content
stringlengths
5
1.05M
# Implemente um programa que possa receber do usuário a temperatura em graus Celsius ou Fahrenheit. Antes de receber a temperatura, pergunte ao usuário se ele deseja inserir em Celsius ou em Fahrenheit. Se a entrada for em graus Celsius, o programa deverá retornar a temperatura em Fahrenheit. Se a entrada for em Fahrenheit, o programa deverá retornar a temperatura em Celsius. F = C x 1,8 + 32 opcao = int(input('\nOLÁ!\n Para Inserir em Celsius, digite [1] para FarenHeit [2]: ')) temp = int(input('\nDigite a Temperatura: ')) def celsius_farenheit(temperatura): print (f'\nTemperatura Convertida em FarenHeit: {(temperatura*1.8) + 32}\n') def farenheit_celsius(temperatura): print (f'\nTemperatura Convertida em Celsius: {(temperatura-32) / 1.8}\n') if opcao == 1: celsius_farenheit(temp) elif opcao == 2: farenheit_celsius(temp)
#!/usr/bin/python import sys, os, re, string dotExtRe = re.compile("\.[a-zA-Z]+") includeRe = re.compile("^#[ \t]*include[ \t]*") for file in sys.argv[1:]: inf = open(file) myIncludes = [ ] for x in inf.readlines(): m = includeRe.search(x) if m != None: x = x[m.regs[0][1]:-1] if x[0] == '"': x = x[1:-1] if x not in myIncludes: myIncludes.append(x) inf.close() m = dotExtRe.search(file) assert m != None dotOFile = file[:m.regs[0][0]] + ".o" sys.stdout.write(dotOFile + ": " + file) for x in myIncludes: sys.stdout.write(" " + x) sys.stdout.write("\n")
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: __init__.py import dsz import dsz.cmd import dsz.data import dsz.lp class Plugins(dsz.data.Task): def __init__(self, cmd=None): dsz.data.Task.__init__(self, cmd) def _LoadData(self): try: self.Local = Plugins.Local(dsz.cmd.data.Get('Local', dsz.TYPE_OBJECT)[0]) except: self.Local = None try: self.Remote = Plugins.Remote(dsz.cmd.data.Get('Remote', dsz.TYPE_OBJECT)[0]) except: self.Remote = None return class Local(dsz.data.DataBean): def __init__(self, obj): try: self.address = dsz.cmd.data.ObjectGet(obj, 'address', dsz.TYPE_STRING)[0] except: self.address = None self.Plugin = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'Plugin', dsz.TYPE_OBJECT): self.Plugin.append(Plugins.Local.Plugin(x)) except: pass return class Plugin(dsz.data.DataBean): def __init__(self, obj): try: self.core = dsz.cmd.data.ObjectGet(obj, 'core', dsz.TYPE_BOOL)[0] except: self.core = None try: self.ReallyLoaded = dsz.cmd.data.ObjectGet(obj, 'ReallyLoaded', dsz.TYPE_BOOL)[0] except: self.ReallyLoaded = None try: self.loadCount = dsz.cmd.data.ObjectGet(obj, 'loadCount', dsz.TYPE_INT)[0] except: self.loadCount = None try: self.id = dsz.cmd.data.ObjectGet(obj, 'id', dsz.TYPE_INT)[0] except: self.id = None try: self.name = dsz.cmd.data.ObjectGet(obj, 'name', dsz.TYPE_STRING)[0] except: self.name = None try: self.loaderInfo = dsz.cmd.data.ObjectGet(obj, 'loaderInfo', dsz.TYPE_STRING)[0] except: self.loaderInfo = None self.RegisteredApis = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'RegisteredApis', dsz.TYPE_OBJECT): self.RegisteredApis.append(Plugins.Local.Plugin.RegisteredApis(x)) except: pass self.AcquiredApis = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'AcquiredApis', dsz.TYPE_OBJECT): self.AcquiredApis.append(Plugins.Local.Plugin.AcquiredApis(x)) except: pass try: self.Version = Plugins.Local.Plugin.Version(dsz.cmd.data.ObjectGet(obj, 'Version', dsz.TYPE_OBJECT)[0]) except: self.Version = None return class RegisteredApis(dsz.data.DataBean): def __init__(self, obj): try: self.interface = dsz.cmd.data.ObjectGet(obj, 'interface', dsz.TYPE_INT)[0] except: self.interface = None try: self.provider = dsz.cmd.data.ObjectGet(obj, 'provider', dsz.TYPE_INT)[0] except: self.provider = None return class AcquiredApis(dsz.data.DataBean): def __init__(self, obj): try: self.interface = dsz.cmd.data.ObjectGet(obj, 'interface', dsz.TYPE_INT)[0] except: self.interface = None try: self.provider = dsz.cmd.data.ObjectGet(obj, 'provider', dsz.TYPE_INT)[0] except: self.provider = None try: self.providedBy = dsz.cmd.data.ObjectGet(obj, 'providedBy', dsz.TYPE_STRING)[0] except: self.providedBy = None return class Version(dsz.data.DataBean): def __init__(self, obj): try: self.Lla = Plugins.Local.Plugin.Version.Lla(dsz.cmd.data.ObjectGet(obj, 'Lla', dsz.TYPE_OBJECT)[0]) except: self.Lla = None try: self.Module = Plugins.Local.Plugin.Version.Module(dsz.cmd.data.ObjectGet(obj, 'Module', dsz.TYPE_OBJECT)[0]) except: self.Module = None try: self.BuildEnvironment = Plugins.Local.Plugin.Version.BuildEnvironment(dsz.cmd.data.ObjectGet(obj, 'BuildEnvironment', dsz.TYPE_OBJECT)[0]) except: self.BuildEnvironment = None return class Lla(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None return class Module(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None try: self.Flags = Plugins.Local.Plugin.Version.Module.Flags(dsz.cmd.data.ObjectGet(obj, 'Flags', dsz.TYPE_OBJECT)[0]) except: self.Flags = None return class Flags(dsz.data.DataBean): def __init__(self, obj): try: self.Value = dsz.cmd.data.ObjectGet(obj, 'Value', dsz.TYPE_INT)[0] except: self.Value = None try: self.Target = dsz.cmd.data.ObjectGet(obj, 'Target', dsz.TYPE_BOOL)[0] except: self.Target = None try: self.Lp = dsz.cmd.data.ObjectGet(obj, 'Lp', dsz.TYPE_BOOL)[0] except: self.Lp = None return class BuildEnvironment(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None try: self.TypeValue = dsz.cmd.data.ObjectGet(obj, 'TypeValue', dsz.TYPE_INT)[0] except: self.TypeValue = None try: self.Type = dsz.cmd.data.ObjectGet(obj, 'Type', dsz.TYPE_STRING)[0] except: self.Type = None return class Remote(dsz.data.DataBean): def __init__(self, obj): try: self.address = dsz.cmd.data.ObjectGet(obj, 'address', dsz.TYPE_STRING)[0] except: self.address = None self.Plugin = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'Plugin', dsz.TYPE_OBJECT): self.Plugin.append(Plugins.Remote.Plugin(x)) except: pass return class Plugin(dsz.data.DataBean): def __init__(self, obj): try: self.core = dsz.cmd.data.ObjectGet(obj, 'core', dsz.TYPE_BOOL)[0] except: self.core = None try: self.ReallyLoaded = dsz.cmd.data.ObjectGet(obj, 'ReallyLoaded', dsz.TYPE_BOOL)[0] except: self.ReallyLoaded = None try: self.loadCount = dsz.cmd.data.ObjectGet(obj, 'loadCount', dsz.TYPE_INT)[0] except: self.loadCount = None try: self.id = dsz.cmd.data.ObjectGet(obj, 'id', dsz.TYPE_INT)[0] except: self.id = None try: self.name = dsz.cmd.data.ObjectGet(obj, 'name', dsz.TYPE_STRING)[0] except: self.name = None try: self.loaderInfo = dsz.cmd.data.ObjectGet(obj, 'loaderInfo', dsz.TYPE_STRING)[0] except: self.loaderInfo = None self.RegisteredApis = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'RegisteredApis', dsz.TYPE_OBJECT): self.RegisteredApis.append(Plugins.Remote.Plugin.RegisteredApis(x)) except: pass self.AcquiredApis = list() try: for x in dsz.cmd.data.ObjectGet(obj, 'AcquiredApis', dsz.TYPE_OBJECT): self.AcquiredApis.append(Plugins.Remote.Plugin.AcquiredApis(x)) except: pass try: self.Version = Plugins.Remote.Plugin.Version(dsz.cmd.data.ObjectGet(obj, 'Version', dsz.TYPE_OBJECT)[0]) except: self.Version = None return class RegisteredApis(dsz.data.DataBean): def __init__(self, obj): try: self.interface = dsz.cmd.data.ObjectGet(obj, 'interface', dsz.TYPE_INT)[0] except: self.interface = None try: self.provider = dsz.cmd.data.ObjectGet(obj, 'provider', dsz.TYPE_INT)[0] except: self.provider = None return class AcquiredApis(dsz.data.DataBean): def __init__(self, obj): try: self.interface = dsz.cmd.data.ObjectGet(obj, 'interface', dsz.TYPE_INT)[0] except: self.interface = None try: self.provider = dsz.cmd.data.ObjectGet(obj, 'provider', dsz.TYPE_INT)[0] except: self.provider = None try: self.providedBy = dsz.cmd.data.ObjectGet(obj, 'providedBy', dsz.TYPE_STRING)[0] except: self.providedBy = None return class Version(dsz.data.DataBean): def __init__(self, obj): try: self.Lla = Plugins.Remote.Plugin.Version.Lla(dsz.cmd.data.ObjectGet(obj, 'Lla', dsz.TYPE_OBJECT)[0]) except: self.Lla = None try: self.Module = Plugins.Remote.Plugin.Version.Module(dsz.cmd.data.ObjectGet(obj, 'Module', dsz.TYPE_OBJECT)[0]) except: self.Module = None try: self.BuildEnvironment = Plugins.Remote.Plugin.Version.BuildEnvironment(dsz.cmd.data.ObjectGet(obj, 'BuildEnvironment', dsz.TYPE_OBJECT)[0]) except: self.BuildEnvironment = None return class Lla(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None return class Module(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None try: self.Flags = Plugins.Remote.Plugin.Version.Module.Flags(dsz.cmd.data.ObjectGet(obj, 'Flags', dsz.TYPE_OBJECT)[0]) except: self.Flags = None return class Flags(dsz.data.DataBean): def __init__(self, obj): try: self.Value = dsz.cmd.data.ObjectGet(obj, 'Value', dsz.TYPE_INT)[0] except: self.Value = None try: self.Target = dsz.cmd.data.ObjectGet(obj, 'Target', dsz.TYPE_BOOL)[0] except: self.Target = None try: self.Lp = dsz.cmd.data.ObjectGet(obj, 'Lp', dsz.TYPE_BOOL)[0] except: self.Lp = None return class BuildEnvironment(dsz.data.DataBean): def __init__(self, obj): try: self.Major = dsz.cmd.data.ObjectGet(obj, 'Major', dsz.TYPE_INT)[0] except: self.Major = None try: self.Minor = dsz.cmd.data.ObjectGet(obj, 'Minor', dsz.TYPE_INT)[0] except: self.Minor = None try: self.Revision = dsz.cmd.data.ObjectGet(obj, 'Revision', dsz.TYPE_INT)[0] except: self.Revision = None try: self.TypeValue = dsz.cmd.data.ObjectGet(obj, 'TypeValue', dsz.TYPE_INT)[0] except: self.TypeValue = None try: self.Type = dsz.cmd.data.ObjectGet(obj, 'Type', dsz.TYPE_STRING)[0] except: self.Type = None return dsz.data.RegisterCommand('Plugins', Plugins) PLUGINS = Plugins plugins = Plugins
#!/usr/bin/python3 # Copyright (c) 2016-2021 Wind River Systems, Inc. # # SPDX-License-Identifier: Apache-2.0 # import sys import os import json import datetime import uuid as uuid_gen import yaml import collections import sqlalchemy from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column from sqlalchemy import Boolean from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy import DateTime from sqlalchemy import exc import fm_log as log LOG = log.get_logger(__name__) Base = declarative_base() class EventSuppression(Base): __tablename__ = 'event_suppression' created_at = Column('created_at', DateTime) id = Column('id', Integer, primary_key=True, nullable=False) uuid = Column('uuid', String(36), unique=True) alarm_id = Column('alarm_id', String(255), unique=True) description = Column('description', String(255)) suppression_status = Column('suppression_status', String(255)) set_for_deletion = Column('set_for_deletion', Boolean) mgmt_affecting = Column('mgmt_affecting', String(255)) degrade_affecting = Column('degrade_affecting', String(255)) class ialarm(Base): __tablename__ = 'alarm' id = Column(Integer, primary_key=True, nullable=False) alarm_id = Column('alarm_id', String(255), index=True) class event_log(Base): __tablename__ = 'event_log' id = Column(Integer, primary_key=True, nullable=False) event_log_id = Column('event_log_id', String(255), index=True) state = Column(String(255)) def prettyDict(dict): output = json.dumps(dict, sort_keys=True, indent=4) return output def get_events_yaml_filename(): events_yaml_name = os.environ.get("EVENTS_YAML") if events_yaml_name is not None and os.path.isfile(events_yaml_name): return events_yaml_name return "/etc/fm/events.yaml" # # Main # if len(sys.argv) < 2: msg = 'Postgres credentials required as argument.' LOG.error(msg) sys.exit(msg) postgresql_credentials = str(sys.argv[1]) # Set up logging: current_file_name = __file__ current_file_name = current_file_name[2:] # remove leading characters "./" # Set up sqlalchemy: try: meta = sqlalchemy.MetaData() engine = sqlalchemy.create_engine(postgresql_credentials) meta.bind = engine except exc.SQLAlchemyError as exp: LOG.error(exp) sys.exit(exp) Session = sessionmaker(bind=engine) session = Session() # Convert events.yaml to dict: LOG.info("Converting events.yaml to dict: ") EVENT_TYPES_FILE = get_events_yaml_filename() if not os.path.isfile(EVENT_TYPES_FILE): LOG.error("file %s doesn't exist. Finishing" % (EVENT_TYPES_FILE)) exit(-1) with open(EVENT_TYPES_FILE, 'r') as stream: event_types = yaml.load(stream) for alarm_id in list(event_types.keys()): if isinstance(alarm_id, float): # force 3 digits after the decimal point, # to include trailing zero's (ex.: 200.010) formatted_alarm_id = "{:.3f}".format(alarm_id) event_types[formatted_alarm_id] = event_types.pop(alarm_id) event_types = collections.OrderedDict(sorted(event_types.items())) yaml_event_list = [] uneditable_descriptions = {'100.114', '200.007', '200.02', '200.021', '200.022', '800.002'} # Parse events.yaml dict, and add any new alarm to event_suppression table: LOG.info("Parsing events.yaml and adding any new alarm to event_suppression table: ") for event_type in event_types: if event_types.get(event_type).get('Type') == "Alarm": event_created_at = datetime.datetime.now() event_uuid = str(uuid_gen.uuid4()) string_event_type = str(event_type) yaml_event_list.append(string_event_type) if str(event_type) not in uneditable_descriptions: event_description = (event_types.get(event_type) .get('Description')) else: event_description = event_types.get(event_type).get('Description') event_description = str(event_description) event_description = (event_description[:250] + ' ...') \ if len(event_description) > 250 else event_description try: event_supp = session.query(EventSuppression) \ .filter_by(alarm_id=string_event_type).first() except exc.SQLAlchemyError as exp: LOG.error(exp) event_mgmt_affecting = str(event_types.get(event_type).get( 'Management_Affecting_Severity', 'warning')) event_degrade_affecting = str(event_types.get(event_type).get( 'Degrade_Affecting_Severity', 'none')) if event_supp: event_supp.description = event_description event_supp.mgmt_affecting = event_mgmt_affecting event_supp.degrade_affecting = event_degrade_affecting else: event_supp = EventSuppression(created_at=event_created_at, uuid=event_uuid, alarm_id=string_event_type, description=event_description, suppression_status='unsuppressed', set_for_deletion=False, mgmt_affecting=event_mgmt_affecting, degrade_affecting=event_degrade_affecting) session.add(event_supp) LOG.info("Created Event Type: %s in event_suppression table." % (string_event_type)) try: session.commit() except exc.SQLAlchemyError as exp: LOG.error(exp) event_supp = session.query(EventSuppression) alarms = session.query(ialarm) events = session.query(event_log).filter(event_log.state != 'log') alarm_ids_in_use = set() for alarm in alarms: alarm_ids_in_use.add(alarm.alarm_id) for event in events: alarm_ids_in_use.add(event.event_log_id) for event_type in event_supp: if event_type.alarm_id not in yaml_event_list: if event_type.alarm_id not in alarm_ids_in_use: event_supp = session.query(EventSuppression) \ .filter_by(alarm_id=event_type.alarm_id).first() session.delete(event_supp) LOG.info("Deleted Event Type: %s from event_suppression table." % (event_type.alarm_id)) else: event_supp.suppression_status = 'unsuppressed' event_supp.set_for_deletion = True LOG.info("Event Type: %s no longer in events.yaml, but still used by alarm in database." % (event_type.alarm_id)) LOG.info("Event Type: %s marked as set for deletion in event_suppression table." % (event_type.alarm_id)) try: session.commit() except exc.SQLAlchemyError as exp: LOG.error(exp) session.close() LOG.debug("Normally exiting from: %s" % (__file__))
