, 404, {'id': experiment_id}) trash_username = getattr(settings, 'TRASH_USERNAME', '__trashman__') trash_group_name = getattr(settings, 'TRASH_GROUP_NAME', '__trashcan__') try: trashman = User.objects.filter(username=trash_username)[0] except IndexError as ex: logger.error('Cannot find ID for trash user: %s (Does it exist ? Are ' 'ingestor user permissions correct ?)' % trash_username) raise ex try: trashcan = Group.objects.filter(name=trash_group_name)[0] except IndexError as ex: logger.error('Cannot find ID for trash group: %s (Does it exist ? Are ' 'ingestor user permissions correct ?)' % trash_group_name) raise ex acls_to_remove = [] has_trashman = False for acl in user_acls: if acl.entityId == trashman.id: has_trashman = True continue acls_to_remove.append(acl) has_trashcan = False for acl in group_acls: if acl.entityId == trashcan.id: has_trashcan = True continue acls_to_remove.append(acl) # Add ObjectACLs to experiment for trashman/trashcan if not has_trashman: acl = ObjectACL(content_type=ct, object_id=expt.id, pluginId='django_user', entityId=trashman.id, aclOwnershipType=ObjectACL.OWNER_OWNED, isOwner=True, canRead=True, canWrite=True, canDelete=False) acl.save() if not has_trashcan: acl = ObjectACL(content_type=ct, object_id=expt.id, pluginId='django_group', entityId=trashcan.id, aclOwnershipType=ObjectACL.OWNER_OWNED, isOwner=True, canRead=True, canWrite=True, canDelete=False) acl.save() # remove all the non-trashman/trashcan ACLs [acl.delete() for acl in acls_to_remove] # ensure experiment is not publicly accessible expt.public_access = Experiment.PUBLIC_ACCESS_NONE expt.save() return jsend_success_response( 'Experiment %s moved to trash' % experiment_id, {'id': experiment_id}) @require_authentication @user_passes_test(lambda u: u.is_superuser) def _delete_all_trashed(request): try: # tasks.delete_all_trashed_task.delay() tasks.delete_all_trashed_task() except Exception as e: return jsend_fail_response('Delete operation failed. ' 'Some trashed experiments were not deleted.', 500, {}) return jsend_success_response('Queued trashed Experiments for deletion', 200, {})
#!/usr/bin/env python3 import argparse import os.path import sys import pandas as pd import pyshark from scapy.utils import RawPcapReader from scapy.layers.l2 import Ether from scapy.layers.inet import IP, UDP, TCP from tqdm import tqdm #-------------------------------------------------- def render_csv_row(pkt_sh, pkt_sc): """Write one packet entry into the CSV file. pkt_sh is the PyShark representation of the packet pkt_sc is a 'bytes' representation of the packet as returned from scapy's RawPcapReader fh_csv is the csv file handle """ ether_pkt_sc = Ether(pkt_sc) try: if ether_pkt_sc.type != 0x800: # print('Ignoring non-IP packet') return [pkt_sh.no,pkt_sh.time,pkt_sh.protocol,None,None,None,None,None,pkt_sh.length] except: return False ip_pkt_sc = ether_pkt_sc[IP] # <<<< Assuming Ethernet + IPv4 here proto = ip_pkt_sc.fields['proto'] if proto == 17: udp_pkt_sc = ip_pkt_sc[UDP] l4_payload_bytes = bytes(udp_pkt_sc.payload) l4_proto_name = 'UDP' l4_sport = udp_pkt_sc.sport l4_dport = udp_pkt_sc.dport elif proto == 6: tcp_pkt_sc = ip_pkt_sc[TCP] l4_payload_bytes = bytes(tcp_pkt_sc.payload) l4_proto_name = 'TCP' l4_sport = tcp_pkt_sc.sport l4_dport = tcp_pkt_sc.dport else: # Currently not handling packets that are not UDP or TCP # print('Ignoring non-UDP/TCP packet') return False # Each line of the CSV has this format fmt = '{0}|{1}|{2}({3})|{4}|{5}:{6}|{7}:{8}|{9}|{10}' # | | | | | | | | | | | # | | | | | | | | | | o-> {10} L4 payload hexdump # | | | | | | | | | o-----> {9} total pkt length # | | | | | | | | o---------> {8} dst port # | | | | | | | o-------------> {7} dst ip address # | | | | | | o-----------------> {6} src port # | | | | | o---------------------> {5} src ip address # | | | | o-------------------------> {4} text description # | | | o------------------------------> {3} L4 protocol # | | o----------------------------------> {2} highest protocol # | o--------------------------------------> {1} time # o------------------------------------------> {0} frame number # Example: # 1|0.0|DNS(UDP)|Standard query 0xf3de A www.cisco.com|192.168.1.116:57922|1.1.1.1:53|73|f3de010000010000000000000377777705636973636f03636f6d0000010001 return [pkt_sh.no, # {0} pkt_sh.time, # {1} pkt_sh.protocol, # {2} l4_proto_name, # {3} # {4} pkt_sh.source, # {5} int(l4_sport), # {6} pkt_sh.destination, # {7} int(l4_dport), # {8} int(pkt_sh.length)] # {9}] # {10}] # print(fmt.format(pkt_sh.no, # {0} # pkt_sh.time, # {1} # pkt_sh.protocol, # {2} # l4_proto_name, # {3} # pkt_sh.info, # {4} # pkt_sh.source, # {5} # l4_sport, # {6} # pkt_sh.destination, # {7} # l4_dport, # {8} # pkt_sh.length, # {9} # l4_payload_bytes.hex()), # {10} # file=fh_csv) # return True #-------------------------------------------------- def pcap2csv(in_pcap): """Main entry function called from main to process the pcap and generate the csv file. in_pcap = name of the input pcap file (guaranteed to exist) out_csv = name of the output csv file (will be created) This function walks over each packet in the pcap file, and for each packet invokes the render_csv_row() function to write one row of the csv. """ # Open the pcap file with PyShark in "summary-only" mode, since this # is the mode where the brief textual description of the packet (e.g. # "Standard query 0xf3de A www.cisco.com", "Client Hello" etc.) are # made available. print('-----Start extract {}----'.format(in_pcap)) pcap_pyshark = pyshark.FileCapture(in_pcap, only_summaries=True) pcap_pyshark.load_packets() pcap_pyshark.reset() result_columns=['frame number','time','highest protocal','L4 Protocal','src ip','src port','dst ip','dst port','pkt len'] results=[] frame_num = 0 ignored_packets = 0 # Open the pcap file with scapy's RawPcapReader, and iterate over # each packet. In each iteration get the PyShark packet as well, # and then call render_csv_row() with both representations to generate # the CSV row. for (pkt_scapy, _) in RawPcapReader(in_pcap): try: pkt_pyshark = pcap_pyshark.next_packet() frame_num += 1 result_row=render_csv_row(pkt_pyshark, pkt_scapy) if not result_row: ignored_packets += 1 else: results.append(result_row) except StopIteration: # Shouldn't happen because the RawPcapReader iterator should also # exit before this happens. break pd.DataFrame(results,columns=result_columns).to_csv('scapy_output/{}.csv'.format(in_pcap.split('.')[0].split('/')[-1]),index=False) print('{} packets read, {} packets not written to CSV'. format(frame_num, ignored_packets)) #-------------------------------------------------- def main(): # existing_files=[] # for root, dirs, fnames in os.walk('output/'): # for fname in fnames: # if '.csv' in fname: # existing_files.append(fname.split('.csv')[0]) for root, dirs, fnames in os.walk('data/'): for fname in tqdm(fnames): # if fname.split('.pcapng')[0] in existing_files: # print('{}already exists'.format(fname)) # continue if 'pcapng' in fname: pcap2csv(os.path.join(root,fname)) #-------------------------------------------------- if __name__ == '__main__': main()
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging as loggers import numpy as np import theano from deepy.utils import UniformInitializer from deepy.core.env import env from deepy.core.tensor_conversion import neural_computation_prefer_tensor, convert_to_theano_var logging = loggers.getLogger("deepy") class NeuralLayer(object): def __init__(self, name=None): """ Create a neural layer. """ self.name = name if name else self.__class__.__name__ self.input_dim = 0 self.input_dims = [0] self.output_dim = 0 self.output_dims= [0] self._linked_block = None self.initialized = False self.updates = [] self.training_updates = [] self.free_parameters = [] self.parameters = [] self.training_monitors = [] self.testing_monitors = [] self._registered_monitors = set() self._registered_updates = set() self._registered_training_updates = set() self.external_inputs = [] self.external_targets = [] self.parameter_count = 0 self.epoch_callbacks = [] self.training_callbacks = [] self.testing_callbacks = [] def init(self, input_dim=0, input_dims=None, no_prepare=False): """ Initialize the layer. :param no_prepare: avoid calling preparation function """ if self.initialized: return # configure input dimensions if input_dims: self.input_dims = input_dims self.input_dim = input_dims[0] else: self.input_dim = input_dim self.input_dims = [input_dims] # set default output dimension if self.output_dim == 0: self.output_dim = self.input_dim self.initialized = True # call prepare if not no_prepare: self.prepare() return self def compute(self, *inputs, **kwargs): """ Compute based on NeuralVariable. :type inputs: list of NeuralVariable :return: NeuralVariable """ from deepy.core.neural_var import NeuralVariable from deepy.core.graph import graph if type(inputs[0]) != NeuralVariable: raise SystemError("The input of `compute` must be NeuralVar") dims = [t.dim() for t in inputs] if len(inputs) == 1: self.init(input_dim=dims[0]) else: self.init(input_dims=dims) # Check block if self.parameters and not self._linked_block: self.belongs_to(graph.default_block()) # convert kwargs train_kwargs, _, _ = convert_to_theano_var(kwargs) output = self.compute_tensor(*[t.tensor for t in inputs], **train_kwargs) if type(output) != list and type(output) != tuple: return NeuralVariable(output, dim=self.output_dim) else: return [NeuralVariable(*item) for item in zip(output, self.output_dims)] def prepare(self): """ Prepare function will be called after connected. """ @neural_computation_prefer_tensor def compute_tensor(self, *args, **kwargs): """ Compute with tensors in Theano. """ raise NotImplementedError("output function of '%s' is not implemented" % self.name) def belongs_to(self, block): """ Let the given block or network manage the parameters of this layer. :param block: Block or NeuralNetwork :return: NeuralLayer """ if self._linked_block: raise SystemError("The layer {} has already blonged to {}".format(self.name, self._linked_block.name)) self._linked_block = block block.register_layer(self) return self def register(self, *layers): """ Register inner layers. """ self.register_inner_layers(*layers) def register_inner_layers(self, *layers): for layer in layers: self.register_parameters(*layer.parameters) self.register_updates(*layer.updates) self.register_training_updates(*layer.training_updates) self.training_monitors.extend(layer.training_monitors) self.testing_monitors.extend(layer.testing_monitors) def register_parameters(self, *parameters): """ Register parameters. """ for param in parameters: self.parameter_count += np.prod(param.get_value().shape) self.parameters.extend(parameters) def register_free_parameters(self, *free_parameters): """ Register free parameters, which means their value will not be learned by trainer. """ return self.free_parameters.extend(free_parameters) def register_updates(self, *updates): """ Register updates that will be executed in each iteration. """ for key, node in updates: if key not in self._registered_updates: self.updates.append((key, node)) self._registered_updates.add(key) def register_training_updates(self, *updates): """ Register updates that will only be executed in training phase. """ for key, node in updates: if key not in self._registered_training_updates: self.training_updates.append((key, node)) self._registered_training_updates.add(key) def register_monitors(self, *monitors): """ Register monitors they should be tuple of name and Theano variable. """ for key, node in monitors: if key not in self._registered_monitors: node *= 1.0 # Avoid CudaNdarray self.training_monitors.append((key, node)) self.testing_monitors.append((key, node)) self._registered_monitors.add(key) def register_external_inputs(self, *variables): """ Register external input variables. """ self.external_inputs.extend(variables) def register_external_targets(self, *variables): """ Register extenal target variables. """ self.external_targets.extend(variables) def register_training_callbacks(self, *callbacks): """ Register callback for each iteration in the training. """ self.training_callbacks.extend(callbacks) def register_testing_callbacks(self, *callbacks): """ Register callback for each iteration in the testing. """ self.testing_callbacks.extend(callbacks) def register_epoch_callbacks(self, *callbacks): """ Register callback which will be called after epoch finished. """ self.epoch_callbacks.extend(callbacks) def create_weight(self, input_n=1, output_n=1, label="W", initializer=None, shape=None): if not shape: shape = (input_n, output_n) if not initializer: initializer = env.default_initializer weight = theano.shared(initializer.sample(shape).astype(env.FLOATX), name='{}_{}'.format(self.name, label)) logging.info('create param %s %s for %s', label, str(shape), self.name) return weight def create_bias(self, output_n=1, label="B", value=0., shape=None): if not shape: shape = (output_n, ) bs = np.ones(shape) bs *= value bias = theano.shared(bs.astype(env.FLOATX), name='{}_{}'.format(self.name, label)) logging.info('create param %s %s for %s', label, str(shape), self.name) return bias def create_scalar(self, name="S", value=0, dtype=env.FLOATX): bs = np.array(0, dtype=dtype) bs += value v = theano.shared(bs, name='{}_{}'.format(self.name, name)) logging.info('create scalar %s', name) return v def create_vector(self, n, name="V", dtype=env.FLOATX): bs = np.zeros(n, dtype=dtype) v = theano.shared(bs, name='{}_{}'.format(self.name, name)) logging.info('create vector %s: %d', name, n) return v def create_matrix(self, m, n, name="M"): matrix = theano.shared(np.zeros((m, n)).astype(env.FLOATX), name="{}_{}".format(self.name, name)) logging.info('create matrix %s: %d x %d', name, m, n) return matrix def activation(self, name): from deepy.tensor.activations import get_activation return get_activation(name) def callback_forward_propagation(self): pass def set_name(self, name): """ Set the name of this layer. This will be the key of saved parameters. """ self.name = name
"""VerbCL Elastic.""" import multiprocessing from typing import Any from typing import List from elasticsearch_dsl import analyzer from elasticsearch_dsl import Boolean from elasticsearch_dsl import connections from elasticsearch_dsl import Document from elasticsearch_dsl import Float from elasticsearch_dsl import Integer from elasticsearch_dsl import Text class OpinionDocument(Document): # type: ignore """Court Opinion.""" opinion_id = Integer() raw_text = Text( analyzer=analyzer( "alpha_stop_stem", type="custom", tokenizer="classic", filter=["lowercase", "asciifolding", "stop", "snowball"], ) ) class Index: """Index Name for OpinionDocument.""" name = "verbcl_opinions" @property def key(self) -> int: """Unique Key to identify one document.""" # noinspection PyTypeChecker return self.opinion_id # type: ignore class OpinionSentence(Document): # type: ignore """Single Sentence within a Court Opinion.""" opinion_id = Integer() sentence_id = Integer() highlight = Boolean() count_citations = Integer() raw_text = Text( analyzer=analyzer( "alpha_stop_stem", type="custom", tokenizer="classic", filter=["lowercase", "asciifolding", "stop", "snowball"], ) ) class Index: """Index Name for OpinionSentence.""" name = "verbcl_highlights" def save(self, **kwargs: Any) -> bool: """Overloads save to implement defaut values.""" if self.highlight is None: self.highlight = False if self.count_citations is None: self.count_citations = 0 return super().save(**kwargs) # type: ignore @property def key(self) -> str: """Unique key to identify one sentence.""" # noinspection PyTypeChecker return f"{self.opinion_id}-{self.sentence_id}" class OpinionCitationGraph(Document): # type: ignore """Citation of a Cited Opinion in a Citing Opinion, using a specific sentence of the Cited Opinion.""" citing_opinion_id = Integer() cited_opinion_id = Integer() cited_sentence_id = Integer() verbatim = Text( analyzer=analyzer( "alpha_stop_stem", type="custom", tokenizer="classic", filter=["lowercase", "asciifolding", "stop", "snowball"], ) ) snippet = Text( analyzer=analyzer( "alpha_stop_stem", type="custom", tokenizer="classic", filter=["lowercase", "asciifolding", "stop", "snowball"], ) ) score = Float() class Index: """Index Name for OpinioNCitationGraph.""" name = "verbcl_citation_graph" def _create_connection(alias_name: str, **kwargs: Any) -> None: """ Add an elasticsearch instance connection to the DSL classes, using an alias. :param alias_name """ connections.create_connection(alias=alias_name, **kwargs) # Global state variables for the connection management _class_init: bool = False _list_aliases: List[str] = [] _default_connection: str = "default" def verbcl_es_init(**kwargs: Any) -> str: """ Manages connections to ElasticSearch instance. There is one connection per process. :param kwargs: parameters for creating an elasticsearch connection :return: alias name for the connection to use """ # Initialize the connection to Elasticsearch # Making use of elasticsearch_dsl persistence features proc = multiprocessing.current_process() alias_name = proc.name global _list_aliases if alias_name in _list_aliases: return alias_name _create_connection(alias_name=alias_name, **kwargs) _list_aliases.append(alias_name) global _class_init if not _class_init: # Always have a connection named "default" if _default_connection not in _list_aliases: _create_connection(_default_connection, **kwargs) OpinionDocument.init() OpinionSentence.init() OpinionCitationGraph.init() _class_init = True return alias_name
import tensorflow as tf from absl import app from absl import flags import urllib.request from tqdm import tqdm import json import tarfile import os print("Path at terminal when executing this file") print(os.getcwd() + "\n") print("This file path, relative to os.getcwd()") print(__file__ + "\n") print("This file full path (following symlinks)") full_path = os.path.realpath(__file__) print(full_path + "\n") print("This file directory and name") path, filename = os.path.split(full_path) print(path + ' --> ' + filename + "\n") print("This file directory only") print(os.path.dirname(full_path)) from urllib.parse import urlparse import sys import subprocess def main(_): # fine-tuning training subprocess.call([sys.executable, "main.py", "--mode=train_and_eval", "--train_file_pattern=../tmp/pascal/tfrecords/tfrecords*.tfrecord", "--val_file_pattern=../tmp/pascal/tfrecords/tfrecords*.tfrecord", "--model_name=efficientdet-d0", "--model_dir=../tmp/efficientdet/pascal/train_00", "--ckpt=../tmp/efficientdet/coco2/efficientdet-d0/", "--train_batch_size=64", "--eval_batch_size=64 ", "--eval_samples=1024", "--num_examples_per_epoch=5717", "--num_epochs=300", "--hparams=config/pascal/pascal.yaml", "--strategy=gpus"]) if __name__ == '__main__': app.run(main)
# Copyright 2004-present Facebook. All rights reserved. # pyre-unsafe import functools import glob import json import logging import os import subprocess import sys import tempfile import threading from collections import namedtuple from json.decoder import JSONDecodeError from logging import Logger from typing import Dict, Iterable, List, Optional, Set, Tuple, Union, cast # noqa from .filesystem import BuckBuilder, find_root LOG: Logger = logging.getLogger(__name__) BuckOut = namedtuple("BuckOut", "source_directories targets_not_found") class BuckException(Exception): pass class FastBuckBuilder(BuckBuilder): def __init__( self, buck_root: str, output_directory: Optional[str] = None, buck_builder_binary: Optional[str] = None, buck_builder_target: Optional[str] = None, debug_mode: bool = False, ) -> None: self._buck_root = buck_root self._output_directory = output_directory or tempfile.mkdtemp( prefix="pyre_tmp_" ) self._buck_builder_binary = buck_builder_binary self._buck_builder_target = buck_builder_target self._debug_mode = debug_mode self.conflicting_files = [] self.unsupported_files = [] def _get_builder_executable(self) -> str: builder_binary = self._buck_builder_binary if not self._debug_mode: if builder_binary is None: raise BuckException( "--buck-builder-binary must be provided " "if --buck-builder-debug is not enabled." ) return builder_binary target = self._buck_builder_target if target is None: raise BuckException( "--buck-builder-target must be provided " "if --buck-builder-debug is enabled." ) binary_relative_path = ( subprocess.check_output( [ "buck", "build", "--show-output", "//tools/pyre/facebook/fb_buck_project_builder", ], stderr=subprocess.DEVNULL, ) .decode() .strip() .split(" ")[1] ) return os.path.join(self._buck_root, binary_relative_path) def build(self, targets: Iterable[str]) -> List[str]: command = [ self._get_builder_executable(), "-J-Djava.net.preferIPv6Addresses=true", "-J-Djava.net.preferIPv6Stack=true", "--buck_root", self._buck_root, "--output_directory", self._output_directory, ] + list(targets) if self._debug_mode: command.append("--debug") LOG.info("Buck builder command: `{}`".format(" ".join(command))) with subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) as buck_builder_process: # Java's logging conflicts with Python's logging, we capture the # logs and re-log them with python's logger. log_processor = threading.Thread( target=self._read_stderr, args=(buck_builder_process.stderr,) ) log_processor.daemon = True log_processor.start() return_code = buck_builder_process.wait() # Wait until all stderr have been printed. log_processor.join() if return_code == 0: LOG.info("Finished building targets.") if self._debug_mode: debug_output = json.loads( "".join([line.decode() for line in buck_builder_process.stdout]) ) self.conflicting_files += debug_output["conflictingFiles"] self.unsupported_files += debug_output["unsupportedFiles"] return [self._output_directory] else: raise BuckException( "Could not build targets. Check the paths or run `buck clean`." ) def _read_stderr(self, stream: Iterable[bytes]) -> None: for line in stream: line = line.decode().rstrip() if line.startswith("INFO: "): LOG.info(line[6:]) elif line.startswith("WARNING: "): LOG.warning(line[9:]) elif line.startswith("ERROR: "): LOG.error(line[7:]) elif line.startswith("[WARNING:"): # Filter away thrift warnings. pass else: LOG.error(line) class SimpleBuckBuilder(BuckBuilder): def __init__(self, build: bool = True) -> None: self._build = build def build(self, targets: Iterable[str]) -> Iterable[str]: """ Shell out to buck to build the targets, then yield the paths to the link trees. """ return generate_source_directories(targets, build=self._build) def presumed_target_root(target): root_index = target.find("//") if root_index != -1: target = target[root_index + 2 :] target = target.replace("/...", "") target = target.split(":")[0] return target # Expects the targets to be already normalized. def _find_built_source_directories( targets_to_destinations: Iterable[Tuple[str, str]] ) -> BuckOut: targets_not_found = [] source_directories = [] buck_root = find_buck_root(os.getcwd()) if buck_root is None: raise Exception("No .buckconfig found in ancestors of the current directory.") directories = set() for target, destination in targets_to_destinations: directories.add((target, os.path.dirname(destination))) for target, directory in directories: target_name = target.split(":")[1] discovered_source_directories = glob.glob( os.path.join(buck_root, directory, "{}#*link-tree".format(target_name)) ) if len(discovered_source_directories) == 0: targets_not_found.append(target) source_directories.extend( [ tree for tree in discovered_source_directories if not tree.endswith( ( "-vs_debugger#link-tree", "-interp#link-tree", "-ipython#link-tree", ) ) ] ) return BuckOut(set(source_directories), set(targets_not_found)) def _normalize(targets: List[str]) -> List[Tuple[str, str]]: LOG.info( "Normalizing target%s `%s`", "s:" if len(targets) > 1 else "", "`, `".join(targets), ) try: command = ( ["buck", "targets", "--show-output"] + targets + ["--type", "python_binary", "python_test"] ) targets_to_destinations = ( subprocess.check_output(command, stderr=subprocess.PIPE, timeout=600) .decode() .strip() .split("\n") ) # type: List[str] targets_to_destinations = list(filter(bool, targets_to_destinations)) # The output is of the form //target //corresponding.par result = [] for target in targets_to_destinations: pair = target.split(" ") if len(pair) != 2: pass else: result.append((pair[0], pair[1])) if not result: LOG.warning( "Provided targets do not contain any binary or unittest targets." ) return [] else: LOG.info( "Found %d buck target%s.", len(result), "s" if len(result) > 1 else "" ) return result except subprocess.TimeoutExpired as error: LOG.error("Buck output so far: %s", error.stderr.decode().strip()) raise BuckException( "Seems like `{}` is hanging.\n " "Try running `buck clean` before trying again.".format( # pyre-fixme: command not always defined " ".join(command[:-1]) ) ) except subprocess.CalledProcessError as error: LOG.error("Buck returned error: %s" % error.stderr.decode().strip()) raise BuckException( "Could not normalize targets. Check the paths or run `buck clean`." ) def _build_targets(targets: List[str], original_targets: List[str]) -> None: LOG.info( "Building target%s `%s`", "s:" if len(original_targets) > 1 else "", "`, `".join(original_targets), ) command = ["buck", "build"] + targets try: subprocess.check_output(command, stderr=subprocess.PIPE) LOG.warning("Finished building targets.") except subprocess.CalledProcessError as error: # The output can be overwhelming, hence print only the last 20 lines. lines = error.stderr.decode().splitlines() LOG.error("Buck returned error: %s" % "\n".join(lines[-20:])) raise BuckException( "Could not build targets. Check the paths or run `buck clean`." ) def _map_normalized_targets_to_original( unbuilt_targets: Iterable[str], original_targets: Iterable[str] ) -> List[str]: mapped_targets = set() for target in unbuilt_targets: # Each original target is either a `/...` glob or a proper target. # If it's a glob, we're looking for the glob to be a prefix of the unbuilt # target. Otherwise, we care about exact matches. name = None for original in original_targets: if original.endswith("/..."): if target.startswith(original[:-4]): name = original else: if target == original: name = original # No original target matched, fallback to normalized. if name is None: name = target mapped_targets.add(name) return list(mapped_targets) @functools.lru_cache() def find_buck_root(path: str) -> Optional[str]: return find_root(path, ".buckconfig") def query_buck_relative_paths( project_paths: Iterable[str], targets: Iterable[str] ) -> Dict[str, str]: """Return a mapping from each absolute project path to its relative location in the buck output directory. This queries buck and only returns paths that are covered by `targets`.""" buck_root = find_buck_root(os.getcwd()) if buck_root is None: LOG.error( "Buck root couldn't be found. Returning empty analysis directory mapping." ) return {} target_string = " ".join(targets) command = [ "buck", "query", "--json", "--output-attribute", ".*", # This will get only those owner targets that are beneath our targets or # the dependencies of our targets. f"owner(%s) ^ deps(set({target_string}))", *project_paths, ] LOG.info(f"Running command: {command}") try: owner_output = json.loads( subprocess.check_output(command, timeout=30, stderr=subprocess.DEVNULL) .decode() .strip() ) except ( subprocess.TimeoutExpired, subprocess.CalledProcessError, JSONDecodeError, ) as error: raise BuckException("Querying buck for relative paths failed: {}".format(error)) results = {} for project_path in project_paths: for target_data in owner_output.values(): prefix = os.path.join(buck_root, target_data["buck.base_path"]) + os.sep suffix = project_path[len(prefix) :] if not project_path.startswith(prefix) or suffix not in target_data["srcs"]: continue if "buck.base_module" in target_data: base_path = os.path.join(*target_data["buck.base_module"].split(".")) else: base_path = target_data["buck.base_path"] results[project_path] = os.path.join(base_path, target_data["srcs"][suffix]) # Break after the first one because there might be multiple matches. break return results def generate_source_directories( original_targets: Iterable[str], build: bool ) -> Set[str]: original_targets = list(original_targets) targets_to_destinations = _normalize(original_targets) targets = [pair[0] for pair in targets_to_destinations] if build: _build_targets(targets, original_targets) buck_out = _find_built_source_directories(targets_to_destinations) source_directories = buck_out.source_directories if buck_out.targets_not_found: if not build: # Build all targets to ensure buck doesn't remove some link trees as we go. _build_targets(targets, original_targets) buck_out = _find_built_source_directories(targets_to_destinations) source_directories = buck_out.source_directories if buck_out.targets_not_found: message_targets = _map_normalized_targets_to_original( buck_out.targets_not_found, original_targets ) raise BuckException( "Could not find link trees for:\n `{}`.\n " "See `{} --help` for more information.".format( " \n".join(message_targets), sys.argv[0] ) ) return source_directories
import logging import random import pickle import bz2 import _pickle as cPickle import praw import sklearn from fastapi import APIRouter import pandas as pd from pydantic import BaseModel, Field, validator log = logging.getLogger(__name__) router = APIRouter() class Item(BaseModel): """Use this data model to parse the request body JSON.""" title: str = Field(..., example="Is Fusion nullified for the Extreme Z Awakening Event?") body: str = Field(..., example="On JP I missed out on my chance to do SSJ3 Goku the first time so I'm doing it now. Been lucked out of rotations for most of these stages and I've noticed that for my Fusions team, LR Gogeta would NEVER fuse. I'm genuinely curious if the mechanic is nullified for the event or i'm just getting AWFUL RNG.") # Load your pickled model here: def decompress_pickle(file): data = bz2.BZ2File(file, 'rb') data = cPickle.load(data) return data model = decompress_pickle('Baseline_SGD_Model.pbz2') with open("subreddit_list.pkl", 'rb') as file: subreddit_list = pickle.load(file) @router.post('/predict') async def predict(item: Item): """Make baseline predictions for classification problem.""" # You can access the attributes like this: post = item.title + ' ' + item.body log.info(post) # Prediction function utilized to make 10 predictions # based off post request preds = pd.Series(model.decision_function([post])[0]) preds.index = model.classes_ preds = preds.sort_values(ascending=False) preds = sorted(dict(preds).items(), key=lambda x: x[1], reverse=True) preds = [subreddit_list[x] for x,_ in preds[:10]] return { 'title': item.title, 'body': item.body, 'prediction': preds }
#!/usr/bin/env python #coding=utf-8 ############################################### # File Name: p_feature.py # Author: Junliang Guo@USTC # Email: [email protected] ############################################### import sys from scipy import sparse as sp from scipy import io as sio import numpy as np from io import open #python p_feature.py in_file out_file dict_file feature_in = sys.argv[1] out_p = sys.argv[2] dic_p = sys.argv[3] dic = {} k = 0 with open(dic_p, 'r') as f: for line in f: #print line if k == 0: k += 1 else: node = line.strip().split()[0] dic[k] = node k += 1 #print len(dic) features = sio.loadmat(feature_in)['features'] #print features[int(dic[11])] features = features.todense() #print features.shape temp_m = np.zeros([len(dic), features.shape[1]]) #print temp_m.shape for i in xrange(temp_m.shape[0]): temp_m[i] = features[int(dic[i + 1])] temp_m = sp.csr_matrix(temp_m, dtype = 'double') #print temp_m[10] sio.savemat(out_p, {'features': temp_m})
""" - (main_strat_random.py) """ from time import sleep from datetime import date from random import randrange from tda.client import synchronous from decimal import Decimal, setcontext, BasicContext # slowly converting everyting to the new API from z_art.progress_report.api_progress_report import report_config from z_art.progress_report.api_progress_report import Progress as progress from z_art.strategy_select.api_strat_select import OrderType from z_art.strategy_select.api_strat_select import data_syndicate from z_art.strategy_select.api_strat_select import order_get_details from z_art.strategy_select.api_strat_select import order_place_equity_market # set decimal context, precision = 9, rounding = round half even setcontext(BasicContext) class RandomStratTypeException(TypeError): '''Raised when there is a type error in :meth:`run_random_strat`.''' class RandomStratValueException(ValueError): '''Raised when there is a value error in :meth:`run_random_strat`.''' def run_strat_random(tda_client, stocks_to_trade): ''' Randomly trade stocks by defining constants below. - The RANDOM strat takes a list and randomly selects one stock,buys, holds, sells, repeats. Hold is also random, as well as wait time between buying again. CAUTION: this strat never wins :param tda_client: The client object created by tda-api. ''' if not isinstance(tda_client, synchronous.Client): raise RandomStratTypeException('tda client object is required') if not isinstance(stocks_to_trade, list): raise RandomStratTypeException('stocks_to_trade must be a list') TRADE_CYCLE_DEFAULT_R = 300 TRADE_CYCLES_R = 300 SHARE_QUANTITY = 1 HOLD_POSITION = 50 HOLD_TOLERANCE = 10 WAIT_TO_BUY = 10 WAIT_TOLERANCE = 5 STOP_TRYING_TO_BUY = 10 accumulated_profit = 0 config_variables = [TRADE_CYCLE_DEFAULT_R, TRADE_CYCLES_R, SHARE_QUANTITY, HOLD_POSITION, WAIT_TO_BUY, STOP_TRYING_TO_BUY] report_config('strat_random', config_variables, report_config=True) generated_date = date.today().strftime('%d-%b-%Y') file_name = 'z_art/data_visual/data_dump/PROFIT_' + str(generated_date) + '.log' f = open(file_name, 'w+') f.write(str(0.00)) f.close() # begin trading while TRADE_CYCLES_R > 0: # generate a random number, select a stock to trade, and report random_number = randrange(len(stocks_to_trade)) symbol_to_trade = [random_symbol[1] for random_symbol in enumerate(stocks_to_trade) if random_number == random_symbol[0]] progress.w('WE_WILL_TRADE_(' + str(symbol_to_trade[0]) + ')') # place buy order, get details, and report order_response = order_place_equity_market(tda_client, OrderType.BUY, symbol_to_trade[0], SHARE_QUANTITY) order_json = order_get_details(tda_client, order_response, wait_for_fill=STOP_TRYING_TO_BUY, order_report=True) data_syndicate(order_json, report_data=True) # rand tolerance +/-10 seconds from hold hold_max = HOLD_POSITION + HOLD_TOLERANCE hold_min = HOLD_POSITION - HOLD_TOLERANCE new_hold = randrange(hold_min, hold_max) # sleep between buy and sell progress.w('SLEEPING_(hold_position_(' + str(new_hold) + '_seconds))') sleep(new_hold) # place sell order, get details, and report order_response = order_place_equity_market(tda_client, OrderType.SELL, symbol_to_trade[0], SHARE_QUANTITY) order_json = order_get_details(tda_client, order_response, wait_for_fill=True, order_report=True) profit_data = data_syndicate(order_json, report_data=True, report_lists=True, report_profit=True, return_profit=True) # write accumulation to 'z_art/data_visual/data_dump/PROFIT_dd-mmm-yyyy.log' for profit_tuple in profit_data: accumulated_profit = Decimal(accumulated_profit) + Decimal(profit_tuple[1]) f = open(file_name, 'w') f.write(str(accumulated_profit)) f.close() # rand tolerance +/-5 seconds from hold buy_again_max = WAIT_TO_BUY + WAIT_TOLERANCE buy_again_min = WAIT_TO_BUY - WAIT_TOLERANCE new_buy_again = randrange(buy_again_min, buy_again_max) # sleep before we buy another stock progress.w('SLEEPING_(' + str(new_buy_again) + 'seconds)_(cycle(' + str(TRADE_CYCLE_DEFAULT_R-TRADE_CYCLES_R+1) + ' of ' + str(TRADE_CYCLE_DEFAULT_R) + '))') sleep(new_buy_again) # decrease TRADE_CYCLES TRADE_CYCLES_R = TRADE_CYCLES_R - 1 # clear profit data just in case profit_data.clear()