from rest_framework_simplejwt.serializers import TokenObtainPairSerializer class CustomTokenSerializer(TokenObtainPairSerializer): @classmethod def get_token(cls, user): token = super().get_token(user) token['role'] = user.role.name return token
from enums import * from board import Board from piece import Piece def clone_board_state(board): return [list(x) for x in board.state] class Move(object): def __init__(self, board, start_coord, end_coord, attacked = None, attacked_count = 0): self.white_plays = board.white_plays self.state = board.state self.start_coord = start_coord self.end_coord = end_coord self.attacked = attacked self.attacked_count = attacked_count def get_board(self): return Board(white_plays = self.white_plays, board_state = self.state, apply_move = self)
#!/usr/bin/env python import time import DalekV2DriveV2 import DalekSpi import RPi.GPIO as GPIO # Import GPIO divers GPIO.setwarnings(False) DalekV2DriveV2.init() DalekSpi.init() # this gets the spi reading and gets rid of bad readings and # readings that are out of range due to the motors and acceleration def getStartingMag(): # used for all timings in this function. timerTime = 0.4 magOffset = 3000 print("\n-getStartingMag()") DalekV2DriveV2.stop() time.sleep(timerTime) currentMag = -1 while not (0 <= currentMag <= 360): # ensure we get a valid reading must be between 0 and 360 currentMag = DalekSpi.getMag() print("--currentMag:{}\n-------------\n".format(currentMag)) currentMag += magOffset # add the offset value return currentMag def getMag(clockwise=True ,currentHeading=None): # used for all timings in this function. timerTime = 0.4 # The value we add to all readings to # get over the 360 to 0 rollover and all the # calculations that would be needed. # use a high number so it stays above Zero magOffset = 3000 currentMag = -1 # set a value that we can not get. print("\n1---getMag({},{})".format(clockwise, currentHeading - magOffset)) if currentHeading == None: return getStartingMag() else: previousMagReading = currentHeading - magOffset # subtract off the offset to get previous reading. print("\n2---getMag({},{})".format(direction, previousMagReading - magOffset)) if previousMagReading > 360: floorDivisionOfPreviousMagReading = previousMagReading // 360 # should be 1,2 or 3 previousMagReading = previousMagReading % 360 # between 0 and 360 magOffset += (floorDivisionOfPreviousMagReading * 360) # add the back for using later print("\n getMag() previousMagReading > 360 previousMagReading:{} magOffset:{} ".format( previousMagReading, magOffset)) ##################### ## TODO this should now wrk for clockwise # now do anticlockwise # now we can get a new value. DalekSpi.stop() time.sleep(timerTime) # settle the bot for better reading if clockwise: # Clockwise currentMag = DalekSpi.getMag() if 0 <= currentMag <= 360: # is between 0 and 360 # is between previous reading and an upper limit this prevents errors if # the mag is affected buy other factors. if previousMagReading <= currentMag <= (previousMagReading +30): currentMag += magOffset print("---Clockwise {}".format(currentMag)) # you have rolled over the 360 mark # val: 355 <= (5 + 360){365} <= ( 355 + 30{385}) = True elif previousMagReading <= (currentMag + 360 ) <= (previousMagReading +30): currentMag += 360 + magOffset print("---Clockwise Rollover{}".format(currentMag)) else: print("---error in mag reading out of range currentMag:{}".format(currentMag)) else: print("--error in mag reading > 360 value:{}".format(currentMag)) return currentMag else: # anti Clockwise pass magMax = currentMag + currentMagPlay minMag = currentMag - currentMagPlay # while the mag reading is not between the range we set # keep trying for a more accurate reading. while not (minMag < currentMag <= magMax): DalekSpi.stop() time.sleep(timerTime) currentMag = DalekSpi.getMag() + magOffset return currentMag def DalekTurn(degreesToTurn): magOffset = 3000 # used for all timings in this function. timerTime = 0.4 fastModeSpeed = 60 normalModeSpeed = 25 print("\n---------") print("DalekTurn({})".format(degreesToTurn)) startHeading = getStartingMag() currentHeading = startHeading endHeading = startHeading + degreesToTurn print("\n################ \nStartHeading:{} CurrentHeading:{} EndHeading:{}".format( (startHeading - magOffset), (currentHeading- magOffset), (endHeading - magOffset))) # used to hold any pass of the 360/0 point pass360Point=0 # turn counter clockwise if degreesToTurn < 0: print("turn counter clockwise") counter = 0 while endHeading <= currentHeading: if ( currentHeading - endHeading >= 60): print("#### FAST MODE ##### ") ## subtract off the endHeading so is dose not over shoot. pass360Point = turnAntiClockwise(currentHeading, endHeading + 30, timerTime, pass360Point, fastModeSpeed) time.sleep(timerTime) currentHeading = getMag(True,currentHeading) pass360Point = turnAntiClockwise(currentHeading, endHeading, timerTime, pass360Point, normalModeSpeed) time.sleep(timerTime) currentHeading = getMag(True,currentHeading) print(" currentHeading Heading:{} should be:{} pass360Point:{}" .format((currentHeading - magOffset),( (endHeading- magOffset) - pass360Point),pass360Point)) if counter == 5: break # turn clockwise elif degreesToTurn > 0: counter = 0 while endHeading >= currentHeading: if (endHeading - currentHeading >= 60): print("#### FAST MODE ##### ") ## subtract off the endHeading so is dose not over shoot. pass360Point = turnClockwise(currentHeading, endHeading - 30, timerTime, pass360Point, fastModeSpeed) time.sleep(timerTime) currentHeading = getMag(True,currentHeading) pass360Point = turnClockwise(currentHeading, endHeading, timerTime, pass360Point, normalModeSpeed) time.sleep(timerTime) currentHeading = getMag(True,currentHeading) print(" currentHeading Heading:{} should be:{} pass360Point:{}".format((currentHeading - magOffset),( (endHeading- magOffset) - pass360Point),pass360Point)) if counter == 5: break # you entered 0 so exit else: pass DalekV2DriveV2.stop() time.sleep(timerTime) # mag = getMag() - magOffset print("-- End Heading:{} should be:{}".format((getMag() - magOffset),( (endHeading- magOffset) - pass360Point))) # this is a private function used in the DalekTurn function def turnClockwise(currentHeading, endHeading, timerTime, pass360Point,_speed): magOffset = 3000 print("---- turnClockwise\n speed{}".format(_speed)) minval = currentHeading while currentHeading <= endHeading: time.sleep(timerTime) # pause for sensor to settel checkforPass360 =getMag(True,currentHeading) DalekV2DriveV2.spinRight(_speed) print(" checkforPass360: {}".format(checkforPass360 - magOffset)) # take a little off it to account for reading error. # 3 < (350 -100) or 3 < 250 is true # 350 < 250 is false, not passed zero point # you wont move more than 100 dec in 0.3 seconds if checkforPass360 < (currentHeading -100): checkforPass360 = checkforPass360 + 360 # you have passed 360 pass360Point = pass360Point + 360 # add to the return value. if currentHeading < checkforPass360: currentHeading = checkforPass360 # this is now your new value print(" currentHeading: {}".format(currentHeading - magOffset)) DalekV2DriveV2.stop() print("---------------------exit turnClockwise\n" ) return pass360Point # this is a private function used in the DalekTurn function def turnAntiClockwise(currentHeading, endHeading, timerTime, pass360Point,speed): magOffset = 3000 print("--------------------- turnAntiClockwise\n speed{}".format(speed)) while currentHeading >= endHeading: time.sleep(timerTime) checkforPass360 =getMag() DalekV2DriveV2.spinLeft(speed) print(" checkforPass360: {}".format(checkforPass360 - magOffset)) # take a little off it to account for reading error. if checkforPass360 > (currentHeading + 100): checkforPass360 = checkforPass360 - 360 pass360Point = -360 currentHeading = checkforPass360 print(" currentHeading: {}".format(currentHeading - magOffset)) DalekV2DriveV2.stop() print("---------------------exit turnAntiClockwise\n") return pass360Point def test(): magOffset = 3000 # DalekTurn(-90) # print("#########################\n") # time.sleep(stop) DalekTurn(90) #print("#########################\n") print("#########################\n") # time.sleep(stop) # DalekTurn(-45) # print("#########################\n") # time.sleep(stop) # DalekTurn(45) # DalekTurn(-25) # DalekTurn(65) startval = mag-magOffset endval = getMag(0, startval) - magOffset print("\n\n########################\nstart:{} End{}".format(startval,endval)) test()
import numpy as np import os from gensim.models import KeyedVectors from keras.layers import add, Bidirectional, Concatenate, CuDNNGRU from keras.layers import Dense, Embedding, Input, SpatialDropout1D from keras.models import Model from keras.optimizers import Adam from keras.regularizers import l2 from src.BiGRU_experiments.masking import Camouflage, SymmetricMasking from src.BiGRU_experiments.attension import Attention from src.BiGRU_experiments.dropout import TimestepDropout from gensim.downloader import base_dir EMBEDDINGS_PATH = os.path.join(base_dir, 'glove-wiki-gigaword-200') def pretrained_embedding(): """ :return: A Model with an embeddings layer """ inputs = Input(shape=(None,), dtype='int32') embeddings = KeyedVectors.load_word2vec_format(EMBEDDINGS_PATH, binary=False) word_encodings_weights = np.concatenate((np.zeros((1, embeddings.syn0.shape[-1]), dtype=np.float32), embeddings.syn0), axis=0) embeds = Embedding(len(word_encodings_weights), word_encodings_weights.shape[-1], weights=[word_encodings_weights], trainable=False)(inputs) return Model(inputs=inputs, outputs=embeds, name='embedding') def compile_bigrus_attention(shape, n_hidden_layers, hidden_units_size, dropout_rate, word_dropout_rate, lr, mode): """ Compiles a BiGRU based on the given parameters :param mode: Depending on your choice : ['Single Task', 'Multi Task-1', 'Multi Task-5']. :param shape: The input shape :param n_hidden_layers: How many stacked Layers you want. :param hidden_units_size: size of hidden units, as a list :param dropout_rate: The percentage of inputs to dropout :param word_dropout_rate: The percentage of time steps to dropout :param lr: learning rate :return: The compiled model ready to be trained """ # Document Feature Representation doc_inputs = Input(shape=(shape[1],), name='doc_inputs') pretrained_encodings = pretrained_embedding() doc_embeddings = pretrained_encodings(doc_inputs) # Apply variational dropout drop_doc_embeddings = SpatialDropout1D(dropout_rate, name='feature_dropout')(doc_embeddings) encodings = TimestepDropout(word_dropout_rate, name='word_dropout')(drop_doc_embeddings) # Bi-GRUs over token embeddings for i in range(n_hidden_layers): grus = Bidirectional( CuDNNGRU(hidden_units_size, return_sequences=True), name='bidirectional_grus_{}'.format(i))(encodings) grus = Camouflage(mask_value=0.0)([grus, encodings]) if i == 0: encodings = SpatialDropout1D(dropout_rate)(grus) else: encodings = add([grus, encodings]) encodings = SpatialDropout1D(dropout_rate)(encodings) # Attention over BI-GRU (context-aware) embeddings # Mask encodings before attention grus_outputs = SymmetricMasking(mask_value=0, name='masking')([encodings, encodings]) doc_encoding = Attention(kernel_regularizer=l2(), bias_regularizer=l2(), return_attention=False, name='self_attention')(grus_outputs) model = None # Final output (projection) layer if mode == 'Single Task': outputs = Dense(1, activation='linear', name='outputs')(doc_encoding) model = Model(inputs=doc_inputs, outputs=[outputs]) elif mode == 'Multi Task-1': outputs = Dense(5, activation='linear', name='outputs')(doc_encoding) model = Model(inputs=doc_inputs, outputs=[outputs]) elif mode == 'Multi Task-5': output_q1 = Dense(1, activation='linear', name='output_Q1')(doc_encoding) output_q2 = Dense(1, activation='linear', name='output_Q2')(doc_encoding) output_q3 = Dense(1, activation='linear', name='output_Q3')(doc_encoding) output_q4 = Dense(1, activation='linear', name='output_Q4')(doc_encoding) output_q5 = Dense(1, activation='linear', name='output_Q5')(doc_encoding) model = Model(inputs=doc_inputs, outputs=[Concatenate()([output_q1, output_q2, output_q3, output_q4, output_q5])]) # Wrap up model + Compile with optimizer and loss function # model = Model(inputs=doc_inputs, outputs=[outputs]) model.compile(optimizer=Adam(lr=lr, clipvalue=5.0), loss='mse', loss_weights=None) return model
import torch from ReplayBuffer import ReplayBuffer from CombinedReplayBuffer import CombinedReplayBuffer import torch.optim as optim from ranger import Ranger DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' POLICY_LEARNING_RATE = 3e-4 Q_LEARNING_RATE = 3e-4 ALPHA_LEARNING_RATE = 3e-4 POLICY_OPTIM = optim.Adam # Ranger Q_OPTIM = optim.Adam # Ranger ALPHA_OPTIM = optim.Adam # Ranger GAMMA = 0.99 TAU = 0.005 LOGSTD_MIN = -20 LOGSTD_MAX = 2 INITIAL_REPLAY_SIZE = 10000 REPLAY_SIZE = 1000000 REPLAY_BUFFER = ReplayBuffer HIDDEN_SIZE = 256 BATCH_SIZE = 256 NUM_ITERATIONS = 10000000 EVAL_FREQ = 5000 NUM_EVAL_GAMES = 10 SUMMARY_FREQ = 1000 SAVE_FREQ = 500000 MAX_STEPS = 1000 NUM_TRAINS_PER_TRAIN_LOOP = 1000 NUM_EXPL_STEPS_PER_TRAIN_LOOP = 1000 MUNCHAUSEN = False M_ALPHA = 0.9 M_TAU = 0.03 M_L0 = -1
import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm from pathlib import Path def julia_set(c: complex, iterations: int, x_limit: float, y_limit: float, ppl: int = 1000, x_origin: float = 0., y_origin: float = 0.) -> np.ndarray: threshold = (1 + np.sqrt(1 + 4 * np.abs(c))) / 2 n_x = int(ppl * x_limit) n_y = int(ppl * y_limit) y, x = np.ogrid[y_limit:-y_limit:n_y * 1j, -x_limit:x_limit:n_x * 1j] points = (x + x_origin) + 1j * (y + y_origin) iterations_to_diverge = np.ones(points.shape) * iterations is_diverged = np.zeros(points.shape, dtype=bool) for iteration in range(iterations): points = np.square(points) + c points_distance = np.abs(points) new_diverged = (points_distance > threshold) is_diverged[new_diverged] = True iterations_to_diverge[new_diverged] = iteration points[is_diverged] = 0 return iterations_to_diverge def show_julia_set(iterations_to_diverge: np.ndarray, file_name: str = None) -> None: fig = plt.figure(figsize=np.array(iterations_to_diverge.shape)[::-1] / 100) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.set_axis_off() fig.add_axes(ax) ax.imshow(iterations_to_diverge, cmap='twilight_shifted') Path("images").mkdir(parents=True, exist_ok=True) if file_name: plt.savefig(file_name) # plt.show() plt.close() def make_zoom_video(): c = -0.7 + .3j # x_origin, y_origin = 2.087805e-9, (0.2499 + 3.53e-10) x_origin, y_origin = 2.0877695e-9, (0.2499 + 3.53e-10) length_limit = 1 zoom_factor = 1.1 ppl = 1000 iterations = 200 frames = 320 dir_name = f'videos/julia_c={c}_itr={iterations}_l={length_limit}_zoom={zoom_factor}_temp_temp' Path(dir_name).mkdir(parents=True, exist_ok=True) for frame in tqdm(range(frames)): iterations_to_diverge = julia_set( c=c, iterations=int(iterations), x_limit=length_limit, y_limit=length_limit, ppl=ppl, x_origin=x_origin, y_origin=y_origin ) show_julia_set(iterations_to_diverge, f"{dir_name}/{frame}.jpg") length_limit /= zoom_factor ppl *= zoom_factor iterations += 0.5 if __name__ == '__main__': make_zoom_video() # c = -0.7 + .3j # iterations = 1000 # iterations_to_diverge = julia_set( # c=c, # iterations=iterations, # x_limit=1.55, # y_limit=0.95, # ppl=1000, # ) # file_name = f'images/julia_c={c}_itr={iterations}_w={iterations_to_diverge.shape[1]}_h={iterations_to_diverge.shape[0]}.jpg' # show_julia_set(iterations_to_diverge, file_name)
# # Copyright 2016 Dohop hf. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test logstash_notifier """ try: from unittest2 import TestCase except ImportError: from unittest import TestCase from logstash_notifier import get_value_from_input from .utilities import BaseSupervisorTestCase, record, get_config class SupervisorLoggingTestCase(BaseSupervisorTestCase): """ Test logging. """ def test_logging(self): """ Test logging. """ logstash = self.run_logstash() try: environment = { 'LOGSTASH_SERVER': logstash.server_address[0], 'LOGSTASH_PORT': str(logstash.server_address[1]), 'LOGSTASH_PROTO': 'udp', 'COVERAGE_PROCESS_START': '.coveragerc' } config = get_config() self.run_supervisor(environment, config) self.messages(clear_buffer=True, wait_for=2) try: self.run_supervisorctl(['stop', 'messages']) expected = [ record('PROCESS_STATE_STOPPED', 'STOPPING'), ] received = self.messages(clear_buffer=True, wait_for=1) self.assertEqual(received, expected) self.run_supervisorctl(['start', 'messages']) expected = [ record('PROCESS_STATE_STARTING', 'STOPPED'), record('PROCESS_STATE_RUNNING', 'STARTING'), ] received = self.messages(clear_buffer=True, wait_for=2) self.assertEqual(received, expected) self.run_supervisorctl(['restart', 'messages']) expected = [ record('PROCESS_STATE_STOPPED', 'STOPPING'), record('PROCESS_STATE_STARTING', 'STOPPED'), record('PROCESS_STATE_RUNNING', 'STARTING'), ] received = self.messages(clear_buffer=True, wait_for=3) self.assertEqual(received, expected) finally: self.shutdown_supervisor() finally: self.shutdown_logstash() class SupervisorEnvironmentLoggingTestCase(BaseSupervisorTestCase): """ Test case for logging extra environment variables """ def _test_environment_logging(self, include=None): """ test logging of env variables """ logstash = self.run_logstash() try: environment = { 'LOGSTASH_SERVER': logstash.server_address[0], 'LOGSTASH_PORT': str(logstash.server_address[1]), 'LOGSTASH_PROTO': 'udp', 'COVERAGE_PROCESS_START': '.coveragerc' } if include is not None: environment.update(include) config = get_config(arguments='--include FRUITS VEGETABLES') self.run_supervisor(environment, config) self.messages(clear_buffer=True, wait_for=2) try: self.run_supervisorctl(['stop', 'messages']) received = self.messages(clear_buffer=True, wait_for=1) # should only have the 'stopping' message self.assertTrue(len(received) == 1) message = received[0] yield message finally: self.shutdown_supervisor() finally: self.shutdown_logstash() def test_not_present(self): """ If the logger is configured to add two environment variables, FRUITS and VEGETABLES, but neither is set, we shouldn't get anything extra """ for message in self._test_environment_logging({}): # should have no additional added values since we asked for an # empty dict to be added self.assertTrue('user_data' not in message) def test_only_one_value_set(self): """ If only one of them is set, we should only see that one in the logged message """ env = { 'FRUITS': 'pineapple,raspberry,kiwi' } for message in self._test_environment_logging(env): self.assertTrue('user_data' in message) self.assertDictEqual(env, message['user_data']) def test_both_values_set(self): """ If both of them is set, we should get both returned in the logged message """ env = { 'FRUITS': 'pineapple,raspberry,kiwi', 'VEGETABLES': 'sweet potato,leek,mushroom' } for message in self._test_environment_logging(env): self.assertTrue('user_data' in message) self.assertDictEqual(env, message['user_data']) class SupervisorKeyvalsLoggingTestCase(BaseSupervisorTestCase): """ Test case for logging user data keyvals """ def _test_environment_logging(self): """ test logging of user data keyvals """ logstash = self.run_logstash() try: environment = { 'LOGSTASH_SERVER': logstash.server_address[0], 'LOGSTASH_PORT': str(logstash.server_address[1]), 'LOGSTASH_PROTO': 'udp', 'COVERAGE_PROCESS_START': '.coveragerc' } config = get_config( arguments='--include ' 'bears="polar,brown,black" ' 'notbears="unicorn,griffin,sphinx,otter"' ) self.run_supervisor(environment, config) self.messages(clear_buffer=True, wait_for=2) try: self.run_supervisorctl(['stop', 'messages']) received = self.messages(clear_buffer=True, wait_for=1) # should only have the 'stopping' message self.assertTrue(len(received) == 1) message = received[0] yield message finally: self.shutdown_supervisor() finally: self.shutdown_logstash() def test_get_user_data(self): """ Get the user data passed to logstash_notifier """ for message in self._test_environment_logging(): self.assertTrue('user_data' in message) user_data = { 'bears': "polar,brown,black", 'notbears': "unicorn,griffin,sphinx,otter" } self.assertDictEqual( user_data, message['user_data'] ) class SupervisorOutPutLoggingTestCase(BaseSupervisorTestCase): """ Test capturing stdout/stderr logs. """ def test_output_logging(self): """ Test stdout is captured in logs when capture-output argument is set. """ logstash = self.run_logstash() try: environment = { 'LOGSTASH_SERVER': logstash.server_address[0], 'LOGSTASH_PORT': str(logstash.server_address[1]), 'LOGSTASH_PROTO': 'udp', 'COVERAGE_PROCESS_START': '.coveragerc' } config = get_config( arguments='--capture-output', events='PROCESS_LOG' ) self.run_supervisor(environment, config) try: expected = [{ '@version': '1', 'channel': 'stdout', 'eventname': 'PROCESS_LOG_STDOUT', 'groupname': 'messages', 'level': 'INFO', 'logger_name': 'supervisor', 'message': 'Test 0\n', 'path': './logstash_notifier/__init__.py', 'processname': 'messages', 'tags': [], 'type': 'logstash', }] received = self.messages(clear_buffer=True, wait_for=1) self.assertEqual(received, expected) finally: self.shutdown_supervisor() finally: self.shutdown_logstash() class SupervisorAppendNewLineTestCase(BaseSupervisorTestCase): """ Test appending newlines to log messages. """ def test_newline_logging(self): """ Test a newline is appended when relevant config option is set. """ logstash = self.run_logstash() try: environment = { 'LOGSTASH_SERVER': logstash.server_address[0], 'LOGSTASH_PORT': str(logstash.server_address[1]), 'LOGSTASH_PROTO': 'udp', 'COVERAGE_PROCESS_START': '.coveragerc' } config = get_config( arguments='--append-newline', ) self.run_supervisor(environment, config) self.messages(clear_buffer=True, wait_for=2) try: self.run_supervisorctl(['stop', 'messages']) # Base test case - note added newline expected = [ record('PROCESS_STATE_STOPPED', 'STOPPING'), ] # Keep the buffer, needed in next test. received = self.messages(clear_buffer=False, wait_for=1) self.assertEqual(received, expected) # Raw message test case for message in self.get_message_buffer(): self.assertTrue(message.endswith("\n")) finally: self.shutdown_supervisor() finally: self.shutdown_logstash()
"""Helper script to generate a pylint badge""" from pathlib import Path from pylint.lint import Run ROOT_DIR = Path(__file__).resolve().parent.parent DIRECTORY_TO_LINT = (ROOT_DIR / "sam-application").name # pylint: disable=too-many-return-statements def get_color(score: float) -> str: """Return a colour reference from a pylint score""" colors = { "brightgreen": "#4c1", "green": "#97CA00", "yellow": "#dfb317", "yellowgreen": "#a4a61d", "orange": "#fe7d37", "red": "#e05d44", "bloodred": "#ff0000", "blue": "#007ec6", "grey": "#555", "gray": "#555", "lightgrey": "#9f9f9f", "lightgray": "#9f9f9f", } if score > 9: return colors["brightgreen"] if score > 8: return colors["green"] if score > 7.5: return colors["yellowgreen"] if score > 6.6: return colors["yellow"] if score > 5.0: return colors["orange"] if score > 0.00: return colors["red"] return colors["bloodred"] def main(): """main function""" score = round(Run([DIRECTORY_TO_LINT], exit=False).linter.stats["global_note"], 2) # pylint: disable=line-too-long template = '<svg xmlns="http://www.w3.org/2000/svg" width="85" height="20"><linearGradient id="a" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><rect rx="3" width="85" height="20" fill="#555"/><rect rx="3" x="50" width="35" height="20" fill="{color}"/><path fill="{color}" d="M50 0h4v20h-4z"/><rect rx="3" width="85" height="20" fill="url(#a)"/><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11"><text x="25" y="15" fill="#010101" fill-opacity=".3">pylint</text><text x="25" y="14">pylint</text><text x="67" y="15" fill="#010101" fill-opacity=".3">{score}</text><text x="67" y="14">{score}</text></g></svg>' color = get_color(float(score)) filename = DIRECTORY_TO_LINT + ".svg" filepath = f".github/{filename}" with open(filepath, "w") as score_file: score_file.write(template.format(score=score, color=color)) if __name__ == "__main__": main()
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Convert the output of CombineSnpCounts.py to gene level counts ============================================================================ AUTHOR: Michael D Dacre, [email protected] ORGANIZATION: Stanford University LICENSE: MIT License, property of Stanford, use as you wish CREATED: 2016-32-20 13:05 Last modified: 2016-05-27 16:05 DESCRIPTION: Takes output, pre-filtered by FDR, and returns gene-level data where the pvalue is the median of the pvalues of the child SNPs. ============================================================================ """ import os import sys import argparse import gzip import bz2 import random from collections import defaultdict # Progress bar from subprocess import check_output from tqdm import tqdm # Handle python objects try: import cPickle as pickle except ImportError: import pickle # Math and calculations import math import bisect import numpy import scipy.stats import pandas import logme ################################################# # Classes to hold exon information for lookup # ################################################# class Chrom(list): """A list of genes on one chromosome.""" def find(self, loc, strand=None): """Search in every gene range.""" loc = int(loc) for exon in self: if exon.find(loc, strand): return exon.gene return None def __repr__(self): """Print a list of genes.""" astr = [] for gene in self: astr += [repr(gene)] return '; '.join(astr) class Exon(object): """A single exon, gene points to a Gene object.""" def __init__(self, gene, start, end, strand): """Create an Exon, gene must be an existing Gene object.""" self.start = int(start) self.end = int(end) self.strand = strand assert isinstance(gene, Gene) self.gene = gene # Set a back link to us self.gene.exons.append(self) def find(self, loc, strand=None): """Return True if loc in self. If strand provided, check that.""" if strand and not strand == self.strand: return False return self.start <= loc < self.end def __repr__(self): return "Exon<{}({}:{})>".format(self.gene.name, self.start, self.end) ########################################## # Class to hold Genes and their counts # ########################################## class Gene(object): """A single gene, holds SNPs.""" def __init__(self, name, trans_id=''): """Create an empty Gene object.""" self.name = name self.trans_id = trans_id # All the SNPs in this Gene self.snps = [] # All the exons self.exons = [] # Raw counts self.mat_counts = 0 self.pat_counts = 0 self.other_counts = 0 # Winners self.mat_win = 0 self.pat_win = 0 self.has_ase = 0 self.no_ase = 0 self.weird = 0 self.failed = 0 # Significant metrics for all SNPs in this Gene self.pval = None self.win = None def sum_counts(self): """Add up all counts in snps.""" self.mat_counts = 0 self.pat_counts = 0 self.other_counts = 0 for snp in self.snps: self.mat_counts += snp.mat_counts self.pat_counts += snp.pat_counts self.other_counts += snp.other_counts def calc_pval(self): """Take the median of the pvalues of all SNPs as our pvalue. We only include SNPs with no Ns or non-parental alleles. """ pvals = [] for snp in self.snps: pvals.append(snp.pval) pvals = [p for p in pvals if isinstance(p, float)] if pvals: self.pval = numpy.median(pvals) else: self.pval = numpy.nan def calc_winner(self): """Sum winners, try to pick Gene-level winner. Only chooses Gene-level winner if all SNPs aggree. Sets self.win to one of: 'mat', 'pat', 'WEIRD', '?', or 'NS' (for non-significant) Ratio calculations use total SNP counts, not the sum of the parental alleles. """ for snp in self.snps: if not hasattr(snp, 'win') or not snp.win: snp.calc_winner() if not snp.win: continue if snp.win == 'M': self.mat_win += 1 elif snp.win == 'P': self.pat_win += 1 elif snp.win == '?': self.failed += 1 # Not bothering with greater res now. if snp.cls == 'Sym': self.no_ase += 1 elif snp.cls == 'Asym': self.has_ase += 1 elif snp.cls == 'Weird': self.weird += 1 # Winner must have more than 60% of alleles with gene-level # significance if not self.pval: self.calc_pval() if not self.pval: logme.log('No pvalue for gene {}'.format(self), 'debug') self.win = 'NA' return if self.weird/len(self) > 0.4: self.win = 'WEIRD' elif self.mat_win > self.pat_win and self.mat_win/len(self) > 0.6: self.win = 'mat' elif self.pat_win > self.mat_win and self.pat_win/len(self) > 0.6: self.win = 'pat' else: self.win = '?' def __len__(self): """How many SNPs are in this gene.""" return len(self.snps) def __repr__(self): """Summary info.""" self.sum_counts() return "{}(mat:{};pat:{};other:{})".format(self.name, self.mat_counts, self.pat_counts, self.other_counts) ############################### # Class to hold SNP alleles # ############################### class SNP(object): """A SNP. Contains:: chrm -- chromosome pos -- position mat_allele -- The maternal allele pat_allele -- The paternal allele counts -- Dict of raw counts for each base indexed by ATCG win -- M/P/? cls -- Sym/Asym/Weird -- Asym: ASE pval -- binomial pvalue gene -- the parent Gene class mat_counts pat_counts other_counts """ def __init__(self, gene, snpinfo): """Create a SNP object. :gene: A gene name refering to a Gene object :snpinfo: A tuple from alleleseq """ self.gene = gene self.gene.snps.append(self) # Get info (self.chrm, self.pos, ref, mat_gtyp, pat_gtyp, c_gtyp, phase, self.mat_allele, self.pat_allele, cA, cC, cG, cT, self.win, self.cls, pval, BindingSite, cnv) = snpinfo self.pval = float(pval) # Set counts self.counts = {'A': int(cA), 'C': int(cC), 'G': int(cG), 'T': int(cT)} # Assign maternal/paternal