import path_magic import unittest import os from function_space import FunctionSpace from mesh import CrazyMesh import numpy as np import numpy.testing as npt from inner_product import inner from forms import Form, ExtGaussForm_0 import matplotlib.pyplot as plt from basis_forms import BasisForm def func(x, y): return x + y class TestForm0(unittest.TestCase): """Test case for the class of 0-forms.""" def pfun(self, x, y): return np.sin(np.pi * x) * np.sin(np.pi * y) # @unittest.skip def test_discretize_simple(self): """Simple discretization of 0 forms.""" p_s = [(2, 2)] n = (2, 2) for p in p_s: mesh = CrazyMesh(2, n, ((-1, 1), (-1, 1)), 0.0) func_space = FunctionSpace(mesh, '0-lobatto', p) form_0 = Form(func_space) form_0.discretize(self.pfun) # values at x = +- 0.5 and y = +- 0.5 ref_value = np.array((1, -1, -1, 1)) npt.assert_array_almost_equal(ref_value, form_0.cochain_local[4]) def test_gauss_projection(self): p = (10, 10) n = (5, 6) mesh = CrazyMesh(2, n, ((-1, 1), (-1, 1)), 0.3) func_space = FunctionSpace(mesh, '0-gauss', p) form_0_gauss = Form(func_space) form_0_gauss.discretize(self.pfun) xi = eta = np.linspace(-1, 1, 50) form_0_gauss.reconstruct(xi, eta) (x, y), data = form_0_gauss.export_to_plot() npt.assert_array_almost_equal(self.pfun(x, y), data) def test_lobatto_projection(self): p = (10, 10) n = (5, 6) mesh = CrazyMesh(2, n, ((-1, 1), (-1, 1)), 0.3) func_space = FunctionSpace(mesh, '0-lobatto', p) form_0 = Form(func_space) form_0.discretize(self.pfun) xi = eta = np.linspace(-1, 1, 20) form_0.reconstruct(xi, eta) (x, y), data = form_0.export_to_plot() npt.assert_array_almost_equal(self.pfun(x, y), data) def test_ext_gauss_projection(self): p = (10, 10) n = (5, 6) mesh = CrazyMesh(2, n, ((-1, 1), (-1, 1)), 0.3) func_space_extGau = FunctionSpace(mesh, '0-ext_gauss', p) form_0_extG = ExtGaussForm_0(func_space_extGau) form_0_extG.discretize(self.pfun) xi = eta = np.linspace(-1, 1, 20) form_0_extG.reconstruct(xi, eta) (x, y), data = form_0_extG.export_to_plot() npt.assert_array_almost_equal(self.pfun(x, y), data) if __name__ == '__main__': unittest.main()
#!/usr/bin/python3 # Example line: Step A must be finished before step L can begin. edges = [(ord(x[1]) - ord('A'), ord(x[7]) - ord('A')) for x in map(lambda x: x.split(), open('input.in').readlines())] workers = 5 for e in edges: print('{} → {}'.format(chr(ord('A') + e[0]),chr(ord('A') + e[1]))) class Node(object): def __init__(self, no): self.id = no self.inputs = {} self.outputs = {} def insert_source(self, source_id, source): self.inputs[source_id] = source def insert_target(self, target_id, target): self.outputs[target_id] = target def __repr__(self): return str({ 'in': self.inputs.keys(), 'out': self.outputs.keys(), 'id': [self.id]}) graph = {} for l in range(ord('Z') - ord('A') + 1): graph[l] = Node(l) for source, target in edges: graph[source].insert_target(target, graph[target]) graph[target].insert_source(source, graph[source]) output = [] nodes_to_insert = [] graph_len = len(graph) while(len(output) < graph_len): # print(len(output)) # print(len(graph)) nodes_to_insert = [] for node in graph: # print('{} : {} → {}'.format(node, len(graph[node].inputs), len(graph[node].outputs))) # print('{}: {}'.format(node, graph[node])) if len(graph[node].inputs) == 0: nodes_to_insert.append(node) print(nodes_to_insert) nodes_to_insert.sort() n = nodes_to_insert[0] if n in graph: output.append(n) for k in graph[n].outputs: out = graph[n].outputs[k] del out.inputs[n] print("Removing {}.".format(n)) del graph[n] result = [chr(ord('A') + x) for x in output] print(result) print(''.join(result))
### Place holder ###
''' Queries current running WAS stats and saves them to a file (C) 2015 Alex Ivkin Run using the following command: wsadmin.[bat|sh] -lang jython -user wsadmin -password wsadmin -f collectWASPerformanceStats.py <stats_file> [-l] You can omit -user and -password. wsadmin is in \Program Files\IBM\WebSphere\AppServer\bin\ on a default windows installation NOTE: On Windows, due to WebSphere weirdness you have to use FORWARD slashes (/) in the output file name. Otherwise the backward slashes (\) need to be doubled or they will turn into escape sequences Use -l after the output file name to export the list of all available performance MBeans to the output file and quit Style note: Jython notation allows the use of shortened get/set functions for java objects, e.g using .list, instead of getList(), or .attribute=1 instead of ,setAttribute(1). However I try to stay with the java style get/set here to signify a python object vs java object ''' import re,sys,time,os,java import com.ibm.websphere.pmi.stat.WSStatsHelper as WSStatsHelper #import java.util.Locale as Locale if len(sys.argv)==0: print __doc__ sys.exit(1) print "Initializing..." # script config scriptconfig={} perfHash={} perfObjects=AdminControl.queryNames('type=Perf,*').split('\n') # could be one perfmbean per WAS instance if perfObjects is None or not perfObjects: print "Can not retreive the performance MBean. Make sure PMI (performance metrics) is enabled on the server" # convert to object names and hash under individual process names for p in perfObjects: perfObjectName=AdminControl.makeObjectName(p) # javax.management.ObjectName. Get tog full string - p.getKeyPropertyListString() process=perfObjectName.getKeyProperty("process") if process is None: print "Performance object %s is not associated with a process." % p else: perfHash[process]=perfObjectName #init the configs #WSStatsHelper.initTextInfo(AdminControl.invoke_jmx(perfObjectName, 'getConfigs', [None], ['java.util.Locale']),None) # not all stats config files are in the classpath. WSStatsHelper helps init descriptions for PMIModuleConfigs that are not bundled with WAS but are added later. Second argument is None for the default locale (Locale.getDefault()) print "Performance beans found: %s" % ",".join(perfHash.keys()) # Enable PMI data using the pre-defined statistic sets. #AdminControl.invoke_jmx (perfObjName, 'setStatisticSet', ['all'], ['java.lang.String']) #@UnusedVariable @UndefinedVariable # Return a string with all the sub-statistics and their metrics listed recursively in a multi-line string def getSubStatsDesc(stats,prefix,level): ret = "" if level: if prefix: prefix="%s>%s" % (prefix,stats.getName()) # keep recording sublevels else: # dont start the first level prefix with a separator prefix="%s" % stats.getName() else: # dont record the root level (0) prefix prefix="" substats=stats.getSubStats() if substats is not None: for sub in substats: subDesc=getSubStatsDesc(stats.getStats(sub.getName()),prefix,level+1) if prefix: name="%s>%s" % (prefix,sub.getName()) else: # dont start the first level prefix with a separator name=sub.getName() ret="%s\n%s>>>%s%s" % (ret," "*25,name,subDesc) #"/"*level for a simple prefix, ",".join([str(s) for s in sub.getStatisticNames()]) for the actual statistics return ret def clean(name): # remove substrings per the config file from the given string if "clean" in scriptconfig.keys(): if "," in scriptconfig["clean"]['value']: for s in scriptconfig["clean"]['value'].split(","): name=name.replace(s,"") else: name=name.replace(scriptconfig["clean"]['value'],"") return name # Return an hash with all the sub-statistics, and their values retreived recursively def getSubStatsHash(stats,ret,prefix): #print prefix if prefix: prefix="%s>%s" % (prefix,clean(stats.getName())) # keep recording sublevels else: # dont start the first level prefix with a separator prefix="%s" % clean(stats.getName()) # collect all the same level statistics for s in stats.getStatistics(): ret[prefix+" "+clean(s.getName())]=s # hasing the stat object as is, it will have to be processed via get_value later substats=stats.getSubStats() if substats is not None: for sub in substats: allsubstats=getSubStatsHash(stats.getStats(sub.getName()),ret,prefix) #print allsubstats ret.update(allsubstats) return ret # init the configs # queriying the first available perfmbean they all return the same set of performance metrics configs=AdminControl.invoke_jmx(perfHash[perfHash.keys()[0]], 'getConfigs', [None], ['java.util.Locale']) # returns an array of all PmiModuleConfig objects, None for the server default locale means 'use default' WSStatsHelper.initTextInfo(configs,None) # not all stats config files are in the classpath. WSStatsHelper helps init descriptions for PMIModuleConfigs that are not bundled with WAS but are added later. Second argument is None for the default locale (Locale.getDefault()) if len(sys.argv) > 1 and sys.argv[1]=='-l': # list objects with stats f_out=open(sys.argv[0],"w") statName={} subStats={} statDescription={} print "Listing modules ..." for config in configs: if config is not None: # record the config specs, if we have not already seen it statDescription[config.getShortName()]=[config.getDescription(), ",".join([d.name for d in config.listAllData()])] print "Listing objects ..." for a in AdminControl.queryNames('*').split('\n'): #type=ConnectionPool, @UndefinedVariable obj=AdminControl.makeObjectName(a) process=obj.getKeyProperty("process") subs="" if process is None: desc="*No process" else: if process not in perfHash.keys(): # desc="*No perfmbean %s" % process process=perfHash.keys()[0] # ask the first perfmbean config=AdminControl.invoke_jmx(perfHash[process], 'getConfig', [obj], ['javax.management.ObjectName']) # returns PmiModuleConfig object if config is not None: # record the config specs, if we have not already seen it desc=config.getShortName() else: #desc="*Blank" continue # no use in recording non-stat objects # now get and record all sub-statistics available under that object stats=AdminControl.invoke_jmx(perfHash[process], 'getStatsObject', [obj,java.lang.Boolean('true')], ['javax.management.ObjectName','java.lang.Boolean']) # returns WSStats object if stats is not None and stats.getSubStats() is not None: subs=getSubStatsDesc(stats,"",0) #printStats(stats,1) statName[a]=desc subStats[a]=subs print "Writing performance beans descriptions..." print >> f_out, "Available performance sources aka perfmbeans (process:name [enabled statistic set]):" skeys=perfHash.keys() skeys.sort() for s in skeys: print >> f_out, "%-25s:%s [%s]" % (s,perfHash[s],AdminControl.invoke_jmx(perfHash[s], 'getStatisticSet', [],[])) f_out.flush() print "Writing stat descriptions..." print >> f_out, "\nAvailable performance modules (module-description [provided statistics]):" skeys=statDescription.keys() skeys.sort() for s in skeys: print >> f_out, "%-25s-%s [%s]" % (s,statDescription[s][0],statDescription[s][1]) f_out.flush() print "Writing stat names..." print >> f_out, "\nPMI Managed objects (module=full managed object name):" skeys=statName.keys() skeys.sort() # sort() does not return a list but does sorting in place, hence the ugly multi-liner for s in skeys: print >> f_out, "%-25s=%s%s" % (statName[s], s,subStats[s]) print "done." f_out.close() sys.exit(0) # load config try: for line in open("performance.prop","r").readlines(): line=line.strip() if not line.startswith("#") and "=" in line: configkey=line.split("=",1)[0].strip() mbean=line.split("=",1)[1].strip() if mbean.find(">>>") != -1: # split in two, the latter half is a substatistics (mbean,substat)=mbean.split(">>>") else: substat="" scriptconfig[configkey]={'value':mbean,'substat':substat} print "Loaded %s settings." % len(scriptconfig.keys()) except: print "performance.prop can't be loaded: %s" % sys.exc_info()[0] sys.exit(1) # convert conf into wasobjects and create a header WASobjects={} #statsize={} # track the number of individual statistics in each perf object. Useful for maintaining proper CSV line in case some stats need to be skipped namelist=[] # list is used for ordering, hashtables are unordered configkeys=scriptconfig.keys() configkeys.sort() for c in configkeys: if c == "wait" or c == "clean": # skip the control config lines, since it's not a watched stat continue try: WASobjects[c]=AdminControl.makeObjectName(AdminControl.completeObjectName(scriptconfig[c]['value'])) # we can get the pmiconfig from any object (e.g perfHash[perfHash.keys()[0]]), but will try to be precise here process=WASobjects[c].getKeyProperty("process") if process is None: print "No process definition for %s. Skipping..." % WASobjects[c] continue elif process not in perfHash.keys(): print "Metrics process %s for %s has no matching perfomance bean to pull from. Skipping..." % (process,WASobjects[c]) continue statconfig=AdminControl.invoke_jmx(perfHash[process], 'getConfig', [WASobjects[c]], ['javax.management.ObjectName']) #WSStatsHelper.initTextInfo([statconfig],None) # not all stats config files are in the classpath. WSStatsHelper helps init descriptions for PMIModuleConfigs that are not bundled with WAS but are added later. Second argument is None for the default locale (Locale.getDefault()) if statconfig is None: print "Empty stat config for %s. Skipping..." % c continue #statsize[c]=0 stats=AdminControl.invoke_jmx(perfHash[process], 'getStatsObject', [WASobjects[c],java.lang.Boolean('true')], ['javax.management.ObjectName','java.lang.Boolean']) if stats is None: print "No stats found for %s" % c continue if scriptconfig[c]['substat']: # get the substats if stats.getStats(scriptconfig[c]['substat']) is None: print "No substat %s in %s" % (scriptconfig[c]['substat'], c) else: allsubstats=getSubStatsHash(stats.getStats(scriptconfig[c]['substat']),{},None) # recursive search print "Found %s substats for %s in %s" % (len(allsubstats.keys()),scriptconfig[c]['substat'],c) for s in allsubstats.keys(): namelist.append(c+" "+s) else: # by pooling the actual stats object, and not the conf object we are ensuring that we get only actually provided statistics, not advertised statistics #for d in statconfig.listAllData(): for s in stats.getStatistics(): #statsize[c]+=1 namelist.append(c+" "+s.getName()) except: print "Problem looking up %s: %s, %s. Skipping..." % (c,sys.exc_info()[0],sys.exc_info()[1]) # Simulate CSV. csv library may not be available in WAS's outdated jython # namesort is ordered and determines the order of fields in the csv namelist.sort() namelist.insert(0,'Time') namelist.insert(0,'Date') header=",".join(namelist) # open the output file try: if os.path.isfile(sys.argv[0]) and open(sys.argv[0],"r").readline().strip() == header: # check if the existing header matches the new one print "Appending to the existing file..." f_out=open(sys.argv[0],"a") else: print "Starting a new stats collection file..." f_out=open(sys.argv[0],"w") print>>f_out,header except: print "Error opening file %s\n%s" % (sys.argv[0],sys.exc_info()[1]) sys.exit(2) # decode value based on the stat type def get_value(s): value="." if str(s.getClass())=='com.ibm.ws.pmi.stat.BoundedRangeStatisticImpl': # bounded range value=s.getCurrent() elif str(s.getClass())=='com.ibm.ws.pmi.stat.CountStatisticImpl': # count statistics value=s.getCount() elif str(s.getClass())=='com.ibm.ws.pmi.stat.DoubleStatisticImpl': value=s.getDouble() elif str(s.getClass())=='com.ibm.ws.pmi.stat.TimeStatisticImpl': # max, min, minTime,maxTime, totalTime, sumOfSquares, delta, mean value=s.getCount() elif str(s.getClass())=='com.ibm.ws.pmi.stat.RangeStatisticImpl': # lowWaterMark, highWaterMark, integral, delta, mean, current value=s.getCurrent() elif str(s.getClass())=='com.ibm.ws.pmi.stat.AverageStatisticImpl': # max, mean,min,sumOfSquares,total value=s.getCount() else: value=s.getClass() # .class works too return value print "Pulling Websphere statistics...Press Ctrl-C to interrupt" while 1: try: statshash={} for t in namelist: # pre-init stats if t=="Date": statshash[t]=time.strftime("%m/%d/%Y", time.localtime()) elif t=="Time": statshash[t]=time.strftime("%H:%M:%S", time.localtime()) else: statshash[t]="" print "%s %s Collecting statistics ..." % (statshash["Date"],statshash["Time"]) for obj in WASobjects.keys(): # the sorting is not really required because the ordering in CSV is controlled by the ordering in namelist process=WASobjects[obj].getKeyProperty("process") if process is None: print "No process definition for %s. Skipping..." % obj continue elif process not in perfHash.keys(): print "Metrics process %s for %s has no matching perfomance bean to pull from. Skipping..." % (process,obj) continue # pull actual statistics from the associated performance bean stats=AdminControl.invoke_jmx(perfHash[process], 'getStatsObject', [WASobjects[obj], java.lang.Boolean ('true')], ['javax.management.ObjectName', 'java.lang.Boolean']) # second argument pulls recursive substats. returns com.ibm.websphere.pmi.stat.StatsImpl or WSStats wor stat.Stats #statshash=dict(zip(typehash.keys()),[0]*len(typehash.keys())) if stats is None: print "No statistics received for %s. Skipping..." % obj continue if scriptconfig[obj]['substat']: # get the substats if stats.getStats(scriptconfig[obj]['substat']) is not None: allsubstats=getSubStatsHash(stats.getStats(scriptconfig[obj]['substat']),{},None) # recursive search for s in allsubstats.keys(): statshash[obj+" "+s]=get_value(allsubstats[s]) else: # no substats # print "Got %s ..." % obj # = %s..." % (obj,stats.statistics) for s in stats.getStatistics(): statshash[obj+" "+s.name]=get_value(s) #print statshash print>>f_out,",".join([str(statshash[v]) for v in namelist]) except: # att Printing the traceback may cause memory leaks in Python 2.1 due to circular references. see here http://docs.python.org/library/sys.html print "%s. Serious glitch working on %s: %s, %s, line %s" % (time.strftime("%m/%d/%Y %H:%M:%S", time.localtime()),obj,sys.exc_info()[0],sys.exc_info()[1],sys.exc_info()[2].tb_lineno) time.sleep(float(scriptconfig['wait']['value'])) # collection delay, convert string to double # take stats collection down if websphere project is down by checing the process state. OS specific # check if the parent process is up def run(cmd): ''' Use Java exec command to run a script due to Jython 2.1 limitations''' process = java.lang.Runtime.getRuntime().exec(cmd) stdoutstream = '' errorstream = '' running = 1 while running: while process.getInputStream().available(): # > 0: stdoutstream += chr(process.getInputStream().read()) while process.getErrorStream().available(): # > 0: errorstream += chr(process.getErrorStream().read()) try: process.exitValue() # OK, we're done simulating: running = 0 #print "done..." return (stdoutstream,errorstream) except java.lang.IllegalThreadStateException, e: # In case of this exception the process is still running. #print "running..." # pass time.sleep(0.1) # take stats collection down if websphere project is down by checing the process state. OS specific if os.name=='nt': # do the following on windows # check if the parent process is up # there is a small bug - sys.argv[0] is the FIRST argument (i.e the real arg, not the script name) under wsadmin, but this is ok here. # another small bug - due to the slow cycle time (time.sleep(60)) it may take up to a minute for the stats collection process to go down ret1=run("wmic process where (commandline like '%"+sys.argv[0]+"%' and name like 'java.exe') get parentprocessid") parentprocessid=re.search(r'\d{2,}',ret1[0]).group(0) ret2=run("wmic process where (processid='"+parentprocessid+"') get name") if re.match('No Instance.*',ret2[1]): print "The parent process is dead. Going down." sys.exit(10) elif os.name=='posix': # to check for Mac add platform.system()=='Darwin' pass # do nothing
# Copyright (c) 2016, # # Author(s): Henko Aantjes, # # Date: 28/07/2016 # # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # # notice, this list of conditions and the following disclaimer in the # # documentation and/or other materials provided with the distribution. # # * Neither the name of the <organization> nor the # # names of its contributors may be used to endorse or promote products # # derived from this software without specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY # # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # import time import logging import random import numpy as np import matplotlib.pyplot as plt from Tkinter import * from WModules import h2i, i2h import tkFont logger = logging.getLogger() # this file contains all tkinter widgets ###### ######## ####### ######## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ###### ## ## ## ######## ##### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ###### ## ####### ## ## ## ## class StorkWidget(object): """docstring for StorkWidget""" def __init__(self, stork, title = "",destroy_callback = None): super(StorkWidget, self).__init__() self.setStorkTarget([(len(x)-12)/4 for x in stork.lines]) self.destroy_callback = destroy_callback self.root = Tk() self.root.protocol("WM_DELETE_WINDOW", self.destroyedByUser) # this is instead of destroying the window! # self.root.focus() self.root.title(stork.ID+ ": " + title) text_w = min(max(self.plot_y_target), 220) text_h = sum(len([y for y in self.plot_y_target if y>i*150]) for i in range(10))+4 self.txt = Text(self.root,width= text_w,height= text_h) self.txt.pack() for x in range(len(self.plot_y_target)): self.txt.insert(INSERT,"0"*self.plot_y_target[x]+"\n") def setStorkTarget(self, line_heigths): self.plot_y_target = line_heigths self.plot_y_out = np.zeros(len(line_heigths)) self.plot_y_out_acked = np.zeros(len(line_heigths)) def ack(self,linenumber,msg_size): begin = "%i.%i"%(linenumber+1,self.plot_y_out_acked[linenumber]) eind = "%i.%i"%(linenumber+1,self.plot_y_out[linenumber]) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"1"*msg_size) self.txt.tag_add("ack", begin, eind) self.txt.tag_config("ack", background="black", foreground="white") self.plot_y_out_acked[linenumber] +=msg_size def setTry(self,linenumber,msg_size): begin = "%i.%i"%(linenumber+1,self.plot_y_out_acked[linenumber]) eind = "%i.%i"%(linenumber+1,self.plot_y_out_acked[linenumber]+msg_size) end_of_line = "%i.%i"%(linenumber+1,self.plot_y_target[linenumber]) if(self.txt): self.txt.delete(begin,end_of_line) self.txt.insert(begin,"0"*(self.plot_y_target[linenumber]- self.plot_y_out_acked[linenumber]-msg_size)) self.txt.insert(begin,"X"*msg_size) self.txt.tag_add("try", begin, eind) self.txt.tag_config("try", background="yellow", foreground="grey") self.plot_y_out[linenumber] = self.plot_y_out_acked[linenumber] self.plot_y_out[linenumber] +=msg_size def destroy(self): try: self.txt = None self.root.destroy() except Exception as e: pass def destroyedByUser(self): self.txt = None self.destroy() if(self.destroy_callback): self.destroy_callback() ## ## ######## ## ## ###### ## ## ######## ###### ## ## ### ### ## ### ### ## ## ## ## ## ## ## ## ## #### #### ## #### #### ## ## ## ## ## ## ## ## ### ## ###### ## ### ## ## ######### ###### ## ##### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ######## ## ## ###### ## ## ######## ###### ## ## class MemCheckWidget(object): """docstring for MemCheckWidget""" def __init__(self, wispRam, title = "", destroy_callback = None): super(MemCheckWidget, self).__init__() memchecks = wispRam.memChecks self.setMemCheckTarget([memchecks[x]["length"] for x in sorted(memchecks)]) self.addresses = [h2i(x) for x in sorted(memchecks)] self.root = Tk() self.root.protocol("WM_DELETE_WINDOW", self.destroyedByUser) self.destroy_callback = destroy_callback # self.root.focus() self.root.title(wispRam.ID+ ": " + title) self.root.geometry('+%d-%d' % ( 20, 20)) text_w = min(max(self.plot_y_target), 250)+5 text_h = sum(len([y for y in self.plot_y_target if y>i*220]) for i in range(10))+2 self.txt = Text(self.root,width= text_w,height= text_h) self.txt.pack(fill= BOTH, expand = True) for x in range(len(self.plot_y_target)): self.txt.insert(INSERT,i2h(self.addresses[x])+" " +"?"*self.plot_y_target[x]+"\n") def setMemCheckTarget(self, line_widths): self.plot_y_target = line_widths def getLineNumber(self, address): for a in range(len(self.addresses))[::-1]: if(address >= self.addresses[a]): return a else: raise NameError('Address' + i2h(address) + ' not found in {}'.format(' '.join([i2h(x) for x in self.addresses]))) def getOffsetInWords(self, address): return (address - self.addresses[self.getLineNumber(address)])/2 + 5 def ack(self,address,size_in_words): linenumber = self.getLineNumber(address) begin = "%i.%i"%(linenumber+1,self.getOffsetInWords(address)) eind = "%i.%i"%(linenumber+1,self.getOffsetInWords(address) + size_in_words) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"$"*size_in_words) tag = "ack{}".format(random.choice("abcdefghijklmnopqrstuvwxyz")) self.txt.tag_add(tag, begin, eind) self.txt.tag_config(tag, background="green", foreground="black") def nack(self,address,size_in_words): linenumber = self.getLineNumber(address) begin = "%i.%i"%(linenumber+1,self.getOffsetInWords(address)) eind = "%i.%i"%(linenumber+1,self.getOffsetInWords(address) + size_in_words) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"0"*size_in_words) tag = "nack{}".format(random.choice("abcdefghijklmnopqrstuvwxyz")) self.txt.tag_add(tag, begin, eind) self.txt.tag_config(tag, background="red", foreground="white") def chop(self,address,size_in_words): linenumber = self.getLineNumber(address) begin = "%i.%i"%(linenumber+1,self.getOffsetInWords(address)) eind = "%i.%i"%(linenumber+1,self.getOffsetInWords(address) + size_in_words) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"-"*size_in_words) tag = "chop{}".format(random.choice("abcdefghijklmnopqrstuvwxyz")) self.txt.tag_add(tag, begin, eind) self.txt.tag_config(tag, background="brown", foreground="white") def dontcare(self,address,size_in_words): linenumber = self.getLineNumber(address) begin = "%i.%i"%(linenumber+1,self.getOffsetInWords(address)) eind = "%i.%i"%(linenumber+1,self.getOffsetInWords(address) + size_in_words) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"F"*size_in_words) tag = "dontcare{}".format(random.choice("abcdefghijklmnopqrstuvwxyz")) self.txt.tag_add(tag, begin, eind) self.txt.tag_config(tag, background="black", foreground="white") def send(self,address,size_in_words): linenumber = self.getLineNumber(address) begin = "%i.%i"%(linenumber+1,self.getOffsetInWords(address)) eind = "%i.%i"%(linenumber+1,self.getOffsetInWords(address) + size_in_words) if(self.txt): self.txt.delete(begin,eind) self.txt.insert(begin,"?"*size_in_words) tag = "sended{}".format(random.choice("abcdefghijklmnopqrstuvwxyz")) self.txt.tag_add(tag, begin, eind) self.txt.tag_config(tag, background="yellow", foreground="black") def destroy(self): try: self.root.destroy() except Exception as e: pass def destroyedByUser(self): self.txt = None if(self.destroy_callback): self.destroy_callback() self.destroy() #### ## ## ## ## ######## ## ## ######## ####### ######## ## ## ## ### ## ## ## ## ### ## ## ## ## ## ## ## ## ## #### ## ## ## ## #### ## ## ## ## ## ## #### ## ## ## ## ## ## ###### ## ## ## ## ## ## ######## ## ## ## #### ## ## ## ## #### ## ## ## ## ## ## ## ## ### ## ## ## ## ### ## ## ## ## ## ## #### ## ## ### ######## ## ## ## ####### ## ## ## class InventoryWidget(object): """docstring for InventoryWidget""" def __init__(self, root, text_w = 250, text_h = 20): super(InventoryWidget, self).__init__() self.taglist = dict() self.txt = Text(root,width= text_w,height= text_h) self.txt.pack(side=LEFT, fill=BOTH, expand=True) self.S = Scrollbar(root) self.S.pack(side=RIGHT, fill=Y) self.S.config(command=self.txt.yview) self.txt.config(yscrollcommand=self.S.set) self.updatetxt("no tags seen yet") def updatetxt(self, text): if(self.txt): self.txt.delete("1.0",END) self.txt.insert(INSERT,text) self.txt.update_idletasks() def showTagsInTextWidget(self, tags, EPCLength = 8): updatespeed = 0.2 epcs_this_round = set() if len(tags): for tag in tags: epc = tag['EPC-96'][0:min(8,EPCLength)] epc += ('----' + tag['EPC-96'][5*4:6*4]) if EPCLength ==6*4 else '' if epc not in self.taglist: self.taglist[epc] = tag['TagSeenCount'][0] self.taglist[epc] += tag['TagSeenCount'][0]*updatespeed - self.taglist[epc]*updatespeed epcs_this_round |= set({epc}) for tagepc in epcs_this_round ^ set( self.taglist.keys() ): self.taglist[tagepc] *=1-updatespeed text = " Tag epc "+ ' '*max(EPCLength-8,0)+"| visibility \n" for tag in self.taglist: text += tag+ (" | %5.2f "%self.taglist[tag]) + 'x'*int(2*self.taglist[tag])+"\n" self.updatetxt(text) def getBestTag(self): for tag in self.taglist: if (self.taglist[tag] == max(self.taglist.values())): return tag else: return None def getGoodTags(self, threshold = 1.0): return set([tag[:4] for tag in self.taglist if self.taglist[tag]>threshold]) def destroy(self): if(self.txt): self.txt.destroy() self.txt= None ## ## ######## ######## ######## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ######## ###### ######## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ### ### ## ## ######## ## class WrepWidget(object): """docstring for WrepWidget""" PAST = -1 # to say this state (button) has been active before FUTURE = 0 # to say this state (button) has not been active before CURRENT = 1 # to say this state (button) is active now def __init__(self,wispstates_LOT, destroy_callback = None): super(WrepWidget, self).__init__() self.wispstates_LOT = wispstates_LOT self.destroy_callback = destroy_callback self.wwindow = Tk() self.wisprows = dict() self.wwindow.protocol("WM_DELETE_WINDOW", self.destroyedByUser) # do something if user closes the window self.wwindow.geometry('-%d+%d' % ( 20, 50)) def addWisp(self,wisp): wisprow = Frame(self.wwindow) self.labelt = Label(wisprow, text=' WISP: ' + wisp.ID+ " ") self.labelt.pack(side=LEFT) wisprow.wispstatebuttons = [] for state in wisp.getStates(): txt = self.wispstates_LOT[state] wisprow.wispstatebuttons.append({'button' : Button(wisprow, text=txt), 'state': state, 'active': self.FUTURE,}) wisprow.wispstatebuttons[-1]['button'].pack(side=LEFT) wisprow.pack(fill=X) self.wisprows[wisp.ID] = wisprow def setState(self, wispID, newState, time): if(self.wwindow): # reset old coloring for WSB in self.wisprows[wispID].wispstatebuttons: if WSB['active'] is self.CURRENT : WSB['button'].configure(bg = 'forest green') WSB['active'] = self.PAST # catch the current state # difficulty: states are not unique, so find out which of them is the next. # solution: pick the first 'clean' one (button without past activity) or the last one for WSB in self.wisprows[wispID].wispstatebuttons: if WSB['state'] is newState: if WSB['active'] is self.PAST: selected_button = WSB else: WSB['button'].configure(bg = 'red2') b_text = WSB['button'].config('text')[-1] WSB['button'].config(text=b_text+ "\n%2.3f"%(time)) WSB['active'] = self.CURRENT break # don't check any next buttons anymore else: # if there was no break in the for loop, execute this selected_button['button'].configure(bg = 'red2') b_text = selected_button['button'].config('text')[-1] selected_button['button'].config(text=b_text+ "\n%2.3f"%(time)) selected_button['active'] = self.CURRENT self.wwindow.update_idletasks() # self.wwindow.focus() # fetch the widget tekst for a specific wispID def toString(self, wispID): # get the buttons, join with '\n', but first flatten out the button txt ( = replace '\n' with ' ') # last step: wrap into brackets and attach 'WrepWidget '-txt return "WrepWidget [" +', '.join( [(' '.join(WSB['button'].config('text')[-1].split('\n'))) for WSB in self.wisprows[wispID].wispstatebuttons]) + "]" def destroy(self): try: self.wwindow.destroy() except Exception as e: pass def destroyedByUser(self): if(self.destroy_callback): self.destroy_callback() self.destroy() self.wwindow = None ###### ####### ## ## ######## ######## ####### ## ## ## ## ## ### ## ## ## ## ## ## ## ## ## ## #### ## ## ## ## ## ## ## ## ## ## ## ## ## ## ######## ## ## ## ## ## ## ## #### ## ## ## ## ## ## ## ## ## ## ## ### ## ## ## ## ## ## ###### ####### ## ## ## ## ## ####### ######## class IOControlWidget(object): """docstring for IOControlWidget""" def __init__(self, buttonlist, optionlist, destroy_callback, terminal_callback, pause_callback, buttoncolors = {}): super(IOControlWidget, self).__init__() self.destroy_callback = destroy_callback self.terminal_callback = terminal_callback self.pause_callback = pause_callback self.optionlist = optionlist self.io = Tk() self.io.protocol("WM_DELETE_WINDOW", self.destroy) # do something if user closes the window # self.io.focus() self.io.title("hahahaha :D") self.IOF = tkFont.nametofont("TkFixedFont") # setup a list of buttons self.buttoncollumn = Frame(self.io) self.buttons = {key:Button(self.buttoncollumn, text=key[2:], command=buttonlist[key],font=self.IOF) for key in sorted(buttonlist)} [self.buttons[b].pack(fill = X) for b in sorted(self.buttons.keys())] [self.buttons[key].config(bg = buttoncolors[key][0],fg = buttoncolors[key][1]) for key in sorted(buttoncolors)] self.buttoncollumn.pack(side = LEFT,fill = X,padx = 10,pady = 10) # setup a list of options self.optioncollumn = Frame(self.io) self.selected_option = {key[2:]: StringVar() for key in sorted(optionlist)} # not using the first 2 characters of the key, for refering to the selected option [self.selected_option[key[2:]].set(optionlist[key][0]) for key in sorted(optionlist)] # not using the first 2 characters of the key, for refering to the selected option self.optionrows = {key:Frame(self.optioncollumn) for key in sorted(optionlist)} self.optionlabels = {key:Label(self.optionrows[key], text= key[2:],font=self.IOF) for key in sorted(optionlist)} self.options = {key:OptionMenu(self.optionrows[key],self.selected_option[key[2:]], *optionlist[key]) for key in sorted(optionlist)} # not using the first 2 characters of the key, for refering to the selected option [self.options[o].pack(side = RIGHT,fill = BOTH,padx = 20) for o in sorted(self.options)] [self.options[o].config( bg = "grey55") for o in sorted(self.options)] [o.pack(side = LEFT, fill = BOTH) for o in self.optionlabels.values()] [self.optionrows[key].pack(fill = X, padx = 5) for key in sorted(self.optionrows)] self.optioncollumn.pack(side = LEFT) self.terminalrow = Frame(self.io) self.terminal_label = Label(self.terminalrow, text= "WISPTERM",font=self.IOF, bg = "dim gray") self.terminal_label.pack(side = LEFT,padx = 5, pady = 5) self.terminal = Entry(self.terminalrow,width= 50) self.terminal.pack(fill = X,expand = True, padx = 5, pady = 5) self.terminal.bind('<Return>', self.terminalInput) self.terminal.bind('<KP_Enter>', self.terminalInput) self.terminalrow.pack(fill= BOTH) self.terminalrow.config(bg = "dim gray", padx = 5) self.txt = Text(self.io,width= 100, height = 10) self.S = Scrollbar(self.io) self.S.pack(side=RIGHT, fill=Y) self.S.config(command=self.txt.yview) self.txt.config(yscrollcommand=self.S.set) self.txt.pack(fill = BOTH,expand = True) self.updatetxt("Initializing") self.wispsrow = Frame(self.io) self.wispsselection = Frame(self.wispsrow) self.wisp_selection_label = Label(self.wispsselection, text= "Select Targets",bg = "dark green", fg = "white") self.wisp_selection_label.pack(fill = BOTH, expand = True) self.wisplist = Listbox(self.wispsselection,selectmode=EXTENDED,height= 5) self.wisplist.config(width = 16) self.wisplist.pack(fill = Y, expand = True) self.setWispSelection(["0302"]) self.pause_button = Button(self.wispsselection, text="PAUSE", command=self.pauseButtonPressed,font=self.IOF, fg = 'white',bg = "dark green") self.pause_button.pack(fill = X, padx = 3, pady = 3) self.wispsselection.pack(side = LEFT, fill = Y,pady = 5, padx = 5) self.tagWidget = InventoryWidget(self.wispsrow, 100, 12) self.wispsrow.pack(fill = BOTH) self.wispsrow.config(bg = "dark green") def pauseButtonPressed(self): if(self.pause_button.config('text')[-1] == "PAUSE"): self.pause_callback(pause = True) self.pause_button.config(text = "RESUME") else: self.pause_callback(resume = True) self.pause_button.config(text = "PAUSE") # add a new option to the option list def addAndSetOption(self, om_key, new_option): if om_key in self.options: if(new_option not in self.optionlist[om_key]): self.options[om_key]["menu"].add_command(label = new_option, command = lambda value=new_option:self.selected_option[om_key[2:]].set(value)) self.optionlist[om_key].append(new_option) self.selected_option[om_key[2:]].set(new_option) else: self.showWarning("Unknown list to add the option to!") def updatetxt(self, text, mode = 'replace'): if(mode == 'replace'): self.txt.delete("1.0",END) self.txt.insert(INSERT,text) logger.info('IOTXT'+ mode+': ' + text) def showWarning(self, text, mode = 'replace'): if(mode == 'replace'): self.txt.delete("1.0",END) self.txt.insert(INSERT,text) self.txt.tag_add('warning', "1.0",INSERT) self.txt.tag_config('warning', background="red", foreground="white") logger.info('\033[1;31mIOTXT-WARNING: ' + text + '\033[1;0m') def deletetxt(self, nr_of_chars): for x in range(nr_of_chars): self.txt.delete(INSERT) def setWispSelection(self, selection): for item in selection: if(item not in self.wisplist.get(0,END)): self.wisplist.insert(0, item) for index in range(len(self.wisplist.get(0,END))): if(self.wisplist.get(index) in selection): self.wisplist.selection_set(index) else: self.wisplist.selection_clear(index) def getSelectedWispIDs(self): return [self.wisplist.get(int(x)) for x in self.wisplist.curselection()] def getSelected(self, key): # give the key without the [number/hex/char] and space (= without the first 2 characters) return self.selected_option[key].get() def terminalInput(self, key): if self.terminal_callback: userinput = self.terminal.get() if(userinput): if(userinput[-1:].lower() in {'x','q','c'}): # clear terminal if user types something rubbish self.terminal.delete(0, END) elif(userinput[-1:].lower() in {'\\',';'}): # clear the terminal if user ends a command properly self.terminal.delete(0, END) # try to execute the command self.terminal_callback(command = userinput[:-1]) else: # try to execute the command, don't clear the terminal self.terminal_callback(command = userinput) def update(self): if(self.io): self.io.update() return True def destroy(self): self.tagWidget.destroy() self.io.destroy() self.io = None self.destroy_callback()
#数据导出 也可以使用terminal 直接运行 from scrapy import cmdline #数据导出到json # cmdline.execute('scrapy crawl douban_spider -o output.json'.split()) #数据导出到csv格式 cmdline.execute('scrapy crawl douban_spider -o output.csv'.split())
# -*- coding: utf-8 -*- # # test_environments.py # # purpose: Create a venv/conda env based on the given requirement file. # author: Filipe P. A. Fernandes # e-mail: ocefpaf@gmail # web: http://ocefpaf.github.io/ # created: 14-Aug-2014 # modified: Wed 20 Aug 2014 09:56:36 PM BRT # # obs: # import os import unittest class RunNotebooks(unittest.TestCase): def setUp(self): files = [] path = os.path.abspath(os.path.join(os.getcwd(), os.pardir)) for root, dirs, fnames in os.walk(path): for fname in fnames: if fname.endswith(".ipynb"): files.append(os.path.join(root, fname)) self.files = files def tearDown(self): unittest.TestCase.tearDown(self) def test_envs(self): """A test that would create the venv/condaenv based on a requirement file.""" pass def main(): unittest.main() if __name__ == '__main__': main()
# The following comments couldn't be translated into the new config version: #tauTo3MuOutputModuleAODSIM & import FWCore.ParameterSet.Config as cms # # HeavyFlavorAnalysis output modules # from HeavyFlavorAnalysis.Skimming.onia_OutputModules_cff import *
from typing import Any, List, Optional from fastapi.exceptions import RequestValidationError from fastapi.responses import UJSONResponse from pydantic import EnumError, EnumMemberError, StrRegexError from starlette.exceptions import HTTPException as StarletteHTTPException def parse_error(err: Any, field_names: List, raw: bool = True) -> Optional[dict]: """ Parse single error object (such as pydantic-based or fastapi-based) to dict :param err: Error object :param field_names: List of names of the field that are already processed :param raw: Whether this is a raw error or wrapped pydantic error :return: dict with name of the field (or "__all__") and actual message """ if isinstance(err, list): permitted_values = "" for e in err: if isinstance(e.exc, EnumMemberError): permitted_values_temp = ", ".join( [f"'{val}'" for val in e.exc.enum_values] ) permitted_values += permitted_values_temp + " " message = ( f"Value is not a valid enumeration member; " f"permitted: {permitted_values}." ) elif isinstance(err.exc, EnumError): permitted_values = ", ".join([f"'{val}'" for val in err.exc.enum_values]) message = ( f"Value is not a valid enumeration member; " f"permitted: {permitted_values}." ) elif isinstance(err.exc, StrRegexError): message = "Provided value doesn't match valid format" else: message = str(err.exc) or "" error_code = 400 if isinstance(err, list): if hasattr(err[0].exc, "code") and err[0].exc.code.startswith("error_code"): error_code = int(err[0].exc.code.split(".")[-1]) elif hasattr(err.exc, "code") and err.exc.code.startswith("error_code"): error_code = int(err.exc.code.split(".")[-1]) if not raw: if len(err.loc_tuple()) == 2: if str(err.loc_tuple()[0]) in ["body", "query"]: name = err.loc_tuple()[1] else: name = err.loc_tuple()[0] elif len(err.loc_tuple()) == 1: if str(err.loc_tuple()[0]) == "body": name = "__all__" else: name = str(err.loc_tuple()[0]) else: name = "__all__" else: if isinstance(err, list): if len(err[0].loc_tuple()) == 2: name = str(err[0].loc_tuple()[0]) elif len(err[0].loc_tuple()) == 1: name = str(err[0].loc_tuple()[0]) else: name = "__all__" else: if len(err.loc_tuple()) == 2: name = str(err.loc_tuple()[0]) elif len(err.loc_tuple()) == 1: name = str(err.loc_tuple()[0]) else: name = "__all__" if name in field_names: return None if message and not any( [message.endswith("."), message.endswith("?"), message.endswith("!")] ): message = message + "." return {"name": name, "message": message, "error_code": error_code} def raw_errors_to_fields(raw_errors: List) -> List[dict]: """ Translates list of raw errors (instances) into list of dicts with name/msg :param raw_errors: List with instances of raw error :return: List of dicts (1 dict for every raw error) """ fields = [] for top_err in raw_errors: if hasattr(top_err.exc, "raw_errors"): for err in top_err.exc.raw_errors: # This is a special case when errors happen both in request # handling & internal validation if isinstance(err, list): err = err[0] field_err = parse_error( err, field_names=list(map(lambda x: x["name"], fields)), raw=True, ) if field_err is not None: fields.append(field_err) else: field_err = parse_error( top_err, field_names=list(map(lambda x: x["name"], fields)), raw=False, ) if field_err is not None: fields.append(field_err) return fields async def http_exception_handler(_, exc: StarletteHTTPException) -> UJSONResponse: """ Handles StarletteHTTPException, translating it into flat dict error data: * code - unique code of the error in the system * detail - general description of the error * fields - list of dicts with description of the error in each field :param _: :param exc: StarletteHTTPException instance :return: UJSONResponse with newly formatted error data """ fields = getattr(exc, "fields", []) message = getattr(exc, "detail", "Validation error") headers = getattr(exc, "headers", None) if message and not any( [message.endswith("."), message.endswith("?"), message.endswith("!")] ): message = message + "." data = { "error_codes": [getattr(exc, "error_code", exc.status_code)], "message": message, "fields": fields, } return UJSONResponse(data, status_code=exc.status_code, headers=headers) async def validation_exception_handler(_, exc: RequestValidationError) -> UJSONResponse: """ Handles ValidationError, translating it into flat dict error data: * code - unique code of the error in the system * detail - general description of the error * fields - list of dicts with description of the error in each field :param _: :param exc: StarletteHTTPException instance :return: UJSONResponse with newly formatted error data """ status_code = getattr(exc, "status_code", 400) headers = getattr(exc, "headers", None) fields = raw_errors_to_fields(exc.raw_errors) if fields: error_codes = list(set(list(map(lambda x: x["error_code"], fields)))) else: error_codes = [getattr(exc, "error_code", status_code)] message = getattr(exc, "message", "Validation error") if message and not any( [message.endswith("."), message.endswith("?"), message.endswith("!")] ): message = message + "." # pragma: no cover data = {"error_codes": error_codes, "message": message, "fields": fields} return UJSONResponse(data, status_code=status_code, headers=headers) async def not_found_error_handler(_, exc: RequestValidationError) -> UJSONResponse: code = getattr(exc, "error_code", 404) detail = getattr(exc, "detail", "Not found") fields = getattr(exc, "fields", []) headers = getattr(exc, "headers", None) status_code = getattr(exc, "status_code", 404) data = {"error_codes": [code], "message": detail, "fields": fields} return UJSONResponse(data, status_code=status_code, headers=headers) async def internal_server_error_handler( _, exc: RequestValidationError ) -> UJSONResponse: code = getattr(exc, "error_code", 500) detail = getattr(exc, "detail", "Internal Server Error") fields = getattr(exc, "fields", []) headers = getattr(exc, "headers", None) status_code = getattr(exc, "status_code", 500) data = {"error_codes": [code], "message": detail, "fields": fields} return UJSONResponse(data, status_code=status_code, headers=headers)
# -*- coding: utf-8 -*- from typing import Any, Dict, List, Type from pyshacl.constraints.constraint_component import ConstraintComponent from pyshacl.constraints.core.cardinality_constraints import MaxCountConstraintComponent, MinCountConstraintComponent from pyshacl.constraints.core.logical_constraints import ( AndConstraintComponent, NotConstraintComponent, OrConstraintComponent, XoneConstraintComponent, ) from pyshacl.constraints.core.other_constraints import ( ClosedConstraintComponent, HasValueConstraintComponent, InConstraintComponent, ) from pyshacl.constraints.core.property_pair_constraints import ( DisjointConstraintComponent, EqualsConstraintComponent, LessThanConstraintComponent, LessThanOrEqualsConstraintComponent, ) from pyshacl.constraints.core.shape_based_constraints import ( NodeConstraintComponent, PropertyConstraintComponent, QualifiedValueShapeConstraintComponent, ) from pyshacl.constraints.core.string_based_constraints import ( LanguageInConstraintComponent, MaxLengthConstraintComponent, MinLengthConstraintComponent, PatternConstraintComponent, UniqueLangConstraintComponent, ) from pyshacl.constraints.core.value_constraints import ( ClassConstraintComponent, DatatypeConstraintComponent, NodeKindConstraintComponent, ) from pyshacl.constraints.core.value_range_constraints import ( MaxExclusiveConstraintComponent, MaxInclusiveConstraintComponent, MinExclusiveConstraintComponent, MinInclusiveConstraintComponent, ) from pyshacl.constraints.sparql.sparql_based_constraint_components import SPARQLConstraintComponent # noqa: F401 from pyshacl.constraints.sparql.sparql_based_constraints import SPARQLBasedConstraint ALL_CONSTRAINT_COMPONENTS: List[Type[ConstraintComponent]] = [ ClassConstraintComponent, DatatypeConstraintComponent, NodeKindConstraintComponent, MinCountConstraintComponent, MaxCountConstraintComponent, MinExclusiveConstraintComponent, MinInclusiveConstraintComponent, MaxExclusiveConstraintComponent, MaxInclusiveConstraintComponent, NotConstraintComponent, AndConstraintComponent, OrConstraintComponent, XoneConstraintComponent, MinLengthConstraintComponent, MaxLengthConstraintComponent, PatternConstraintComponent, LanguageInConstraintComponent, UniqueLangConstraintComponent, EqualsConstraintComponent, DisjointConstraintComponent, LessThanConstraintComponent, LessThanOrEqualsConstraintComponent, NodeConstraintComponent, PropertyConstraintComponent, QualifiedValueShapeConstraintComponent, ClosedConstraintComponent, HasValueConstraintComponent, InConstraintComponent, SPARQLBasedConstraint, # SPARQLConstraintComponent # ^ ^ This one is deliberately not included in this # list because it gets matched to shapes manually later ] CONSTRAINT_PARAMETERS_MAP: Dict[Any, Type[ConstraintComponent]] = { p: c for c in ALL_CONSTRAINT_COMPONENTS for p in c.constraint_parameters() } ALL_CONSTRAINT_PARAMETERS: List[Any] = list(CONSTRAINT_PARAMETERS_MAP.keys())
import cv2 import Model import torch import torch.nn as nn import numpy as np from torchvision import datasets, transforms import matplotlib.pyplot as plt import glob import random import math dir_list = glob.glob('dataset/train/*.png') tran = transforms.ToTensor() net = Model.DNCNN(1, 64, 3) net = net.float() criterion = nn.MSELoss(reduction='sum') optimizer = torch.optim.Adam(net.parameters(), lr=0.001) epochs = len(dir_list) loss_arr = np.zeros((epochs,1)) psnr_arr = np.zeros((epochs,1)) cnt = 0 for i in range(epochs): optimizer.zero_grad() im = cv2.imread(dir_list[i], 0) row, col = im.shape mean = 0 var = random.uniform(0,55) sigma = var ** 0.5 gauss = np.random.normal(mean, sigma, (row, col)) gauss = gauss.reshape(row, col) noisy = im + gauss.astype(np.uint8) noisy = torch.reshape(tran(noisy), ( 1, 1, col, row)) gauss = torch.reshape(tran(gauss), ( 1, 1, col, row)) im2 = torch.reshape(tran(im), ( 1, 1, col, row)) out = net(noisy.float()) loss = torch.mean(torch.pow(out - im2.float(),2)/2) loss.backward() loss_arr[cnt] = loss.item() psnr_arr[cnt] = 20 * math.log10(255/math.sqrt(loss_arr[cnt]) ) optimizer.step() print(cnt) print(loss_arr[cnt]) print(psnr_arr[cnt]) cnt += 1 PATH = 'net2.pth' torch.save(net.state_dict(), PATH) plt.figure(2) plt.plot(loss_arr, 'r') plt.show() plt.figure(3) plt.plot(psnr_arr, 'b') plt.show()
import logging import os import subprocess repo_url = os.environ.get("TIMESERIES_SERVER_REPO") # sqlite_path = os.environ.get("TIMESERIES_SERVER_DATA_DIR") # NOT FULL FILENAME # os.makedirs(sqlite_path, exist_ok=True) local_repo_path = os.environ.get("TIMESERIES_SERVER_REPO_PATH") os.makedirs(os.path.dirname(local_repo_path), exist_ok=True) local_repo_python_entrypoint_long_fn = local_repo_path + "/timeseries_server/main.py" SERVER_NAMES = ["run_collection_server", "run_ui_server", "run_detectors"] # UNIT_FILE_PAYLOADS = [] # for server in SERVER_NAMES: # UNIT_FILE_PAYLOADS.append( # """\ # [Unit] # Description=TimeseriesServer API Server %s # StartLimitInterval=400 # StartLimitBurst=5 # [Service] # Type=simple # EnvironmentFile=/etc/environment # WorkingDirectory=%s # ExecStart=/usr/local/bin/poetry run python '%s' '%s' # Restart=always # RestartSec=30 # # WatchdogSec=60 # KillMode=process # User=pi # Group=pi # [Install] # WantedBy=multi-user.target # """ # % (server, local_repo_path, local_repo_python_entrypoint_long_fn, server) # ) FILENAMES_FOR_UNITFILES = [f"{server}.service" for server in SERVER_NAMES] # PATH_FOR_UNITFILE = "/etc/systemd/system" # unitfile_fullpaths = [] # for fn in FILENAMES_FOR_UNITFILES: # unitfile_fullpaths.append("%s/%s" % (PATH_FOR_UNITFILE, fn)) if not os.path.exists(local_repo_path): git_output = subprocess.check_output(["git", "clone", repo_url, local_repo_path]) logging.debug("git clone output: %s", git_output.decode()) else: git_output = subprocess.check_output( ["git", "-C", local_repo_path, "reset", "--hard"] ) logging.debug("git reset output: %s", git_output.decode()) git_output = subprocess.check_output(["git", "-C", local_repo_path, "clean", "-fd"]) logging.debug("git clean output: %s", git_output.decode()) git_output = subprocess.check_output(["git", "-C", local_repo_path, "pull"]) logging.debug("git pull output: %s", git_output.decode()) # update local if repo changed repo_changed = "Already up to date." not in git_output.decode() if repo_changed: os.chdir(local_repo_path) # install poetry COMMANDS_TO_RUN = [ ["apt", "install", "-y", "python3-pip"], ["pip3", "install", "poetry"], ] for command in COMMANDS_TO_RUN: logging.info("running command to install poetry %s", repr(command)) subprocess.run(command) # refresh poetry requirements COMMANDS_TO_RUN = [ ["poetry", "install"], ["chown", "-R", "pi:pi", local_repo_path], # ["chown", "-R", "pi:pi", sqlite_path], ] for command in COMMANDS_TO_RUN: logging.info("running command to refresh poetry %s", repr(command)) subprocess.check_output(command) # # reapply unitfile # for unitfile_fullpath, payload in zip(unitfile_fullpaths, UNIT_FILE_PAYLOADS): # try: # logging.info("creating unitfile at path %s", unitfile_fullpath) # with open(unitfile_fullpath, "w") as f: # f.write(payload) # except Exception as e: # logging.exception( # "error creating unitfile at path %s with error %s", # unitfile_fullpath, # repr(e), # ) # # refresh systemd daemon # COMMANDS_TO_RUN = [ # ["systemctl", "daemon-reload"], # ] for fn in FILENAMES_FOR_UNITFILES: COMMANDS_TO_RUN.extend( [["systemctl", "restart", fn]] ) for command in COMMANDS_TO_RUN: logging.info("running command to refresh systemd daemon %s", repr(command)) subprocess.run(command) # # restart service # COMMANDS_TO_RUN = [["systemctl", "restart", fn] for fn in FILENAMES_FOR_UNITFILES] # for command in COMMANDS_TO_RUN: # logging.info("running command to restart services %s", repr(command)) # subprocess.check_output(command)
import cudamat_ext as cm import GPULock GPULock.GetGPULock() cm.cublas_init() cm.CUDAMatrix.init_random() import numpy as np import datetime, time def test_softmax(): m = 2000 n = 128 data = np.random.randn(m, n) prob = data - data.max(axis=0).reshape(1,-1) prob = np.exp(prob) / np.exp(prob).sum(axis=0).reshape(1,-1) cm_data = cm.CUDAMatrix(cm.reformat(data)) cm_prob = cm.CUDAMatrix(cm.reformat(np.zeros(data.shape))) cm_data.compute_softmax(cm_prob) error = np.sum((cm_prob.asarray() - prob)**2) print "Error = ", error assert error < 10**-2, "Error in CUDAMatrix.compute_softmax exceeded threshold" def test_softmax_sample(): dim, num_pts = 160, 128 num_draws = 10000 probs = rand(dim, num_pts) for i in range(min(dim, num_pts)): probs[i,i] = 2.0 probs = probs / probs.sum(axis=0).reshape(1,-1) cm_prob = cm.CUDAMatrix(log(probs)) cm_data = cm.empty(probs.shape) cm_rands = cm.empty(probs.shape) cm_counts = cm.empty(probs.shape).assign(0) s = datetime.datetime.now() for draw in range(num_draws): cm_rands.fill_with_rand() cm_prob.SampleSoftMax(cm_rands, cm_data) cm_counts.add(cm_data) cm_data.assign(0) e = datetime.datetime.now() diff= e-s cm_counts.divide(num_draws) est_probs = cm_counts.asarray().copy() print "Total time for %d draws = %d microseconds\n"%(num_draws, diff.microseconds) print "Average case error = %.5f \n"%(np.mean(abs(est_probs-probs))) from matplotlib.pyplot import subplot, imshow, draw subplot(311), imshow(probs, aspect='auto', interpolation='nearest') subplot(312), imshow(est_probs, aspect='auto', interpolation='nearest') subplot(313), plot(est_probs[:,0]) subplot(313), plot(probs[:,0]) draw(), time.sleep(0.2) raw_input('enter to finish') return est_probs, probs if __name__ == "__main__": test_softmax() est_probs, probs = test_softmax_sample()
import logging import copy import torch from torch import nn class MyEmbeddings(nn.Embedding): def __init__(self, word_to_idx, embedding_dim): super(MyEmbeddings, self).__init__(len(word_to_idx), embedding_dim) self.embedding_dim = embedding_dim self.vocab_size = len(word_to_idx) self.word_to_idx = word_to_idx self.idx_to_word = {i: w for w, i in self.word_to_idx.items()} def set_item_embedding(self, idx, embedding): if len(embedding) == self.embedding_dim: self.weight.data[idx] = torch.FloatTensor(embedding) def load_words_embeddings(self, vec_model): logging.info("Loading word vectors in model") for word in vec_model: if word in self.word_to_idx: idx = self.word_to_idx[word] embedding = vec_model[word] self.set_item_embedding(idx, embedding) class AnalogyModel(nn.Module): def __init__(self, train_embeddings, test_embeddings, other_embeddings, reg_term_lambda=0.001, delta=0.1): super(AnalogyModel, self).__init__() self.train_embeddings = train_embeddings self.original_embeddings = copy.deepcopy(train_embeddings) self.test_embeddings = test_embeddings self.other_embeddings = other_embeddings self.loss = nn.CosineEmbeddingLoss() self.regularization = nn.MSELoss(reduction='sum') self.reg_term_lambda = reg_term_lambda self.delta = delta def set_mapper(self, mapper): self.mapper = mapper def loss_function(self, x, y): if self.training: e1 = x['e1'] e2 = x['e2'] e3 = x['e3'] e4 = x['e4'] offset_trick = x['offset_trick'] scores = x['scores'] distances = x['distances'] t_l = x['t_l'] t_r = x['t_r'] batch_size = e1.shape[0] e3_embeddings = self.train_embeddings(e3) entities = torch.cat([e1, e2, e3, e4]).unique() reg_term = self.regularization(self.original_embeddings(entities), self.train_embeddings(entities)) score = torch.bmm(offset_trick.view(batch_size, 1, -1), e3_embeddings.view(batch_size, -1, 1)).squeeze() neg_left_score = torch.bmm(offset_trick.view(batch_size, 1, -1), t_l.view(batch_size, -1, 1)).squeeze() neg_right_score = torch.bmm(e3_embeddings.view(batch_size, 1, -1), t_r.view(batch_size, -1, 1)).squeeze() left_loss = nn.functional.relu(self.delta + neg_left_score - score).sum() right_loss = nn.functional.relu(self.delta + neg_right_score - score).sum() loss = left_loss + right_loss + self.reg_term_lambda * reg_term return loss # return self.loss(offset_trick, self.trainable_embeddings(e3), y) + self.reg_term_lambda * reg_term else: e3 = x['e3'] offset_trick = x['offset_trick'] return self.loss(offset_trick, self.mapper.apply(self.test_embeddings(e3)), y) def is_success(self, e3, e1_e2_e4, top4): if e3 not in top4: return False else: for elem in top4: if elem != e3 and elem not in e1_e2_e4: return False if elem == e3: return True def accuracy(self, x, y): e1s = x['e1'] e2s = x['e2'] e3s = x['e3'] e4s = x['e4'] scores = x['scores'] sorted_indexes_by_scores = scores.argsort(descending=True)[:, :4] accuracies = list() for e1, e2, e3, e4, top4_indexes in zip(e1s, e2s, e3s, e4s, sorted_indexes_by_scores): success = self.is_success(e3, {e1, e2, e4}, top4_indexes) if success: accuracies.append(1) else: accuracies.append(0) return sum(accuracies) / len(accuracies) def forward(self, input_ids, distances): e1 = input_ids[:, 0] e2 = input_ids[:, 1] e3 = input_ids[:, 2] e4 = input_ids[:, 3] if self.training: e1_embeddings = self.train_embeddings(e1) e2_embeddings = self.train_embeddings(e2) e3_embeddings = self.train_embeddings(e3) e4_embeddings = self.train_embeddings(e4) offset_trick = e1_embeddings - e2_embeddings + e4_embeddings a_norm = offset_trick / offset_trick.norm(dim=1)[:, None] t_l = a_norm[a_norm.matmul(a_norm.transpose(0, 1)).argsort()[:, -2]] e3_norm = e3_embeddings / e3_embeddings.norm(dim=1)[:, None] t_r = e3_norm[e3_norm.matmul(e3_norm.transpose(0, 1)).argsort()[:, -2]] b_norm = self.train_embeddings.weight / self.train_embeddings.weight.norm(dim=1)[:, None] cosine_sims = torch.mm(a_norm, b_norm.transpose(0,1)) return { "e1": e1, "e2": e2, "e3": e3, "e4": e4, "offset_trick": offset_trick, "scores": cosine_sims, "distances": distances, "t_l": t_l, "t_r": t_r, } else: e1_embeddings = self.test_embeddings(e1) e2_embeddings = self.test_embeddings(e2) e3_embeddings = self.test_embeddings(e3) e4_embeddings = self.test_embeddings(e4) mapped_e1 = self.mapper.apply(e1_embeddings) mapped_e2 = self.mapper.apply(e2_embeddings) mapped_e3 = self.mapper.apply(e3_embeddings) mapped_e4 = self.mapper.apply(e4_embeddings) offset_trick = mapped_e1 - mapped_e2 + mapped_e4 a_norm = offset_trick / offset_trick.norm(dim=1)[:, None] mapped_embedding_table = self.mapper.apply(self.test_embeddings.weight) b_norm = mapped_embedding_table / mapped_embedding_table.norm(dim=1)[:, None] cosine_sims = torch.mm(a_norm, b_norm.transpose(0,1)) return { "e1": e1, "e2": e2, "e3": e3, "e4": e4, "offset_trick": offset_trick, "scores": cosine_sims, "distances": distances, } class IdentityMapper: def apply(self, elems): return elems class NeuralMapper: def __init__(self, mapping_model, device): self.model = mapping_model self.device = device def apply(self, elems): return self.model(elems)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ /*************************************************************************** OSGeo4Mac Python startup script for setting env vars in dev builds and installs of QGIS when built off dependencies from homebrew-osgeo4mac tap ------------------- begin : January 2014 copyright: (C) 2014 Larry Shaffer email : larrys at dakotacarto dot com ***************************************************************************/ /*************************************************************************** * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * ***************************************************************************/ """ import os import stat import sys import argparse import subprocess from collections import OrderedDict HOME = os.path.expanduser('~') OSG_VERSION = '3.4.0' HOMEBREW_PREFIX = '/usr/local' QGIS_LOG_DIR = HOME + '/Library/Logs/QGIS' QGIS_LOG_FILE = QGIS_LOG_DIR + '/qgis-dev.log' def env_vars(ap, hb, qb='', ql=''): options = OrderedDict() options['PATH'] = '{hb}/opt/gdal2/bin:{hb}/opt/gdal2-python/bin:{hb}/bin:{hb}/sbin:' + os.environ['PATH'] dyld_path = '{hb}/opt/gdal2/lib:{hb}/opt/sqlite/lib:{hb}/opt/libxml2/lib:{hb}/lib' run_from_build = False if qb: qbr = os.path.realpath(qb) if qbr in ap: run_from_build = True dyld_path = '{0}/output/lib:{0}/PlugIns/qgis:'.format(qbr) + \ dyld_path # if QGIS_MACAPP_BUNDLE == 0, or running from build directory, find the # right frameworks and libs first if (run_from_build or not os.path.exists(ap + '/Contents/Frameworks/QtCore.framework')): options['DYLD_FRAMEWORK_PATH'] = \ '{hb}/Frameworks:/System/Library/Frameworks' options['DYLD_VERSIONED_LIBRARY_PATH'] = dyld_path # isolate Python setup if Kyngchaos frameworks exist (they bogart sys.path) # this keeps /Library/Python/2.7/site-packages from being searched if (os.path.exists(hb + '/Frameworks/Python.framework') and os.path.exists('/Library/Frameworks/GDAL.framework')): options['PYQGIS_STARTUP'] = '{hb}/Homebrew/Library/Taps/osgeo/homebrew-osgeo4mac' \ '/enviro/python_startup.py' options['PYTHONHOME'] = '{hb}/Frameworks/Python.framework/Versions/2.7' options['PYTHONPATH'] = '{hb}/lib/qt-4/python2.7/site-packages:' \ '{hb}/opt/gdal2-python/lib/python2.7/site-packages:' \ '{hb}/lib/python2.7/site-packages' options['GDAL_DRIVER_PATH'] = '{hb}/lib/gdalplugins' options['GDAL_DATA'] = '{hb}/opt/gdal2/share/gdal' options['GRASS_PREFIX'] = '{hb}/opt/grass7/grass-base' options['OSG_LIBRARY_PATH'] = '{hb}/lib/osgPlugins-' + OSG_VERSION options['QGIS_LOG_FILE'] = ql if run_from_build: options['QT_PLUGIN_PATH'] = '{hb}/opt/qt-4/plugins:{hb}/lib/qt-4/plugins' for k, v in options.iteritems(): options[k] = v.format(hb=hb) return options def plist_bud(cmd, plist, quiet=False): out = open(os.devnull, 'w') if quiet else None subprocess.call(['/usr/libexec/PlistBuddy', '-c', cmd, plist], stdout=out, stderr=out) def arg_parser(): parser = argparse.ArgumentParser( description="""\ Script embeds Homebrew-prefix-relative environment variables in a development QGIS.app bundle in the LSEnvironment entity of the app's Info.plist. Running on app bundle from build or install directory, or whether Kyngchaos.com or Qt development package installers have been used, yeilds different results. QGIS_LOG_FILE is at (unless defined in env var or command option): {0} """.format(QGIS_LOG_FILE) ) parser.add_argument('qgis_app_path', help='path to app bundle (relative or absolute)') parser.add_argument( '-p', '--homebrew-prefix', dest='hb', metavar='homebrew_prefix', help='homebrew prefix path, or set HOMEBREW_PREFIX (/usr/local default)' ) parser.add_argument( '-b', '--build-dir', dest='qb', metavar='qgis_build_dir', help='QGIS build directory' ) parser.add_argument( '-l', '--qgis-log', dest='ql', metavar='qgis_log_file', help='QGIS debug output log file' ) return parser def main(): # get defined args args = arg_parser().parse_args() ap = os.path.realpath(args.qgis_app_path) if not os.path.isabs(ap) or not os.path.exists(ap): print 'Application can not be resolved to an existing absolute path.' sys.exit(1) # QGIS Browser.app? browser = 'Browser.' in ap plist = ap + '/Contents/Info.plist' if not os.path.exists(plist): print 'Application Info.plist not found.' sys.exit(1) # generate list of environment variables hb_prefix = HOMEBREW_PREFIX if 'HOMEBREW_PREFIX' in os.environ: hb_prefix = os.environ['HOMEBREW_PREFIX'] hb = os.path.realpath(args.hb) if args.hb else hb_prefix if not os.path.isabs(hb) or not os.path.exists(hb): print 'HOMEBREW_PREFIX not resolved to existing absolute path.' sys.exit(1) q_log = QGIS_LOG_FILE if 'QGIS_LOG_FILE' in os.environ: q_log = os.environ['QGIS_LOG_FILE'] ql = os.path.realpath(args.ql) if args.ql else q_log try: if not os.path.exists(ql): if ql == os.path.realpath(QGIS_LOG_FILE): # ok to auto-create log's parent directories p_dir = os.path.dirname(ql) if not os.path.exists(p_dir): os.makedirs(p_dir) subprocess.call(['/usr/bin/touch', ql]) except OSError, e: print 'Could not create QGIS log file at: {0}'.format(ql) print 'Create an empty file at the indicated path for logging to work.' print >>sys.stderr, "Warning:", e qb = os.path.realpath(args.qb) if args.qb else '' if qb and (not os.path.isabs(qb) or not os.path.exists(qb)): print 'QGIS build directory not resolved to existing absolute path.' sys.exit(1) # write variables to Info.plist evars = env_vars(ap, hb, qb, ql) # opts_s = '' # for k, v in evars.iteritems(): # opts_s += '{0}={1}\n'.format(k, v) # print opts_s + '\n' # first delete any LSEnvironment setting, ignoring errors # CAUTION!: this may not be what you want, if the .app already has # LSEnvironment settings plist_bud('Delete :LSEnvironment', plist, quiet=True) # re-add the LSEnvironment entry plist_bud('Add :LSEnvironment dict', plist) # add the variables for k, v in evars.iteritems(): plist_bud("Add :LSEnvironment:{0} string '{1}'".format(k, v), plist) # set bundle identifier, so package installers don't accidentally install # updates into dev bundles app_id = 'qgis' app_name = 'QGIS' if browser: app_id += '-browser' app_name += ' Browser' plist_bud('Set :CFBundleIdentifier org.qgis.{0}-dev'.format(app_id), plist) # update modification date on app bundle, or changes won't take effect subprocess.call(['/usr/bin/touch', ap]) # add environment-wrapped launcher shell script wrp_scr = ap + '/Contents/MacOS/{0}.sh'.format(app_id) # override vars that need to prepend existing vars evars['PATH'] = '{hb}/opt/gdal2/bin:{hb}/opt/gdal2-python/bin:{hb}/bin:{hb}/sbin:$PATH'.format(hb=hb) evars['PYTHONPATH'] = \ '{hb}/lib/qt-4/python2.7/site-packages:' \ '{hb}/opt/gdal2-python/lib/python2.7/site-packages:' \ '{hb}/lib/python2.7/site-packages:$PYTHONPATH'.format(hb=hb) if os.path.exists(wrp_scr): os.remove(wrp_scr) with open(wrp_scr, 'a') as f: f.write('#!/bin/bash\n\n') # get runtime parent directory f.write('DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")"; pwd -P)\n\n') # add the variables for k, v in evars.iteritems(): f.write('export {0}={1}\n'.format(k, v)) f.write('\n"$DIR/{0}" "$@"\n'.format(app_name)) os.chmod(wrp_scr, stat.S_IRUSR | stat.S_IWUSR | stat.S_IEXEC) print 'Done setting variables' if __name__ == '__main__': main() sys.exit(0)