self.mat_counts = self.counts[self.mat_allele] self.pat_counts = self.counts[self.pat_allele] # Count others count = list(self.counts) count.remove(self.mat_allele) count.remove(self.pat_allele) self.other_counts = self.counts[count.pop()] + self.counts[count.pop()] def __len__(self): """The total number of SNPs.""" return numpy.sum(self.counts.values()) def __repr__(self): """Summary info.""" return "SNP<(mat:{};pat:{};other:{})>".format( self.mat_counts, self.pat_counts, self.other_counts) ############################################################################### # Parse the Bed File # ############################################################################### def parse_gene_bed(bed_file): """Return a defaultdict of Chrom objects for lookup. To lookup, just run exons[chromsome].find(location) (where exons is the defaultdict returned by this function). NOTE: Uses entire gene, not exons. That was more useful for this application. :returns: defaultdict(exons), dict(genes) """ # Initialize the list exons for lookup exons = defaultdict(Chrom) # Initialize a dictionary of genes genes = {} count = 0 with open_zipped(bed_file) as fin: for line in fin: count += 1 if line.startswith('#'): continue fields = line.rstrip().split('\t') chrom = chr2num(fields[0]) try: start = int(fields[1])+1 # Enforce 1-base, bed is 0-based except IndexError: print(count) end = int(fields[2])+1 gene = fields[3] trans = gene strand = fields[5] if gene not in genes: genes[gene] = Gene(gene, trans) # Assign exons starts = [start+int(i) for i in fields[11].rstrip(',').split(',')] lengths = [int(i) for i in fields[10].rstrip(',').split(',')] assert len(starts) == len(lengths) assert len(starts) == int(fields[9]) for strt in starts: exon = Exon(genes[gene], strt, strt+lengths[starts.index(strt)], strand) exons[chrom].append(exon) return exons, genes ############################################################################### # Main Function # ############################################################################### def get_gene_counts(bed_file, alleleseq_output, chrom_to_num=False, logfile=sys.stderr): """Return a list of Gene objects from all snps in exons. :chrom_to_num: If true, convert 'chr1' to 1 """ logme.log('Parsing gene bed') exons, genes = parse_gene_bed(bed_file) # Stats total_count = 0 not_in_gene = 0 snps = [] # Parse the file logme.log('Parsing alleleseq output') lines = int(check_output(['wc', '-l', alleleseq_output]).decode().split(' ')[0]) with open_zipped(alleleseq_output) as fin: # File format test header = fin.readline() if not header.startswith('chrm'): raise Exception("Invalid alleleseq file format") # Loop through the file siter = tqdm(fin, unit='snps', total=lines) if 'PS1' in os.environ \ else fin for line in siter: snpinfo = line.rstrip().split('\t') total_count += 1 chrm = chr2num(snpinfo[0]) if chrom_to_num else snpinfo[0] gene = exons[chrm].find(int(snpinfo[1])) # Skip everything not in a gene if gene is not None: # The SNP adds itself to the genes list s = SNP(gene, snpinfo) snps.append(s) else: not_in_gene += 1 newgenes = {} for name, gene in genes.items(): if gene: gene.sum_counts() gene.calc_pval() gene.calc_winner() newgenes[name] = gene return newgenes ############################################################################### # AlleleSeq's Bionomial Test Functions from binom.py # ############################################################################### def binomtest(x, n, p): """Run a binomial test with scipy unless n*p>50, then use normal_approx.""" #return (scipy.stats.binom_test(x, n, p), normal_approx(x, n, p)) if n*p > 50: return normal_approx(x, n, p) else: return scipy.stats.binom_test(x, n, p) def normal_approx(x, n, p): """A different implementation of the binomial test?.""" if abs(x-n*p) < 1e-5: return 1.0 u=p*n s=math.sqrt(n*p*(1-p)) norm=scipy.stats.distributions.norm(u,s) if x<n*p: pval=2*norm.cdf(x+.5) # add 0.5 for continuity correction else: pval=2*(1-norm.cdf(x-.5)) return pval ############################################################################### # Calc FDR for genes use AlleleSeq Algorithm # ############################################################################### class binomMemo(object): """Do a binomial test with a definied range.""" def __init__(self, n): """Create a binomial range.""" self.n=n self.cache=[[binomtest(j, i, 0.5) for j in range(i+1)] for i in range(n)] def binomtest(self, a, cnt): """Do a binomial test.""" if cnt<self.n: return self.cache[cnt][a] else: return binomtest(a, cnt, 0.5) def simpval(cnt,bm): """Simulate a binomial pvalue from cnt.""" a=sum([random.randint(0,1) for i in range(cnt)]) pval=bm.binomtest(a, cnt) return pval def simpval2(cnt,bm): """Simulate a binomial pvalue from cnt.""" a=sum([random.randint(0,1) for i in range(cnt)]) # pval=bm.binomtest(a, cnt) return a def calc_fdr(pvals, target=0.1, sims=5, verbose=False): """Return the highest pvalue that beats an FDR of 'target'. I have kept most of the bloat from the original algorithm, and only removed lines that had to be removed, all of these were just file handling lines. :pvals: A tuple of (mat_count, pat_count, p-value). Used to simulate new pvalue set. :target: The FDR cutoff to beat. :sims: The number of simulations to do when calulating the random set of pvalues. :verbose: Print extra information. :returns: The pvalue that beats the FDR target for this count set. """ bestFDR=bestPV=None random.seed(0) # This is set in the original algorithm # print "#"," ".join(sys.argv) # print "pval\tP\tFP\tFDR" bm=binomMemo(60) # h=getInterestingHetsAnnotations.Handler(ifile, hasHeader=True) # n=h.getCount() # Returns the number of lines in the file # g=h.getAllAnnotationsGenerator(); # All this returns is the infile as {chr => {pos => rest of the file as a tuple}} n = len(pvals) act_pvals=numpy.zeros(n) # pval as reported in counts file cnt_sums=numpy.zeros(n, dtype=numpy.int) # sum of major and minor alleles # for each hetSNP, get the count of major and minor allele from the input file for i, t in enumerate(pvals): mat, pat, pval = t act_pvals[i] = float(pval) # Append p-value to the array counts = [mat, pat] # Create a list of counts counts = [int(e) for e in counts] # Make them integers counts = sorted(counts, reverse=True)[0:2] # Keep only the top two cnt_sums[i] = sum(counts) # Sum the top two counts act_pvals = sorted(act_pvals) # For every line in the input file, calculate a random pvalue. Repeat this # sims times. Sims is often 5. sim_pvals=numpy.array([ sorted([simpval(cnt_sums[j],bm) for j in range(n)]) for i in range(sims)]) #sim_pvals_means=numpy.mean(sim_pvals, 0) pvs=[e*0.001 for e in range(10)]+[e*0.01 for e in range(1,10)]+[e*0.1 for e in range(1,10)] # for a given test pv, find the number of actual pvals that are smaller, and the number of sim pvals that are smaller. # FDR is the ratio sys.stderr.write("pval\tpos_in_actual\tmean_sim_pos\tFDR\n") for pv in pvs: # Get what position the pvalue from pvs is in in the actual pvalues # from the input file. Nact=bisect.bisect(act_pvals, pv) # For every simulated pvalue set, find the position of the pvalue from # pvs in that set, then take the mean of all simulations. mean_Nsims=numpy.mean([bisect.bisect(sim_pvals[i], pv) for i in range(sims)]) # The false discovery rate is the position of the pvalue from pvs in # the simulated pvalue set divided by the position of the same pvalue # in the actual pvalue set from the infile, plus 1. FDR=mean_Nsims/(Nact+1) sys.stderr.write("%f\t%s\t%f\t%f\n" % (pv, Nact, mean_Nsims, FDR)) # This is my attempt to find the act_pval that corresponds best to the desired target FDR. # This version walks from largest observed pvalue to the smallest. if target: last_FDR=last_pv=0.0 for Nact, pv in sorted(enumerate(act_pvals), reverse=True): # For every simulated pvalue set, find the position of the pvalue from # the actual pvalues in the simulated pvalues, then take the mean # of all simulations. mean_Nsims=numpy.mean([bisect.bisect(sim_pvals[i], pv) for i in range(sims)]) # The false discovery rate is the position of the pvalue from the # actual data in the simulated pvalue set divided by the position # we are in the list of pvalues (walking from largest to smallest) FDR=mean_Nsims/(Nact+1) if verbose: sys.stderr.write("test %d %f %f %f\n" % ( Nact,mean_Nsims,FDR, pv)) # As soon as we get an FDR that is less than the target (usually # 0.1), that is our 'bestFDR': the largest p-value that beats our # target FDR. if not bestFDR and FDR < target: sys.stderr.write("target %f\n" % target) sys.stderr.write("before %f %f\n" % (last_FDR, last_pv)) sys.stderr.write("after %f %f\n" % (FDR, pv)) bestFDR = FDR; bestPV = pv last_FDR=FDR; last_pv=pv sys.stderr.write("Target {} FDR {} pv {}\n".format(target, bestFDR, bestPV)) return bestFDR ############################################################################### # Create pandas dataframe from genes # ############################################################################### def genes_to_df(genes, ind): """Make a pandas dataframe from a dictionary of genes. Datafram has the following columns:: Counts:: 'Mat_Counts' -- Total number of maternal counts for this gene 'Pat_Counts' -- Total number of paternal counts for this gene 'N_Counts' -- Total number of reads with N in the SNP position 'Others' -- Total number of reads with a non-parental allele Gene-level summary:: 'Winner' -- The overall winner ('mat' or 'pat') 'pval' -- The pvalue of that association (binomial) SNP-level information:: 'SNPs' -- Total number of SNPs in this gene 'Mat_wins' -- Total number of SNPs with materal wins 'Pat_wins' -- Total number of SNPs with pateral wins 'Not_Sig' -- Total number of SNPs that weren't significant 'Weird' -- Total number of SNPs with non-parental allele 'Failed' -- Total number of SNPs that failed for some reason, (usually due to Ns in the sequence) """ ind = str(ind) # Populate dictionaries from every gene df_dict = {} if not genes: raise Exception('Genes must have at least one entry.') for name, gene in genes.items(): gene.sum_counts() df_dict[ind + '_' + name] = {'Mat_Counts': gene.mat_counts, 'Pat_Counts': gene.pat_counts, 'Others': gene.other_counts, 'SNPs': len(gene), 'Winner': gene.win, 'pval': gene.pval, 'Mat_wins': gene.mat_win, 'Pat_wins': gene.pat_win, 'Weird': gene.weird, 'Failed': gene.failed, 'TX': name, 'Tissue ID': ind} column_order = ['TX', 'Tissue ID', 'Mat_Counts', 'Pat_Counts', 'Others', 'SNPs', 'Winner', 'pval', 'Mat_wins', 'Pat_wins', 'Weird', 'Failed'] df = pandas.DataFrame.from_dict(df_dict, orient='index') df.index.name = 'IDX' df = df[column_order] return df def chr2num(chrom): """Make chr# #.""" return chrom[3:] if chrom.startswith('chr') else chrom def open_zipped(infile, mode='r'): """ Return file handle of file regardless of zipped or not Text mode enforced for compatibility with python2 """ mode = mode[0] + 't' p2mode = mode if hasattr(infile, 'write'): return infile if isinstance(infile, str): if infile.endswith('.gz'): return gzip.open(infile, mode) if infile.endswith('.bz2'): if hasattr(bz2, 'open'): return bz2.open(infile, mode) else: return bz2.BZ2File(infile, p2mode) return open(infile, p2mode) def main(argv=None): """Run as a script.""" if not argv: argv = sys.argv[1:] parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) # Positional arguments parser.add_argument('exon_positions_bed', help="A bed file of exons to include.") parser.add_argument('alleleseq_output', help="The output of CombineSnpCounts.py, filtered " + "FDR") parser.add_argument('-i', '--ind', help='Individual name') parser.add_argument('-n', '--tonum', action='store_true', help='Convert chr# to #') # Optional Files optfiles = parser.add_argument_group('Optional Files') optfiles.add_argument('-o', '--outfile', default=sys.stdout, help="Output file, Default STDOUT") optfiles.add_argument('-l', '--logfile', default=sys.stderr, help="Log File, Default STDERR (append mode)") optfiles.add_argument('--data', help="Output raw gene dictionary to this file.") optfiles.add_argument('--pandas', help="Output a pickled pandas dataframe here.") # FDR Calulations fdrcalc = parser.add_argument_group('FDR Calculation') fdrcalc.add_argument('--filter-fdr', action='store_true', help="Filter the output by FDR") fdrcalc.add_argument('-f', '--fdr-cutoff', type=float, default=0.1, metavar='', help="FDR cutoff (Default 0.1).") fdrcalc.add_argument('-s', '--simulations', type=int, default=10, metavar='', help="# simulations for FDR calculation " + "(Default: 10)") args = parser.parse_args(argv) ind = args.ind if args.ind \ else os.path.basename(args.alleleseq_output).split('.')[0] genes = get_gene_counts(args.exon_positions_bed, args.alleleseq_output, args.tonum) giter = tqdm(genes.values(), unit='genes') if 'PS1' in os.environ \ else genes.values() for gene in giter: gene.sum_counts() if args.data: with open(args.data, 'wb') as fout: pickle.dump(genes, fout) df = genes_to_df(genes, ind) fdr_pval = calc_fdr( [tuple(x) for x in df[['Mat_Counts', 'Pat_Counts', 'pval']].values], target=args.fdr_cutoff, sims=args.simulations) logme.log('In ind {} p-values smaller than {} beat FDR of {}' .format(ind, fdr_pval, args.fdr_cutoff), 'info') # Filter by FDR if requested if args.filter_fdr: logme.log('Filtering genes by FDR less than {}' .format(args.fdr_cutoff), 'info') df = df[df.pval < fdr_pval] if args.pandas: df.to_pickle(args.pandas) with open_zipped(args.outfile, 'w') as fout: df.to_csv(fout, sep='\t') return 0 if __name__ == '__main__' and '__file__' in globals(): sys.exit(main())