""" Utility routines for the maximum entropy module. Most of them are either Python replacements for the corresponding Fortran routines or wrappers around matrices to allow the maxent module to manipulate ndarrays, scipy sparse matrices, and PySparse matrices a common interface. Perhaps the logsumexp() function belongs under the utils/ branch where other modules can access it more easily. Copyright: Ed Schofield, 2003-2006 License: BSD-style (see LICENSE.txt in main source directory) """ # Future imports must come before any code in 2.5 from __future__ import division from __future__ import print_function from builtins import range __author__ = "Ed Schofield" __version__ = '2.0' import random import math import cmath import numpy as np #from numpy import log, exp, asarray, ndarray, empty import scipy.sparse from scipy.misc import logsumexp def feature_sampler(vec_f, auxiliary_sampler): """ A generator function for tuples (F, log_q_xs, xs) Parameters ---------- vec_f : function Pass `vec_f` as a (vectorized) function that operates on a vector of samples xs = {x1,...,xn} and returns a feature matrix (m x n), where m is some number of feature components. auxiliary_sampler : function Pass `auxiliary_sampler` as a function that returns a tuple (xs, log_q_xs) representing a sample to use for sampling (e.g. importance sampling) on the sample space of the model. xs : list, 1d ndarray, or 2d matrix (n x d) We require len(xs) == n. Yields ------ tuples (F, log_q_xs, xs) F : matrix (m x n) log_q_xs : as returned by auxiliary_sampler xs : as returned by auxiliary_sampler """ while True: xs, log_q_xs = auxiliary_sampler() F = vec_f(xs) # compute feature matrix from points yield F, log_q_xs, xs def dictsample(freq, size=None, return_probs=None): """ Create a sample of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> dictsample(freq, size=1) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ n = len(freq) probs = np.fromiter(freq.values(), float) probs /= probs.sum() indices = np.random.choice(np.arange(n), size=size, p=probs) labels = np.empty(n, dtype=object) for i, label in enumerate(freq.keys()): labels[i] = label sample = labels[indices] if return_probs is None: return sample sampleprobs = probs[indices] if return_probs == 'prob': return sample, sampleprobs elif return_probs == 'logprob': return sample, np.log(sampleprobs) else: raise ValueError('return_probs must be "prob", "logprob", or None') def dictsampler(freq, size=None, return_probs=None): """ A generator of samples of the given size from the specified discrete distribution. Parameters ---------- freq : a dictionary A mapping from values x_j in the sample space to probabilities (or unnormalized frequencies). size : a NumPy size parameter (like a shape tuple) Something passable to NumPy as a size argument to np.random.choice(...) return_probs : int, optional (default 0) None: don't return pmf values at each sample point 'prob': return pmf values at each sample point 'logprob': return log pmf values at each sample point Returns ------- Returns a sample of the given size from the keys of the given dictionary `freq` with probabilities given according to the values (normalized to 1). Optionally returns the probabilities under the distribution of each observation. Example ------- >>> freq = {'a': 10, 'b': 15, 'c': 20} >>> g = dictsample_gen(freq, size=1) >>> next(g) array([c, b, b, b, b, b, c, b, b, b], dtype=object) """ while True: yield dictsample(freq, size=size, return_probs=return_probs) def auxiliary_sampler_scipy(auxiliary, dimensions=1, n=10**5): """ Sample (once) from the given scipy.stats distribution Parameters ---------- auxiliary : a scipy.stats distribution object (rv_frozen) Returns ------- sampler : function sampler(), when called with no parameters, returns a tuple (xs, log_q_xs), where: xs : matrix (n x d): [x_1, ..., x_n]: a sample log_q_xs: log pdf values under the auxiliary sampler for each x_j """ def sampler(): xs = auxiliary.rvs(size=(n, dimensions)) log_q_xs = np.log(auxiliary.pdf(xs.T)).sum(axis=0) return (xs, log_q_xs) return sampler def _logsumexpcomplex(values): """A version of logsumexp that should work if the values passed are complex-numbered, such as the output of robustarraylog(). So we expect: cmath.exp(logsumexpcomplex(robustarraylog(values))) ~= sum(values,axis=0) except for a small rounding error in both real and imag components. The output is complex. (To recover just the real component, use A.real, where A is the complex return value.) """ if len(values) == 0: return 0.0 iterator = iter(values) # Get the first element while True: # Loop until we have a value greater than -inf try: b_i = next(iterator) + 0j except StopIteration: # empty return float('-inf') if b_i.real != float('-inf'): break # Now the rest for a_i in iterator: a_i += 0j if b_i.real > a_i.real: increment = robustlog(1.+cmath.exp(a_i - b_i)) # print "Increment is " + str(increment) b_i = b_i + increment else: increment = robustlog(1.+cmath.exp(b_i - a_i)) # print "Increment is " + str(increment) b_i = a_i + increment return b_i def logsumexp_naive(values): """For testing logsumexp(). Subject to numerical overflow for large values (e.g. 720). """ s = 0.0 for x in values: s += math.exp(x) return math.log(s) def robustlog(x): """Returns log(x) if x > 0, the complex log cmath.log(x) if x < 0, or float('-inf') if x == 0. """ if x == 0.: return float('-inf') elif type(x) is complex or (type(x) is float and x < 0): return cmath.log(x) else: return math.log(x) def _robustarraylog(x): """ An array version of robustlog. Operates on a real array x. """ arraylog = empty(len(x), np.complex64) for i in range(len(x)): xi = x[i] if xi > 0: arraylog[i] = math.log(xi) elif xi == 0.: arraylog[i] = float('-inf') else: arraylog[i] = cmath.log(xi) return arraylog # def arrayexp(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the real array x. # # We try to exponentiate with np.exp() and, if that fails, with # python's math.exp(). np.exp() is about 10 times faster but throws # an OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # """ # try: # ex = np.exp(x) # except OverflowError: # print("Warning: OverflowError using np.exp(). Using slower Python"\ # " routines instead!") # ex = np.empty(len(x), float) # for j in range(len(x)): # ex[j] = math.exp(x[j]) # return ex # # def arrayexpcomplex(x): # """ # OBSOLETE? # # Returns the elementwise antilog of the vector x. # # We try to exponentiate with np.exp() and, if that fails, with python's # math.exp(). np.exp() is about 10 times faster but throws an # OverflowError exception for numerical underflow (e.g. exp(-800), # whereas python's math.exp() just returns zero, which is much more # helpful. # # """ # try: # ex = np.exp(x).real # except OverflowError: # ex = np.empty(len(x), float) # try: # for j in range(len(x)): # ex[j] = math.exp(x[j]) # except TypeError: # # Perhaps x[j] is complex. If so, try using the complex # # exponential and returning the real part. # for j in range(len(x)): # ex[j] = cmath.exp(x[j]).real # return ex def sample_wr(population, k): """Chooses k random elements (with replacement) from a population. (From the Python Cookbook). """ n = len(population) _random, _int = random.random, int # speed hack return [population[_int(_random() * n)] for i in range(k)] def evaluate_feature_matrix(feature_functions, xs, vectorized=True, format='csc_matrix', dtype=float, verbose=False): """Evaluate a (m x n) matrix of features `F` of the sample `xs` as: F[i, :] = f_i(xs[:]) if xs is 1D, or as: F[i, j] = f_i(xs[:, j]) if xs is 2D, for each feature function `f_i` in `feature_functions`. Parameters ---------- feature_functions : a list of m feature functions f_i. xs : either: 1. a (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. vectorized : bool (default True) If True, the feature functions f_i are assumed to be vectorized; then these will be passed all observations xs at once, in turn. If False, the feature functions f_i will be evaluated one at a time. format : str (default 'csc_matrix') Options: 'ndarray', 'csc_matrix', 'csr_matrix', 'dok_matrix'. If you have enough memory, it may be faster to create a dense ndarray and then construct a e.g. CSC matrix from this. Returns ------- F : (m x n) matrix (in the given format: ndarray / csc_matrix / etc.) Matrix of evaluated features. """ m = len(feature_functions) if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape if d == 1 and vectorized: # xs may be a column vector, i.e. (n x 1) array. # In this case, reshape it to a 1d array. This # makes it easier to define functions that # operate on only one variable (the usual case) # given that sklearn's interface now forces 2D # arrays X when calling .transform(X) and .fit(X). xs = np.reshape(xs, n) else: n, d = len(xs), 1 if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): F = scipy.sparse.dok_matrix((m, n), dtype=dtype) elif format == 'ndarray': F = np.empty((m, n), dtype=dtype) else: raise ValueError('matrix format not recognized') for i, f_i in enumerate(feature_functions): if verbose: print('Computing feature {i} of {m} ...'.format(i=i, m=m)) if vectorized: F[i::m, :] = f_i(xs) else: for j in range(n): f_i_x = f_i(xs[j]) if f_i_x != 0: F[i,j] = f_i_x if format == 'csc_matrix': return F.tocsc() elif format == 'csr_matrix': return F.tocsr() else: return F # def densefeatures(f, x): # """Returns a dense array of non-zero evaluations of the vector # functions fi in the list f at the point x. # """ # # return np.array([fi(x) for fi in f]) # def densefeaturematrix(f, sample, verbose=False): # """Compute an (m x n) dense array of non-zero evaluations of the # scalar functions fi in the list f at the points x_1,...,x_n in the # list sample. # """ # # # Was: return np.array([[fi(x) for fi in f] for x in sample]) # # m = len(f) # n = len(sample) # # F = np.empty((m, n), float) # for i in range(m): # f_i = f[i] # for j in range(n): # x = sample[j] # F[i,j] = f_i(x) # return F # def sparsefeatures(f, x, format='csc_matrix'): # """Compute an mx1 sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the point x. # # """ # m = len(f) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparsef = scipy.sparse.dok_matrix((m, 1)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # f_i_x = f[i](x) # if f_i_x != 0: # sparsef[i, 0] = f_i_x # # if format == 'csc_matrix': # print("Converting to CSC matrix ...") # return sparsef.tocsc() # elif format == 'csr_matrix': # print("Converting to CSR matrix ...") # return sparsef.tocsr() # else: # return sparsef # def sparsefeaturematrix(f, sample, format='csc_matrix', verbose=False): # """Compute an (m x n) sparse matrix of non-zero evaluations of the # scalar functions f_1,...,f_m in the list f at the points x_1,...,x_n # in the sequence 'sample'. # # """ # m = len(f) # n = len(sample) # if format in ('dok_matrix', 'csc_matrix', 'csr_matrix'): # sparseF = scipy.sparse.dok_matrix((m, n)) # else: # raise ValueError("sparse matrix format not recognized") # # for i in range(m): # if verbose: # print('Computing feature {i} of {m}'.format(i=i, m=m)) # f_i = f[i] # for j in range(n): # x = sample[j] # f_i_x = f_i(x) # if f_i_x != 0: # sparseF[i,j] = f_i_x # # if format == 'csc_matrix': # return sparseF.tocsc() # elif format == 'csr_matrix': # return sparseF.tocsr() # else: # return sparseF # def sparsefeaturematrix_vectorized(feature_functions, xs, format='csc_matrix'): # """ # Evaluate a (m x n) matrix of features `F` of the sample `xs` as: # # F[i, j] = f_i(xs[:, j]) # # Parameters # ---------- # feature_functions : a list of feature functions f_i. # # xs : either: # 1. a (d x n) matrix representing n d-dimensional # observations xs[: ,j] for j=1,...,n. # 2. a 1d array or sequence (e.g list) of observations xs[j] # for j=1,...,n. # # The feature functions f_i are assumed to be vectorized. These will be # passed all observations xs at once, in turn. # # Note: some samples may be more efficient / practical to compute # features one sample observation at a time (e.g. generated). For these # cases, use sparsefeaturematrix(). # # Only pass sparse=True if you need the memory savings. If you want a # sparse matrix but have enough memory, it may be faster to # pass dense=True and then construct a CSC matrix from the dense NumPy # array. # # """ # m = len(feature_functions) # # if isinstance(xs, np.ndarray) and xs.ndim == 2: # d, n = xs.shape # else: # n = len(xs) # if not sparse: # F = np.empty((m, n), float) # else: # import scipy.sparse # F = scipy.sparse.lil_matrix((m, n), dtype=float) # # for i, f_i in enumerate(feature_functions): # F[i::m, :] = f_i(xs) # # if format == 'csc_matrix': # return F.tocsc() # elif format == 'csr_matrix': # return F.tocsr() # else: # return F def old_vec_feature_function(feature_functions, sparse=False): """ Create and return a vectorized function `features(xs)` that evaluates an (n x m) matrix of features `F` of the sample `xs` as: F[j, i] = f_i(xs[:, j]) Parameters ---------- feature_functions : a list of feature functions f_i. `xs` will be passed to these functions as either: 1. an (n x d) matrix representing n d-dimensional observations xs[j, :] for j=1,...,n. 2. a 1d array or sequence (e.g list) of observations xs[j] for j=1,...,n. The feature functions f_i are assumed to be vectorized. These will be passed all observations xs at once, in turn. Note: some samples may be more efficient / practical to compute features of one sample observation at a time (e.g. generated). Only pass sparse=True if you need the memory savings. If you want a sparse matrix but have enough memory, it may be faster to pass sparse=False and then construct a CSC matrix from the dense NumPy array. """ if sparse: import scipy.sparse m = len(feature_functions) def vectorized_features(xs): if isinstance(xs, np.ndarray) and xs.ndim == 2: n, d = xs.shape else: n = len(xs) if not sparse: F = np.empty((n, m), float) else: F = scipy.sparse.lil_matrix((n, m), dtype=float) # Equivalent: # for i, f_i in enumerate(feature_functions): # for k in range(len(xs)): # F[len(feature_functions)*k+i, :] = f_i(xs[k]) for i, f_i in enumerate(feature_functions): F[:, i::m] = f_i(xs) if not sparse: return F else: return scipy.sparse.csc_matrix(F) return vectorized_features def dotprod(u,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the dot product of the (1 x m) sparse array u with the (m x 1) (dense) numpy array v. """ #print "Taking the dot product u.v, where" #print "u has shape " + str(u.shape) #print "v = " + str(v) try: dotprod = np.array([0.0]) # a 1x1 array. Required by spmatrix. u.matvec(v, dotprod) return dotprod[0] # extract the scalar except AttributeError: # Assume u is a dense array. return np.dot(u,v) def innerprod(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns the inner product of the (m x n) dense or sparse matrix A with the n-element dense array v. This is a wrapper for A.dot(v) for dense arrays and spmatrix objects, and for A.matvec(v, result) for PySparse matrices. """ # We assume A is sparse. (m, n) = A.shape vshape = v.shape try: (p,) = vshape except ValueError: (p, q) = vshape if n != p: raise TypeError("matrix dimensions are incompatible") if isinstance(v, np.ndarray): try: # See if A is sparse A.matvec except AttributeError: # It looks like A is dense return np.dot(A, v) else: # Assume A is sparse if scipy.sparse.isspmatrix(A): innerprod = A.matvec(v) # This returns a float32 type. Why??? return innerprod else: # Assume PySparse format innerprod = np.empty(m, float) A.matvec(v, innerprod) return innerprod elif scipy.sparse.isspmatrix(v): return A * v else: raise TypeError("unsupported types for inner product") def innerprodtranspose(A,v): """ This is a wrapper around general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Computes A^T V, where A is a dense or sparse matrix and V is a numpy array. If A is sparse, V must be a rank-1 array, not a matrix. This function is efficient for large matrices A. This is a wrapper for A.T.dot(v) for dense arrays and spmatrix objects, and for A.matvec_transp(v, result) for pysparse matrices. """ (m, n) = A.shape #pdb.set_trace() if hasattr(A, 'matvec_transp'): # A looks like a PySparse matrix if len(v.shape) == 1: innerprod = np.empty(n, float) A.matvec_transp(v, innerprod) else: raise TypeError("innerprodtranspose(A,v) requires that v be " "a vector (rank-1 dense array) if A is sparse.") return innerprod elif scipy.sparse.isspmatrix(A): return (A.conj().transpose() * v).transpose() else: # Assume A is dense if isinstance(v, np.ndarray): # v is also dense if len(v.shape) == 1: # We can't transpose a rank-1 matrix into a row vector, so # we reshape it. vm = v.shape[0] vcolumn = np.reshape(v, (1, vm)) x = np.dot(vcolumn, A) return np.reshape(x, (n,)) else: #(vm, vn) = v.shape # Assume vm == m x = np.dot(np.transpose(v), A) return np.transpose(x) else: raise TypeError("unsupported types for inner product") def rowmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (m x 1) vector representing the mean of the rows of A, which be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]], float) >>> rowmeans(a) array([ 1.5, 3.5]) """ if type(A) is np.ndarray: return A.mean(1) else: # Assume it's sparse try: n = A.shape[1] except AttributeError: raise TypeError("rowmeans() only works with sparse and dense " "arrays") rowsum = innerprod(A, np.ones(n, float)) return rowsum / float(n) def columnmeans(A): """ This is a wrapper for general dense or sparse dot products. It is only necessary as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with the column averages of A, which can be an (m x n) sparse or dense matrix. >>> a = np.array([[1,2],[3,4]],'d') >>> columnmeans(a) array([ 2., 3.]) """ if type(A) is np.ndarray: return A.mean(0) else: # Assume it's sparse try: m = A.shape[0] except AttributeError: raise TypeError("columnmeans() only works with sparse and dense " "arrays") columnsum = innerprodtranspose(A, np.ones(m, float)) return columnsum / float(m) def columnvariances(A): """ This is a wrapper for general dense or sparse dot products. It is not necessary except as a common interface for supporting ndarray, scipy spmatrix, and PySparse arrays. Returns a dense (1 x n) vector with unbiased estimators for the column variances for each column of the (m x n) sparse or dense matrix A. (The normalization is by (m - 1).) >>> a = np.array([[1,2], [3,4]], 'd') >>> columnvariances(a) array([ 2., 2.]) """ if type(A) is np.ndarray: return np.std(A,0)**2 else: try: m = A.shape[0] except AttributeError: raise TypeError("columnvariances() only works with sparse " "and dense arrays") means = columnmeans(A) return columnmeans((A-means)**2) * (m/(m-1.0)) def flatten(a): """Flattens the sparse matrix or dense array/matrix 'a' into a 1-dimensional array """ if scipy.sparse.isspmatrix(a): return a.A.flatten() else: return np.asarray(a).flatten() class DivergenceError(Exception): """Exception raised if the entropy dual has no finite minimum. """ def __init__(self, message): self.message = message Exception.__init__(self) def __str__(self): return repr(self.message) def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
from datetime import date class TableItem(object): tableItemNr = 0 tableItemDate = date.today() tableItemMaxNumCategories = 1 tableItemCategoriesAmount = [] tableItemAmount = 0.0 def __init__(self): self.tableItemCategoriesAmount = [] def setNr(self, nr): self.tableItemNr = int(nr) def getNr(self): return self.tableItemNr def setDate(self, date): self.tableItemDate = date def getDate(self): return self.tableItemDate def setNumCategories(self, num): self.tableItemMaxNumCategories = num def getNumCategories(self): return self.tableItemCategoriesAmount def addCategoryAmount(self, amount): self.tableItemCategoriesAmount.append(round(amount, 2)) self.calculateAmount() def getCategoryAmount(self): return self.tableItemCategoriesAmount def removeCategoryAmountAll(self): self.tableItemCategoriesAmount.clear() def getCategoryAmountAsString(self): self.amountsAsString = [] for amount in self.tableItemCategoriesAmount: amount = round(amount, 2) if amount.is_integer() == True: self.amountsAsString.append(str(amount) + "0 €") elif (amount * 10.0).is_integer() == True: self.amountsAsString.append(str(amount) + "0 €") else: self.amountsAsString.append(str(amount) + " €") return self.amountsAsString def calculateAmount(self): self.tableItemAmount = 0.0 for x in self.tableItemCategoriesAmount: self.tableItemAmount = self.tableItemAmount + x def getAmountAsString(self): self.calculateAmount() tableItemAmount = round(self.tableItemAmount, 2) if tableItemAmount.is_integer() == True: tableItemAmount = str(tableItemAmount) tableItemAmount = tableItemAmount + "0 €" elif (tableItemAmount * 10.0).is_integer() == True: tableItemAmount = str(tableItemAmount) tableItemAmount = tableItemAmount + "0 €" else: tableItemAmount = str(tableItemAmount) tableItemAmount = tableItemAmount + " €" return tableItemAmount def getAmount(self): return self.tableItemAmount
""" r6satus-python Extract player data of Rainbow six siege. """ import json import sys import asyncio import r6sapi from pymongo import MongoClient import datetime OperatorTypes = { "DOC": "Defense", "TWITCH": "Attack", "ASH": "Attack", "THERMITE": "Attack", "BLITZ": "Attack", "BUCK": "Attack", "HIBANA": "Attack", "KAPKAN": "Defense", "PULSE": "Defense", "CASTLE": "Defense", "ROOK": "Defense", "BANDIT": "Defense", "SMOKE": "Defense", "FROST": "Defense", "VALKYRIE": "Defense", "TACHANKA": "Defense", "GLAZ": "Attack", "FUZE": "Attack", "SLEDGE": "Attack", "MONTAGNE": "Attack", "MUTE": "Defense", "ECHO": "Defense", "THATCHER": "Attack", "CAPITAO": "Attack", "IQ": "Attack", "BLACKBEARD": "Attack", "JAGER": "Defense", "CAVEIRA": "Defense", "JACKAL": "Attack", "MIRA": "Defense", "LESION": "Defense", "YING": "Attack", "ELA": "Defense", "DOKKAEBI": "Attack", "VIGIL": "Defense", "ZOFIA": "Attack", "LION": "Attack", "FINKA": "Attack", "MAESTRO": "Defense", "ALIBI": "Defense", "MAVERICK": "Attack", "CLASH": "Defense", "NOMAD": "Attack", "KAID": "Defense", "GRIDLOCK": "Attack", "MOZZIE": "Defense", "WARDEN": "Defense", "NAKK": "Attack", "AMARU": "Attack", "GOYO": "Defense" } def zchk(target): """Check if the input is zero""" if target == 0: return target + 1 return target @asyncio.coroutine def get_data(auth, id=None, uid=None): player = yield from auth.get_player(id, r6sapi.Platforms.UPLAY, uid) yield from player.check_general() yield from player.check_level() yield from player.load_queues() rank_data = yield from player.get_rank(r6sapi.RankedRegions.ASIA) operators_data = yield from player.get_all_operators() async def get_data(auth, id=None, uid=None): player = await auth.get_player(id, r6sapi.Platforms.UPLAY, uid) await player.check_general() await player.check_level() await player.load_queues() rank_data = await player.get_rank(r6sapi.RankedRegions.ASIA) operators_data = await player.get_all_operators() return player, rank_data, operators_data def pack_data(player, rank_data, operators_data, date): player_data = { "id": player.name, "date": date, "level": player.level, "icon": player.icon_url, "rank": rank_data.rank, "uid": player.userid, "operator": [], "general": { "kills": player.kills, "deaths": player.deaths, "kdr": player.kills / zchk(player.deaths), "wons": player.matches_won, "loses": player.matches_lost, "played": player.matches_played, "playtimes": player.time_played, "wlr": player.matches_won / zchk(player.matches_lost) } } for gamemode in [player.casual, player.ranked]: player_data[gamemode.name] = { "kills": gamemode.kills, "deaths": gamemode.deaths, "kdr": gamemode.kills / zchk(gamemode.deaths), "wons": gamemode.won, "loses": gamemode.lost, "played": gamemode.played, "playtimes": gamemode.time_played, "wlr": gamemode.won / zchk(gamemode.lost) } for _, operator in operators_data.items(): player_data["operator"].append({ "name": operator.name, "type": OperatorTypes[operator.name.upper()], "kills": operator.kills, "deaths": operator.deaths, "kdr": operator.kills / zchk(operator.deaths), "wons": operator.wins, "loses": operator.losses, "pick": operator.wins + operator.losses }) return player_data async def dead_method(dead_id, auth): players = dead_id.find({}, {'_id': 0, 'id': 1}) lives = [] for player_id in players: date = datetime.datetime.utcnow() try: player, rank_data, operators_data = await get_data( auth, player_id['id'], None) except r6sapi.exceptions.InvalidRequest: print(date, file=sys.stderr) print(player_id['id'] + " is not found", file=sys.stderr) dead_id.update_one({"id": player_id['id']}, { '$set': { "date": date }, '$inc': { "deathcount": 1 } }, upsert=True) if 5 < dead_id.find_one({"id": player_id['id']})['deathcount']: # userdb.delete_one({"id": player_id['id']}) dead_id.delete_one({"id": player_id['id']}) print(date, file=sys.stderr) print(player_id['id'] + " was deleted in database", file=sys.stderr) continue # print(player.name + " :" + player.userid) lives.append({'uid': player.userid, 'id': player.name}) return lives async def live_method(live_id, dead_id, auth, lives, userdb, id2uid, recentdb): players_raw = live_id.find({}, {'_id': 0, 'uid': 1, 'id': 1}) players = [] for item in players_raw: players.append({'uid': item['uid'], 'id': item['id']}) players.extend(lives) players_data = [] for player_sss in players: date = datetime.datetime.utcnow() try: player, rank_data, operators_data = await get_data( auth, None, player_sss['uid']) except r6sapi.exceptions.InvalidRequest: print(date, file=sys.stderr) print(player_sss['id'] + " is not found", file=sys.stderr) userdb.update({"id": player_sss['id']}, { '$set': { "date": date }, '$inc': { "deathcount": 1 } }, upsert=True) dead_id.update({"id": player_sss['id']}, {'$set': { "date": date, "deathcount": 0 }}, upsert=True) live_id.delete_one({"id": player_sss['id']}) continue # print(player.userid) player_data = pack_data(player, rank_data, operators_data, date) userdb.update_one( {"id": player.name}, {'$set': { "date": date, "deathcount": 0, "uid": player.userid }}, upsert=True) dead_id.delete_one({"id": player.name}) id2uid.update_one({"id": player.name}, {'$set': { "date": date, "uid": player.userid }}, upsert=True) live_id.update_one({"uid": player.userid}, {'$set': { "date": date, "id": player.name }}, upsert=True) recentdb.delete_one({"id": player.name}) recentdb.insert_one(player_data) players_data.append(player_data) return players_data async def run(): """ main function """ config_path = open("./config.json", 'r') config = json.load(config_path) client = MongoClient(config["mongodb addres"], config["mongodb port"]) recentdb = client['r6status']['recent'] olddb = client['r6status']['old'] userdb = client['r6status']['user'] id2uid = client['r6status']['id2uid'] live_id = client['r6status']['live_id'] dead_id = client['r6status']['dead_id'] mail = config["e-mail address"] pswd = config["password"] auth = r6sapi.Auth(mail, pswd) try: await auth.connect() except r6sapi.exceptions.FailedToConnect as e: print("type:{0}".format(type(e))) print("args:{0}".format(e.args)) print("message:{0}".format(e.message)) print("{0}".format(e)) sys.exit(1) lives = await dead_method(dead_id, auth) players_data = await live_method(live_id, dead_id, auth, lives, userdb, id2uid, recentdb) olddb.insert_many(players_data) await auth.close() print(datetime.datetime.utcnow()) print("finised") asyncio.get_event_loop().run_until_complete(run())
n = int(input()) k = int(input()) minX = 1 maxX = n*n ans = 0 while minX <= maxX: midX = (minX + maxX) // 2 cnt = 0 for i in range(1, n+1): cnt += min([midX//i, n]) if cnt >= k: ans = midX maxX = midX - 1 else: minX = midX + 1 print(ans)
import os import __main__ _MAIN_FILE =__main__.__file__ _MAIN_DIR = os.path.dirname(_MAIN_FILE) _MAIN_FILE_NO_EXT = os.path.splitext(os.path.basename(_MAIN_FILE))[0] INPUT_DATA = [] with open(f"{_MAIN_DIR}/../input/{_MAIN_FILE_NO_EXT}.txt", 'r') as inputFile: INPUT_DATA = [x.rstrip() for x in inputFile.readlines()]
# global import jax import jax.numpy as jnp from typing import Optional # local import ivy from ivy.functional.backends.jax import JaxArray def bitwise_left_shift(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) return jnp.left_shift(x1, x2) def add(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.add(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def bitwise_xor(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.bitwise_xor(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def exp(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.exp(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def expm1(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.expm1(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def bitwise_invert(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.bitwise_not(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def bitwise_and(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.bitwise_and(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def ceil(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if 'int' in str(x.dtype): ret = x else: ret = jnp.ceil(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def floor(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if 'int' in str(x.dtype): ret = x else: ret = jnp.floor(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def isfinite(x: JaxArray)\ -> JaxArray: return jnp.isfinite(x) def asin(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arcsin(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def isinf(x: JaxArray)\ -> JaxArray: return jnp.isinf(x) def equal(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.equal(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def greater(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None) \ -> JaxArray: ret = jnp.greater(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def greater_equal(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.greater_equal(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def less_equal(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.less_equal(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def asinh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arcsinh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def sign(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.sign(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def sqrt(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.sqrt(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def cosh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.cosh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def log10(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.log10(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def log(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.log(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def log2(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.log2(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def log1p(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.log1p(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def multiply(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.multiply(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def isnan(x: JaxArray)\ -> JaxArray: return jnp.isnan(x) def less(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.less(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def cos(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.cos(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def logical_xor(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.logical_xor(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def logical_or(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.logical_or(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def logical_and(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.logical_and(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def logical_not(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.logical_not(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def divide(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.divide(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def acos(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arccos(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def acosh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arccosh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def sin(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.sin(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def negative(x: JaxArray, out: Optional[JaxArray] = None) -> JaxArray: ret = jnp.negative(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def not_equal(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None) \ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.not_equal(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def tanh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.tanh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def floor_divide(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.floor_divide(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def bitwise_or(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None) -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.bitwise_or(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def sinh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.sinh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def positive(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.positive(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def square(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.square(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def pow(x1: jnp.ndarray, x2: jnp.ndarray, out: Optional[JaxArray] = None)\ -> jnp.ndarray: if hasattr(x1, 'dtype') and hasattr(x2, 'dtype'): promoted_type = jnp.promote_types(x1.dtype, x2.dtype) x1 = x1.astype(promoted_type) x2 = x2.astype(promoted_type) ret = jnp.power(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def remainder(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.remainder(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def round(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if 'int' in str(x.dtype): ret = x else: ret = jnp.round(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def trunc(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if 'int' in str(x.dtype): ret = x else: ret = jnp.trunc(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def abs(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.absolute(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def subtract(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if hasattr(x1, 'dtype') and hasattr(x2, 'dtype'): promoted_type = jnp.promote_types(x1.dtype, x2.dtype) x1 = x1.astype(promoted_type) x2 = x2.astype(promoted_type) ret = jnp.subtract(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def logaddexp(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.logaddexp(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def bitwise_right_shift(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: if isinstance(x2, int): x2 = jnp.asarray(x2, dtype=x1.dtype) ret = jnp.right_shift(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def tan(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.tan(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def atan(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arctan(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def atanh(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.arctanh(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def atan2(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None) -> JaxArray: if hasattr(x1, 'dtype') and hasattr(x2, 'dtype'): promoted_type = jnp.promote_types(x1.dtype, x2.dtype) x1 = x1.astype(promoted_type) x2 = x2.astype(promoted_type) ret = jnp.arctan2(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret # Extra # # ------# def minimum(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.minimum(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def maximum(x1: JaxArray, x2: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jnp.maximum(x1, x2) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret def erf(x: JaxArray, out: Optional[JaxArray] = None)\ -> JaxArray: ret = jax.scipy.special.erf(x) if ivy.exists(out): return ivy.inplace_update(out, ret) return ret
# # @lc app=leetcode id=82 lang=python3 # # [82] Remove Duplicates from Sorted List II # # https://leetcode.com/problems/remove-duplicates-from-sorted-list-ii/description/ # # algorithms # Medium (39.04%) # Likes: 2704 # Dislikes: 122 # Total Accepted: 317.3K # Total Submissions: 807.9K # Testcase Example: '[1,2,3,3,4,4,5]' # # Given the head of a sorted linked list, delete all nodes that have duplicate # numbers, leaving only distinct numbers from the original list. Return the # linked list sorted as well. # # # Example 1: # # # Input: head = [1,2,3,3,4,4,5] # Output: [1,2,5] # # # Example 2: # # # Input: head = [1,1,1,2,3] # Output: [2,3] # # # # Constraints: # # # The number of nodes in the list is in the range [0, 300]. # -100 <= Node.val <= 100 # The list is guaranteed to be sorted in ascending order. # # # # @lc code=start # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next # Solution 1 # In-place with set # Time Complexity: O(n) # Space Complexity: O(n) class Solution1: def deleteDuplicates(self, head: ListNode) -> ListNode: if not head or head.next is None: return head tmp = head counter = {} while tmp is not None: counter[tmp.val] = counter.get(tmp.val, 0) + 1 tmp = tmp.next dummy = ListNode(-1) dummy.next = head tmp = head head = dummy while tmp is not None: if counter.get(tmp.val) > 1: tmp = tmp.next else: head.next = tmp tmp = tmp.next head = head.next head.next = None return dummy.next # Solution 2 # In-place with several pointers # Time Complexity: O(n) # Space Complexity: O(1) class Solution2: def deleteDuplicates(self, head: ListNode) -> ListNode: if not head or head.next is None: return head if head and head.next is None: return head # list with at least two nodes dummy = ListNode(-1) prev = ListNode(-1) dummy.next = head curr = dummy while head: print(head.val) if prev.val != head.val and ( (head.next and head.val != head.next.val) or head.next is None ): # ListNode `head` has different value from prev node and next node # value is unique curr.next = head curr = curr.next # update two pointers prev = head head = head.next if head: head.next = None return dummy.next # @lc code=end
import factory from brouwers.kits.tests.factories import ModelKitFactory from brouwers.users.tests.factories import UserFactory from ..models import ( KitReview, KitReviewProperty, KitReviewPropertyRating, KitReviewVote ) class KitReviewFactory(factory.django.DjangoModelFactory): model_kit = factory.SubFactory(ModelKitFactory) raw_text = factory.Faker('text') submitted_on = factory.Faker('date') reviewer = factory.SubFactory(UserFactory) class Meta: model = KitReview class KitReviewVoteFactory(factory.django.DjangoModelFactory): review = factory.SubFactory(KitReviewFactory) voter = factory.SubFactory(UserFactory) class Meta: model = KitReviewVote class KitReviewPropertyFactory(factory.django.DjangoModelFactory): name = factory.Faker('text') class Meta: model = KitReviewProperty class KitReviewPropertyRatingFactory(factory.django.DjangoModelFactory): kit_review = factory.SubFactory(KitReviewFactory) prop = factory.SubFactory(KitReviewPropertyFactory) class Meta: model = KitReviewPropertyRating