# Generated by Django 3.1.7 on 2021-10-19 12:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dm_page', '0086_auto_20211019_1140'), ] operations = [ migrations.RemoveField( model_name='organisation', name='additional_name', ), migrations.RemoveField( model_name='organisation', name='profile', ), migrations.RemoveField( model_name='paramètre', name='institut_image', ), migrations.RemoveField( model_name='paramètre', name='institut_post_code', ), migrations.RemoveField( model_name='paramètre', name='institut_street_name', ), migrations.RemoveField( model_name='paramètre', name='institut_title', ), migrations.RemoveField( model_name='paramètre', name='institut_town', ), migrations.RemoveField( model_name='paramètre', name='object_description', ), migrations.RemoveField( model_name='paramètre', name='object_title', ), migrations.RemoveField( model_name='paramètre', name='president', ), migrations.RemoveField( model_name='paramètre', name='president_signature', ), migrations.AddField( model_name='organisation', name='institut_image', field=models.FileField(blank=True, null=True, upload_to='', verbose_name="Image de l'Institut"), ), migrations.AddField( model_name='organisation', name='institut_post_code', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Code Postal'), ), migrations.AddField( model_name='organisation', name='institut_street_name', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Rue'), ), migrations.AddField( model_name='organisation', name='institut_title', field=models.CharField(blank=True, max_length=300, null=True, verbose_name='Institution'), ), migrations.AddField( model_name='organisation', name='institut_town', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Commune'), ), migrations.AddField( model_name='organisation', name='name', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Nom'), ), migrations.AddField( model_name='organisation', name='object_description', field=models.TextField(blank=True, null=True, verbose_name="Description de l'Objet"), ), migrations.AddField( model_name='organisation', name='object_title', field=models.CharField(blank=True, max_length=300, null=True, verbose_name="Titre de l'Objet"), ), migrations.AddField( model_name='organisation', name='president', field=models.CharField(blank=True, max_length=200, null=True, verbose_name='Président'), ), migrations.AddField( model_name='organisation', name='president_signature', field=models.FileField(blank=True, null=True, upload_to='', verbose_name='Signature du Président'), ), migrations.AddField( model_name='organisation', name='used_for_receipt', field=models.BooleanField(default=False), ), ]
# A Wavenet For Speech Denoising - Dario Rethage - 19.05.2017 # Util.py # Utility functions for dealing with audio signals and training a Denoising Wavenet import os import numpy as np import json import warnings import scipy.signal import scipy.stats import soundfile as sf import keras def l1_l2_loss(y_true, y_pred, l1_weight, l2_weight): loss = 0 if l1_weight != 0: loss += l1_weight*keras.objectives.mean_absolute_error(y_true, y_pred) if l2_weight != 0: loss += l2_weight * keras.objectives.mean_squared_error(y_true, y_pred) return loss def compute_receptive_field_length(stacks, dilations, filter_length, target_field_length): half_filter_length = (filter_length-1)/2 length = 0 for d in dilations: length += d*half_filter_length length = 2*length length = stacks * length length += target_field_length return length def snr_db(rms_amplitude_A, rms_amplitude_B): return 20.0*np.log10(rms_amplitude_A/rms_amplitude_B) def wav_to_float(x): try: max_value = np.iinfo(x.dtype).max min_value = np.iinfo(x.dtype).min except: max_value = np.finfo(x.dtype).max min_value = np.finfo(x.dtype).min x = x.astype('float64', casting='safe') x -= min_value x /= ((max_value - min_value) / 2.) x -= 1. return x def float_to_uint8(x): x += 1. x /= 2. uint8_max_value = np.iinfo('uint8').max x *= uint8_max_value x = x.astype('uint8') return x def keras_float_to_uint8(x): x += 1. x /= 2. uint8_max_value = 255 x *= uint8_max_value return x def linear_to_ulaw(x, u=255): x = np.sign(x) * (np.log(1 + u * np.abs(x)) / np.log(1 + u)) return x def keras_linear_to_ulaw(x, u=255.0): x = keras.backend.sign(x) * (keras.backend.log(1 + u * keras.backend.abs(x)) / keras.backend.log(1 + u)) return x def uint8_to_float(x): max_value = np.iinfo('uint8').max min_value = np.iinfo('uint8').min x = x.astype('float32', casting='unsafe') x -= min_value x /= ((max_value - min_value) / 2.) x -= 1. return x def keras_uint8_to_float(x): max_value = 255 min_value = 0 x -= min_value x /= ((max_value - min_value) / 2.) x -= 1. return x def ulaw_to_linear(x, u=255.0): y = np.sign(x) * (1 / float(u)) * (((1 + float(u)) ** np.abs(x)) - 1) return y def keras_ulaw_to_linear(x, u=255.0): y = keras.backend.sign(x) * (1 / u) * (((1 + u) ** keras.backend.abs(x)) - 1) return y def one_hot_encode(x, num_values=256): if isinstance(x, int): x = np.array([x]) if isinstance(x, list): x = np.array(x) return np.eye(num_values, dtype='uint8')[x.astype('uint8')] def one_hot_decode(x): return np.argmax(x, axis=-1) def preemphasis(signal, alpha=0.95): return np.append(signal[0], signal[1:] - alpha * signal[:-1]) def binary_encode(x, max_value): if isinstance(x, int): x = np.array([x]) if isinstance(x, list): x = np.array(x) width = np.ceil(np.log2(max_value)).astype(int) return (((x[:, None] & (1 << np.arange(width)))) > 0).astype(int) def get_condition_input_encode_func(representation): if representation == 'binary': return binary_encode else: return one_hot_encode def ensure_keys_in_dict(keys, dictionary): if all (key in dictionary for key in keys): return True return False def get_subdict_from_dict(keys, dictionary): return dict((k, dictionary[k]) for k in keys if k in dictionary) def pretty_json_dump(values, file_path=None): if file_path is None: print json.dumps(values, sort_keys=True, indent=4, separators=(',', ': ')) else: json.dump(values, open(file_path, 'w'), sort_keys=True, indent=4, separators=(',', ': ')) def read_wav(filename): # Reads in a wav audio file, takes the first channel, converts the signal to float64 representation audio_signal, sample_rate = sf.read(filename) if audio_signal.ndim > 1: audio_signal = audio_signal[:, 0] if audio_signal.dtype != 'float64': audio_signal = wav_to_float(audio_signal) return audio_signal, sample_rate def load_wav(wav_path, desired_sample_rate): sequence, sample_rate = read_wav(wav_path) sequence = ensure_sample_rate(sequence, desired_sample_rate, sample_rate) return sequence def write_wav(x, filename, sample_rate): print("Writing WAV to " + filename) if type(x) != np.ndarray: x = np.array(x) with warnings.catch_warnings(): warnings.simplefilter("error") sf.write(filename, x, sample_rate) def ensure_sample_rate(x, desired_sample_rate, file_sample_rate): if file_sample_rate != desired_sample_rate: return scipy.signal.resample_poly(x, desired_sample_rate, file_sample_rate) return x def rms(x): return np.sqrt(np.mean(np.square(x), axis=-1)) def normalize(x): max_peak = np.max(np.abs(x)) return x / max_peak def get_subsequence_with_speech_indices(full_sequence): signal_magnitude = np.abs(full_sequence) chunk_length = 800 chunks_energies = [] for i in xrange(0, len(signal_magnitude), chunk_length): chunks_energies.append(np.mean(signal_magnitude[i:i + chunk_length])) threshold = np.max(chunks_energies) * .1 onset_chunk_i = 0 for i in range(0, len(chunks_energies)): if chunks_energies[i] >= threshold: onset_chunk_i = i break termination_chunk_i = len(chunks_energies) for i in range(len(chunks_energies) - 1, 0, -1): if chunks_energies[i] >= threshold: termination_chunk_i = i break num_pad_chunks = 4 onset_chunk_i = np.max((0, onset_chunk_i - num_pad_chunks)) termination_chunk_i = np.min((len(chunks_energies), termination_chunk_i + num_pad_chunks)) return [onset_chunk_i*chunk_length, (termination_chunk_i+1)*chunk_length] def extract_subsequence_with_speech(full_sequence): indices = get_subsequence_with_speech_indices(full_sequence) return full_sequence[indices[0]:indices[1]] def dir_contains_files(path): for f in os.listdir(path): if not f.startswith('.'): return True return False
from rdkit import Chem import os import os.path as osp import shutil from ogb.utils import smiles2graph from ogb.utils.torch_util import replace_numpy_with_torchtensor from ogb.utils.url import decide_download, download_url, extract_zip import pandas as pd import numpy as np from tqdm import tqdm import torch from torch_geometric.data import InMemoryDataset from torch_geometric.data import Data class PyGPCQM4MDataset(InMemoryDataset): def __init__(self, root = 'dataset', smiles2graph = smiles2graph, transform=None, pre_transform = None): self.original_root = root self.smiles2graph = smiles2graph self.folder = osp.join(root, 'pcqm4m') self.download_name = 'pcqm4m-folder' self.version = 1 self.url = f'http://ogb-data.stanford.edu/data/lsc/{self.download_name}.zip' # check version and update if necessary if osp.isdir(self.folder) and (not osp.exists(osp.join(self.folder, f'RELEASE_v{self.version}.txt'))): print('PCQM4M dataset has been updated.') if input('Will you update the dataset now? (y/N)\n').lower() == 'y': shutil.rmtree(self.folder) super(PyGPCQM4MDataset, self).__init__(self.folder, transform, pre_transform) self.data, self.slices = torch.load(self.processed_paths[0]) @property def raw_file_names(self): return 'data.csv.gz' @property def processed_file_names(self): return 'geometric_data_processed.pt' def download(self): if decide_download(self.url): path = download_url(self.url, self.original_root) extract_zip(path, self.original_root) os.unlink(path) try: shutil.rmtree(self.folder) except: pass shutil.move(osp.join(self.original_root, self.download_name), self.folder) else: print('Stop download.') exit(-1) def process(self): data_df = pd.read_csv(osp.join(self.raw_dir, 'data.csv.gz')) smiles_list = data_df['smiles'] homolumogap_list = data_df['homolumogap'] print('Converting SMILES strings into graphs...') data_list = [] for i in tqdm(range(len(smiles_list))): data = Data() smiles = smiles_list[i] homolumogap = homolumogap_list[i] graph = self.smiles2graph(smiles) assert(len(graph['edge_feat']) == graph['edge_index'].shape[1]) assert(len(graph['node_feat']) == graph['num_nodes']) data.__num_nodes__ = int(graph['num_nodes']) data.edge_index = torch.from_numpy(graph['edge_index']).to(torch.int64) data.edge_attr = torch.from_numpy(graph['edge_feat']).to(torch.int64) data.x = torch.from_numpy(graph['node_feat']).to(torch.int64) data.y = torch.Tensor([homolumogap]) data_list.append(data) # double-check prediction target split_dict = self.get_idx_split() assert(all([not torch.isnan(data_list[i].y)[0] for i in split_dict['train']])) assert(all([not torch.isnan(data_list[i].y)[0] for i in split_dict['valid']])) assert(all([torch.isnan(data_list[i].y)[0] for i in split_dict['test']])) if self.pre_transform is not None: data_list = [self.pre_transform(data) for data in data_list] data, slices = self.collate(data_list) print('Saving...') torch.save((data, slices), self.processed_paths[0]) def get_idx_split(self): split_dict = replace_numpy_with_torchtensor(torch.load(osp.join(self.root, 'split_dict.pt'))) return split_dict class PCQM4MEvaluator: def __init__(self): ''' Evaluator for the PCQM4M dataset Metric is Mean Absolute Error ''' pass def eval(self, input_dict): ''' y_true: numpy.ndarray or torch.Tensor of shape (num_graphs,) y_pred: numpy.ndarray or torch.Tensor of shape (num_graphs,) y_true and y_pred need to be of the same type (either numpy.ndarray or torch.Tensor) ''' assert('y_pred' in input_dict) assert('y_true' in input_dict) y_pred, y_true = input_dict['y_pred'], input_dict['y_true'] assert((isinstance(y_true, np.ndarray) and isinstance(y_pred, np.ndarray)) or (isinstance(y_true, torch.Tensor) and isinstance(y_pred, torch.Tensor))) assert(y_true.shape == y_pred.shape) assert(len(y_true.shape) == 1) if isinstance(y_true, torch.Tensor): return {'mae': torch.mean(torch.abs(y_pred - y_true)).cpu().item()} else: return {'mae': float(np.mean(np.absolute(y_pred - y_true)))} def save_test_submission(self, input_dict, dir_path): ''' save test submission file at dir_path ''' assert('y_pred' in input_dict) y_pred = input_dict['y_pred'] if not osp.exists(dir_path): os.makedirs(dir_path) filename = osp.join(dir_path, 'y_pred_pcqm4m') assert(isinstance(filename, str)) assert(isinstance(y_pred, np.ndarray) or isinstance(y_pred, torch.Tensor)) assert(y_pred.shape == (377423,)) if isinstance(y_pred, torch.Tensor): y_pred = y_pred.numpy() y_pred = y_pred.astype(np.float32) np.savez_compressed(filename, y_pred = y_pred) if __name__ == '__main__': # dataset = PyGPCQM4MDataset() # print(dataset[0]) # print(dataset.get_idx_split()) evaluator = PCQM4MEvaluator() y_true = torch.randn(100) y_pred = torch.randn(100) result = evaluator.eval({'y_true': y_true, 'y_pred': y_pred}) print(result) y_pred = torch.randn(377423) evaluator.save_test_submission({'y_pred': y_pred}, 'result')
from .base_path_processor import BasePathProcessor from .simple_path_processor import SimplePathProcessor
#!/usr/bin/python # # Copyright (C) 2009 Google Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # usage: rule_gperf.py INPUT_FILE OUTPUT_DIR # INPUT_FILE is a path to DocTypeStrings.gperf, HTMLEntityNames.gperf, or # ColorData.gperf. # OUTPUT_DIR is where the gperf-generated .cpp file should be placed. Because # some users want a .c file instead of a .cpp file, the .cpp file is copied # to .c when done. import posixpath import shutil import subprocess import sys assert len(sys.argv) == 3 inputFile = sys.argv[1] outputDir = sys.argv[2] gperfCommands = { 'DocTypeStrings.gperf': [ '-CEot', '-L', 'ANSI-C', '-k*', '-N', 'findDoctypeEntry', '-F', ',PubIDInfo::eAlmostStandards,PubIDInfo::eAlmostStandards' ], 'HTMLEntityNames.gperf': [ '-a', '-L', 'ANSI-C', '-C', '-G', '-c', '-o', '-t', '-k*', '-N', 'findEntity', '-D', '-s', '2' ], 'ColorData.gperf': [ '-CDEot', '-L', 'ANSI-C', '-k*', '-N', 'findColor', '-D', '-s', '2' ], } inputName = posixpath.basename(inputFile) assert inputName in gperfCommands (inputRoot, inputExt) = posixpath.splitext(inputName) outputCpp = posixpath.join(outputDir, inputRoot + '.cpp') #command = ['gperf', '--output-file', outputCpp] command = ['gperf'] command.extend(gperfCommands[inputName]) command.append(inputFile) ofile = open(outputCpp, 'w') # Do it. check_call is new in 2.5, so simulate its behavior with call and # assert. returnCode = subprocess.call(command, stdout=ofile.fileno()) assert returnCode == 0 outputC = posixpath.join(outputDir, inputRoot + '.c') shutil.copyfile(outputCpp, outputC)
import peewee as pw from flask import Blueprint from flask import redirect from flask import render_template from flask import request from flask import url_for from myfunds.core.models import Account from myfunds.core.models import Category from myfunds.core.models import Currency from myfunds.core.models import JointLimit from myfunds.core.models import JointLimitParticipant from myfunds.web import auth from myfunds.web import notify from myfunds.web import utils from myfunds.web.forms import AddJointLimitForm from myfunds.web.forms import DeleteJointLimitForm bp = Blueprint("joint_limits", __name__, template_folder="templates") @bp.route("/joint-limits") @auth.login_required @auth.superuser_required def index(): # fmt: off currencies = Currency.select().order_by(Currency.code_alpha) participants = ( JointLimit .select( JointLimit.id, pw.fn.COUNT( pw.fn.DISTINCT(JointLimitParticipant.category.account.id) ).alias("participants"), ) .join(JointLimitParticipant) .join(Category) .join(Account) .group_by(JointLimit.id) ) limits = ( JointLimit .select( JointLimit, Currency, pw.Value(participants.c.participants).alias("participants"), ) .join(Currency) .switch() .join( participants, pw.JOIN.LEFT_OUTER, on=(JointLimit.id == participants.c.id) ) .order_by(JointLimit.name) ) # fmt: on return render_template( "joint_limits/view.html", currencies=currencies, limits=limits ) @bp.route("/joint-limits/new", methods=["POST"]) @auth.login_required @auth.superuser_required def new(): redirect_url = url_for("joint_limits.index") form = AddJointLimitForm(request.form) utils.validate_form(form, redirect_url) currency_id = form.currency_id.data name = form.name.data amount = form.amount.data currency = Currency.get_or_none(id=currency_id) if currency is None: notify.error("Currency not found.") return redirect(redirect_url) JointLimit.create(currency=currency, name=name, amount=amount) notify.info("New limit was created.") return redirect(redirect_url) @bp.route("/joint-limits/delete", methods=["POST"]) @auth.login_required @auth.superuser_required def delete(): redirect_url = url_for("joint_limits.index") form = DeleteJointLimitForm(request.form) utils.validate_form(form, redirect_url) limit_id = form.limit_id.data limit = JointLimit.get_or_none(id=limit_id) if limit is None: notify.error("Limit not found.") return redirect(redirect_url) limit.delete_instance() notify.info(f"Limit '{limit.name}' was deleted.") return redirect(redirect_url)