import unittest from python.src import utils class test_utils(unittest.TestCase): def test_add(self): self.assertEqual(5, utils.add(2,3)) def test_divide(self): self.assertEqual(2, utils.divide(4,2)) class Test_Calculator(unittest.TestCase): def test_add(self): self.assertEqual(5, utils.Calculator().add(2, 3))
#!./bin/python # ---------------------------------------------------------------------- # Compile handlebars templates # ---------------------------------------------------------------------- # Copyright (C) 2007-2019 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules from __future__ import print_function import os import glob import stat import subprocess def compile_template(src): dst = src[:-4] + ".js" if os.path.exists(dst) and os.stat(src)[stat.ST_MTIME] < os.stat(dst)[stat.ST_MTIME]: return # Up-to-date parts = src.split(os.sep) module = parts[2] app = parts[3] name = parts[-1][:-4] print("%s -> %s" % (src, dst)) tmp = dst + ".tmp" subprocess.check_call( [ "handlebars", "-m", # Minify "-n", "NOC.templates.%s_%s" % (module, app), "-e", "hbs", "-f", tmp, src, ] ) with open(tmp) as f: data = f.read() os.unlink(tmp) data += 'Ext.define("NOC.%s.%s.templates.%s", {});' % (module, app, name) with open(dst, "w") as f: f.write(data) def main(): for f in glob.glob("ui/web/*/*/templates/*.hbs"): compile_template(f) if __name__ == "__main__": main()
from flask import current_app as app, render_template, render_template_string, request, redirect, abort, jsonify, json as json_mod, url_for, session, Blueprint, Response from CTFd.utils import authed, ip2long, long2ip, is_setup, validate_url, get_config, set_config, sha512, get_ip, cache, is_on_team from CTFd.models import db, Users, Solves, Awards, Challenges, WrongKeys, Keys, Tags, Files, Tracking, Pages, Config, Teams from jinja2.exceptions import TemplateNotFound from passlib.hash import bcrypt_sha256 from collections import OrderedDict from itsdangerous import TimedSerializer, BadTimeSignature, Signer, BadSignature import logging import os import re import sys import json import os import datetime import urllib views = Blueprint('views', __name__) @views.before_request def redirect_setup(): if request.path.startswith("/static"): return if not is_setup() and request.path != "/setup": return redirect(url_for('views.setup')) @views.route('/setup', methods=['GET', 'POST']) def setup(): # with app.app_context(): # admin = Teams.query.filter_by(admin=True).first() if not is_setup(): if not session.get('nonce'): session['nonce'] = sha512(os.urandom(10)) if request.method == 'POST': ctf_name = request.form['ctf_name'] ctf_name = set_config('ctf_name', ctf_name) ## CSS css = set_config('start', '') ## Admin user name = request.form['name'] email = request.form['email'] password = request.form['password'] admin = Users(name, email, password) admin.admin = True admin.banned = True ## Index page page = Pages('index', """<div class="container main-container"> <img class="logo" src="{0}/static/original/img/logo.png" /> <h3 class="text-center"> Welcome to a cool CTF framework written by <a href="https://github.com/ColdHeat">Kevin Chung</a> of <a href="https://github.com/isislab">@isislab</a> </h3> <h4 class="text-center"> <a href="{0}/admin">Click here</a> to login and setup your CTF </h4> </div>""".format(request.script_root)) #max attempts per challenge max_tries = set_config("max_tries", 0) ## Team size limit team_limit = set_config('team_limit', 5) ## Start time start = set_config('start', None) end = set_config('end', None) ## Challenges cannot be viewed by unregistered users view_challenges_unregistered = set_config('view_challenges_unregistered', None) ## Allow/Disallow registration prevent_registration = set_config('prevent_registration', None) ## Verify emails verify_emails = set_config('verify_emails', None) mail_server = set_config('mail_server', None) mail_port = set_config('mail_port', None) mail_tls = set_config('mail_tls', None) mail_ssl = set_config('mail_ssl', None) mail_username = set_config('mail_username', None) mail_password = set_config('mail_password', None) setup = set_config('setup', True) db.session.add(page) db.session.add(admin) db.session.commit() db.session.close() app.setup = False with app.app_context(): cache.clear() return redirect(url_for('views.static_html')) return render_template('setup.html', nonce=session.get('nonce')) return redirect(url_for('views.static_html')) # Custom CSS handler @views.route('/static/user.css') def custom_css(): return Response(get_config("css"), mimetype='text/css') # Static HTML files @views.route("/", defaults={'template': 'index'}) @views.route("/<template>") def static_html(template): try: return render_template('%s.html' % template) except TemplateNotFound: page = Pages.query.filter_by(route=template).first() if page: return render_template('page.html', content=page.html) else: abort(404) @views.route('/teams', defaults={'page':'1'}) @views.route('/teams/<page>') def teams(page): page = abs(int(page)) results_per_page = 50 page_start = results_per_page * ( page - 1 ) page_end = results_per_page * ( page - 1 ) + results_per_page if get_config('verify_emails'): count = Teams.query.count() teams = Teams.query.slice(page_start, page_end).all() else: count = Teams.query.count() teams = Teams.query.slice(page_start, page_end).all() pages = int(count / results_per_page) + (count % results_per_page > 0) return render_template('teams.html', teams=teams, team_pages=pages, curr_page=page) @views.route('/user/<userid>', methods=['GET', 'POST']) def user_view(userid): if get_config('view_scoreboard_if_authed') and not authed(): return redirect(url_for('auth.login', next=request.path)) user = Users.query.filter_by(id=userid).first_or_404() solves = Solves.query.filter_by(userid=userid) awards = Awards.query.filter_by(userid=userid).all() score = user.score() place = user.place() db.session.close() if request.method == 'GET': return render_template('user.html', solves=solves, awards=awards, team=user, score=score, place=place) elif request.method == 'POST': json = {'solves':[]} for x in solves: json['solves'].append({'id':x.id, 'chal':x.chalid, 'team':x.userid}) return jsonify(json) @views.route('/user/<userid>/remove', methods=['POST']) def user_remove(userid): if authed() and is_on_team(): current_user = Users.query.filter_by(id=session.get('id')).first() target_user = Users.query.filter_by(id=userid).first() team = Teams.query.filter_by(id=current_user.teamid).first() if team.captain == target_user.id: users = Users.query.filter_by(teamid=team.id) for user in users: user.teamid = None db.session.delete(team) db.session.commit() db.session.close() return "-1" if team.captain == current_user.id: target_user.teamid = None db.session.commit() db.session.close() return "1" return "0" else: return redirect(url_for('auth.login')) @views.route('/team/<teamid>', methods=['GET', 'POST']) def team_view(teamid): if get_config('view_scoreboard_if_authed') and not authed(): return redirect(url_for('auth.login', next=request.path)) team = Teams.query.filter_by(id=teamid).first_or_404() users = Users.query.filter_by(teamid=teamid).all() user_ids = [u.id for u in users] solves = Solves.query.filter(Solves.userid.in_(user_ids)) db.session.close() if request.method == 'GET': return render_template('team.html', team=team, users=users, solves=solves) # elif request.method == 'POST': # json = {'solves': []} # for x in solves: # json['solves'].append({'id': x.id, 'chal': x.chalid, 'team': x.userid}) # return jsonify(json) @views.route('/team', methods=['POST', 'GET']) def team_management(): if authed(): user = Users.query.filter_by(id=session.get('id')).first_or_404() if user.teamid: ## Already has team s = Signer(app.config['SECRET_KEY']) team = Teams.query.filter_by(id=user.teamid).first_or_404() users = Users.query.filter_by(teamid=user.teamid) secret = urllib.quote_plus(s.sign(str(team.id)).encode('base64')) if request.method == "POST": errors = [] if team.captain == user.id: website = request.form.get('website') affiliation = request.form.get('affiliation') country = request.form.get('country') if website.strip() and not validate_url(website): errors.append("That doesn't look like a valid URL") team.website = website team.affiliation = affiliation team.country = country else: errors.append('Only team captains can change this information.') if errors: return render_template('view_team.html', team=team, users=users, secret=secret, errors=errors) db.session.commit() db.session.close() return redirect(url_for('views.team_management')) else: captain = False if team.captain == user.id: captain = True return render_template('view_team.html', team=team, users=users, secret=secret, captain=captain) else: ## Needs a team if request.method == "POST": name = request.form.get('name') captain = session.get('id') team = Teams.query.filter_by(name=name).first() errors = [] if team: errors.append('That team name is already taken') t = Teams(name, captain) if errors: return render_template('create_team.html', errors=errors, team=t) db.session.add(t) db.session.flush() user.teamid = t.id db.session.commit() db.session.close() return redirect(url_for('views.team_management')) else: return render_template('create_team.html') else: return redirect(url_for('auth.login')) @views.route('/join/<team_link>', methods=['POST', 'GET']) def join_team(team_link): errors = [] if authed(): user = Users.query.filter_by(id=session.get('id')).first_or_404() s = Signer(app.config['SECRET_KEY']) team_id = s.unsign(urllib.unquote_plus(team_link.decode('base64'))) team = Teams.query.filter_by(id=team_id).first_or_404() user_ids = [u.id for u in Users.query.with_entities(Users.id).filter_by(teamid=team.id)] team_captain = Teams.query.filter_by(captain=user.id).first() print team_captain if request.method == "POST": if len(user_ids) >= get_config('team_limit'): errors.append('This team is full') if team_captain: errors.append("You are captain of another team, you can't join another team") if errors: return render_template('join_team.html', team=team, errors=errors) user.teamid = int(team.id) db.session.commit() db.session.close() return redirect(url_for('views.team_management')) else: if len(user_ids) >= get_config('team_limit'): errors.append('This team is full') if user.teamid: errors.append('You are already on a team. <br>Joining a new team will take all your solves with you.') if team_captain: errors.append("You are captain of another team, you can't join another team") return render_template('join_team.html', team=team, errors=errors) else: return redirect(url_for('auth.login', next=request.path)) @views.route('/profile', methods=['POST', 'GET']) def profile(): if authed(): if request.method == "POST": errors = [] name = request.form.get('name') email = request.form.get('email') try: share = bool(request.form.get('share', None)) except (ValueError, TypeError): share = None user = Users.query.filter_by(id=session['id']).first() if not get_config('prevent_name_change'): names = Users.query.filter_by(name=name).first() name_len = len(request.form['name']) == 0 emails = Users.query.filter_by(email=email).first() valid_email = re.match(r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", email) if ('password' in request.form.keys() and not len(request.form['password']) == 0) and \ (not bcrypt_sha256.verify(request.form.get('confirm').strip(), user.password)): errors.append("Your old password doesn't match what we have.") if not valid_email: errors.append("That email doesn't look right") if not get_config('prevent_name_change') and names and name!=session['username']: errors.append('That team name is already taken') if emails and emails.id != session['id']: errors.append('That email has already been used') if not get_config('prevent_name_change') and name_len: errors.append('Pick a longer team name') # if website.strip() and not validate_url(website): # errors.append("That doesn't look like a valid URL") if len(errors) > 0: return render_template('profile.html', name=name, email=email, share=share, errors=errors) else: user = Users.query.filter_by(id=session['id']).first() if not get_config('prevent_name_change'): user.name = name if user.email != email.lower(): user.email = email.lower() if get_config('verify_emails'): user.verified = False session['username'] = user.name if 'password' in request.form.keys() and not len(request.form['password']) == 0: user.password = bcrypt_sha256.encrypt(request.form.get('password')) user.share = share db.session.commit() db.session.close() return redirect(url_for('views.profile')) else: user = Users.query.filter_by(id=session['id']).first() name = user.name email = user.email share = user.share # website = user.website # affiliation = user.affiliation # country = user.country prevent_name_change = get_config('prevent_name_change') confirm_email = get_config('verify_emails') and not user.verified return render_template('profile.html', name=name, email=email, share=share, prevent_name_change=prevent_name_change, confirm_email=confirm_email) else: return redirect(url_for('auth.login'))
import tensorflow as tf import numpy as np import fileinput import gzip vocab = {"": 0} def read_data(file_name, n): data = [] finput = fileinput.input(file_name, openhook=gzip.open) i = 0 for line in finput: line = line.decode() elems = line.strip().split("\t") if len(elems) == 2: data.append(elems) for word in elems[0].split(" "): if word not in vocab: vocab[word] = len(vocab) i += 1 if i > n: break finput.close() return data training = read_data("train-shuffled.txt.gz", 10000) dev = read_data("dev-shuffled.txt.gz", 1000) print(len(vocab)) max_len = 20 n_inputs = 50 n_neurons = 60 n_steps = 3 n_outputs = 2 n_vocab = len(vocab) n_embedding = 150 learning_rate = 0.001 init_embeds = tf.random_uniform([n_vocab, n_embedding], -1.0, 1.0) embedding = tf.Variable(init_embeds) train_inputs = tf.placeholder(tf.int32, shape=[None, n_steps], name="train_inputs") inputs = tf.nn.embedding_lookup(embedding, train_inputs) inputs = tf.unstack(inputs, num=n_steps, axis=1) y = tf.placeholder(tf.int32, [None], name="y") #basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons) basic_cell = tf.keras.layers.SimpleRNNCell(units=n_neurons) outputs, states = tf.nn.static_rnn(basic_cell, inputs, dtype=tf.float32) outputs = tf.reshape(outputs, [-1, n_neurons * n_steps]) logits = tf.layers.dense(outputs, n_outputs, activation=tf.math.sigmoid) xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits) loss = tf.reduce_mean(xentropy) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) training_op = optimizer.minimize(loss) correct = tf.nn.in_top_k(logits, y, 1) accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) init = tf.global_variables_initializer() n_epochs = 1000 batch_size = 200 def make_vec(sent): vec = np.zeros(n_steps) i = 0 for w in sent.split(" "): if i >= n_steps: break vec[i] = vocab[w] i += 1 return vec x_dev = [make_vec(t[0]) for t in dev] y_dev = [int(t[1]) for t in dev] x_train = [make_vec(t[0]) for t in training] y_train = [int(t[1]) for t in training] print(sum(y_train)) print(len(y_train)) # Add ops to save and restore all the variables. saver = tf.train.Saver() with tf.Session() as sess: init.run() for epoch in range(n_epochs): for iteration in range(len(training) // batch_size): x_batch = [make_vec(t[0]) for t in training[iteration:iteration+batch_size]] y_batch = [int(t[1]) for t in training[iteration:iteration+batch_size]] sess.run(training_op, feed_dict={train_inputs: x_batch, y: y_batch}) acc_train = sess.run(accuracy, feed_dict={train_inputs: x_train, y: y_train}) acc_test = sess.run(accuracy, feed_dict={train_inputs: x_dev, y: y_dev}) print("%d: %0.3f // %0.3f" % (epoch, acc_train, acc_test)) save_path = saver.save(sess, "./model.ckpt") print("Model saved in path: %s" % save_path)
#!/usr/bin/env python # coding: utf-8 # # Welcome to M-LSD demo # # In this demo, you can simply run line segment detection and box detection with our M-LSD models. # # Thanks to [gradio](https://gradio.app/), this demo is interactive! # # - For the line segment detection demo: Launch line segment detection with M-LSD # # - For the box detection demo: Launch box detection with M-LSD # ## Preliminaries # This section contains the initial setup. # Please, run it first. # ### Clone M-LSD repository # ### Install gradio # ### Initialize tflite model and functions # In[1]: import os import subprocess from PIL import Image import cv2 import numpy as np import tensorflow as tf from utils import pred_lines, pred_squares #import gradio as gr import matplotlib.pyplot as plt import time import math from common import draw_str from urllib.request import urlretrieve # Load MLSD 512 Large FP32 tflite model_name = '/home/cheng/mlsd/tflite_models/M-LSD_512_tiny_fp32.tflite' interpreter = tf.lite.Interpreter(model_path=model_name) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # ## Launch line segment detection with M-LSD # In[2]: def wrapper_for_LSD(img_input, score_thr, dist_thr): lines = pred_lines(img_input, interpreter, input_details, output_details, input_shape=[512, 512], score_thr=score_thr, dist_thr=dist_thr) img_output = img_input.copy() # draw lines for line in lines: x_start, y_start, x_end, y_end = [int(val) for val in line] cv2.line(img_output, (x_start, y_start), (x_end, y_end), [0,255,255], 2) return img_output,lines class BestLineDetection(object): def __init__(self, angle=90,tolerance=5,scale=100,score_thr=0.2,dist_thr=10): ## A flag that indicates if the output image shall be drawn self.draw_img = True self.scale_percent = scale # rescale the resolution if needed self.angle = angle self.range = tolerance # angle error tolerance self.angle_weight=0.5 self.width_weight=3 self.length_weight=0.1 # postion weight self.score_thr=score_thr self.dist_thr=dist_thr self.minWidth= 1 self.minLength = 50 def setAngle(self,new_angle): self.angle=new_angle def setTolerance (self, new_tolerance): self.range=new_tolerance # pre-process the input image by resizing, grayscaling, lsding and caluclating the line segments' angles, lengths and credits def processImage(self, input_image): # Resized Image #resized_img = self.resize_img(input_image, self.scale_percent) # Convert to grayscale #img_gray = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY) # LSD segments = self.LSD(input_image) if segments.shape[0]==0: lines_info=segments.reshape(0,8) else: angles = line_angle(segments) lengths = line_length(segments) lines_info = np.append(segments, angles, axis=1) lines_info = np.append(lines_info, lengths, axis=1) credits = line_credit(lines_info,self.angle_weight,self.width_weight,self.length_weight) lines_info = np.append(lines_info, credits, axis=1) return lines_info def resize_img(self, img, scale_percent): width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) dim = (width, height) resized_img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA) return resized_img def LSD(self, input_image): # [point1.x, point1.y, point2.x, point2.y, width] output_img,segments=wrapper_for_LSD(input_image, self.score_thr, self.dist_thr) widths=np.ones((segments.shape[0],1)) segments=np.append(segments,widths,axis=1) return segments def bestline_picker(self, input_image): lines_info=self.processImage(input_image) # [point1.x, point1.y, point2.x, point2.y, width, angle, length, credit] copy=np.copy(input_image) bestline = pick_bestline(self.angle, lines_info,self.range, self.minWidth, self.minLength) if bestline[6]!=0: output_image = draw_bestline(copy, bestline) #draw_str(output_image, (20, 20), 'Angle_drift: %d' % (bestline[5] - self.angle) + ' Length: %d' % bestline[6]) #draw_str(output_image, (20, 40), 'delta_x: %d' % (bestline[0] - bestline[2])) #print("Deata x =", bestline[0] - bestline[2]) else: output_image = input_image return bestline, output_image, lines_info # Caculation methods of line lengths, angles and credits def line_angle(segments): rows = segments.shape[0] x1, y1, x2, y2 = segments[:,0],segments[:,1],segments[:,2],segments[:,3] angles = np.degrees(np.arctan2(y1 - y2, x2 - x1)) # y axis reverses in pixel coordinate, so y1-y2 np.where(angles>=0,angles,angles+180) return angles.reshape(rows, -1) def line_length(segments): rows = segments.shape[0] point1 = segments[:,0:2] point2 = segments[:,2:4] lengths=np.linalg.norm(point2-point1,axis=-1) # apply L2 norm to each row return lengths.reshape(rows, -1) def line_credit(lines_info,angle_weight, width_weight, length_weight): rows = lines_info.shape[0] credits = angle_weight*lines_info[:,5]+width_weight*lines_info[:,4]+length_weight*lines_info[:,6] return credits.reshape(rows,-1) def draw_bestline(img, lines_info): coordinates = lines_info[0:4].reshape([2, 2]).astype(int) best_img = cv2.line(img, (coordinates[0][0], coordinates[0][1]), (coordinates[1][0], coordinates[1][1]), (255, 0, 0), 3) return best_img def pick_bestline(theta, lines_info, tolerance, minWidth, minLength): # pick the line with the most credits within valid range # valid range: theta-range<=angle<= theta+range, width>=minWidth, length>=minLength closelines=lines_info[(lines_info[:, 5] >= (theta - tolerance)) & (lines_info[:, 5] <= (theta + tolerance)) & (lines_info[:,4]>=minWidth) & (lines_info[:, 6]>=minLength)] if closelines.size == 0: # if there is no line within the range #flag = False return np.zeros(8) else: #flag = True index_close=np.argmax(closelines[:, 7]) index=np.where(np.all(lines_info==closelines[index_close],axis=1)) return lines_info[index[0][0]] def pick_sameline(prev_bestline, curr_lines): dists=[] rows=curr_lines.shape[0] #print(prev_bestline[:2].astype(int)) for i in curr_lines: distance= min((np.linalg.norm(i[:2] - prev_bestline[:2])),(np.linalg.norm(i[2:4] - prev_bestline[:2]))) #print(distance) dists.append(distance) dists=np.array(dists).reshape(rows, -1) curr_lines=np.append(curr_lines,dists,axis=1) closelines=curr_lines[curr_lines[:,8]<20] #print(closelines.astype(int)) if closelines.size==0: print("No same line!") return np.zeros(8),closelines, True else: index_nearest=np.abs(closelines[:,5]-prev_bestline[5]).argmin() index=np.where(np.all(curr_lines==closelines[index_nearest],axis=1)) return curr_lines[index[0][0]],closelines, False def drift_detection (bestline_1, bestline_2, image): #less priority ratio = 0.01 x_total = image.shape[1] if (bestline_1[1] > bestline_1[3]): x_1 = bestline_1[0] else: x_1 = bestline_1[2] if (bestline_2[1] > bestline_2[3]): x_2 = bestline_2[0] else: x_2 = bestline_2[2] lateral_drift = x_1 - x_2 # if (math.dist(bestline_1[:2],bestline_2[:2])<math.dist(bestline_1[:2],bestline_2[2:4])): # lateral_drift= bestline_1[0]-bestline_2[0] # else: # lateral_drift= bestline_1[0]-bestline_2[2] #ignore the when picking new_lines if abs(lateral_drift) <= x_total * ratio: return lateral_drift else: return 0 # In[8]: line_detection_object = BestLineDetection(90,5,80,0.25,20) image = cv2.imread("/home/cheng/images/frame1000.jpg") print(image.shape) start = time.time() lines_info=line_detection_object.processImage(image) #print(lines_info.shape) prev_bestline,output_img,curr_lines =line_detection_object.bestline_picker(image) end = time.time() print("time elapsed = ", end - start) print(output_img.shape) canvas=np.zeros_like(output_img) for i in lines_info: pt1 = (int(i[0]),int(i[1])) pt2 = (int(i[2]),int(i[3])) width = int(i[4]) cv2.line(canvas, pt1, pt2, (255, 255, 255), 2) plt.figure(figsize=(30,15)) plt.imshow(canvas) plt.show() plt.figure(figsize=(30,15)) plt.imshow(output_img) plt.show() # In[ ]:
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 et: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Tests for the universal datalad's annex customremote""" import glob import os.path as op from datalad.distribution.dataset import Dataset from datalad.downloaders.tests.utils import get_test_providers from datalad.support.exceptions import CommandError from datalad.support.external_versions import external_versions from datalad.tests.utils import ( assert_in, assert_raises, eq_, serve_path_via_http, skip_if_no_network, with_tempfile, with_tree, ) @with_tempfile() @skip_if_no_network def check_basic_scenario(url, d): ds = Dataset(d).create() annex = ds.repo # TODO skip if no boto or no credentials get_test_providers(url) # so to skip if unknown creds # Let's try to add some file which we should have access to ds.download_url(url) ds.save() # git-annex got a fix where it stopped replacing - in the middle of the filename # Let's cater to the developers who might have some intermediate version and not # easy to compare -- we will just check that only one file there is an that it # matches what we expect when outside of the development versions range: filenames = glob.glob(op.join(d, '3versions[-_]allversioned.txt')) eq_(len(filenames), 1) filename = op.basename(filenames[0]) if external_versions['cmd:annex'] < '8.20200501': assert_in('_', filename) # Date after the fix in 8.20200501-53-gcabbc91b1 elif external_versions['cmd:annex'] >= '8.20200512': assert_in('-', filename) else: pass # either of those is ok whereis1 = annex.whereis(filename, output='full') eq_(len(whereis1), 2) # here and datalad annex.drop(filename) whereis2 = annex.whereis(filename, output='full') eq_(len(whereis2), 1) # datalad # if we provide some bogus address which we can't access, we shouldn't pollute output with assert_raises(CommandError) as cme: annex.add_urls([url + '_bogus']) assert_in('addurl: 1 failed', cme.exception.stderr) # unfortunately with_tree etc decorators aren't generators friendly thus # this little adapters to test both on local and s3 urls @with_tree(tree={'3versions-allversioned.txt': "somefile"}) @serve_path_via_http def test_basic_scenario_local_url(p, local_url): check_basic_scenario("%s3versions-allversioned.txt" % local_url) def test_basic_scenario_s3(): check_basic_scenario('s3://datalad-test0-versioned/3versions-allversioned.txt')
n1 = float(input('Diga a primeira nota: ')) while n1 < 0 or n1 > 10: n1 = float(input('Valor inválido, por favor digite outro: ')) n2 = float(input('Diga a segunda nota: ')) while n2 < 0 or n2 > 10: n2 = float(input('Valor inválido, por favor digite outro: ')) med = (n1+n2)/2 if med < 5.0: print('Sua média foi de \033[32m{:.2f}\033[m e você está \033[1;31mREPROVADO\033[m'.format(med)) elif 5 <= med <= 6.9: print('Sua média foi de \033[32m{:.2f}\033[m e você está na \033[1;35mRECUPERAÇÃO\033[m'.format(med)) else: print('Sua média foi de \033[32m{:.2f}\033[m e você está \033[1;34mAPROVADO\033[m'.format(med))
import argparse import sys from os.path import dirname, join, realpath import tables sys.path.insert(0, realpath(join(dirname(__file__), '../..'))) from base.config_loader import ConfigLoader from base.data.data_table import COLUMN_MOUSE_ID, COLUMN_LABEL def parse(): parser = argparse.ArgumentParser(description='script to count samples per dataset') parser.add_argument('--experiment', '-e', required=True, help='name of experiment to load config from') return parser.parse_args() def get_mouse_from_id(mouse_id: int): """because mice_id are stored as int in datafile, they must be transformed back to the original names""" return 'M' + str(mouse_id)[:2] def main(): # datasets in the transformed data file, dataset without a table in the file are ignored datasets = ['train', 'valid', 'test'] # open datafile with tables.open_file(config.DATA_FILE) as file: for ds in datasets: # load table, ignore dataset if it does not exist table = file.root[ds] if not table: continue n_total = len(table[:]) # total number of samples in dataset print('dataset:', ds) # convert mice_id back to mice names and log them print('mice:', set(map(get_mouse_from_id, table[:][COLUMN_MOUSE_ID]))) print('{:12s}{}\t{}'.format('stage', 'relative', 'total')) # count number of samples per stage for s in config.STAGES: n = len([row[COLUMN_MOUSE_ID] for row in table.where('({}=="{}")'.format(COLUMN_LABEL, s))]) print('{:12s}{:6.2%}\t{:6d}'.format(s, n / n_total, n)) print() if __name__ == '__main__': args = parse() config = ConfigLoader(args.experiment, create_dirs=False) # load given config main()
import runway import keras_ocr import numpy as np @runway.setup def setup(): return keras_ocr.pipeline.Pipeline() @runway.command('recognize', inputs={'image': runway.image}, outputs={'bboxes': runway.array(runway.image_bounding_box), 'labels': runway.array(runway.text)}) def recognize(model, inputs): width, height = inputs['image'].size predictions = model.recognize(np.array(inputs['image'])) labels = [] bboxes = [] for label, bbox in predictions: labels.append(label) min_x, min_y = bbox.min(0) max_x, max_y = bbox.max(0) bboxes.append([ min_x / width, min_y / height, max_x / width, max_y / height ]) return {'labels': labels, 'bboxes': bboxes} if __name__ == "__main__": runway.run()
import functools from gaphas.view import GtkView from gi.repository import Gdk, GLib, Gtk from gaphor.core import Transaction from gaphor.core.modeling import Presentation def shortcut_tool(view, modeling_language, event_manager): ctrl = Gtk.EventControllerKey.new(view) ctrl.connect("key-pressed", on_delete, event_manager) ctrl.connect("key-pressed", on_shortcut, modeling_language) return ctrl def on_delete(ctrl, keyval, keycode, state, event_manager): """Handle the 'Delete' key. This can not be handled directly (through GTK's accelerators), otherwise this key will confuse the text edit stuff. """ view: GtkView = ctrl.get_widget() if keyval in (Gdk.KEY_Delete, Gdk.KEY_BackSpace) and ( state == 0 or state & Gdk.ModifierType.MOD2_MASK ): delete_selected_items(view, event_manager) return True return False def delete_selected_items(view: GtkView, event_manager): with Transaction(event_manager): items = view.selection.selected_items for i in list(items): if isinstance(i, Presentation): i.unlink() else: if i.diagram: i.diagram.remove(i) def on_shortcut(ctrl, keyval, keycode, state, modeling_language): # accelerator keys are lower case. Since we handle them in a key-press event # handler, we'll need the upper-case versions as well in case Shift is pressed. view: GtkView = ctrl.get_widget() for _title, items in modeling_language.toolbox_definition: for action_name, _label, _icon_name, shortcut, *rest in items: if not shortcut: continue keys, mod = parse_shortcut(shortcut) if state == mod and keyval in keys: view.get_toplevel().get_action_group("diagram").lookup_action( "select-tool" ).change_state(GLib.Variant.new_string(action_name)) return True return False _upper_offset = ord("A") - ord("a") @functools.lru_cache(maxsize=None) def parse_shortcut(shortcut): key, mod = Gtk.accelerator_parse(shortcut) return (key, key + _upper_offset), mod
""" Given a reference to the head node of a singly-linked list, write a function that reverses the linked list in place. The function should return the new head of the reversed list. In order to do this in O(1) space (in-place), you cannot make a new list, you need to use the existing nodes. In order to do this in O(n) time, you should only have to traverse the list once. *Note: If you get stuck, try drawing a picture of a small linked list and running your function by hand. Does it actually work? Also, don't forget to consider edge cases (like a list with only 1 or 0 elements).* """ from guided import add_to_head, add_to_tail, add_to_next, print_list class LinkedListNode: def __init__(self, value): self.value = value self.next = None def reverse(head_of_list): # Your code here curr_node = head_of_list prev_node = None new_node = curr_node.next while curr_node is not None: # lets make sure our node refs are correct next_node = curr_node.next # point current node backwards curr_node.next = prev_node # move all the pointers forward prev_node = curr_node curr_node = next_node if curr_node is not None: next_node = curr_node.next return prev_node linked_list = LinkedListNode( 3 ) # or head also this is a new instance of the class LinkedListNode tail = linked_list linked_list = add_to_head(linked_list, 2) linked_list = add_to_head(linked_list, 5) middle = linked_list linked_list = add_to_head(linked_list, 6) linked_list = add_to_head(linked_list, 0) linked_list = add_to_head(linked_list, 2) reverse_list = reverse(linked_list) print(reverse_list) print("--------") print(linked_list)
from django.conf import settings from django.conf.urls.static import static from django.http import HttpResponse from django.urls import include, path from django.utils.translation import ugettext from django.views.decorators.csrf import csrf_exempt from helusers.admin_site import admin from common.utils import get_api_version from palvelutarjotin.views import SentryGraphQLView admin.site.index_title = " ".join([ugettext("Beta Kultus API"), get_api_version()]) urlpatterns = [ path("admin/", admin.site.urls), path("reports/", include("reports.urls")), path("pysocial/", include("social_django.urls", namespace="social")), path("helauth/", include("helusers.urls")), path( "graphql", csrf_exempt( SentryGraphQLView.as_view( graphiql=settings.ENABLE_GRAPHIQL or settings.DEBUG ) ), ), ] # # Kubernetes liveness & readiness probes # def healthz(*args, **kwargs): return HttpResponse(status=200) def readiness(*args, **kwargs): return HttpResponse(status=200) urlpatterns += [path("healthz", healthz), path("readiness", readiness)] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
from mock import patch from pysparkling import Context from jobs.wordcount import analyze @patch('jobs.wordcount.WordCountJobContext.initalize_counter') @patch('jobs.wordcount.WordCountJobContext.inc_counter') def test_wordcount_analyze(_, __): result = analyze(Context()) assert len(result) == 327 assert result[:6] == [('ut', 17), ('eu', 16), ('vel', 14), ('nec', 14), ('quis', 12), ('vitae', 12)]