from tkinter import * from password_generator import PasswordGenerator master = Tk() master.title("Password Generator") master.resizable(0,0) password = PasswordGenerator() password.minlen = 8 password.maxlen = 9 password.minuchars = 2 password.minlchars = 2 password.minnumbers = 2 password.minschars = 2 def create(): result = password.generate() pw.insert(0, result) def delete1(): pw.delete(0,END) label1 = Label(master, text = "Password Generator", font=("Helvetica", 15, "bold")) pw = Entry(master) Generate = Button(master, text = "Generate", command = create) clear = Button(master, text="Clear", command = delete1) label1.grid(row = 0, column = 0, padx= 50) pw.grid(row=1, column= 0, padx= 50) Generate.grid(row=2, column= 0, ipadx = 30, ipady = 15, padx= 50, pady =30 ) clear.grid(row=3, column= 0, ipadx = 35, ipady = 15, padx= 50) master.mainloop()
# Desenvolva uma logica que elia o peso e a altura de uma pessoa, calcule seu IMC e mostre seu status de acordo com a tabela abaixo # Abaixo de 18.5: Abaixo do peso; Entre 18.5 e 25: Peso ideal; 25 ate 30: Sobrepeso; 30 ate 40: Obesidade; Acima de 40: obesidade morbida peso = float(input('Qual é o seu peso? (KG)')) altura = float(input('Qual é a sua altura? (m)')) IMC = peso / (altura * altura) print('O IMC dessa pessoa é de {:.2f}'.format(IMC)) if IMC < 18.5: print('Abaixo do peso') elif IMC >= 18.5 or IMC <= 25: print('PARABÉNS, você está na faixa de PESO NORMAL') elif IMC >= 25 or IMC <= 30: print('Procure um nutricionista, você está no SOBREPESO') elif IMC >= 30 or IMC <= 40: print('Procure um médico, você esta no grau OBESO') else: print('PERIGO !!, Obesidade morbida')
""" Create a multibar file from our labeled file and our tree. We will do this at different taxonomic levels and different label levels. For each label level we have, we'll create a single file. """ import os import sys import argparse from ete3 import Tree def read_labels(lf, col, verbose=False): """ Read the labels file and return a dict with tree labels and values :param lf: labels file :param col: the column to use :param verbose: extra output :return: a dict of the leaves and their labels and a dict of the labels and their counts """ ret = {} counts = {} with open(lf, 'r') as f: for l in f: p = l.strip().split("\t") if len(p) <= col: continue if not p[col]: continue ret[p[0]] = p[col] counts[p[col]] = counts.get(p[col], 0) + 1 return ret, counts def write_directory(treefile, data, counts, taxa, outputdir, colors, legend, legendshape, proportions, verbose=False): """ Write a directory with one multibar file per type :param treefile: The tree file to parse :param data: The data dict with leaves and labels :param counts: the counts of label frequency :param outputdir: the directory to create :param colors: the array of colors to choose from :param legend: the legend name :param legendshape: the legend shape :param verbose: more output :return: """ allkeys = list(counts.keys()) if len(allkeys) > len(colors): sys.stderr.write("ERROR: Not enough colors. We have {} keys and {} colors\n".format(len(allkeys), len(colors))) sys.exit(-1) keycolors = {x: colors[allkeys.index(x)] for x in allkeys} if not os.path.exists(outputdir): try: os.mkdir(outputdir) except Exception as e: sys.stderr.write("Cannot make directory: {}\n".format(outputdir)) sys.stderr.write("{}\n".format(e)) sys.exit(-1) if verbose: sys.stderr.write("Reading tree\n") tree = Tree(treefile, quoted_node_names=True, format=1) if verbose: sys.stderr.write(f"Creating output files in {outputdir}\n") for k in counts: fnme = k.replace(' ', '_') outputf = os.path.join(outputdir, fnme + ".multibar.txt") with open(outputf, 'w') as out: out.write("DATASET_MULTIBAR\nSEPARATOR COMMA\n") out.write("DATASET_LABEL,{} counts\n".format(k)) out.write("FIELD_COLORS,{}\n".format(keycolors[k])) out.write("FIELD_LABELS,{}\n".format(k)) out.write("WIDTH,50\n") out.write("DATASET_SCALE,0-{}-{}\n".format(k, keycolors[k])) out.write("HEIGHT_FACTOR,50\n") out.write("SHOW_INTERNAL,1\n") out.write("ALIGN_FIELDS,1\n") out.write("COLOR,{}\n".format(keycolors[k])) out.write("DATA\n") for n in tree.traverse("preorder"): if taxa in n.name: leafcount = 0 for l in n.get_leaves(): if l.name in data and data[l.name] == k: leafcount += 1 elif l.name in data and verbose: sys.stderr.write("Skipped {} as it is a {} and we're a {}\n".format(l.name, data[l.name], k)) elif verbose: sys.stderr.write("No {}\n".format(l.name)) if proportions: leafcount /= counts[k] out.write("{},{}\n".format(n.name, leafcount)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="") parser.add_argument('-f', help='The labeled leaves file from fastq2ids.py', required=True) parser.add_argument('-t', help='Newick tree file', required=True) parser.add_argument('-d', help='Output directory where to write the files', required=True) parser.add_argument('-n', help='Column in the labeled leaves file to use. 0 indexed', required=True, type=int) parser.add_argument('-l', help='Color strip legend (e.g. Kingdom, Fish, Species', required=True) parser.add_argument('-x', help='taxa to use for the labels', required=True) parser.add_argument('-s', help='Legend shape (a number). Default = 1', default="1", type=str) parser.add_argument('-p', help='Display proportion of counts not counts', action='store_true') parser.add_argument('-c', help='Colors to use. These will be prepended to our default list', action='append') parser.add_argument('-v', help='verbose output', action="store_true") args = parser.parse_args() colors = ['#e41a1c', '#377eb8', '#4daf4a', '#984ea3', '#ff7f00', '#ffff33', '#a65628', '#f781bf', '#999999'] if args.c: colors = args.c + colors data, counts = read_labels(args.f, args.n, args.v) taxa= args.x if not taxa.startswith('r_'): taxa = "r_{}".format(taxa) write_directory(args.t, data, counts, taxa, args.d, colors, args.l, args.s, args.p, args.v)
#!/usr/bin/python3 -OO # Copyright 2009-2020 The SABnzbd-Team <[email protected]> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ sabnzbd.utils.sleepless - Keep macOS awake by setting power assertions """ import objc from Foundation import NSBundle # https://developer.apple.com/documentation/iokit/iopowersources.h?language=objc IOKit = NSBundle.bundleWithIdentifier_("com.apple.framework.IOKit") functions = [ ("IOPMAssertionCreateWithName", b"i@i@o^i"), ("IOPMAssertionRelease", b"vi"), ] objc.loadBundleFunctions(IOKit, globals(), functions) # Keep track of the assertion ID at the module-level assertion_id = None def keep_awake(reason): """Tell OS to stay awake. One argument: text to send to OS. Stays in effect until next 'allow_sleep' call. Multiple calls allowed. """ global assertion_id # Each assertion needs to be released, so make sure to only set it once if not assertion_id: kIOPMAssertionTypeNoIdleSleep = "NoIdleSleepAssertion" kIOPMAssertionLevelOn = 255 errcode, assertion_id = IOPMAssertionCreateWithName( kIOPMAssertionTypeNoIdleSleep, kIOPMAssertionLevelOn, reason, None ) return errcode == 0 return True def allow_sleep(): """ Allow OS to go to sleep """ global assertion_id if assertion_id: IOPMAssertionRelease(assertion_id) assertion_id = None
''' 瞳孔直径数据存储在csv文件当中,现在把它构造成 伪"EEG"格式的mne数据结构中, 方便进行计算,同时能够统一接口,便于后续的数据融合。 ''' import pandas as pd import numpy as np import mne def create_mne_object_from_pupil_diameter(data, sample_rate=60): data = np.array([data]) # ch_types = ['eye'] ch_types = ['eeg'] ch_names = ['pupil_diameter'] info = mne.create_info(ch_names=ch_names, sfreq=sample_rate, ch_types=ch_types) raw = mne.io.RawArray(data, info) return raw def get_average_psd(sub_raw_obj, fmin, fmax): ''' This method returns a the average log psd feature for a MNE raw object Arguments: sub_raw_obj: a raw object from MNE library fmin: the minium frequency you are intreseted fmax: the maximum frequency you are intreseted Returns: average_psd: the required psd features, numpy array like. shape: (the number of the features, ) ''' psds, freq = mne.time_frequency.psd_multitaper(sub_raw_obj, fmin=fmin, fmax=fmax, n_jobs=4, verbose='ERROR') # preventing overflow psds[psds <= 0] = 1 psds = 10 * np.log10(psds) average_psd = np.mean(psds, axis=1) return average_psd def Eye_extract_average_psd_from_a_trial(file_path, save_path, average_second=1, overlap=0.5): assert overlap >= 0 and overlap < 1 data = pd.DataFrame(pd.read_csv(file_path)) data = data['PupilDiameter'] raw_obj = create_mne_object_from_pupil_diameter(data=data, sample_rate=60) # print(raw_obj) total_time = int(raw_obj.times.max()) features = [] move = average_second * (1 - overlap) # 确定步长 # print("total_time:\n", total_time, "\nmove:\n", move) # index: 0->237 (199*2-1)个数字 # i = 1 for start_second in np.arange(0, total_time, move): # 时间120s,所以index为:0->119 if start_second + average_second > total_time: break sub_raw_obj = raw_obj.copy().crop(start_second, start_second + average_second) try: first_psd = get_average_psd(sub_raw_obj, fmin=0.0, fmax=0.5) # print("first_psd: ", type(first_psd), ", ", first_psd) second_psd = get_average_psd(sub_raw_obj, fmin=0.5, fmax=1.0) # print("second_psd: ", type(second_psd), ", ", second_psd) except: print("Eye error!!!") return save_path feature = np.concatenate((first_psd, second_psd), axis=None) features.append(feature) npy_features = np.array(features) # print("npy_features:\n", npy_features.shape) # (x, 2) np.save(save_path+'Eye.npy', npy_features) # print("features:\n", type(feature), "\n", features, "\nlen: ", len(features)) return True def test(): # data = pd.DataFrame(pd.read_csv('P1-Rec1-All-Data-New_Section_2.csv')) # data = pd.DataFrame(pd.read_csv('P11-Rec1-All-Data-New_Section_30.csv')) # data = data['PupilDiameter'] Eye_extract_average_psd_from_a_trial(file_path='P11-Rec1-All-Data-New_Section_30.csv', save_path='', average_second=1, overlap=0.5) if __name__ == "__main__": # myFT1() test()
import numpy as np from dataclasses import dataclass from typing import Any from typing import Optional from torch.utils import data as torch_data from lso.data import data as lso_data @dataclass class NumpyData(lso_data.Data, torch_data.Dataset): x: np.array objective: Optional[np.array] = None features: Optional[np.array] = None def __add__(self, other: Any) -> "NumpyData": if not isinstance(other, NumpyData): return NotImplemented if not self.x.shape[1:] == other.x.shape[1:]: raise ValueError(f'x shapes of added Data: {self}, {other}' f' do not match: {self.x.shape}, {other.x.shape}.') x = np.concatenate((self.x, other.x)) if self.objective is None or other.objective is None: objective = None else: if not self.objective.shape[1:] == other.objective.shape[1:]: raise ValueError(f'objective shapes of added Data: {self}, {other}' f' do not match: {self.objective.shape}, {other.objective.shape}.') objective = np.concatenate((self.objective, other.objective)) if self.features is None or other.features is None: features = None else: if not self.features.shape[1:] == other.features.shape[1:]: raise ValueError(f'features shapes of added Data: {self}, {other}' f' do not match: {self.features.shape}, {other.features.shape}.') features = np.concatenate((self.features, other.features)) return type(self)(x=x, objective=objective, features=features) @dataclass class NumpyLatent(lso_data.Latent, torch_data.Dataset): z: np.array objective: Optional[np.array] = None features: Optional[np.array] = None def __add__(self, other: Any) -> "NumpyLatent": if not isinstance(other, NumpyLatent): return NotImplemented if not self.z.shape[1:] == other.z.shape[1:]: raise ValueError(f'Z shapes of added latents: {self}, {other}' f' do not match: {self.z.shape}, {other.z.shape}.') z = np.concatenate((self.z, other.z)) if self.objective is None or other.objective is None: objective = None else: if not self.objective.shape[1:] == other.objective.shape[1:]: raise ValueError(f'objective shapes of added latents: {self}, {other}' f' do not match: {self.objective.shape}, {other.objective.shape}.') objective = np.concatenate((self.objective, other.objective)) if self.features is None or other.features is None: features = None else: if not self.features.shape[1:] == other.features.shape[1:]: raise ValueError(f'features shapes of added latents: {self}, {other}' f' do not match: {self.features.shape}, {other.features.shape}.') features = np.concatenate((self.features, other.features)) return type(self)(z=z, objective=objective, features=features)
# Create lists and import using csv. import csv train_sad = [] train_anger = [] train_joy = [] train_trust = [] train_fear = [] train_surprise = [] train_disgust = [] train_anticipation = [] #Open and import the training set emotions.txt with open("TrainingSetEmotions.txt", "r") as trainingsetemotions: next(trainingsetemotions) reader = csv.reader(trainingsetemotions,delimiter='\t') for sad,anger,joy,trust,fear,surprise,disgust,anticipation in reader: train_sad.append(sad) train_anger.append(anger) train_joy.append(joy) train_trust.append(trust) train_fear.append(fear) train_surprise.append(surprise) train_disgust.append(disgust) train_anticipation.append(anticipation)
from __future__ import absolute_import from __future__ import print_function import operator import six from six.moves import range class HotCounter(object): def __init__(self, vs=None, limit=20): if vs is None: vs = [] self.limit = limit self.total = {} self.updates = {} self._max = 0 for v in vs: self.add(v) def add(self, v): c = self.updates.get(v, 0) + 1 self.updates[v] = c if c > self._max: self._max = c if len(self.updates) > self.limit * 5 and self._max > 5: self._merge() def _merge(self): for k, c in six.iteritems(self.updates): if c > 1: self.total[k] = self.total.get(k, 0) + c self._max = 0 self.updates = {} if len(self.total) > self.limit * 5: self.total = dict(self.top(self.limit * 3)) def update(self, o): self._merge() if isinstance(o, HotCounter): o._merge() for k, c in six.iteritems(o.total): self.total[k] = self.total.get(k, 0) + c def top(self, limit): return sorted(list(self.total.items()), key=operator.itemgetter(1), reverse=True)[:limit] def test(): import random import math t = HotCounter() for j in range(10): c = HotCounter() for i in range(10000): v = int(math.sqrt(random.randint(0, 1000000))) c.add(v) t.update(c) for k, v in t.top(20): print(k, v) if __name__ == '__main__': test()