from setuptools import setup, find_packages VERSION='0.1' long_description='A tool that stores AWS events from a resource to elastic search.' packages=[ 'elasticevents', ] install_requires=[ 'boto3', 'click', ] def main(): setup_info = dict( name='Elasticevents', version=VERSION, author='Victor Palade', description='AWS Tools', long_description=long_description, license='Apache-2.0', packages=packages, install_requires=install_requires, zip_safe=False, ) setup(**setup_info) if __name__ == '__main__': main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 by Murray Altheim. All rights reserved. This file is part of # the Robot OS project and is released under the "Apache Licence, Version 2.0". # Please see the LICENSE file included as part of this package. # # author: altheim # created: 2020-01-18 # modified: 2020-10-28 # # Wraps the functionality of a Pimoroni IO Expander Breakout board, providing # access to the values of the board's pins, which outputs 0-255 values for # analog pins, and a 0 or 1 for digital pins. # # source: /usr/local/lib/python3.7/dist-packages/ioexpander/__init__.py # import sys import ioexpander as io from colorama import init, Fore, Style init() from lib.logger import Logger, Level from lib.event import Event # .............................................................................. class MockIoe(object): def __init__(self, trigger_pin, level): self._log = Logger('mock-ioe', level) self._trigger_pin = trigger_pin self._active_value = 0.60 self._value = 0.0 self._log.info('ready.') def set_default_value(self, value): self._value = value def input(self, pin): if pin == self._trigger_pin: self._log.info(Fore.YELLOW + 'returning triggerd value {:5.2f} for pin {:d}.'.format(self._active_value, pin)) return self._active_value else: self._log.info(Style.DIM + 'returning mock value 0.0 for pin {:d}.'.format(pin)) return self._value # .............................................................................. class MockIoExpander(): ''' A mock of an IO Expander board. ''' def __init__(self, config, level): super().__init__() if config is None: raise ValueError('no configuration provided.') _config = config['ros'].get('io_expander') self._log = Logger('mock-io-expander', level) # infrared self._port_side_ir_pin = _config.get('port_side_ir_pin') # pin connected to port side infrared self._port_ir_pin = _config.get('port_ir_pin') # pin connected to port infrared self._center_ir_pin = _config.get('center_ir_pin') # pin connected to center infrared self._stbd_ir_pin = _config.get('stbd_ir_pin') # pin connected to starboard infrared self._stbd_side_ir_pin = _config.get('stbd_side_ir_pin') # pin connected to starboard side infrared self._log.info('infrared pin assignments:\t' \ + Fore.RED + ' port side={:d}; port={:d};'.format(self._port_side_ir_pin, self._port_ir_pin) \ + Fore.BLUE + ' center={:d};'.format(self._center_ir_pin) \ + Fore.GREEN + ' stbd={:d}; stbd side={:d}'.format(self._stbd_ir_pin, self._stbd_side_ir_pin)) # moth/anti-moth self._port_moth_pin = _config.get('port_moth_pin') # pin connected to port moth sensor self._stbd_moth_pin = _config.get('stbd_moth_pin') # pin connected to starboard moth sensor self._log.info('moth pin assignments:\t' \ + Fore.RED + ' moth port={:d};'.format(self._port_moth_pin) \ + Fore.GREEN + ' moth stbd={:d};'.format(self._stbd_moth_pin)) # bumpers self._port_bmp_pin = _config.get('port_bmp_pin') # pin connected to port bumper self._cntr_bmp_pin = _config.get('center_bmp_pin') # pin connected to center bumper self._stbd_bmp_pin = _config.get('stbd_bmp_pin') # pin connected to starboard bumper self._log.info('bumper pin assignments:\t' \ + Fore.RED + ' port={:d};'.format(self._port_bmp_pin) \ + Fore.BLUE + ' center={:d};'.format(self._cntr_bmp_pin) \ + Fore.GREEN + ' stbd={:d}'.format(self._stbd_bmp_pin)) # configure board self._ioe = MockIoe(self._center_ir_pin, level) self._port_bmp_pump = 0 self._cntr_bmp_pump = 0 self._stbd_bmp_pump = 0 self._pump_limit = 10 self._log.info('ready.') # infrared sensors ......................................................... def get_port_side_ir_value(self): return int(round(self._ioe.input(self._port_side_ir_pin) * 100.0)) def get_port_ir_value(self): return int(round(self._ioe.input(self._port_ir_pin) * 100.0)) def get_center_ir_value(self): return int(round(self._ioe.input(self._center_ir_pin) * 100.0)) def get_stbd_ir_value(self): return int(round(self._ioe.input(self._stbd_ir_pin) * 100.0)) def get_stbd_side_ir_value(self): return int(round(self._ioe.input(self._stbd_side_ir_pin) * 100.0)) # moth/anti-moth ........................................................... def get_moth_values(self): return [ int(round(self._ioe.input(self._port_moth_pin) * 100.0)), \ int(round(self._ioe.input(self._stbd_moth_pin) * 100.0)) ] # bumpers .................................................................. def get_port_bmp_value(self): return ( self._ioe.input(self._port_bmp_pin) == 0 ) # return ( self._ioe.input(self._port_bmp_pin) == 0 ) def get_center_bmp_value(self): _value = self._ioe.input(self._cntr_bmp_pin) if _value == 0: print(Fore.GREEN + 'get_center_bmp_value({}): {}'.format(type(_value), _value) + Style.RESET_ALL) return True else: print(Fore.RED + 'get_center_bmp_value({}): {}'.format(type(_value), _value) + Style.RESET_ALL) return False # return ( _value == 0 ) # return ( self._ioe.input(self._cntr_bmp_pin) == 0 ) def get_stbd_bmp_value(self): return ( self._ioe.input(self._stbd_bmp_pin) == 0 ) # return ( self._ioe.input(self._stbd_bmp_pin) == 0 ) # .......................................................................... # raw values are unprocessed values from the IO Expander (used for testing) # raw infrared sensors ..................................................... def get_raw_port_side_ir_value(self): return self._ioe.input(self._port_side_ir_pin) def get_raw_port_ir_value(self): return self._ioe.input(self._port_ir_pin) def get_raw_center_ir_value(self): return self._ioe.input(self._center_ir_pin) def get_raw_stbd_ir_value(self): return self._ioe.input(self._stbd_ir_pin) def get_raw_stbd_side_ir_value(self): return self._ioe.input(self._stbd_side_ir_pin) # raw moth sensors ......................................................... def get_raw_moth_values(self): return [ self._ioe.input(self._port_moth_pin), self._ioe.input(self._stbd_moth_pin) ] def get_raw_port_moth_value(self): return self._ioe.input(self._port_moth_pin) def get_raw_stbd_moth_value(self): return self._ioe.input(self._stbd_moth_pin) # raw bumpers .............................................................. def get_raw_port_bmp_value(self): return self._ioe.input(self._port_bmp_pin) def get_raw_center_bmp_value(self): return self._ioe.input(self._cntr_bmp_pin) def get_raw_stbd_bmp_value(self): return self._ioe.input(self._stbd_bmp_pin) # EOF
import logging from .File import File from .Profile import Profile from .Root import Root from .session import * logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO)
""" test_terminal ~~~~~~~~~~~~~~~~ """ import unittest from domonic.decorators import silence from domonic.terminal import * class TestCase(unittest.TestCase): def test_bash_ls(self): files = ls() # print(files) assert "domonic" in files # return self.assertIn("domonic", ls()) print(ls("-al")) print(ls("../")) for line in ls(): print("line:", line) # for f in ls(): # try: # print(f) # print(cat(f)) # except Exception as e: # pass def test_bash_pwd(self): thedir = pwd() # print("OYI::", thedir) self.assertIn("domonic", thedir) def test_bash_cd(self): pass # TODO - need to change github action # print(cd('../')) # < CD does not run on terminal # thedir_aftercd = pwd() # print(thedir_aftercd) # self.assertTrue('domonic' not in thedir_aftercd) # print(cd('domonic')) # thedir_aftercd = pwd() # print(thedir_aftercd) # self.assertTrue('domonic' in thedir_aftercd) def test_bash_mkdir(self): try: mkdir("somedir") self.assertIn("somedir", ls()) except Exception as e: print(e) finally: # rm('-r somedir') rmdir("somedir") self.assertTrue("somedir" not in ls()) def test_bash_touch(self): try: touch("somefile") self.assertTrue("somefile" in ls()) except Exception as e: print(e) finally: rm("somefile") self.assertTrue("somefile" not in ls()) def test_bash_mv(self): try: touch("somefile") mv("somefile temp") except Exception as e: print(e) finally: self.assertTrue("somefile" not in ls()) self.assertTrue("temp" in ls()) rm("temp") def test_bash_cp(self): try: touch("somefile") cp("somefile temp") except Exception as e: print(e) finally: self.assertTrue("temp" in ls()) rm("somefile") rm("temp") @silence def test_bash_git(self): # print(git('status')) self.assertIn("master", git("status")) def test_bash_general(self): print(man("ls")) print(echo("test")) print(df()) print(du()) print(ps()) # print(cowsay('moo')) print(date()) print(cal()) # failing on github actions # for i, l in enumerate(cat('LICENSE.txt')): # print(i, l) def test_bash_history(self): pass # failing on github actions # print(history()) # for i, thing in enumerate(history(), 1): # print(i, thing) @silence def test_bash(self): print("ran") print(ping("http://eventual.technology")) # < TODO - need to strean output # print(wget('eventual.technology')) if __name__ == "__main__": unittest.main()
# Generated by Django 3.2 on 2021-08-28 20:31 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('payment', '0001_initial'), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_time', models.DateTimeField(auto_now_add=True, verbose_name='created time')), ('modified_time', models.DateTimeField(auto_now=True, verbose_name='modified time')), ('status', models.PositiveSmallIntegerField(choices=[(0, 'preparing food'), (0, 'sending')], verbose_name='status')), ('is_delivered', models.BooleanField(default=False, verbose_name='is delivered')), ('invoice', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='orders', to='payment.invoice', verbose_name='invoice')), ], options={ 'abstract': False, }, ), ]
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import git_rebaser _ARG_ALIASES = { 'xl': ['ll', 'l'], 'update': ['up'], 'commit': ['ci'], 'prune': ['d', 'delete'] } def _get_arg_with_aliases(arg): return {'name': arg, 'aliases': _ARG_ALIASES.get(arg, [])} def main(): parser = argparse.ArgumentParser() subparsers = parser.add_subparsers(dest='subparser_name') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('amend'), help='Amend current branch') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('xl'), help='show revision history of entire repository') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('change_branch_name'), help='change current branch name') sub_arg.add_argument( '--branch_name', default=None, help='branch name. If not specified, it will use next available positive number' ) sub_arg = subparsers.add_parser( **_get_arg_with_aliases('set_as_master_branch'), help='Set current branch as master branch, it will be associated with another' ' branch name 0 so it is easier to refer to') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('diff'), help='diff file with parent branch') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('difftool'), help='diff file with parent branch using git difftool') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('commit'), help='commit the specified files or all outstanding changes') sub_arg.add_argument('--branch_name', default=None) sub_arg = subparsers.add_parser( **_get_arg_with_aliases('init'), help='Initialize git_rebaser on current directory') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('prune'), help='delete a branch, but keeping sub branches if there is any') sub_arg.add_argument('branch_name') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('rebase'), help='rebase a branch with its sub-branches(the whole chain) on top of a branch' ) sub_arg.add_argument('-s', '--source', help='source branch name') sub_arg.add_argument('-d', '--dest', help='destination branch name') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('sync'), help='sync git from remote') sub_arg = subparsers.add_parser( **_get_arg_with_aliases('update'), help='update working directory (or switch revisions)') sub_arg.add_argument('branch_name') args = parser.parse_args() sub_arg_name = args.subparser_name for key, value in _ARG_ALIASES.items(): if sub_arg_name in value: sub_arg_name = key if sub_arg_name is None: parser.print_help() exit(1) # pass the sub argument to corresponding method call. rebaser = git_rebaser.GitRebaser() getattr(rebaser, sub_arg_name)(args) if __name__ == '__main__': main()
"""Functions for safely printing in parallel.""" try: import horovod.torch as hvd except ModuleNotFoundError: pass use_horovod = False def set_horovod_status(new_value): """ Set the horovod status for printing. By setting the horovod status via this function it can be ensured that printing works in parallel. The Parameters class does that for the user. Parameters ---------- new_value : bool Value the horovod status has. """ global use_horovod use_horovod = new_value def printout(*values, sep=' '): """ Interface to built-in "print" for parallel runs. Can be used like print. Parameters ---------- values Values to be printed. sep : string Separator between printed values. """ outstring = sep.join([str(v) for v in values]) if use_horovod is False: print(outstring) else: if hvd.rank() == 0: print(outstring)
# -*- coding: utf-8 -*- u"""Jupyterhub login :copyright: Copyright (c) 2020 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkconfig from pykern.pkcollections import PKDict from pykern.pkdebug import pkdp import contextlib import jupyterhub.auth import sirepo.auth import sirepo.cookie import sirepo.server import sirepo.util import tornado.web import werkzeug.exceptions _JUPYTERHUBLOGIN_ROUTE = '/jupyterhublogin' class Authenticator(jupyterhub.auth.Authenticator): # Do not prompt with jupyterhub login page. self.authenticate() # will handle login using Sirepo functionality # See the jupyterhub docs for more info: # https://jupyterhub.readthedocs.io/en/stable/api/auth.html auto_login = True refresh_pre_spawn = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) sirepo.server.init() async def authenticate(self, handler, data): with _set_cookie(handler): try: self._check_permissions() except werkzeug.exceptions.Forbidden: # returning None means the user is forbidden (403) # https://jupyterhub.readthedocs.io/en/stable/api/auth.html#jupyterhub.auth.Authenticator.authenticate return None except sirepo.util.SRException as e: r = e.sr_args.get('routeName') if r not in ('completeRegistration', 'login', 'loginFail'): raise handler.redirect(f'{_JUPYTERHUBLOGIN_ROUTE}#/{r}') raise tornado.web.Finish() u = sirepo.sim_api.jupyterhublogin.unchecked_jupyterhub_user_name( have_simulation_db=False, ) if not u: handler.redirect(f'{_JUPYTERHUBLOGIN_ROUTE}') raise tornado.web.Finish() return u async def refresh_user(self, user, handler=None): with _set_cookie(handler): try: self._check_permissions() except sirepo.util.SRException: # Returning False is what the jupyterhub API expects and jupyterhub # will handle re-authenticating the user. # https://jupyterhub.readthedocs.io/en/stable/api/auth.html#jupyterhub.auth.Authenticator.refresh_user return False return True def _check_permissions(self): sirepo.auth.require_user() sirepo.auth.require_sim_type('jupyterhublogin') @contextlib.contextmanager def _set_cookie(handler): import sirepo.auth_db with sirepo.auth_db.session(), \ sirepo.cookie.set_cookie_outside_of_flask_request( handler.get_cookie(sirepo.cookie.cfg.http_name), ): yield
#!/usr/bin/env python import docker import json import os import uuid from esbulkstream import Documents def main(): cwd = os.getcwd() docker_client = docker.from_env() es = Documents('sbom') with open("top-containers.json") as fh: container_names = json.load(fh)['containers'] for c in container_names: print("Scanning %s" % c) if c == "elasticsearch": c = "elasticsearch:8.0.0" elif c == "logstash": c = "logstash:8.0.0" elif c == "kibana": c = "kibana:8.0.0" elif c == "jenkins": c = "jenkins:2.60.3" elif c == "oraclelinux": c = "oraclelinux:8" elif c == "opensuse": continue elif c == "ubuntu-debootstrap": continue elif c == "notary": c = "notary:signer" elif c == "docker-dev": continue elif c == "ibm-semeru-runtimes": c = "ibm-semeru-runtimes:open-8u322-b06-jre-centos7" elif c == "scratch": continue elif c == "clefos": # Syft doesn't like this image, just skip it continue else: c = f"{c}:latest" docker_client.images.pull(c) output = docker_client.containers.run("anchore/syft", \ "-o json --file /SBOMs/%s.json packages docker:%s" % (c, c), \ auto_remove=True, \ environment=["SYFT_FILE_METADATA_CATALOGER_ENABLED=true"], \ volumes=[f"{cwd}/SBOMs:/SBOMs", "/var/run/docker.sock:/var/run/docker.sock"]) if __name__ == "__main__": main()
''' Code for JAX implementations presented in: Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization ''' import itertools import time from functools import partial import haiku as hk import jax import jax.numpy as jnp import numpy as np from jax import grad, jit, random, vmap from jax.experimental import optimizers, stax from jax.lib import pytree from jax.tree_util import tree_flatten, tree_multimap, tree_unflatten from keras.utils.np_utils import to_categorical from tensorflow_privacy.privacy.analysis.rdp_accountant import (compute_rdp, get_privacy_spent) import data import utils def logistic_model(features, **_): return hk.Sequential([hk.Linear(1), jax.nn.sigmoid])(features) def ffnn_model(features, **_): return hk.Sequential([hk.Linear(50), jax.nn.relu, hk.Linear(2)])(features) def mnist_model(features, **_): return hk.Sequential([ hk.Conv2D(16, (8, 8), padding='SAME', stride=(2, 2)), jax.nn.relu, hk.MaxPool(2, 1, padding='VALID'), # matches stax hk.Conv2D(32, (4, 4), padding='VALID', stride=(2, 2)), jax.nn.relu, hk.MaxPool(2, 1, padding='VALID'), # matches stax hk.Flatten(), hk.Linear(32), jax.nn.relu, hk.Linear(10), ])(features) def lstm_model(x, vocab_size=10_000, seq_len=256, args=None, **_): embed_init = hk.initializers.TruncatedNormal(stddev=0.02) token_embedding_map = hk.Embed(vocab_size + 4, 100, w_init=embed_init) o2 = token_embedding_map(x) o2 = jnp.reshape(o2, (o2.shape[1], o2.shape[0], o2.shape[2])) # LSTM Part of Network core = hk.LSTM(100) if args and args.dynamic_unroll: outs, state = hk.dynamic_unroll(core, o2, core.initial_state(x.shape[0])) else: outs, state = hk.static_unroll(core, o2, core.initial_state(x.shape[0])) outs = outs.reshape(outs.shape[1], outs.shape[0], outs.shape[2]) # Avg Pool -> Linear red_dim_outs = hk.avg_pool(outs, seq_len, seq_len, "SAME").squeeze() final_layer = hk.Linear(2) ret = final_layer(red_dim_outs) return ret def embedding_model(arr, vocab_size=10_000, seq_len=256, **_): # embedding part of network x = arr embed_init = hk.initializers.TruncatedNormal(stddev=0.02) token_embedding_map = hk.Embed(vocab_size + 4, 16, w_init=embed_init) o2 = token_embedding_map(x) # avg pool -> linear o3 = hk.avg_pool(o2, seq_len, seq_len, "SAME").squeeze() fcnn = hk.Sequential([hk.Linear(16), jax.nn.relu, hk.Linear(2)]) return fcnn(o3) def cifar_model(features, **_): out = hk.Conv2D(32, (3, 3), padding='SAME', stride=(1, 1))(features) out = jax.nn.relu(out) out = hk.Conv2D(32, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.AvgPool(2, strides=2, padding='VALID')(out) out = hk.Conv2D(64, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.Conv2D(64, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.AvgPool(2, strides=2, padding='VALID')(out) out = hk.Conv2D(128, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.Conv2D(128, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.AvgPool(2, strides=2, padding='VALID')(out) out = hk.Conv2D(256, (3, 3), padding='SAME', stride=(1, 1))(out) out = jax.nn.relu(out) out = hk.Conv2D(10, (3, 3), padding='SAME', stride=(1, 1))(out) return out.mean((1, 2)) def multiclass_loss(model, params, batch): inputs, targets = batch logits = model.apply(params, None, inputs) # convert the outputs to one hot shape according to the same shape as # logits for vectorized dot product one_hot = jax.nn.one_hot(targets, logits.shape[-1]) logits = stax.logsoftmax(logits) # log normalize return -jnp.mean(jnp.sum(logits * one_hot, axis=-1)) # cross entropy loss def logistic_loss(model, params, batch): inputs, targets = batch[0], batch[1] # have to always supply the RNG field logits = model.apply(params, None, inputs) logits = jnp.reshape(logits, -1) # needs to be only scalar per index # max_val is required for numerical stability max_val = jnp.clip(logits, 0, None) loss = jnp.mean(logits - logits * targets + max_val + jnp.log(jnp.exp(-max_val) + jnp.exp((-logits - max_val)))) return loss def accuracy(model, params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=1) predicted_class = jnp.argmax(model.apply(params, None, inputs), axis=1) return jnp.mean(predicted_class == target_class) def clipped_grad(model, loss, params, l2_norm_clip, single_example_batch): """Evaluate gradient for a single-example batch and clip its grad norm.""" grads = grad(partial(loss, model))(params, single_example_batch) nonempty_grads, tree_def = tree_flatten(grads) total_grad_norm = jnp.linalg.norm([jnp.linalg.norm(neg.ravel()) for neg in nonempty_grads]) divisor = jnp.maximum(total_grad_norm / l2_norm_clip, 1.) normalized_nonempty_grads = [g / divisor for g in nonempty_grads] return tree_unflatten(tree_def, normalized_nonempty_grads) def private_grad(model, loss, params, batch, rng, l2_norm_clip, noise_multiplier, batch_size): """Return differentially private gradients for params, evaluated on batch.""" clipped_grads = vmap(partial(clipped_grad, model, loss), (None, None, 0))(params, l2_norm_clip, batch) clipped_grads_flat, grads_treedef = tree_flatten(clipped_grads) aggregated_clipped_grads = [g.sum(0) for g in clipped_grads_flat] rngs = random.split(rng, len(aggregated_clipped_grads)) noised_aggregated_clipped_grads = [ g + l2_norm_clip * noise_multiplier * random.normal(r, g.shape) for r, g in zip(rngs, aggregated_clipped_grads) ] normalized_noised_aggregated_clipped_grads = [ g / batch_size for g in noised_aggregated_clipped_grads ] return tree_unflatten(grads_treedef, normalized_noised_aggregated_clipped_grads) def private_grad_no_vmap(model, loss, params, batch, rng, l2_norm_clip, noise_multiplier, batch_size): """Return differentially private gradients for params, evaluated on batch.""" clipped_grads = tree_multimap( lambda *xs: jnp.stack(xs), *(clipped_grad(model, loss, params, l2_norm_clip, eg) for eg in zip(*batch))) clipped_grads_flat, grads_treedef = tree_flatten(clipped_grads) aggregated_clipped_grads = [g.sum(0) for g in clipped_grads_flat] rngs = random.split(rng, len(aggregated_clipped_grads)) noised_aggregated_clipped_grads = [ g + l2_norm_clip * noise_multiplier * random.normal(r, g.shape) for r, g in zip(rngs, aggregated_clipped_grads) ] normalized_noised_aggregated_clipped_grads = [ g / batch_size for g in noised_aggregated_clipped_grads ] return tree_unflatten(grads_treedef, normalized_noised_aggregated_clipped_grads) model_dict = { 'mnist': mnist_model, 'lstm': lstm_model, 'embed': embedding_model, 'ffnn': ffnn_model, 'logreg': logistic_model, 'cifar10': cifar_model, } def main(args): print(args) if args.microbatches: raise NotImplementedError('Microbatches < batch size not currently supported') if args.experiment == 'lstm' and args.no_jit: raise ValueError('LSTM with no JIT will fail.') data_fn = data.data_fn_dict[args.experiment][int(args.dummy_data)] kwargs = { 'max_features': args.max_features, 'max_len': args.max_len, 'format': 'NHWC', } if args.dummy_data: kwargs['num_examples'] = args.batch_size * 2 (train_data, train_labels), _ = data_fn(**kwargs) # train_labels, test_labels = to_categorical(train_labels), to_categorical( # test_labels) num_train = train_data.shape[0] num_complete_batches, leftover = divmod(num_train, args.batch_size) num_batches = num_complete_batches + bool(leftover) key = random.PRNGKey(args.seed) model = hk.transform( partial(model_dict[args.experiment], args=args, vocab_size=args.max_features, seq_len=args.max_len)) rng = jax.random.PRNGKey(42) init_params = model.init(key, train_data[:args.batch_size]) opt_init, opt_update, get_params = optimizers.sgd(args.learning_rate) loss = logistic_loss if args.experiment == 'logreg' else multiclass_loss if args.dpsgd: train_data, train_labels = train_data[:, None], train_labels[:, None] # regular update -- non-private def update(_, i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(partial(loss, model))(params, batch), opt_state) grad_fn = private_grad_no_vmap if args.no_vmap else private_grad # differentially private update def private_update(rng, i, opt_state, batch): params = get_params(opt_state) rng = random.fold_in(rng, i) # get new key for new random numbers return opt_update( i, grad_fn(model, loss, params, batch, rng, args.l2_norm_clip, args.noise_multiplier, args.batch_size), opt_state) opt_state = opt_init(init_params) itercount = itertools.count() train_fn = private_update if args.dpsgd else update if args.no_vmap: print('No vmap for dpsgd!') if not args.no_jit: train_fn = jit(train_fn) else: print('No jit!') dummy = jnp.array(1.) timings = [] for epoch in range(1, args.epochs + 1): start = time.perf_counter() for i, batch in enumerate(data.dataloader(train_data, train_labels, args.batch_size)): opt_state = train_fn( key, next(itercount), opt_state, batch, ) (dummy * dummy).block_until_ready() # synchronize CUDA. duration = time.perf_counter() - start print("Time Taken: ", duration) timings.append(duration) if args.dpsgd: print('Trained with DP SGD optimizer') else: print('Trained with vanilla non-private SGD optimizer') if not args.no_save: append_to_name = '' if args.no_jit: append_to_name += '_nojit' if args.no_vmap: append_to_name += '_novmap' utils.save_runtimes(__file__.split('.')[0], args, timings, append_to_name) else: print('Not saving!') print('Done!') if __name__ == '__main__': parser = utils.get_parser(model_dict.keys()) parser.add_argument('--no_vmap', dest='no_vmap', action='store_true') parser.add_argument('--no_jit', dest='no_jit', action='store_true') parser.add_argument('--dynamic_unroll', dest='dynamic_unroll', action='store_true') args = parser.parse_args() main(args)
""" Preprocessing of the Fichier Canadien des Éléments Nutritifs (FCEN) data before using it to characterize OFF ingredients """ import os import pandas as pd import json from ingredients_characterization.vars import FCEN_DATA_DIR, FCEN_NUTRIMENTS_TO_OFF, FCEN_DATA_FILEPATH # Reading data from FCEN food_names = pd.read_csv(os.path.join(FCEN_DATA_DIR, 'FOOD NAME.csv'), encoding='ISO-8859-1') nutrient_amounts = pd.read_csv(os.path.join(FCEN_DATA_DIR, 'NUTRIENT AMOUNT.csv'), encoding='ISO-8859-1') top_level_nutriments = ['proteins', 'carbohydrates', 'fat', 'fiber', 'water'] # Looping on FCEN ingredients result = dict() for i, food in food_names.iterrows(): # Looping on nutriments nutriments = dict() foo_nutrient_amounts = nutrient_amounts[(nutrient_amounts.FoodID == food.FoodID) & (nutrient_amounts.NutrientID.isin(FCEN_NUTRIMENTS_TO_OFF.keys()))] for j, nutri_amount in foo_nutrient_amounts.iterrows(): nutriments[FCEN_NUTRIMENTS_TO_OFF[nutri_amount.NutrientID]] = {"value": nutri_amount.NutrientValue, "stdev": nutri_amount.StandardError} nutriments_sum = sum([v['value'] for k, v in nutriments.items() if k in top_level_nutriments]) nutriments['other'] = {'value': 0, 'stdev': 0} # If the total sum is superior to 100, rectify the values if nutriments_sum > 100: for nutri in nutriments.values(): if nutri['value']: nutri['value'] = nutri['value'] * 100 / nutriments_sum # If the total sum is inferior to 100, add a "other" nutriment category that will ensure mass balance elif (nutriments_sum < 100) and (all([x in nutriments for x in top_level_nutriments])): nutriments['other']['value'] = 100 - nutriments_sum # Adding the data to the result food['nutriments'] = nutriments result[food.FoodID] = food.to_dict() # Saving the result with open(FCEN_DATA_FILEPATH, 'w', encoding='utf8') as file: json.dump(result, file, indent=2, ensure_ascii=False)
from landscapemodel import * from plots import * def ABtest(comparison,path,species=1,tmax=100,tshow=(0,-1),**kwargs): """A/B testing: plot results side-by-side for sets of options in comparison""" path=Path(path).mkdir() prm=deepcopy(LandscapeModel.dft_prm) prm['species']=species prm['landx']=prm['landy']=64 prm['dispersal']['mean']=1 model=LandscapeModel(parameters=prm) results=[] for comp in comparison: dic={} dic.update(kwargs) if results: dic['reseed']=0 dic['init']='restart' dic.update(comp) model.evol(dt=0.01,tmax=tmax,**dic) results.append(deepcopy(model.results)) for s in range(species): plt.figure() plt.suptitle('Species {}'.format(s) ) panel=0 for i in tshow: span=min([np.min(r['n'][i][s]) for r in results ]) , max([np.max(r['n'][i][s]) for r in results ]) for idx,comp, res in zip(range(len(results)),comparison,results): panel, ax = auto_subplot(panel, len(tshow) * len(results)) plt.colorbar(plt.imshow(res['n'][i][s],vmin=span[0],vmax=span[1]),ax=ax) t=res['t'][i] plt.title('{} t={}'.format(comp.get('title',idx), t) ) if kwargs.get('debug',0): code_debugger() else: plt.show() def FTtest(path='TEST/FTtest',**kwargs): """Test Fourier Transform optimization""" comparison=[{'method':'Euler','use_Fourier':0,'title':'Direct'},{'method':'Euler','use_Fourier':1,'title':'Fourier'} ] ABtest(comparison,path,**kwargs) def algotest(path='TEST/algotest',**kwargs): """Test dependence on integration algorithm""" comparison=[{'method':'Euler','title':'Euler'},{'method':'scipy','title':'scipy+Fourier','use_Fourier':1} ] ABtest(comparison,path,**kwargs) def environment(path): """Compare color and cutoff""" from landscapesimu import loop, summary_plots axes=[ ('environment_cutoff',[.01,.2] ), #Environment heterogeneity ('environment_color',[1.,3.] ), #Environment heterogeneity ('dispersal_mean', np.logspace(-1,.5,2) ), # Mean dispersal strength # ('competition_mean',[0.1,0.3][:1] ), #Interspecific competition strength # ('competition_scale', [0.1, 5][:] ), # Competition spatial scale ('sys', range(1)) # Dummy variable (change number in parentheses to make multiple runs with same parameters) ] loop(axes=axes,path=path,tmax=250,nsample=20,rerun='rerun' in sys.argv,species=30, reseed=0,use_Fourier=1,method='scipy') summary_plots(path,save=1,detailed=1,movie='movie' in sys.argv,rerun='rerun' in sys.argv or 'replot' in sys.argv, values=[ ('checker_r2','Checkerboard pattern')]) if __name__=='__main__': if 'FT' in sys.argv: FTtest(debug='debug' in sys.argv,species=16,tmax=10) elif 'algo' in sys.argv: algotest(debug='debug' in sys.argv,species=8,tmax=100) else: environment(Path('TEST/environment'))
from requests import Session from requests.adapters import HTTPAdapter from urllib3 import Retry class RetrySession(Session): def __init__(self, retries=3, backoff_factor=0.5, status_forcelist=None): super().__init__() retry = Retry(total=retries, read=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist) adapter = HTTPAdapter(max_retries=retries) self.mount('http://', adapter) self.mount('https://', adapter)
#-*- coding: utf-8 -*- from django_town.utils import CaseLessDict from .errors import AccessDeniedError from django_town.utils import class_from_path from django_town.core.settings import OAUTH2_SETTINGS from django_town.oauth2.user import OAuth2User def authorization_from_django_request(request): return request.META.get('HTTP_AUTHORIZATION') def uri_from_django_request(request): return request.build_absolute_uri() def http_method_from_django_request(request): return request.method def get_dict_from_django_request(request): return request.GET def post_dict_from_django_request(request): return request.POST class OAuth2Request(object): def __init__(self, request): if request: self._uri = uri_from_django_request(request) self._method = http_method_from_django_request(request).upper() self._body = CaseLessDict((get_dict_from_django_request(request) if self._method == "GET" else post_dict_from_django_request(request))) self._request = request self._client = None def save_session(self, key, value): pass @property def method(self): return self._method @property def client_id(self): return self._body.get('client_id') @property def client_secret(self): return self._body.get('client_secret') @property def username(self): return self._body.get('username') @property def password(self): return self._body.get('password') @property def grant_type(self): return self._body.get('grant_type') @property def code(self): return self._body.get('code') @property def redirect_uri(self): return self._body.get('redirect_uri') @property def response_type(self): return self._body.get('response_type') @property def refresh_token(self): return self._body.get('refresh_token') @property def access_token(self): return self._body.get('access_token') @property def state(self): return self._body.get('state') @property def scope(self): scope = self._body.get('scope') if scope: return scope.split(' ') return [] # #@property #def scope(self): # return self._body.get('scope') @property def user(self): if self._request.user.is_authenticated(): return OAuth2User(django_user=self._request.user) else: raise AccessDeniedError() def oauth2_request_class(): try: return class_from_path(OAUTH2_SETTINGS.REQUEST) except KeyError: return OAuth2Request class FakeRequest(OAuth2Request): def __init__(self, body): self._body = body self._method = "POST" super(FakeRequest, self).__init__(None) @property def method(self): return self._method @property def client_id(self): return self._body.get('client_id') @property def client_secret(self): return self._body.get('client_secret') @property def username(self): return self._body.get('username') @property def password(self): return self._body.get('password') @property def grant_type(self): return self._body.get('grant_type') @property def code(self): return self._body.get('code') @property def redirect_uri(self): return self._body.get('redirect_uri') @property def response_type(self): return self._body.get('response_type') @property def state(self): return self._body.get('state') @property def user(self): return self._body.get('user')
from django.forms import ModelForm from .models import Student, Teacher, SchoolClass, Parent, Subject, Lesson from django import forms YEARS = (2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016) class AddStudentForm(ModelForm): second_name = forms.CharField(required=False) address = forms.CharField(required=False) city = forms.CharField(required=False) zip_code = forms.CharField(required=False) class Meta: model = Student exclude = ['create_date', 'school_class', 'user', 'parents'] widgets = { 'birth_date': forms.SelectDateWidget(years=YEARS, attrs=({'style': 'width: 33%; display: inline-block;'})), 'pesel': forms.TextInput(attrs={'size': 11, 'title': 'numer PESEL', 'style': 'max-width: 9em'}) } class CreateStudentAccountForm(ModelForm): student = forms.ModelChoiceField(queryset=Student.objects.filter(user=None), initial=0) class Meta: model = Student fields = {'student'} class AddTeacherForm(ModelForm): class Meta: model = Teacher exclude = ['user'] class CreateTeacherAccountForm(ModelForm): teacher = forms.ModelChoiceField(queryset=Teacher.objects.filter(user=None), initial=0) class Meta: model = Teacher fields = {'teacher'} class CreateSchoolClassForm(ModelForm): name = forms.CharField(required=True, label='Symbol klasy') tutor = forms.ModelChoiceField(queryset=Teacher.objects.all(), initial=0, label="Wychowawca") class Meta: model = Teacher fields = {} widgets = { 'name': forms.TextInput(attrs={'style': 'max-width: 3em'}) } class CreateSubjectForm(ModelForm): class Meta: model = Subject fields = {'type', 'teacher', 'school_class'} class CreateLessonForm(ModelForm): school_class = forms.ModelChoiceField(queryset=SchoolClass.objects.all(), initial=0, label="Klasa") subject = forms.ModelChoiceField(queryset=Subject.objects.all(), initial=0, label="Przedmiot") class Meta: model = Lesson fields = {'beginning_hour', 'ending_hour', 'topic'} field_classes = { 'beginning_hour': forms.DateTimeField, 'ending_hour': forms.DateTimeField, } widgets = { 'topic': forms.Textarea, } class AssignStudentToClassForm(forms.Form): student = forms.ModelChoiceField(queryset=Student.objects.all(), initial=0, label="Uczeń") school_class = forms.ModelChoiceField(queryset=SchoolClass.objects.all(), initial=0, label="Klasa")