import json from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql with open('data.json', 'r') as jf: data = json.load(jf) bulk_list = [] for goal, name in data['goals'].items(): bulk_list.append({'goal': goal, 'name': name}) op.bulk_insert(goals, bulk_list) bulk_list = [] for t in data['teachers']: bulk_list.append({ 'name': t['name'], 'about': t['about'], 'rating': t['rating'], 'picture': t['picture'], 'price': t['price'], }) op.bulk_insert(teachers, bulk_list)
# Generated by Django 2.1.1 on 2018-10-05 04:25 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('api', '0022_merge_20181004_0912'), ] operations = [ migrations.RemoveField( model_name='accommodation', name='addr_city', ), migrations.RemoveField( model_name='accommodation', name='addr_number', ), migrations.RemoveField( model_name='accommodation', name='addr_state', ), migrations.RemoveField( model_name='accommodation', name='addr_street', ), migrations.AlterField( model_name='accommodation', name='title', field=models.CharField(default=uuid.UUID('822956a6-0e67-4e90-b94f-bcad363471d8'), max_length=100), ), ]
import logging import colorlog class CustomLogger: FORMAT = '[%(asctime)s | PID: %(process)d | %(name)s - %(levelname)-8s] %(message)s' dict_level = { 'debug' : logging.DEBUG, 'info' : logging.INFO, 'warning' : logging.WARNING, 'error' : logging.ERROR, 'critical' : logging.CRITICAL } def create_logger(self, log_name = __name__, log_file = None, low_level = 'info', datefmt='%d-%b-%y %H:%M:%S', alay=False): used_format = self.FORMAT if alay: logger = colorlog.getLogger(log_name) bold_seq = '\033[1m' c_format = ( f'{bold_seq}' '%(log_color)s' f'{used_format}' ) c_handler = colorlog.StreamHandler() c_handler.setFormatter(colorlog.ColoredFormatter(c_format, datefmt=datefmt)) logger.addHandler(c_handler) logger.setLevel(self.dict_level[low_level]) else: # Handlers logger = logging.getLogger(log_name) c_handler = logging.StreamHandler() c_format = logging.Formatter(used_format, datefmt=datefmt) c_handler.setFormatter(c_format) c_handler.setLevel(self.dict_level[low_level]) logger.addHandler(c_handler) logger.setLevel(self.dict_level[low_level]) if log_file is not None: f_handler = logging.FileHandler(log_file) f_format = logging.Formatter(used_format, datefmt=datefmt) f_handler.setFormatter(f_format) f_handler.setLevel(self.dict_level[low_level]) logger.addHandler(f_handler) return logger
from jax import random, vmap from jax.example_libraries.optimizers import adam import jax.numpy as jnp import numpy as np import numpy.typing as npt import numpyro import numpyro.distributions as dist from numpyro.infer import SVI, Trace_ELBO from numpyro.infer.autoguide import AutoNormal from scipy.stats import beta, norm from sklearn.linear_model import LogisticRegression def compute_logit(α, θ, x): return α + jnp.dot(θ, x) def noninformative_model(X: npt.NDArray, regions: npt.NDArray, y: npt.NDArray): n, p = X.shape n_regions = len(np.unique(regions)) # noninformative hyper-priors for the one-level hierarchical model μ_a = numpyro.sample('μ_a', dist.Normal(0., 100.)) σ_a = numpyro.sample('σ_a', dist.HalfCauchy(5.)) μ_t = numpyro.sample('μ_t', dist.Normal(0., 100.)) σ_t = numpyro.sample('σ_t', dist.HalfCauchy(5.)) μ = jnp.repeat(μ_t, repeats=p) Σ = jnp.diag(jnp.repeat(σ_t, repeats=p)) # Create an intercept for each administrative region with numpyro.plate('regions', n_regions): α = numpyro.sample('α', dist.Normal(μ_a, σ_a)) θ = numpyro.sample('θ', dist.MultivariateNormal(μ, Σ)) β = vmap(compute_logit, in_axes=0)(α[regions], θ[regions], X) with numpyro.plate('samples', n): numpyro.sample('y', dist.Bernoulli(logits=β), obs=y) def compute_region_params(y: npt.NDArray): m = y.mean() a = len(y) * m b = len(y) - a samples = beta.rvs(a, b, size=1000, random_state=17) logit_samples = np.log(samples / (1 - samples)) μ, σ = norm.fit(logit_samples) return μ, σ def compute_feature_params(X: npt.NDArray, y: npt.NDArray): model = LogisticRegression(fit_intercept=False, random_state=17, max_iter=500) model.fit(X, y) θ = model.coef_ w = X @ θ.T w = jnp.exp(w) / jnp.square(1 + jnp.exp(w)) jnp.diag(w).shape return θ, X.T @ jnp.diag(w.flatten()) @ X def empirical_model(X: npt.NDArray, regions: npt.NDArray, y: npt.NDArray, a: float, b: float, μ: npt.NDArray, τ: npt.NDArray): n, p = X.shape n_regions = len(np.unique(regions)) # Define the empircal hyper-priors for the hierarchical model μ_a = numpyro.sample('μ_a', dist.Normal(a, b)) σ_a = numpyro.sample('σ_a', dist.HalfCauchy(5.)) μ_t = numpyro.sample('μ_t', dist.MultivariateNormal(μ, precision_matrix=τ)) σ_t = numpyro.sample('σ_t', dist.HalfCauchy(5.)) Σ = jnp.diag(jnp.repeat(σ_t, repeats=p)) with numpyro.plate('regions', n_regions): α = numpyro.sample('α', dist.Normal(μ_a, σ_a)) θ = numpyro.sample('θ', dist.MultivariateNormal(μ_t, Σ)) β = vmap(compute_logit, in_axes=0)(α[regions], θ[regions], X) with numpyro.plate('samples', n): numpyro.sample('y', dist.Bernoulli(logits=β), obs=y) def fit_model(X: npt.NDArray, regions: npt.NDArray, y:npt.NDArray, **kwargs): # Giving sensible defaults for SVI arguments, but allowing user to pass # different ones if they want default_kwargs = {'seed': 17, 'prior': 'noninformative', 'step_size': 0.005, 'n_steps': 10000} kwargs = {**default_kwargs, **kwargs} rng_key = random.PRNGKey(kwargs['seed']) if kwargs['prior'] == 'noninformative': guide = AutoNormal(noninformative_model) model = SVI(noninformative_model, guide, adam(step_size=kwargs['step_size']), Trace_ELBO()) result = model.run(rng_key, kwargs['n_steps'], X, regions, y) else: a, b = compute_region_params(y) μ, τ = compute_feature_params(X, y) guide = AutoNormal(empirical_model) model = SVI(empirical_model, guide, adam(step_size=kwargs['step_size']), Trace_ELBO()) result = model.run(rng_key, kwargs['n_steps'], X, regions, y, a, b, μ, τ) return result, guide
#!/usr/bin/env python3 # This script starts a `qemu-system` to run the tests and then safely shutdown # the VM. # # Inspired by https://github.com/CTSRD-CHERI/cheribuild/tree/master/test-scripts import argparse import os from run_tests_common import boot_cheribsd, run_tests_main def run_cheri_examples_tests(qemu: boot_cheribsd.QemuCheriBSDInstance, args: argparse.Namespace) -> bool: if args.sysroot_dir is not None: boot_cheribsd.set_ld_library_path_with_sysroot(qemu) boot_cheribsd.info("Running tests for cheri-examples") # This is the BUILD_DIR for the tests, not for this script os.system("BUILD_DIR=bin ./tests/run_tests.sh") return True if __name__ == '__main__': run_tests_main(test_function=run_cheri_examples_tests, need_ssh=True, should_mount_builddir=False)
import os import pandas as pd import matplotlib.pyplot as plt from examples.cartpole_example.cartpole_dynamics import RAD_TO_DEG, DEG_TO_RAD if __name__ == '__main__': #df_model = pd.read_csv(os.path.join("data", "pendulum_data_PID.csv")) #df_nn = pd.read_csv(os.path.join("data", "pendulum_data_PID_NN_model.csv")) df_meas = pd.read_csv(os.path.join("data", "pendulum_data_MPC_ref_val.csv")) df_nn = pd.read_csv(os.path.join("data", "pendulum_data_MPC_ref_val_NN_model.csv")) fig,axes = plt.subplots(3,1, figsize=(10,10), sharex=True) axes[0].plot(df_meas['time'], df_meas['p'], "k", label='p system') axes[0].plot(df_nn['time'], df_nn['p'], "r", label='p NN') axes[0].set_title("Position (m)") axes[0].set_ylim(-10, 10.0) axes[1].plot(df_meas['time'], df_meas['theta'] * RAD_TO_DEG, "k", label='theta system') axes[1].plot(df_nn['time'], df_nn['theta']*RAD_TO_DEG, "r", label='theta NN') axes[2].plot(df_meas['time'], df_meas['u'], label="u") axes[2].plot(df_nn['time'], df_nn['u'], label="u") for ax in axes: ax.grid(True) ax.legend()
"""paicli: A CLI tool for PAI (Platform for AI). Author: Sotetsu KOYAMADA """ from __future__ import unicode_literals from prompt_toolkit.application import Application from prompt_toolkit.interface import CommandLineInterface from prompt_toolkit.key_binding.manager import KeyBindingManager from prompt_toolkit.keys import Keys from prompt_toolkit.layout.containers import Window from prompt_toolkit.shortcuts import create_eventloop from prompt_toolkit.filters import IsDone from prompt_toolkit.layout.controls import TokenListControl from prompt_toolkit.layout.containers import ConditionalContainer, ScrollOffsets, HSplit from prompt_toolkit.layout.dimension import LayoutDimension as D from prompt_toolkit.token import Token from prompt_toolkit.styles import style_from_dict # Reference # # examples/custom-token-list-control.py: # https://github.com/jonathanslenders/python-prompt-toolkit/pull/427/commits/2b75d1835eee49c8881c1d8d7e107237227eda95#diff-a4228333fe0e9eca1e3149e15ae2d8de # def select_choices_interactively(choices): # choices = [job['name'] for job in job_content] app = get_app(choices) eventloop = create_eventloop() try: cli = CommandLineInterface(application=app, eventloop=eventloop) selected_choice = cli.run(reset_current_buffer=False) finally: eventloop.close() return selected_choice def get_app(choices): class InquirerControl(TokenListControl): selected_option_index = 0 answered = False choices = [] def __init__(self, choices, **kwargs): self.choices = choices super(InquirerControl, self).__init__(self._get_choice_tokens, **kwargs) @property def choice_count(self): return len(self.choices) def _get_choice_tokens(self, cli): tokens = [] T = Token def append(index, label): selected = (index == self.selected_option_index) tokens.append((T.Selected if selected else T, '> ' if selected else ' ')) if selected: tokens.append((Token.SetCursorPosition, '')) tokens.append((T.Selected if selected else T, '%-24s' % label)) tokens.append((T, '\n')) for i, choice in enumerate(self.choices): append(i, choice) tokens.pop() # Remove last newline. return tokens def get_selection(self): return self.choices[self.selected_option_index] ic = InquirerControl(choices) def get_prompt_tokens(cli): tokens = [] if ic.answered: cli.return_value = lambda: ic.get_selection() return tokens layout = HSplit([ Window(height=D.exact(0), content=TokenListControl(get_prompt_tokens, align_center=False)), ConditionalContainer( Window( ic, width=D.exact(43), height=D(min=3), scroll_offsets=ScrollOffsets(top=1, bottom=1) ), filter=~IsDone())]) manager = KeyBindingManager.for_prompt() @manager.registry.add_binding(Keys.ControlQ, eager=True) @manager.registry.add_binding(Keys.ControlC, eager=True) def _(event): event.cli.set_return_value(None) @manager.registry.add_binding(Keys.Down, eager=True) @manager.registry.add_binding(Keys.ControlN, eager=True) def move_cursor_down(event): ic.selected_option_index = ( (ic.selected_option_index + 1) % ic.choice_count) @manager.registry.add_binding(Keys.Up, eager=True) @manager.registry.add_binding(Keys.ControlP, eager=True) def move_cursor_up(event): ic.selected_option_index = ( (ic.selected_option_index - 1) % ic.choice_count) @manager.registry.add_binding(Keys.Enter, eager=True) def set_answer(event): ic.answered = True event.cli.set_return_value(None) inquirer_style = style_from_dict({ Token.QuestionMark: '#5F819D', Token.Selected: '#FF9D00', Token.Instruction: '', Token.Answer: '#FF9D00 bold', Token.Question: 'bold', }) app = Application( layout=layout, key_bindings_registry=manager.registry, mouse_support=True, style=inquirer_style ) return app
""" Computer vision. """ from . import mussels __all__ = [ "mussels", ]
import unittest from intrepyd.iec611312py.parsest import parse_st from intrepyd.iec611312py.variable import Variable from intrepyd.iec611312py.stmtprinter import StmtPrinter from intrepyd.iec611312py.summarizer import Summarizer from intrepyd.iec611312py.datatype import Primitive from intrepyd.iec611312py.expression import VariableOcc, Ite from intrepyd.iec611312py.statement import Assignment boolType = Primitive('BOOL') class TestSTSummarizer(unittest.TestCase): def _run_test(self, program, name2var, expected_assignments, expected_extra_assignments): statements = parse_st(program, name2var, {}) self._run_test_helper(statements, expected_assignments, expected_extra_assignments) def _run_test_helper(self, statements, expected_assignments, expected_extra_assignments): summarizer = Summarizer() summary = summarizer.summarize_stmt_block(statements) actual = {} for assignment in summary: printer = StmtPrinter() assignment.rhs.accept(printer) actual[assignment.lhs.var.name] = printer.result self.assertEqual(expected_assignments, actual) actual = {} for assignment in summarizer.assignments: printer = StmtPrinter() assignment.rhs.accept(printer) actual[assignment.lhs.var.name] = printer.result self.assertEqual(expected_extra_assignments, actual) def test_1(self): name2var = { 'a' : Variable('a', boolType, Variable.LOCAL), 'b' : Variable('b', boolType, Variable.LOCAL), 'c' : Variable('c', boolType, Variable.LOCAL) } program = """ a := TRUE; b := FALSE; c := a AND b; """ expected_assignments = { 'a': 'TRUE', 'b': 'FALSE', 'c': '(a___1 AND b___2)' } expected_extra_assignments = { 'a___1': 'TRUE', 'b___2': 'FALSE' } self._run_test(program, name2var, expected_assignments, expected_extra_assignments) def test_2(self): name2var = { 'a' : Variable('a', boolType, Variable.LOCAL), 'b' : Variable('b', boolType, Variable.LOCAL), 'c' : Variable('c', boolType, Variable.LOCAL) } program = """ a := TRUE; b := FALSE; a := b; c := (a AND b); """ expected_assignments = { 'a': 'b___1', 'b': 'FALSE', 'c': '(a___2 AND b___3)' } expected_extra_assignments = { 'a___2': 'b___1', 'b___1': 'FALSE', 'b___3': 'FALSE' } self._run_test(program, name2var, expected_assignments, expected_extra_assignments) def test_3(self): name2var = { 'a' : Variable('a', boolType, Variable.LOCAL), 'b' : Variable('b', boolType, Variable.LOCAL), 'c' : Variable('c', boolType, Variable.LOCAL) } program = """ a := b; c := a; """ expected_assignments = { 'a': 'b', 'c': 'a___1', } expected_extra_assignments = { 'a___1': 'b' } self._run_test(program, name2var, expected_assignments, expected_extra_assignments) def test_4(self): name2var = { 'a' : Variable('a', boolType, Variable.LOCAL), 'b' : Variable('b', boolType, Variable.LOCAL), 'c' : Variable('c', boolType, Variable.LOCAL) } program = """ a := b AND FALSE; c := a; a := c AND TRUE; """ expected_assignments = { 'a': '(c___2 AND TRUE)', 'c': 'a___1', } expected_extra_assignments = { 'c___2': 'a___1', 'a___1': '(b AND FALSE)' } self._run_test(program, name2var, expected_assignments, expected_extra_assignments) def test_5(self): name2var = { 'a' : VariableOcc(Variable('a', boolType, Variable.LOCAL)), 'b' : VariableOcc(Variable('b', boolType, Variable.LOCAL)), 'c' : VariableOcc(Variable('c', boolType, Variable.LOCAL)), 'd' : VariableOcc(Variable('d', boolType, Variable.LOCAL)), 'e' : VariableOcc(Variable('e', boolType, Variable.LOCAL)), 'f' : VariableOcc(Variable('f', boolType, Variable.LOCAL)) } statements = [ Assignment(name2var['a'], Ite(name2var['b'], name2var['c'], name2var['d'])), Assignment(name2var['e'], name2var['a']), Assignment(name2var['f'], Ite(name2var['a'], name2var['a'], name2var['a'])), ] expected_assignments = { 'a': 'ite(b, c, d)', 'e': 'a___1', 'f': 'ite(a___2, a___3, a___4)', } expected_extra_assignments = { 'a___1': 'ite(b, c, d)', 'a___2': 'ite(b, c, d)', 'a___3': 'ite(b, c, d)', 'a___4': 'ite(b, c, d)' } self._run_test_helper(statements, expected_assignments, expected_extra_assignments) def test_6(self): name2var = { 'a' : Variable('a', boolType, Variable.LOCAL), 'b' : Variable('b', boolType, Variable.LOCAL), 'c' : Variable('c', boolType, Variable.LOCAL) } program = """ a := a AND b; """ expected_assignments = { 'a': '(a AND b)' } self._run_test(program, name2var, expected_assignments, {}) def test_7(self): name2var = { 'a' : VariableOcc(Variable('a', boolType, Variable.LOCAL)), 'b' : VariableOcc(Variable('b', boolType, Variable.LOCAL)), 'c' : VariableOcc(Variable('c', boolType, Variable.LOCAL)), } statements = [ Assignment(name2var['a'], Ite(name2var['b'], name2var['a'], name2var['c'])) ] expected_assignments = { 'a': 'ite(b, a, c)', } self._run_test_helper(statements, expected_assignments, {}) if __name__ == "__main__": unittest.main()