#coding = utf-8 import unittest import requests from selenium import webdriver import json import re import time class modifiedPhoneNum(unittest.TestCase): def setUp(self): self.driver = webdriver.Chrome() self.driver.implicitly_wait(10.0) self.driver.maximize_window() self.loginNum = "13000000000" self.loginPwd = "666666" self.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1 ) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36'} '''调用login函数''' self.login() # 列出一些测试需要的数据 self.phoneNumList = [1234564567890, 12345645669, 10000000000,11012345678,16212346789, 19256456489,69894548755,53245678956,' '] self.verifyCodeList = [3232,55444,668,985999,'fdfd','yuh7',' '] self.pwd = [454578,12345,123456789012345678901,'yuhi',''] global modifXpath #修改手机号按钮 modifXpath = "me__number___gR8Vt" global phoneXpath phoneXpath= "/html/body/div[5]/div/div/div[1]/div/div[1]/input" global sendXpath sendXpath = "/html/body/div[5]/div/div/div[1]/div/div[2]/button" global verifyCodeXpath verifyCodeXpath = "/html/body/div[5]/div/div/div[1]/div/div[2]/input" global passWdXpath passWdXpath = "/html/body/div[5]/div/div/div[1]/div/div[3]/input" global cancelXpath cancelXpath ="dialog__dialog-button-cancel___tJdyZ" global confirmXpath confirmXpath = "/html/body/div[5]/div/div/div[2]/button[1]" global tipXpath tipXpath = "/html/body/div[5]/div/div/div[1]/div/span" self.tipText = "" self.verifyCode = "" self.inputVerifyCode = "5625" # 登录 def login(self): self.driver.get("http://192.168.4.15:8001/1.8.0/cn/") loginPhoneNumBtn = self.driver.find_element_by_xpath("//*[@id='app']/div/div[1]/section/div/section/div/p[1]/input") loginPwdBtn = self.driver.find_element_by_xpath("//*[@id='app']/div/div[1]/section/div/section/div/p[2]/input") loginBtn =self.driver.find_element_by_xpath("//*[@id='app']/div/div[1]/section/div/section/p[1]") loginPhoneNumBtn.send_keys(self.loginNum) loginPwdBtn.send_keys(self.loginPwd) loginBtn.click() # 定位到用户头像的下拉列表 profileBtn =self.driver.find_element_by_xpath("//*[@id='app']/div/div[1]/div[2]/div/div/div[1]/div[2]/div[1]/div/span") profileBtn.click() meInfoBtn = self.driver.find_element_by_xpath("//*[@id='app']/div/div[1]/div[2]/div/div/div[1]/div[2]/div[1]/div[2]/ul/li[2]/a") meInfoBtn.click() def reqVerifyCode(self): # 网络请求获取验证码 verifyUrl = 'http://192.168.4.15:8001/1.8.0/cn/api/0.2/aux/sendverifycode' verifyParams = {'mobile': '18258183861', 'type': '3'} verify = requests.post(verifyUrl, data=verifyParams, headers=self.headers) print(verify.status_code) dic_json = json.dumps(verify.json(), sort_keys=True, indent=10, ensure_ascii=False) dicVerify = json.loads(dic_json) print(dicVerify) self.verifyCode = int(dicVerify["r"]["code"]) # 断言与验证 def confirmTest(self): try: tip = self.driver.find_element_by_xpath(tipXpath).text state = True if tip == self.tipText: self.assertTrue(True, ['正常']) else: self.assertFalse(False, tip) except: print("error") #修改手机号码----验证手机号码的合法性 def test_PhoneNum_1(self): self.driver.find_element_by_class_name(modifXpath).click() #取消修改 # self.driver.find_element_by_class_name(cancelXpath) #输入手机号:正则匹配复合手机号格式的手机号 for phoneNum in self.phoneNumList: phoneNumInput = self.driver.find_element_by_xpath(phoneXpath) phoneNumInput.clear() phoneNumInput.send_keys(phoneNum) regex = "^1(3|4|5|7|8)\d{9}$" match = re.search(regex, "%s" %phoneNum) time.sleep(0.5) vertifyBtn = self.driver.find_element_by_xpath(sendXpath) vertifyBtn.click() if match: print("手机号合法是:%s" %phoneNum) else : self.tipText = "手机号码异常!" print("异常手机号是:%s" %phoneNum) print("test_PhoneNum_1---end") # 修改手机号码----验证码 def test_verifyCode(self): #进入修改手机号的弹窗并发送验证码 self.driver.find_element_by_class_name(modifXpath).click() self.driver.find_element_by_xpath(phoneXpath).send_keys(int(self.loginNum)) # 获取验证码有效剩余时间 time.sleep(3) vertifyBtn = self.driver.find_element_by_xpath(sendXpath) if vertifyBtn.is_enabled(): vertifyBtn.click() # 输入验证码和密码并确定来验证验证码的正确性 self.driver.find_element_by_xpath(verifyCodeXpath).send_keys(self.inputVerifyCode) self.driver.find_element_by_xpath(passWdXpath).send_keys(self.loginPwd) # 取出文本中的数字 restSeconds = self.driver.find_element_by_class_name("me__send-code___3uCe0").text restSeconds = int(re.sub("\D", "", restSeconds)) print(restSeconds) time.sleep(2) if restSeconds>0: self.driver.find_element_by_xpath(confirmXpath).click() if self.inputVerifyCode == self.verifyCode: print("验证码输入正确") else: print("验证码输入错误") else: self.driver.find_element_by_xpath(confirmXpath).click() print("验证码输入错误-----超时") print("test_verifyCode---end") else: print(2222) def test_password(self): testPwd = "123456" self.driver.find_element_by_xpath(passWdXpath).send_keys(testPwd) print("密码") def test_modifiedPhoneNum_2(self): print("testcase_2") # # def test_modifiedPhoneNum_3(self): # print("testcase_3") # def tearDown(self): self.driver.quit() print("test end") if __name__ == '__main__': # suite = unittest.TestSuite() suite.addTest(modifiedPhoneNum("test_PhoneNum_1")) # suite.addTest(modifiedPhoneNum("test_verifyCode")) # # suite.addTest(modifiedPhoneNum("test_modifiedPhoneNum_3")) # runner = unittest.TextTestRunner() runner.run(suite)
from django.urls import path from . import views urlpatterns = [ path('<int:root>', views.index, name='index'), path('freshmen-groups', views.index, {"root": 5}, name='index'), path('subjects', views.index, {"root": 15}, name='index'), path('websites', views.website, {"root": 18}, name='website') ]
import os, glob papka_korpus = os.path.dirname(os.path.abspath(__file__)) papka_apertium = os.path.join(papka_korpus, "testApertium/") from tqdm import tqdm from time import monotonic, sleep from datetime import timedelta global_katolog = os.path.join(papka_korpus, "testbasictexts/") files = glob.glob(global_katolog+"*.txt") f = open(os.path.join(papka_korpus,"errors/error.log"), 'a+', encoding="utf-8") length = len(files) pbar = tqdm(files) start_time = monotonic() for fail in pbar: filename = fail[fail.rfind("/")+1:] pbar.set_description(f"Жасалуда {str(filename)}") try: os.system('''cd $HOME/sources/apertium-kaz-rus\ncat "{0}" | apertium -n -d. kaz-rus-tagger > "{1}"'''.format(fail, os.path.join(papka_apertium, filename))) except: f.write(fail+"\n") end_time = monotonic() timedel = end_time - start_time print("Аяқталды! Барлығы {0} құжат. Жұмсалған уақыт: {1}".format(length, timedelta(seconds=timedel))) f.close()
#!/usr/bin/env python #from .core import * import numpy as np import pandas as pd import shutil import urllib import urlparse from os.path import splitext, basename import os import util from pprint import pprint import StringIO import db from core import * from IPython.core.debugger import Tracer class Term(UploadCsvConvert): def __init__(self, xe): #add default col instance to children xe.attrib['newCols'] = 'term_id,term_source_id,term_name,term_category_id,description,term_field1,term_field2' defined_cols = {x.attrib['colName'] for x in xe} UploadCsvConvert.__init__(self,xe=xe,dest='term') for c in self.children: if c.col_name == 'term_source_id' and ( 'term_source_id' not in defined_cols): c.source_col = 'term_id' self.type_col = 'term_category_id' if 'termPrefix' in xe.attrib: self.term_prefix = xe.attrib['termPrefix'] if 'destFile' in xe.attrib: self.use_dest =xe.attrib['destFile']; def get_type_col_value_sql(self): return 'SELECT t.term_category_id FROM %s.term_category t WHERE t.category_name = ?' % SyncDB.DATABASE def get_term_prefix(self): if hasattr(self,'term_prefix'): return self.term_prefix return self.get_type_col_value() + '_' def generate_new_row(self,row): r = super(Term,self).generate_new_row(row) #if the Species is supported if r is not None: r['term_id'] = self.get_term_prefix() + r['term_id'] return r
import click import gsextract.gse_parser as gse_parser @click.command() @click.argument('input_file', type=click.Path(exists=True)) @click.argument('output_file', type=click.Path()) @click.option('--stream/--no-stream', default=False, help='Stream continuously from the file. Use the --stream flag to dump to a pcap from a real time GSE recording.') @click.option('--reliable/--no-reliable', default=True, help='Add the --no-reliable flag to attempt to brute force IP headers in certain situations. Increases recovery but also can result in fake packets.') def gsextract(input_file, output_file, stream, reliable): gse_parser.gse_parse(file=input_file, outfile=output_file, stream=stream, reliable=reliable) def cli_runner(): gsextract()
#!/usr/bin/env python # -*- coding:utf-8 -*- # author:pyy # datetime:2018/12/29 10:33 from peewee import ForeignKeyField, CharField, TextField, IntegerField, JOIN from Myforum.Forum.models import BaseModel from Myforum.apps.users.models import User class Question(BaseModel): user = ForeignKeyField(User, verbose_name="用户") category = CharField(max_length=200, verbose_name="分类", null=True) title = CharField(max_length=200, verbose_name="标题", null=True) content = TextField(verbose_name="内容") image = CharField(default=200, verbose_name="图片") answer_nums = IntegerField(default=0, verbose_name="回答数") @classmethod def extend(cls): return cls.select(cls, User.id, User.nick_name).join(User) class Answer(BaseModel): # 回答和回复 user = ForeignKeyField(User, verbose_name="用户", related_name="answer_author") question = ForeignKeyField(Question, verbose_name="问题") parent_answer = ForeignKeyField('self', null=True, verbose_name="回答", related_name="answer_parent") reply_user = ForeignKeyField(User, verbose_name="用户", related_name="question_user", null=True) content = CharField(max_length=1000, verbose_name="内容") reply_nums = IntegerField(default=0, verbose_name="回复数") @classmethod def extend(cls): # 1. 多表join # 2. 多字段映射同一个model answer_author = User.alias() question_user = User.alias() return cls.select(cls, Question, answer_author.id, answer_author.nick_name, answer_author.head_url, question_user.id, question_user.nick_name, question_user.head_url).join( Question, join_type=JOIN.LEFT_OUTER, on=cls.question).switch(cls).join(question_user, join_type=JOIN.LEFT_OUTER, on=cls.user).switch(cls).join( answer_author, join_type=JOIN.LEFT_OUTER, on=cls.reply_user )
import io import os import numpy as np import tensorflow as tf from tensorflow.keras import layers from PIL import Image import flask from flask import send_file, abort from flask import jsonify, make_response from flask import request from flask_cors import CORS from pymemcache.client import base cache = base.Client(('localhost', 11211)) # initialise Flask application and Keras model app = flask.Flask(__name__) CORS(app) predicted_image_name = 'predicted.png' IMG_SIZE = (224, 224) #trained_model = tf.keras.models.load_model(os.path.join('trained','Densenet_categorical_10_11_20')) @app.route('/backend/test/ping') def ping(): return 'pong' @app.route('/backend/test/cache', methods=['POST', 'GET']) def hello_world(): if flask.request.method == 'POST': sessionId = request.args.get('id') data = request.json cache.set(sessionId, data) return make_response('pong ' + sessionId, 200) else: sessionId = request.args.get('id') data = cache.get(sessionId) return make_response(data,200) @app.route('/backend/image1', methods=['POST']) def img1(): if not flask.request.files['photos']: return abort(401) sessionId = request.args.get('id') imageFormRequest = flask.request.files['photos'].read() img = Image.open(io.BytesIO(imageFormRequest)) cache.set(sessionId + "img1", img) return make_response("", 200) app.route('/backend/image1', methods=['POST']) def img2(): if not flask.request.files['photos']: return abort(401) sessionId = request.args.get('id') imageFormRequest = flask.request.files['photos'].read() img = Image.open(io.BytesIO(imageFormRequest)) cache.set(sessionId + "img2", img) return make_response("", 200) app.route('/backend/result', methods=['POST']) def getResult(): return send_file( io.BytesIO(image_binary), mimetype='image/jpeg', as_attachment=True, attachment_filename='result.jpg') @app.route('/predict', methods=['POST']) def predict(): print('New request') print(flask.request) if flask.request.files['photos']: imageFormRequest = flask.request.files['photos'].read() row_img = Image.open(io.BytesIO(imageFormRequest)) resized_img = row_img.resize(IMG_SIZE, Image.ANTIALIAS) batch = [] batch.append(np.array(resized_img)/255.) prediction = trained_model.predict(np.array(batch)) return make_response(jsonify(({'probability': str(prediction[(0,0)])})), 200) return abort(401) if __name__=='__main__': print(('* loading Keras model and Flask starting server')) #global model #model = load_model() #global graph #graph = tf.get_default_graph() app.run(host='0.0.0.0',port=5000, debug = True)
#!/usr/bin/env python3 """Module containing the ParmedHMassRepartition class and the command line interface.""" import argparse import shutil, re from pathlib import Path, PurePath from biobb_common.generic.biobb_object import BiobbObject from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_common.tools.file_utils import launchlogger from biobb_amber.parmed.common import * class ParmedHMassRepartition(BiobbObject): """ | biobb_amber ParmedHMassRepartition | Wrapper of the `AmberTools (AMBER MD Package) parmed tool <https://ambermd.org/AmberTools.php>`_ module. | Performs a Hydrogen Mass Repartition from an AMBER topology file using parmed tool from the AmberTools MD package. Args: input_top_path (str): Input AMBER topology file. File type: input. `Sample file <https://github.com/bioexcel/biobb_amber/raw/master/biobb_amber/test/data/parmed/input.hmass.prmtop>`_. Accepted formats: top (edam:format_3881), parmtop (edam:format_3881), prmtop (edam:format_3881). output_top_path (str): Output topology file (AMBER ParmTop). File type: output. `Sample file <https://github.com/bioexcel/biobb_amber/raw/master/biobb_amber/test/reference/parmed/output.hmass.prmtop>`_. Accepted formats: top (edam:format_3881), parmtop (edam:format_3881), prmtop (edam:format_3881). properties (dic - Python dictionary object containing the tool parameters, not input/output files): * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. Examples: This is a use example of how to use the building block from Python:: from biobb_amber.parmed.parmed_hmassrepartition import parmed_hmassrepartition parmed_hmassrepartition(input_top_path='/path/to/topology.top', output_top_path='/path/to/newTopology.top') Info: * wrapped_software: * name: AmberTools parmed * version: >20.9 * license: LGPL 2.1 * ontology: * name: EDAM * schema: http://edamontology.org/EDAM.owl """ def __init__(self, input_top_path, output_top_path, properties=None, **kwargs) -> None: properties = properties or {} # Call parent class constructor super().__init__(properties) # Input/Output files self.io_dict = { 'in': { 'input_top_path': input_top_path }, 'out': { 'output_top_path': output_top_path } } # Properties specific for BB self.properties = properties # Check the properties self.check_properties(properties) def check_data_params(self, out_log, err_log): """ Checks input/output paths correctness """ # Check input(s) self.io_dict["in"]["input_top_path"] = check_input_path(self.io_dict["in"]["input_top_path"], "input_top_path", False, out_log, self.__class__.__name__) # Check output(s) self.io_dict["out"]["output_top_path"] = check_output_path(self.io_dict["out"]["output_top_path"],"output_top_path", False, out_log, self.__class__.__name__) @launchlogger def launch(self): """Launches the execution of the ParmedHMassRepartition module.""" # check input/output paths and parameters self.check_data_params(self.out_log, self.err_log) # Setup Biobb if self.check_restart(): return 0 self.stage_files() # Creating temporary folder self.tmp_folder = fu.create_unique_dir() fu.log('Creating %s temporary folder' % self.tmp_folder, self.out_log) # Parmed configuration (instructions) file instructions_file = str(PurePath(self.tmp_folder).joinpath("parmed.in")) with open(instructions_file, 'w') as parmedin: parmedin.write("hmassrepartition\n") parmedin.write("outparm " + self.io_dict['out']['output_top_path'] + "\n") self.cmd = ['parmed', '-p', self.io_dict['in']['input_top_path'], '-i', instructions_file, '-O' # Overwrite output files ] # Run Biobb block self.run_biobb() # Copy files to host self.copy_to_host() # remove temporary folder(s) if self.remove_tmp: self.tmp_files.append(self.tmp_folder) self.remove_tmp_files() return self.return_code def parmed_hmassrepartition(input_top_path: str, output_top_path: str = None, properties: dict = None, **kwargs) -> int: """Create :class:`ParmedHMassRepartition <parmed.parmed_hmassrepartition.ParmedHMassRepartition>`parmed.parmed_hmassrepartition.ParmedHMassRepartition class and execute :meth:`launch() <parmed.parmed_hmassrepartition.ParmedHMassRepartition.launch>` method""" return ParmedHMassRepartition( input_top_path=input_top_path, output_top_path=output_top_path, properties=properties).launch() def main(): parser = argparse.ArgumentParser(description='Performs a Hydrogen Mass Repartition from an AMBER topology file using parmed tool from the AmberTools MD package.', formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('--config', required=False, help='Configuration file') # Specific args required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_top_path', required=True, help='Input AMBER topology file. Accepted formats: top, parmtop, prmtop.') required_args.add_argument('--output_top_path', required=False, help='Output topology file (AMBER ParmTop). Accepted formats: top, parmtop, prmtop.') args = parser.parse_args() config = args.config if args.config else None properties = settings.ConfReader(config=config).get_prop_dic() # Specific call parmed_hmassrepartition( input_top_path=args.input_top_path, output_top_path=args.output_top_path, properties=properties) if __name__ == '__main__': main()
# Generated by Django 3.0.11 on 2020-12-28 08:18 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='fav_color', field=models.CharField(blank=True, max_length=255, verbose_name='Favorite Color'), ), ]
""" """ import datetime from fastapi import params from fastapi import security import fastapi import sqlalchemy as sa import sqlalchemy.orm from rss_reader import models from rss_reader import security as rss_security from rss_reader.api import crud from rss_reader.api import deps from rss_reader.api import schemas from rss_reader.config import settings router = fastapi.APIRouter( tags=["auth"], ) @router.post("/login/access-token", response_model=schemas.Token) def login_access_token( db: sa.orm.Session = params.Depends(deps.get_db), form_data: security.OAuth2PasswordRequestForm = params.Depends(), ) -> schemas.Token: """ OAuth2-compatible token login, get an access token for future requests. """ user = crud.user.authenticate( db, email=form_data.username, password=form_data.password, ) if not user: raise fastapi.HTTPException( status_code=400, detail="Incorrect email or password", ) if not user.is_active: raise fastapi.HTTPException( status_code=400, detail="Inactive user", ) expires_in = datetime.timedelta(seconds=settings.ACCESS_TOKEN_EXP_SECONDS) access_token = rss_security.create_access_token( user.id, expiration_delta=expires_in ) return schemas.Token( access_token=access_token, ) @router.post("/login/test-access-token", response_model=schemas.User) def test_access_token( current_user: models.User = params.Depends(deps.get_current_user), ): """ Test access token. """ return current_user
from __future__ import annotations from typing import Any, Dict, Optional import requests from ice3x.clients.abc import IceCubedClientBase from ice3x.decorators import add_nonce, requires_authentication class IceCubedSyncClient(IceCubedClientBase): def _fetch_resource( self, method: str, suffix: str, params: Optional[Dict[str, Any]] = None ) -> Dict[str, Any]: """Fetch the specified resource Args: method: The request method suffix: The resource suffix params: A Python dict of request params Returns: A Python dict containing the response data """ if params is None: params = {} kwargs: Any = {"params": params} if method == "post": kwargs["headers"] = {"Key": self.api_key, "Sign": self.sign(params)} url = f"{self.BASE_URI}{suffix}" resp = self.session.request(method, url, **kwargs) resp.raise_for_status() return resp.json() def __init__(self, api_key: str = None, secret: str = None) -> None: """Instantiate the client Args: api_key: An ICE3X public API key secret: An ICE3X private API key """ super().__init__(api_key=api_key, secret=secret) self.session = requests.Session() # Set the default session request headers self.session.headers[ "user-agent" ] = "Mozilla/4.0 (compatible; Ice3x Sync Python client)" def get_public_trade_info(self, trade_id: int, **params: Any) -> Dict[str, Any]: """Fetch public info relating to a specified trade Args: trade_id: A valid trade id Returns: Data relating to the specified trade id """ params.update({"trade_id": trade_id}) return self._fetch_resource("get", "trade/info", params) def get_public_trade_list(self, **params: Any) -> Dict[str, Any]: """Fetch a public facing list of trades Returns: A list of public trade data """ return self._fetch_resource("get", "trade/list", params) def get_market_depth(self, **params: Any) -> Dict[str, Any]: """Fetch the public market depth Returns: A market depth data """ return self._fetch_resource("get", "stats/marketdepth", params) def get_pair_info(self, pair_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"pair_id": pair_id}) return self._fetch_resource("get", "pair/info", params) def get_pair_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("get", "pair/list", params) def get_currency_info(self, currency_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"currency_id": currency_id}) return self._fetch_resource("get", "currency/info", params) def get_currency_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("get", "currency/list", params) def get_orderbook_info(self, pair_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"pair_id": pair_id}) return self._fetch_resource("get", "orderbook/info", params) def get_market_depth_full(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("get", "stats/marketdepthfull", params) def get_market_depth_bt_cav(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("get", "stats/marketdepthbtcav", params) @add_nonce @requires_authentication def get_invoice_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("post", "invoice/list", params) @add_nonce @requires_authentication def get_invoice_info(self, invoice_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"invoice_id": invoice_id}) return self._fetch_resource("post", "invoice/info", params) @add_nonce @requires_authentication def get_invoice_pdf(self, invoice_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"invoice_id": invoice_id}) return self._fetch_resource("post", "invoice/pdf", params) @add_nonce @requires_authentication def cancel_order(self, order_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"order_id": order_id}) return self._fetch_resource("post", "order/cancel", params) @add_nonce @requires_authentication def create_order( self, pair_id: int, kind: str, price: float, amount: float, **params: Any ) -> Dict[str, Any]: """Creates a new order given the provided inputs Args: paid_id: Currency pair id kind: Transaction type i.e. 'buy' or 'sell' price: The price to be transacted at volume: The volume to be transacted """ params.update( {"pair_id": pair_id, "amount": amount, "price": price, "type": kind} ) return self._fetch_resource("post", "order/new", params) @add_nonce @requires_authentication def get_order_info(self, order_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"order_id": order_id}) return self._fetch_resource("post", "order/info", params) @add_nonce @requires_authentication def get_order_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("post", "order/list", params) @add_nonce @requires_authentication def get_transaction_info( self, transaction_id: int, **params: Any ) -> Dict[str, Any]: """""" params.update({"transaction_id": transaction_id}) return self._fetch_resource("post", "transaction/info", params) @add_nonce @requires_authentication def get_transaction_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("post", "transaction/list", params) @add_nonce @requires_authentication def get_trade_info(self, trade_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"trade_id": trade_id}) return self._fetch_resource("post", "trade/info", params) @add_nonce @requires_authentication def get_trade_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("post", "trade/list", params) @add_nonce @requires_authentication def get_balance_list(self, **params: Any) -> Dict[str, Any]: """""" return self._fetch_resource("post", "balance/list", params) @add_nonce @requires_authentication def get_balance_info(self, currency_id: int, **params: Any) -> Dict[str, Any]: """""" params.update({"currency_id": currency_id}) return self._fetch_resource("post", "balance/info", params)
# Copyright (c) 2019, MD2K Center of Excellence # - Nasir Ali <[email protected]> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import json import os import traceback from typing import List class MinioHandler: """ Todo: For now, Minio is disabled as CC config doesn't provide an option to use mutliple object-storage """ ################################################################### ################## GET DATA METHODS ############################### ################################################################### def get_buckets(self) -> List: """ returns all available buckets in an object storage Returns: dict: {bucket-name: str, [{"key":"value"}]}, in case of an error {"error": str} """ bucket_list = [] try: temp = [] bucket_list = {} buckets = self.minioClient.list_buckets() for bucket in buckets: temp.append({"bucket-name":bucket.name, "last_modified": str(bucket.creation_date)}) bucket_list["buckets-list"] = temp return bucket_list except Exception as e: return [{"error": str(e)}] def get_bucket_objects(self, bucket_name: str) -> dict: """ returns a list of all objects stored in the specified Minio bucket Args: bucket_name (str): name of the bucket aka folder Returns: dict: {bucket-objects: [{"object_name":"", "metadata": {}}...], in case of an error {"error": str} """ objects_in_bucket = {} try: objects = self.minioClient.list_objects(bucket_name, recursive=True) temp = [] bucket_objects = {} for obj in objects: object_stat = self.minioClient.stat_object(obj.bucket_name, obj.object_name) object_stat = json.dumps(object_stat, default=lambda o: o.__dict__) object_stat = json.loads(object_stat) temp.append(object_stat) objects_in_bucket[obj.object_name] = object_stat object_stat.pop('metadata', None) bucket_objects["bucket-objects"] = temp return bucket_objects except Exception as e: objects_in_bucket["error"] = str(e)+" \n - Trace: "+str(traceback.format_exc()) return objects_in_bucket def get_object_stats(self, bucket_name: str, object_name: str) -> dict: """ Returns properties (e.g., object type, last modified etc.) of an object stored in a specified bucket Args: bucket_name (str): name of a bucket aka folder object_name (str): name of an object Returns: dict: information of an object (e.g., creation_date, object_size etc.). In case of an error {"error": str} Raises: ValueError: Missing bucket_name and object_name params. Exception: {"error": "error-message"} """ try: if self.is_bucket(bucket_name): object_stat = self.minioClient.stat_object(bucket_name, object_name) object_stat = json.dumps(object_stat, default=lambda o: o.__dict__) object_stat = json.loads(object_stat) return object_stat else: return [{"error": "Bucket does not exist"}] except Exception as e: return {"error": str(e)} def get_object(self, bucket_name: str, object_name: str) -> dict: """ Returns stored object (HttpResponse) :param bucket_name: :param object_name: :return: object (HttpResponse), in case of an error {"error": str} Args: bucket_name (str): name of a bucket aka folder object_name (str): name of an object that needs to be downloaded Returns: file-object: object that needs to be downloaded. If file does not exists then it returns an error {"error": "File does not exist."} Raises: ValueError: Missing bucket_name and object_name params. Exception: {"error": "error-message"} """ try: if self.is_bucket(bucket_name): return self.minioClient.get_object(bucket_name, object_name) else: return {"error": "Bucket does not exist"} except Exception as e: return {"error": str(e)} def is_bucket(self, bucket_name: str) -> bool: """ checks whether a bucket exist Args: bucket_name (str): name of the bucket aka folder Returns: bool: True if bucket exist or False otherwise. In case an error {"error": str} Raises: ValueError: bucket_name cannot be None or empty. """ try: return self.minioClient.bucket_exists(bucket_name) except Exception as e: raise e def is_object(self, bucket_name: str, object_name: str) -> dict: """ checks whether an object exist in a bucket Args: bucket_name (str): name of the bucket aka folder object_name (str): name of the object Returns: bool: True if object exist or False otherwise. In case an error {"error": str} Raises: Excecption: if bucket_name and object_name are empty or None """ try: if self.is_bucket(bucket_name): self.minioClient.stat_object(bucket_name, object_name) return True else: return False except Exception as e: raise e ################################################################### ################## STORE DATA METHODS ############################# ################################################################### def create_bucket(self, bucket_name: str) -> bool: """ creates a bucket aka folder in object storage system. Args: bucket_name (str): name of the bucket Returns: bool: True if bucket was successfully created. On failure, returns an error with dict {"error":"error-message"} Raises: ValueError: Bucket name cannot be empty/None. Examples: >>> CC = CerebralCortex("/directory/path/of/configs/") >>> CC.create_bucket("live_data_folder") >>> True """ if not bucket_name: raise ValueError("Bucket name cannot be empty") try: self.minioClient.make_bucket(bucket_name, location=self.CC.timezone) return True except Exception as e: raise e def upload_object(self, bucket_name: str, object_name: str, object_filepath: object) -> bool: """ Upload an object in a bucket aka folder of object storage system. Args: bucket_name (str): name of the bucket object_name (str): name of the object to be uploaded object_filepath (str): it shall contain full path of a file with file name (e.g., /home/nasir/obj.zip) Returns: bool: True if object successfully uploaded. On failure, returns an error with dict {"error":"error-message"} Raises: ValueError: Bucket name cannot be empty/None. Exception: if upload fails """ if not object_filepath: raise ValueError("File name cannot be empty") try: file_stat = os.stat(object_filepath) file_data = open(object_filepath, 'rb') self.minioClient.put_object(bucket_name, object_name, file_data, file_stat.st_size, content_type='application/zip') return True except Exception as e: raise e def upload_object_to_s3(self, bucket_name: str, object_name: str, file_data: object, obj_length:int) -> bool: """ Upload an object in a bucket aka folder of object storage system. Args: bucket_name (str): name of the bucket object_name (str): name of the object to be uploaded file_data (object): object of a file obj_length (int): size of an object Returns: bool: True if object successfully uploaded. On failure, throws an exception Raises: Exception: if upload fails """ try: self.minioClient.put_object(bucket_name, object_name, file_data, obj_length, content_type='application/zip') return True except Exception as e: raise e
""" Unit tests for kindle_to_md.py | parse_json_file(). """ import pytest from kindle_to_md import parse_json_file from kindle_to_md import MisformattedKindleData @pytest.mark.usefixtures( 'file_paths' ) @pytest.mark.usefixtures( 'test_data' ) class TestParseJSONFile : def test_parse_good_book( self ) : parsed_book = parse_json_file( self.file_paths['good'] ) assert( isinstance( parsed_book, dict ) ) assert( parsed_book['asin'] == 'A0A0A0A0A0' ) assert( parsed_book['title'] == 'A Book (With Parentheses)' ) assert( parsed_book['authors'] == 'An Author, Another Author, and Third Author' ) assert( isinstance( parsed_book['highlights'], list ) ) assert( parsed_book['highlights'][0] == self.test_data['individual_highlights']['just-highlight'] ) assert( parsed_book['highlights'][1] == self.test_data['individual_highlights']['highlight-and-note'] ) assert( parsed_book['highlights'][2] == self.test_data['individual_highlights']['just-note'] ) assert( parsed_book['highlights'][3] == self.test_data['individual_highlights']['cyrillic' ] ) def test_parse_book_not_kindle( self ) : parsed_book = parse_json_file( self.file_paths['not-kindle'] ) assert( parsed_book is not None ) def test_parse_book_bad_json( self ) : with pytest.raises( MisformattedKindleData ) : parsed_book = parse_json_file( self.file_paths['bad-json'] ) def test_parse_book_not_json( self ) : with pytest.raises( MisformattedKindleData ) : parsed_book = parse_json_file( self.file_paths['not-json'] ) def test_parse_non_existent_book( self ) : with pytest.raises( FileNotFoundError ) : parsed_book = parse_json_file( 'path/no-book-here.json' )
import pytest from DevOps import Sum from DevOps import Sub from DevOps import Mul from DevOps import Div def test_somar(): assert Sum(2,4)==6 def test_sub(): assert Sub(2,4)==-2 def test_mul(): assert Mul(2,4)==8 def test_div(): assert Div(2,4)==0.5
import argparse import sys # We need sys so that we can pass argv to QApplication import os import warnings import pandas as pd import petab.C as ptc import pyqtgraph as pg from PySide6 import QtWidgets, QtCore, QtGui from PySide6.QtWidgets import ( QVBoxLayout, QComboBox, QWidget, QLabel, QTreeView ) from petab import core import petab from petab.visualize.helper_functions import check_ex_exp_columns from . import (utils, vis_spec_plot, window_functionality) from .bar_plot import BarPlot from .options_window import (OptionMenu, CorrelationOptionMenu, OverviewPlotWindow) class MainWindow(QtWidgets.QMainWindow): """ The main window Attributes: exp_data: PEtab measurement table visualization_df: PEtab visualization table yaml_dict: Dictionary of the files in the yaml file condition_df: PEtab condition table observable_df: PEtab observable table plot1_widget: pg.GraphicsLayoutWidget containing the main plot plot2_widget: pg.GraphicsLayoutWidget containing the correlation plot warn_msg: QLabel displaying current warning messages popup_tables: List of Popup TableWidget displaying the clicked table tree_view: QTreeView of the yaml file visu_spec_plots: A list of VisuSpecPlots cbox: A dropdown menu for the plots current_list_index: List index of the currently displayed plot wid: QSplitter between main plot and correlation plot """ def __init__(self, yaml_filename: str = None, simulation_file: pd.DataFrame = None, *args, **kwargs): super(MainWindow, self).__init__(*args, **kwargs) # set the background color to white pg.setConfigOption('background', 'w') pg.setConfigOption('foreground', 'k') pg.setConfigOption("antialias", True) self.resize(1000, 600) self.setWindowTitle("petabvis") self.visualization_df = None self.simulation_df = None self.condition_df = None self.observable_df = None self.exp_data = None self.yaml_filename = yaml_filename self.yaml_dict = None self.color_map = utils.generate_color_map("viridis") self.vis_spec_plots = [] self.wid = QtWidgets.QSplitter() self.plot1_widget = pg.GraphicsLayoutWidget(show=True) self.plot2_widget = pg.GraphicsLayoutWidget(show=False) self.overview_plot_window = None self.wid.addWidget(self.plot1_widget) # plot2_widget will be added to the QSplitter when # a simulation file is opened self.cbox = QComboBox() # dropdown menu to select plots self.cbox.currentIndexChanged.connect(lambda x: self.index_changed(x)) self.warn_msg = QLabel("") self.warnings = [] self.warning_counter = {} # The new window that pops up to display a table self.popup_tables = [] self.options_window = OptionMenu(window=self, vis_spec_plots=self.vis_spec_plots) self.correlation_options_window = \ CorrelationOptionMenu(vis_spec_plots=self.vis_spec_plots) self.correlation_option_button = None self.overview_plot_button = None self.tree_view = QTreeView(self) self.tree_view.setHeaderHidden(True) self.tree_root_node = None self.simulation_tree_branch = None self.wid.addWidget(self.tree_view) self.current_list_index = 0 warnings.showwarning = self.redirect_warning window_functionality.add_file_selector(self) window_functionality.add_option_menu(self) # the layout of the plot-list and message textbox lower_layout = QVBoxLayout() lower_layout.addWidget(self.cbox) lower_layout.addWidget(self.warn_msg) lower_widget = QWidget() lower_widget.setLayout(lower_layout) split_plots_and_warnings = QtWidgets.QSplitter() split_plots_and_warnings.setOrientation(QtCore.Qt.Vertical) split_plots_and_warnings.addWidget(self.wid) split_plots_and_warnings.addWidget(lower_widget) layout = QVBoxLayout() layout.addWidget(split_plots_and_warnings) widget = QWidget() widget.setLayout(layout) self.setCentralWidget(widget) if self.yaml_filename: self.read_data_from_yaml_file() if simulation_file: self.add_and_plot_simulation_file(simulation_file) else: self.add_plots() def read_data_from_yaml_file(self): self.yaml_dict = petab.load_yaml(self.yaml_filename)["problems"][0] folder_path = os.path.dirname(self.yaml_filename) + "/" if ptc.VISUALIZATION_FILES not in self.yaml_dict: self.visualization_df = None self.add_warning( "The YAML file contains no " "visualization file (default plotted)") # table_tree_view sets the df attributes of the window # equal to the first file of each branch # (measurement, visualization, ...) window_functionality.table_tree_view(self, folder_path) def add_and_plot_simulation_file(self, filename): """ Add the simulation file and plot them. Also, add the correlation plot to the window and enable correlation plot and overview plot options. Arguments: filename: Path of the simulation file. """ sim_data = core.get_simulation_df(filename) # check columns, and add non-mandatory default columns sim_data, _, _ = check_ex_exp_columns( sim_data, None, None, None, None, None, self.condition_df, sim=True) # delete the replicateId column if it gets added to the simulation # table but is not in exp_data because it causes problems when # splitting the replicates if ptc.REPLICATE_ID not in self.exp_data.columns \ and ptc.REPLICATE_ID in sim_data.columns: sim_data.drop(ptc.REPLICATE_ID, axis=1, inplace=True) if len(self.yaml_dict[ptc.MEASUREMENT_FILES]) > 1: self.add_warning( "Not Implemented Error: Loading a simulation file with " "multiple measurement files is currently not supported.") else: self.simulation_df = sim_data self.add_plots() # insert correlation plot at position 1 self.wid.insertWidget(1, self.plot2_widget) filename = os.path.basename(filename) window_functionality.add_simulation_df_to_tree_view(self, filename) # add correlation options and overview plot to option menu self.correlation_option_button.setVisible(True) self.overview_plot_button.setVisible(True) self.add_overview_plot_window() def add_plots(self): """ Adds the current visuSpecPlots to the main window, removes the old ones and updates the cbox (dropdown list) Returns: List of PlotItem """ self.clear_qsplitter() self.vis_spec_plots.clear() self.options_window.reset_states() if self.visualization_df is not None: # to keep the order of plots consistent # with names from the plot selection plot_ids = list(self.visualization_df[ptc.PLOT_ID].unique()) for plot_id in plot_ids: self.create_and_add_vis_plot(plot_id) else: # default plot when no visu_df is provided self.create_and_add_vis_plot() plots = [vis_spec_plot.get_plot() for vis_spec_plot in self.vis_spec_plots] # update the cbox self.cbox.clear() # calling this method sets the index of the cbox to 0 # and thus displays the first plot utils.add_plotnames_to_cbox(self.exp_data, self.visualization_df, self.cbox) return plots def index_changed(self, i: int): """ Changes the displayed plot to the one selected in the dropdown list Arguments: i: index of the selected plot """ if 0 <= i < len( self.vis_spec_plots): # i is -1 when the cbox is cleared self.clear_qsplitter() self.plot1_widget.addItem(self.vis_spec_plots[i].get_plot()) self.plot2_widget.hide() if self.simulation_df is not None: self.plot2_widget.show() self.plot2_widget.addItem( self.vis_spec_plots[i].correlation_plot) self.current_list_index = i def keyPressEvent(self, ev): """ Changes the displayed plot by pressing arrow keys Arguments: ev: key event """ # Exit when pressing ctrl + Q ctrl = False if ev.modifiers() & QtCore.Qt.ControlModifier: ctrl = True if ctrl and ev.key() == QtCore.Qt.Key_Q: sys.exit() if ev.key() == QtCore.Qt.Key_Up: self.index_changed(self.current_list_index - 1) if ev.key() == QtCore.Qt.Key_Down: self.index_changed(self.current_list_index + 1) if ev.key() == QtCore.Qt.Key_Left: self.index_changed(self.current_list_index - 1) if ev.key() == QtCore.Qt.Key_Right: self.index_changed(self.current_list_index + 1) def closeEvent(self, event): sys.exit() def add_warning(self, message: str): """ Adds the message to the warnings box Arguments: message: The message to display """ if message not in self.warnings: self.warnings.append(message) self.warning_counter[message] = 1 else: self.warning_counter[message] += 1 self.warn_msg.setText(self.warnings_to_string()) def warnings_to_string(self): """ Convert the list of warnings to a string and indicate the number of occurences Returns: Self.warnings as a string """ return "\n".join([warning if self.warning_counter[warning] <= 1 else warning + " (occured {} times)".format( str(self.warning_counter[warning])) for warning in self.warnings]) def redirect_warning(self, message, category, filename=None, lineno=None, file=None, line=None): """ Redirect all warning messages and display them in the window. Arguments: message: The message of the warning """ print("Warning redirected: " + str(message)) self.add_warning(str(message)) def create_and_add_vis_plot(self, plot_id=""): """ Create a vis_spec_plot object based on the given plot_id. If no plot_it is provided the default will be plotted. Add all the warnings of the vis_plot object to the warning text box. The actual plotting happens in the index_changed method Arguments: plot_id: The plotId of the plot """ # split the measurement df by observable when using default plots if self.visualization_df is None: observable_ids = list(self.exp_data[ptc.OBSERVABLE_ID].unique()) for observable_id in observable_ids: rows = self.exp_data[ptc.OBSERVABLE_ID] == observable_id data = self.exp_data[rows] simulation_df = self.simulation_df if simulation_df is not None: rows = self.simulation_df[ptc.OBSERVABLE_ID]\ == observable_id simulation_df = self.simulation_df[rows] vis_plot = vis_spec_plot.VisSpecPlot( measurement_df=data, visualization_df=None, condition_df=self.condition_df, simulation_df=simulation_df, plot_id=observable_id, color_map=self.color_map) self.vis_spec_plots.append(vis_plot) if vis_plot.warnings: self.add_warning(vis_plot.warnings) else: # reduce the visualization df to the relevant rows (by plotId) rows = self.visualization_df[ptc.PLOT_ID] == plot_id vis_df = self.visualization_df[rows] if ptc.PLOT_TYPE_SIMULATION in vis_df.columns and \ vis_df.iloc[0][ptc.PLOT_TYPE_SIMULATION] == ptc.BAR_PLOT: bar_plot = BarPlot(measurement_df=self.exp_data, visualization_df=vis_df, condition_df=self.condition_df, simulation_df=self.simulation_df, plot_id=plot_id) # might want to change the name of # visu_spec_plots to clarify that # it can also include bar plots (maybe to plots?) self.vis_spec_plots.append(bar_plot) else: vis_plot = vis_spec_plot.VisSpecPlot( measurement_df=self.exp_data, visualization_df=vis_df, condition_df=self.condition_df, simulation_df=self.simulation_df, plot_id=plot_id, color_map=self.color_map) self.vis_spec_plots.append(vis_plot) if vis_plot.warnings: self.add_warning(vis_plot.warnings) def clear_qsplitter(self): """ Clear the GraphicsLayoutWidgets for the measurement and correlation plot """ self.plot1_widget.clear() self.plot2_widget.clear() def add_overview_plot_window(self): self.overview_plot_window = OverviewPlotWindow(self.exp_data, self.simulation_df) def main(): options = argparse.ArgumentParser() options.add_argument("-y", "--YAML", type=str, required=False, help="PEtab YAML file", default=None) options.add_argument("-s", "--simulation", type=str, required=False, help="PEtab simulation file", default=None) args = options.parse_args() simulation_file = None if args.simulation is not None: simulation_file = args.simulation app = QtWidgets.QApplication(sys.argv) main_window = MainWindow(args.YAML, simulation_file) main_window.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- """ spcconvert - batch conversion and webpage building for SPC images """ import cvtools import cv2 import os import sys import glob import time import datetime import json import shutil import math import tarfile from multiprocessing import Pool, Process, Queue from threading import Thread import multiprocessing from itertools import repeat from operator import itemgetter from pytz import timezone import pystache import numpy as np import xmlsettings from scipy import stats import pandas from collections import OrderedDict def lmap(f, l): return list(map(f,l)) def lzip(a,b): return list(zip(a,b)) flow_frames = True class Counter(object): def __init__(self): self.val = multiprocessing.Value('i', 0) def increment(self, n=1): with self.val.get_lock(): self.val.value += n @property def value(self): return self.val.value def process_image(bundle): image_path = bundle['image_path'] image = bundle['image'] data_path = bundle['data_path'] image_dir = bundle['image_dir'] cfg = bundle['cfg'] total_images = bundle['total_images'] filename = os.path.basename(image_path) # Patch bug in PCAM where timestamp string is somtimes incorrectly set to # 0 or a small value. Use the file creation time instead. # # This is okay so long as the queue in PCAM mostly empty. We can adapt # the frame counter to fix this in the future. timestamp = 0 for substr in filename.split('-'): try: timestamp = int(substr) break; except ValueError: pass # Range check the timestamp if timestamp < 100000: print ("" + filename + " strange timestamp.") #timestamp = os.path.getctime(image_path) output = {} return output prefix = filename.split('.')[0] # image is preloaded so no need to load here #image = cvtools.import_image(data_path,filename,bayer_pattern=cv2.COLOR_BAYER_BG2RGB) img_c_8bit = cvtools.convert_to_8bit(image) # images will be saved out later so set save_to_disk to False features = cvtools.quick_features( img_c_8bit, save_to_disk=False, abs_path=image_dir, file_prefix=prefix, cfg=cfg ) use_jpeg = use_jpeg = cfg.get("UseJpeg").lower() == 'true' if use_jpeg: filename = os.path.basename(image_path).split('.')[0] + '.jpeg' else: filename = os.path.basename(image_path).split('.')[0] + '.png' # handle new file formwat with unixtime in microseconds if timestamp > 1498093400000000: timestamp = timestamp/1000000 # Range check the timestamp if timestamp < 100000 or timestamp > time.time(): print ("" + filename + " strange timestamp.") #timestamp = os.path.getctime(image_path) output = {} return output # print "Timestamp: " + str(timestamp) timestring = datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S') entry = {} entry['maj_axis_len'] = features['major_axis_length'] entry['min_axis_len'] = features['minor_axis_length'] entry['aspect_ratio'] = features['aspect_ratio'] entry['area'] = features['area'] entry['clipped_fraction'] = features['clipped_fraction'] entry['orientation'] = features['orientation']*180/math.pi entry['eccentricity'] = features['eccentricity'] entry['solidity'] = features['solidity'] entry['estimated_volume'] = features['estimated_volume'] entry['intensity_gray'] = features['intensity_gray'] entry['intensity_red'] = features['intensity_red'] entry['intensity_green'] = features['intensity_green'] entry['intensity_blue'] = features['intensity_blue'] entry['timestring'] = timestring entry['timestamp'] = timestamp entry['width'] = img_c_8bit.shape[1] entry['height'] = img_c_8bit.shape[0] entry['url'] = bundle['reldir'] + '/' + filename entry['file_size'] = os.path.getsize(image_path) output = {} output['entry'] = entry output['image_path'] = image_dir output['prefix'] = prefix output['features'] = features return output # threaded function for each process to call # queues are used to sync processes def process_bundle_list(bundle_queue,output_queue): while True: try: output_queue.put(process_image(bundle_queue.get())) except: time.sleep(0.02*np.random.rand()) # Split a list into sublists def chunks(l, n): n = max(1, n) return [l[i:i+n] for i in xrange(0, len(l), n)] # Process a directory of images def run(data_path,cfg): print ("Running SPC image conversion...") # get the base name of the directory base_dir_name = os.path.basename(os.path.abspath(data_path)) # list the directory for tif images print ("Listing directory " + base_dir_name + "...") image_list = [] if cfg.get('MergeSubDirs',"false").lower() == "true": sub_directory_list = sorted(glob.glob(os.path.join(data_path,"[0-9]"*10))) for sub_directory in sub_directory_list: print ("Listing sub directory " + sub_directory + "...") image_list += glob.glob(os.path.join(sub_directory,"*.tif")) else: image_list += glob.glob(os.path.join(data_path,"*.tif")) image_list = sorted(image_list) # skip if no images were found if len(image_list) == 0: print ("No images were found. skipping this directory.") return # Get the total number of images in the directory total_images = len(image_list) # Create the output directories for the images and web app files subdir = os.path.join(data_path,'..',base_dir_name + '_static_html') if not os.path.exists(subdir): os.makedirs(subdir) image_dir = os.path.join(subdir,'static/images') if not os.path.exists(image_dir): os.makedirs(image_dir) print ("Starting image conversion and page generation...") # loop over the images and do the processing images_per_dir = cfg.get('ImagesPerDir',2000) if cfg.get("BayerPattern").lower() == "rg": bayer_conv = cv2.COLOR_BAYER_RG2RGB if cfg.get("BayerPattern").lower() == "bg": bayer_conv = cv2.COLOR_BAYER_BG2RGB print ("Loading images...\n",) bundle_queue = Queue() for index, image in enumerate(image_list): reldir = 'images/' + str(images_per_dir*int(index/images_per_dir)).zfill(5) absdir = os.path.join(image_dir,str(images_per_dir*int(index/images_per_dir)).zfill(5)) filename = os.path.basename(image) if not os.path.exists(absdir): os.makedirs(absdir) bundle = {} bundle['image_path'] = image bundle['image'] = cvtools.import_image(os.path.dirname(image),filename,bayer_pattern=bayer_conv) bundle['data_path'] = data_path bundle['image_dir'] = absdir bundle['reldir'] = reldir bundle['cfg'] = cfg bundle['total_images'] = total_images bundle_queue.put(bundle) print ("Loading images... (" + str(index) + " of " + str(total_images) + ")\n"), #if index > 2000: # total_images = index # break # Get the number o proceess to use based on CPUs n_threads = multiprocessing.cpu_count() - 1 if n_threads < 1: n_threads = 1 # Create the set of processes and start them start_time = time.time() output_queue = Queue() processes = [] for i in range(0,n_threads): p = Process(target=process_bundle_list, args=(bundle_queue,output_queue)) p.start() processes.append(p) # Monitor processing of the images and save processed images to disk as they become available print ("\nProcessing Images...\r"), counter = 0 entry_list = [] use_jpeg = use_jpeg = cfg.get("UseJpeg").lower() == 'true' raw_color = cfg.get("SaveRawColor").lower() == 'true' while True: print ("Processing and saving images... (" + str(counter).zfill(5) + " of " + str(total_images).zfill(5) + ")\r",) if counter >= total_images: break #if output_queue.qsize() == 0: try: output = output_queue.get() if output: entry_list.append(output['entry']) output_path = os.path.join(output['image_path'],output['prefix']) if use_jpeg: if raw_color: cv2.imwrite(os.path.join(output_path+"_rawcolor.jpeg"),output['features']['rawcolor']) cv2.imwrite(os.path.join(output_path+".jpeg"),output['features']['image']) else: if raw_color: cv2.imwrite(os.path.join(output_path+"_rawcolor.png"),output['features']['rawcolor']) cv2.imwrite(os.path.join(output_path+".png"),output['features']['image']) cv2.imwrite(os.path.join(output_path+"_binary.png"),output['features']['binary']) counter = counter + 1 except: time.sleep(0.05) # Record the total time for processing proc_time = int(math.floor(time.time()-start_time)) # Terminate the processes in case they are stuck for p in processes: p.terminate() print ("\nPostprocessing...") # sort the entries by height and build the output entry_list.sort(key=itemgetter('maj_axis_len'),reverse=True) # Create histograms of several key features # image resolution in mm/pixel image_res = cfg.get('PixelSize',22.1)/1000; #print "Image resolution is set to: " + str(image_res) + " mm/pixel." # Get arrays from the dict of features total_images = len(entry_list) nbins = int(np.ceil(np.sqrt(total_images))) maj_len = np.array(lmap(itemgetter('maj_axis_len'),entry_list))*image_res min_len = np.array(lmap(itemgetter('min_axis_len'),entry_list))*image_res volume = np.array(lmap(itemgetter('estimated_volume'),entry_list))*image_res*image_res*image_res aspect_ratio = np.array(lmap(itemgetter('aspect_ratio'),entry_list)) orientation = np.array(lmap(itemgetter('orientation'),entry_list)) area = np.array(lmap(itemgetter('area'),entry_list))*image_res*image_res unixtime = np.array(lmap(itemgetter('timestamp'),entry_list)) elapsed_seconds = unixtime - np.min(unixtime) file_size = np.array(lmap(itemgetter('file_size'),entry_list))/1000.0 # Gather features scaled by the pixel size entry_list_scaled = [] for i, e in enumerate(entry_list): data_list = [ ('url', e['url']), ('timestamp', e['timestring']), ('file_size', file_size[i]), ('aspect_ratio', aspect_ratio[i]), ('maj_axis_len' , maj_len[i]), ('min_axis_len', min_len[i]), ('orientation', orientation[i]), ('eccentricity', e['eccentricity']), ('solidity', e['solidity']), ('estimated_volume', volume[i]), ('area', area[i]), ] for intensity_group in ['intensity_gray','intensity_red', 'intensity_green', 'intensity_blue']: if intensity_group in e: for k, v in e[intensity_group].items(): data_list.append((intensity_group + "_" + k, v)) data = OrderedDict(data_list) entry_list_scaled.append(data) total_seconds = max(elapsed_seconds) print ("Total seconds recorded: " + str(total_seconds)) if total_seconds < 1: total_seconds = 1 print ("\nComputing histograms...") # Compute histograms all_hists = {} hist = np.histogram(area,nbins) all_hists['area'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(maj_len,nbins) all_hists['major_axis_length'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(min_len,nbins) all_hists['minor_axis_length'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(aspect_ratio,nbins) all_hists['aspect_ratio'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(elapsed_seconds,np.uint32(total_seconds)) all_hists['elapsed_seconds'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(orientation,nbins) all_hists['orientation'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) hist = np.histogram(file_size,nbins) print ("\nComputing stats...") all_hists['file_size'] = json.dumps(lzip(hist[1].tolist(),hist[0].tolist())) # Compute general stats from features all_stats = {} all_stats['area'] = stats.describe(area) all_stats['major_axis_length'] = stats.describe(maj_len) all_stats['minor_axis_length'] = stats.describe(min_len) all_stats['aspect_ratio'] = stats.describe(aspect_ratio) all_stats['elapsed_seconds'] = stats.describe(elapsed_seconds) all_stats['orientation'] = stats.describe(orientation) all_stats['file_size'] = stats.describe(file_size) print ("Exporting spreadsheet results...") df = pandas.DataFrame(entry_list_scaled) df.to_csv(os.path.join(subdir,'features.tsv'), index=False, sep='\t') print ("Building web app...") try: os.mkdir(os.path.join(subdir, "templates")) os.mkdir(os.path.join(subdir, "static")) except OSError: print("directory already existed") # Load html template for rendering template = "" with open(os.path.join('app','templates/index.html'),"r") as fconv: template = fconv.read() server = "" with open(os.path.join('app','server.py'),"r") as fconv: server = fconv.read() # Define the render context from the processed histograms, images, and stats context = {} context['version'] = '1.0.1.05' context['total_images'] = total_images context['proc_time'] = proc_time context['duration'] = total_seconds context['compression_ratio'] = int((1000.0*24*total_images)/np.sum(file_size)) context['rois_per_second'] = total_images/context['duration'] context['kb_per_second'] = int(np.sum(file_size)/context['duration']) context['recording_started'] = datetime.datetime.fromtimestamp(np.min(unixtime)).strftime('%Y-%m-%d %H:%M:%S') context['app_title'] = "SPC Convert: " + base_dir_name context['dir_name'] = base_dir_name context['raw_color'] = raw_color context['image_res'] = image_res if use_jpeg: context['image_ext'] = '.jpeg' else: context['image_ext'] = '.png' context['stats_names'] = [{"name":"Min"},{"name":"Max"},{"name":"Mean"},{"name":"Standard Deviation"},{"name":"Skewness"},{"name":"Kurtosis"}] # definie the charts to display from the histogram data charts = [] for chart_name, data_values in all_hists.items(): chart = {} chart['source'] = 'js/' + chart_name + '.js' chart['name'] = chart_name units = "" if chart_name == 'area': units = " (mm*mm)" if chart_name == 'major_axis_length' or chart_name == 'minor_axis_length': units = " (mm)" if chart_name == 'file_size': units = " (kB)" if chart_name == 'elapsed_seconds': units = " (s)" if chart_name == 'orientation': units = " (deg)" chart['title'] = 'Histogram of ' + chart_name + units chart['x_title'] = chart_name + units chart['y_title'] = 'counts' chart['stats_title'] = chart_name chart['data'] = data_values chart['stats'] = [] chart['stats'].append({"name":"Min","value":"{:10.3f}".format(all_stats[chart_name][1][0])}) chart['stats'].append({"name":"Max","value":"{:10.3f}".format(all_stats[chart_name][1][1])}) chart['stats'].append({"name":"Mean","value":"{:10.3f}".format(all_stats[chart_name][2])}) chart['stats'].append({"name":"Standard Deviation","value":"{:10.3f}".format(math.sqrt(all_stats[chart_name][3]))}) chart['stats'].append({"name":"Skewness","value":"{:10.3f}".format(all_stats[chart_name][4])}) chart['stats'].append({"name":"Kurtosis","value":"{:10.3f}".format(all_stats[chart_name][5])}) charts.append(chart) context['charts'] = charts context['num_pred_0'], context['num_pred_1'] = ("{{num_pred_0}}","{{num_pred_1}}") # render the html page and save to disk page = pystache.render(template,context) with open(os.path.join(subdir,'templates/spcdata.html'),"w") as fconv: fconv.write(page) with open(os.path.join(subdir,'server.py'),"w") as fconv: fconv.write(server) # remove any old app files and try to copy over new ones try: shutil.rmtree(os.path.join(subdir,"static/css"),ignore_errors=True) shutil.copytree("app/static/css",os.path.join(subdir,"static/css")) shutil.rmtree(os.path.join(subdir,"static/js"),ignore_errors=True) shutil.copytree("app/static/js",os.path.join(subdir,"static/js")) except: print ("Error copying supporting files for html.") # Load roistore.js database for rendering template = "" with open(os.path.join('app','static/js','database-template.js'),"r") as fconv: template = fconv.read() context = {} context['image_items'] = entry_list context['table'] = base_dir_name # render the javascript page and save to disk page = pystache.render(template,context) with open(os.path.join(subdir,'static/js','database.js'),"w") as fconv: fconv.write(page) print ("Done.") def valid_image_dir(test_path): list = glob.glob(os.path.join(test_path,"*.tif")) if len(list) > 0: return True else: return False # Module multiprocessing is organized differently in Python 3.4+ try: # Python 3.4+ if sys.platform.startswith('win'): import multiprocessing.popen_spawn_win32 as forking else: import multiprocessing.popen_fork as forking except ImportError: import multiprocessing.forking as forking if sys.platform.startswith('win'): # First define a modified version of Popen. class _Popen(forking.Popen): def __init__(self, *args, **kw): if hasattr(sys, 'frozen'): # We have to set original _MEIPASS2 value from sys._MEIPASS # to get --onefile mode working. os.putenv('_MEIPASS2', sys._MEIPASS) try: super(_Popen, self).__init__(*args, **kw) finally: if hasattr(sys, 'frozen'): # On some platforms (e.g. AIX) 'os.unsetenv()' is not # available. In those cases we cannot delete the variable # but only set it to the empty string. The bootloader # can handle this case. if hasattr(os, 'unsetenv'): os.unsetenv('_MEIPASS2') else: os.putenv('_MEIPASS2', '') # Second override 'Popen' class with our modified version. forking.Popen = _Popen if __name__ == '__main__': multiprocessing.freeze_support() if len(sys.argv) <= 1: print ("Please input a dirtectory of data directories, aborting.") else: if len(sys.argv) <= 2: data_path = sys.argv[1] # load the config file cfg = xmlsettings.XMLSettings(os.path.join(sys.path[0],'settings.xml')) combine_subdirs = cfg.get('MergeSubDirs',"False").lower() == "true" print ("Settings file: " + os.path.join(sys.path[0],'settings.xml')) # If file given try to unpack if os.path.isfile(data_path): extracted_path = data_path + "_unpacked" with tarfile.open(data_path) as archive: archive.extractall(path=extracted_path) data_path = extracted_path to_clean = extracted_path # If given directory is a single data directory, just process it if valid_image_dir(data_path): run(data_path,cfg) sys.exit(0) # Otherwise look for data directories in the given directory # List data directories and process each one # expect the directories to be in the unixtime format directory_list = sorted(glob.glob(os.path.join(data_path,"[0-9]"*10))) if len(directory_list) == 0: print ("No data directories found.") sys.exit(0) # Process the data directories in order print ('Processing each data directory...') for directory in directory_list: if os.path.isdir(directory): if not combine_subdirs: if valid_image_dir(directory): run(directory,cfg) else: run(directory,cfg)
import discord class administrator: def __init__(self, rankie, logging): self.__rankie = rankie self.__logging = logging # Attaches and sends managed_channels to a discord message async def get_log_file(self, ctx): try: await ctx.message.reply(file=discord.File(f'logs/rankie.log')) except Exception as e: self.__logging.error(f'Failed to deliver logs: {e}') await ctx.message.reply(f'Error: {e}') async def get_guilds(self, ctx): msg = f'Connected to {len(self.__rankie.guilds)} server(s):\n' # Iterate over guilds for guild in self.__rankie.guilds: msg += f'``{guild.name:<20}\t{guild.id:<15}``\n' # Send the msg await ctx.message.reply(msg)
import os from tqdm import trange import torch from torch.nn import functional as F from torch import distributions as dist from im2mesh.common import ( compute_iou, make_3d_grid, fix_K_camera, get_camera_args ) from im2mesh.utils import visualize as vis from im2mesh.training import BaseTrainer from im2mesh.onet.loss_functions import get_occ_loss, occ_loss_postprocess class Trainer(BaseTrainer): ''' Trainer object for the Occupancy Network. Args: model (nn.Module): Occupancy Network model optimizer (optimizer): pytorch optimizer object device (device): pytorch device input_type (str): input type vis_dir (str): visualization directory threshold (float): threshold value eval_sample (bool): whether to evaluate samples ''' def __init__(self, model, optimizer, device=None, input_type='img', vis_dir=None, threshold=0.5, eval_sample=False, loss_type='cross_entropy', use_local_feature=False, surface_loss_weight=1., binary_occ=False, loss_tolerance_episolon=0., sign_lambda=0. ): self.model = model self.optimizer = optimizer self.device = device self.input_type = input_type self.vis_dir = vis_dir self.threshold = threshold self.eval_sample = eval_sample self.loss_type = loss_type self.use_local_feature = use_local_feature self.surface_loss_weight = surface_loss_weight self.binary_occ = binary_occ self.loss_tolerance_episolon = loss_tolerance_episolon self.sign_lambda = sign_lambda if self.surface_loss_weight != 1.: print('Surface loss weight:', self.surface_loss_weight) if vis_dir is not None and not os.path.exists(vis_dir): os.makedirs(vis_dir) def train_step(self, data): ''' Performs a training step. Args: data (dict): data dictionary ''' self.model.train() self.optimizer.zero_grad() loss = self.compute_loss(data) loss.backward() self.optimizer.step() return loss.item() def eval_step(self, data): ''' Performs an evaluation step. Args: data (dict): data dictionary ''' self.model.eval() device = self.device threshold = self.threshold eval_dict = {} # Compute elbo points = data.get('points').to(device) if self.binary_occ: occ = (data.get('points.occ') >= 0.5).float().to(device) else: occ = data.get('points.occ').to(device) inputs = data.get('inputs', torch.empty(points.size(0), 0)).to(device) voxels_occ = data.get('voxels') points_iou = data.get('points_iou').to(device) if self.binary_occ: occ_iou = (data.get('points_iou.occ') >= 0.5).float().to(device) else: occ_iou = data.get('points_iou.occ').to(device) kwargs = {} if self.use_local_feature: camera_args = get_camera_args(data, 'points.loc', 'points.scale', device=device) Rt = camera_args['Rt'] K = camera_args['K'] with torch.no_grad(): if self.use_local_feature: elbo, rec_error, kl = self.model.compute_elbo( points, occ, inputs, Rt, K, **kwargs) else: elbo, rec_error, kl = self.model.compute_elbo( points, occ, inputs, **kwargs) eval_dict['loss'] = -elbo.mean().item() eval_dict['rec_error'] = rec_error.mean().item() eval_dict['kl'] = kl.mean().item() # Compute iou batch_size = points.size(0) with torch.no_grad(): if self.use_local_feature: p_out = self.model(points_iou, inputs, Rt, K, sample=self.eval_sample, **kwargs) else: p_out = self.model(points_iou, inputs, sample=self.eval_sample, **kwargs) occ_iou_np = (occ_iou >= 0.5).cpu().numpy() occ_iou_hat_np = (p_out.probs >= threshold).cpu().numpy() iou = compute_iou(occ_iou_np, occ_iou_hat_np).mean() eval_dict['iou'] = iou # Estimate voxel iou if voxels_occ is not None: voxels_occ = voxels_occ.to(device) points_voxels = make_3d_grid( (-0.5 + 1/64,) * 3, (0.5 - 1/64,) * 3, (32,) * 3) points_voxels = points_voxels.expand( batch_size, *points_voxels.size()) points_voxels = points_voxels.to(device) with torch.no_grad(): if self.use_local_feature: p_out = self.model(points_voxels, inputs, Rt, K, sample=self.eval_sample, **kwargs) else: p_out = self.model(points_voxels, inputs, sample=self.eval_sample, **kwargs) voxels_occ_np = (voxels_occ >= 0.5).cpu().numpy() occ_hat_np = (p_out.probs >= threshold).cpu().numpy() iou_voxels = compute_iou(voxels_occ_np, occ_hat_np).mean() eval_dict['iou_voxels'] = iou_voxels return eval_dict def visualize(self, data): ''' Performs a visualization step for the data. Args: data (dict): data dictionary ''' self.model.eval() device = self.device batch_size = data['points'].size(0) inputs = data.get('inputs', torch.empty(batch_size, 0)).to(device) if self.use_local_feature: camera_args = get_camera_args(data, 'points.loc', 'points.scale', device=device) Rt = camera_args['Rt'] K = camera_args['K'] shape = (32, 32, 32) p = make_3d_grid([-0.5] * 3, [0.5] * 3, shape).to(device) p = p.expand(batch_size, *p.size()) kwargs = {} with torch.no_grad(): if self.use_local_feature: p_r = self.model(p, inputs, Rt, K, sample=self.eval_sample, **kwargs) else: p_r = self.model(p, inputs, sample=self.eval_sample, **kwargs) occ_hat = p_r.probs.view(batch_size, *shape) voxels_out = (occ_hat >= self.threshold).cpu().numpy() for i in trange(batch_size): input_img_path = os.path.join(self.vis_dir, '%03d_in.png' % i) vis.visualize_data( inputs[i].cpu(), self.input_type, input_img_path) vis.visualize_voxels( voxels_out[i], os.path.join(self.vis_dir, '%03d.png' % i)) def compute_loss(self, data): ''' Computes the loss. Args: data (dict): data dictionary ''' device = self.device p = data.get('points').to(device) if self.binary_occ: occ = (data.get('points.occ') >= 0.5).float().to(device) else: occ = data.get('points.occ').to(device) inputs = data.get('inputs', torch.empty(p.size(0), 0)).to(device) kwargs = {} if self.use_local_feature: camera_args = get_camera_args(data, 'points.loc', 'points.scale', device=device) Rt = camera_args['Rt'] K = camera_args['K'] f3,f2,f1 = self.model.encode_inputs(inputs,p,Rt,K) else: f3,f2,f1 = self.model.encode_inputs(inputs) q_z = self.model.infer_z(p, occ, f3, **kwargs) z = q_z.rsample() # KL-divergence kl = dist.kl_divergence(q_z, self.model.p0_z).sum(dim=-1) loss = kl.mean() # General points p_r = self.model.decode(p, z, f3, f2, f1, **kwargs) logits = p_r.logits probs = p_r.probs # loss loss_i = get_occ_loss(logits, occ, self.loss_type) # loss strategies loss_i = occ_loss_postprocess(loss_i, occ, probs, self.loss_tolerance_episolon, self.sign_lambda, self.threshold, self.surface_loss_weight) loss = loss + loss_i.sum(-1).mean() return loss
import scipy.io as sio cats = ["Peace","Affection","Esteem","Anticipation","Engagement","Confidence","Happiness","Pleasure","Excitement","Surprise","Sympathy","Doubt/Confusion","Disconnection","Fatigue","Embarrassment","Yearning","Disapproval","Aversion","Annoyance","Anger","Sensitivity","Sadness","Disquietment","Fear","Pain","Suffering"] mapp = {} for i in range(26): mapp[cats[i]] = i a = sio.loadmat("Annotations.mat") train = a['train'] val = a['val'] test = a['test'] def process(d, name): f = open(name, 'w') d = d[0] tot = d.shape[0] print(name, tot) for i in range(tot): di = d[i] name = di[0].item() folder = di[1].item() person = di[4][0] totp = person.shape[0] for j in range(totp): p = person[j].item() bbox = p[0][0] pc = p[1][0][0][0][0] label = [0] * 26 totpc = len(pc) for k in range(totpc): label[mapp[pc[k].item()]] = 1 label = [str(item) for item in label] label = ' '.join(label) f.write('%s/%s %f %f %f %f %s\n'%(folder, name, bbox[0], bbox[1], bbox[2], bbox[3], label)) process(train, 'train.txt') #process(val, 'val.txt') #process(test, 'test.txt')
from rest_framework import viewsets, permissions from api.permissions import IsOwner from updates.models import UpdateSubscription from updates.serializers import UpdateSubscriptionSerializer class UpdateSubscriptionViewSet(viewsets.ModelViewSet): """ API endpoints for subscription management """ queryset = UpdateSubscription.objects.all() serializer_class = UpdateSubscriptionSerializer permission_classes = [permissions.IsAuthenticated, IsOwner]