"""HTTP Navigation Manager.""" from configparser import ConfigParser from typing import Dict, List import logging import random from OSIx.core.base_module import BaseModule from OSIx.core.http_manager import HttpNavigationManager logger = logging.getLogger() class HttpNavigationManagerHandler(BaseModule): """HTTP Navigation Manager.""" def run(self, config: ConfigParser, args: Dict, data: Dict) -> None: """Execute Module.""" # Check if Not have a Selected UA if 'web_navigation' not in data or 'user_agent' not in data['web_navigation']: data.update({'web_navigation': {'user_agent': self.__choose_ua(config)}}) # Initialize Internal Modules HttpNavigationManager.init(data) def __choose_ua(self, config: ConfigParser) -> str: """Choose a Random UA.""" if config: ua_list: List[str] = config['WEB_NAVIGATION']['useragent_list'].split('\n') return ua_list[random.Random().randint(1, len(ua_list) - 1)] # nosec raise Exception("System Configuration Not Initialized")
#!/usr/bin/env python import re import yaml def camel_to_snake(name): """ Convert CamelCase names to snake_case """ s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() with open('z.yaml') as yaml_file: y = yaml.load(yaml_file, Loader=yaml.FullLoader) for n in y: s = camel_to_snake(n) print(f"{n}:{s}\n{y[n]}") file_name = f"{s}.yaml" d = dict() d[n] = y[n] with open(file_name, 'w') as out: yaml.dump(d, out, default_flow_style=False)
import random guess_num = random.randint(1, 100) playing = True while(playing): difficulty = input( "What is your preference for difficulty\nhard or medium or easy\n>") if(difficulty == "h" or difficulty == "hard" or difficulty == 1): life = 5 elif(difficulty == "m" or difficulty == "medium" or difficulty == 2): life = 7 else: life = 10 while(True): if(life < 1): print("you ran out of life\n") if(input("Would you like to give it another go\n'y' for yes\n>" == "y")): break else: playing = False break user_guess = int(input("what is your guess")) if(user_guess > guess_num): print("too high\n") life -= 1 print(f"you lost a life,\n you have {life} remaining") elif(user_guess < guess_num): print("too low\n") print(f"you lost a life,\n you have {life} remaining") else: print("you win\n") print("you ran out of life\n") if(input("Would you like to give it another go\n'y' for yes\n>" == "y")): break else: playing = False break print("thanx for playing :>")
import configparser from pymongo import MongoClient import os class Properties: def __init__(self): pass def load_properties(): # Read configuration properties config = configparser.ConfigParser() base_path = os.path.dirname(os.path.realpath(__file__)) config.read(os.path.join(base_path, 'properties.ini')) properties = Properties() properties.CHANNELS = config.get('general', 'channels') properties.DATABASE_ENDPOINT = config.get('database', 'endpoint') properties.SAPO_ENDPOINT = config.get('sapo', 'endpoint') properties.SAPO_IMAGE = config.get('sapo', 'image') properties.SAPO_NS = config.get('sapo', 'ns') properties.OMDB_ENDPOINT = config.get('omdb', 'endpoint') properties.OMDB_KEY = config.get('omdb', 'key') properties.GOOGLE_ENDPOINT = config.get('google', 'endpoint') properties.GOOGLE_KEY = config.get('google', 'key') properties.GOOGLE_CX = config.get('google', 'cx') return properties CONFIG = load_properties() def load_database(): connection = MongoClient(CONFIG.DATABASE_ENDPOINT) return connection.dev db = load_database()
import time import board from adafruit_pyportal import PyPortal from adafruit_bitmap_font import bitmap_font from adafruit_display_text.label import Label import json from secrets import secrets import gc # Set up where we'll be fetching data from. Presumes a JSON structure of: # [{"status":"At home", # "date":"- Monday, May 1, 9:54 PM", # "graph":"https://host/graph.png"}] DATA_SOURCE = secrets['pyportal_source'] # Status graph details image_json_path = [0, 'graph'] image_size = (297, 122) image_position = (11, 0) image_refresh_time = 3600 # Status text details font_path = "/fonts/DejaVuSansMono-14.bdf" text_wrap = 38 line_spacing = 0.75 status_dict = {'status': {'position': (5, 174), 'color': 0xffffff, 'length': 140, 'json_path': [0, 'status'], 'format': '{0}'}, 'date': {'position': (5, 230), 'color': 0x4f29b4, 'length': text_wrap, 'json_path': [0, 'date'], 'format': '{{0: >{0}}}'.format(text_wrap)} # "monospaced right justify" } status_refresh_time = 30 # Should be no need for modifications past this point. # Initialize font big_font = bitmap_font.load_font(font_path) big_font.load_glyphs(b' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz`1234567890-=~!@#$%^&*()_+[]{},./<>?;:\\|\'"') # Initialize PyPortal pyportal = PyPortal(debug=False, url=DATA_SOURCE, image_json_path=image_json_path, image_resize=image_size, image_position=image_position, status_neopixel=board.NEOPIXEL, ) # Initialize status text areas text_areas = {} for k, entry in status_dict.items(): pos = entry['position'] color = entry['color'] length = entry['length'] textarea = Label(big_font, text=length*' ') textarea._line_spacing = line_spacing textarea.x = pos[0] textarea.y = pos[1] textarea.color = color pyportal.splash.append(textarea) text_areas[k] = textarea # Initialize looping and change conditions refresh_time = None raw_status_dict_old = {} pyportal.get_local_time() start_time = time.monotonic() while True: print("{0} since start".format(time.monotonic()-start_time)) # Periodically, sync time and grab a new image if (not refresh_time) or (time.monotonic() - refresh_time) > image_refresh_time: try: print("Getting time from internet") pyportal.get_local_time() refresh_time = time.monotonic() print("Grabbing new image") value = pyportal.fetch() print("Response is", value) except RuntimeError as e: print("Some error occured, retrying! -", e) continue # Every time, grab the status JSON and check for changes to text area contents try: gc.collect() print("Grabbing new status") json_file = DATA_SOURCE.split('/')[-1] if pyportal._sdcard: json_file = '/sd/' + json_file pyportal.wget(url=DATA_SOURCE, filename=json_file, chunk_size=512) with open(json_file, 'r') as f: lines = f.readlines() json_str = ' '.join(lines) j = json.loads(json_str) # Check JSON for changes to text area contents raw_status_dict = {} for k in status_dict.keys(): json_path = status_dict[k]['json_path'] json_traversed = pyportal._json_traverse(j, json_path) text = '\n'.join(pyportal.wrap_nicely(json_traversed, text_wrap)) raw_status_dict[k] = text if raw_status_dict == raw_status_dict_old: print("No changes in json text") else: print("At least one thing changed in json text") # Update changed text areas for k, v in raw_status_dict.items(): if not(v == raw_status_dict_old.get(k)): print("Status item '{0}' changed from '{1}' to '{2}'".format(k, raw_status_dict_old.get(k), v)) text_areas[k].text = status_dict[k]['format'].format(v) # Update status dictionary for next iteration raw_status_dict_old = raw_status_dict except (RuntimeError, ValueError) as e: print("Some error occured, retrying! -", e) time.sleep(status_refresh_time)
""" Defines the CloudNoiseModel class and supporting functions """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import numpy as _np import copy as _copy import itertools as _itertools import collections as _collections import scipy.sparse as _sps import warnings as _warnings from . import operation as _op from . import spamvec as _sv from . import povm as _povm from . import qubitgraph as _qgraph from . import labeldicts as _ld from . import opfactory as _opfactory from ..tools import optools as _gt from ..tools import basistools as _bt from ..tools import internalgates as _itgs from .implicitmodel import ImplicitOpModel as _ImplicitOpModel from .layerlizard import ImplicitLayerLizard as _ImplicitLayerLizard from .verbosityprinter import VerbosityPrinter as _VerbosityPrinter from .basis import BuiltinBasis as _BuiltinBasis, ExplicitBasis as _ExplicitBasis from .label import Label as _Lbl, CircuitLabel as _CircuitLabel from ..tools.basisconstructors import sqrt2, id2x2, sigmax, sigmay, sigmaz def _iter_basis_inds(weight): """ Iterate over product of `weight` non-identity Pauli 1Q basis indices """ basisIndList = [[1, 2, 3]] * weight # assume pauli 1Q basis, and only iterate over non-identity els for basisInds in _itertools.product(*basisIndList): yield basisInds def basisProductMatrix(sigmaInds, sparse): """ Construct the Pauli product matrix from the given `sigmaInds` """ sigmaVec = (id2x2 / sqrt2, sigmax / sqrt2, sigmay / sqrt2, sigmaz / sqrt2) M = _np.identity(1, 'complex') for i in sigmaInds: M = _np.kron(M, sigmaVec[i]) return _sps.csr_matrix(M) if sparse else M class CloudNoiseModel(_ImplicitOpModel): """ A noisy n-qubit model using a low-weight and geometrically local error model with a common "global idle" operation. """ @classmethod def build_from_hops_and_weights(cls, nQubits, gate_names, nonstd_gate_unitaries=None, custom_gates=None, availability=None, qubit_labels=None, geometry="line", maxIdleWeight=1, maxSpamWeight=1, maxhops=0, extraWeight1Hops=0, extraGateWeight=0, sparse=False, sim_type="auto", parameterization="H+S", spamtype="lindblad", addIdleNoiseToAllGates=True, errcomp_type="gates", independent_clouds=True, verbosity=0): """ Create a n-qubit model using a low-weight and geometrically local error model with a common "global idle" operation. This type of model is referred to as a "cloud noise" model because noise specific to a gate may act on a neighborhood or cloud around the gate's target qubits. This type of model is generally useful for performing GST on a multi-qubit system. Parameters ---------- nQubits : int The number of qubits gate_names : list A list of string-type gate names (e.g. `"Gx"`) either taken from the list of builtin "standard" gate names given above or from the keys of `nonstd_gate_unitaries`. These are the typically 1- and 2-qubit gates that are repeatedly embedded (based on `availability`) to form the resulting model. nonstd_gate_unitaries : dict, optional A dictionary of numpy arrays which specifies the unitary gate action of the gate names given by the dictionary's keys. As an advanced behavior, a unitary-matrix-returning function which takes a single argument - a tuple of label arguments - may be given instead of a single matrix to create an operation *factory* which allows continuously-parameterized gates. This function must also return an empty/dummy unitary when `None` is given as it's argument. custom_gates : dict A dictionary that associates with gate labels :class:`LinearOperator`, :class:`OpFactory`, or `numpy.ndarray` objects. These objects describe the full action of the gate or primitive-layer they're labeled by (so if the model represents states by density matrices these objects are superoperators, not unitaries), and override any standard construction based on builtin gate names or `nonstd_gate_unitaries`. Keys of this dictionary must be string-type gate *names* -- they cannot include state space labels -- and they must be *static* (have zero parameters) because they represent only the ideal behavior of each gate -- the cloudnoise operations represent the parameterized noise. To fine-tune how this noise is parameterized, call the :class:`CloudNoiseModel` constructor directly. availability : dict, optional A dictionary whose keys are the same gate names as in `gatedict` and whose values are lists of qubit-label-tuples. Each qubit-label-tuple must have length equal to the number of qubits the corresponding gate acts upon, and causes that gate to be embedded to act on the specified qubits. For example, `{ 'Gx': [(0,),(1,),(2,)], 'Gcnot': [(0,1),(1,2)] }` would cause the `1-qubit `'Gx'`-gate to be embedded three times, acting on qubits 0, 1, and 2, and the 2-qubit `'Gcnot'`-gate to be embedded twice, acting on qubits 0 & 1 and 1 & 2. Instead of a list of tuples, values of `availability` may take the special values: - `"all-permutations"` and `"all-combinations"` equate to all possible permutations and combinations of the appropriate number of qubit labels (deterined by the gate's dimension). - `"all-edges"` equates to all the vertices, for 1Q gates, and all the edges, for 2Q gates of the geometry. - `"arbitrary"` or `"*"` means that the corresponding gate can be placed on any target qubits via an :class:`EmbeddingOpFactory` (uses less memory but slower than `"all-permutations"`. If a gate name (a key of `gatedict`) is not present in `availability`, the default is `"all-edges"`. qubit_labels : tuple, optional The circuit-line labels for each of the qubits, which can be integers and/or strings. Must be of length `nQubits`. If None, then the integers from 0 to `nQubits-1` are used. geometry : {"line","ring","grid","torus"} or QubitGraph The type of connectivity among the qubits, specifying a graph used to define neighbor relationships. Alternatively, a :class:`QubitGraph` object with node labels equal to `qubit_labels` may be passed directly. maxIdleWeight : int, optional The maximum-weight for errors on the global idle gate. maxSpamWeight : int, optional The maximum-weight for SPAM errors when `spamtype == "linblad"`. maxhops : int The locality constraint: for a gate, errors (of weight up to the maximum weight for the gate) are allowed to occur on the gate's target qubits and those reachable by hopping at most `maxhops` times from a target qubit along nearest-neighbor links (defined by the `geometry`). extraWeight1Hops : int, optional Additional hops (adds to `maxhops`) for weight-1 errors. A value > 0 can be useful for allowing just weight-1 errors (of which there are relatively few) to be dispersed farther from a gate's target qubits. For example, a crosstalk-detecting model might use this. extraGateWeight : int, optional Addtional weight, beyond the number of target qubits (taken as a "base weight" - i.e. weight 2 for a 2Q gate), allowed for gate errors. If this equals 1, for instance, then 1-qubit gates can have up to weight-2 errors and 2-qubit gates can have up to weight-3 errors. sparse : bool, optional Whether the embedded Lindblad-parameterized gates within the constructed `nQubits`-qubit gates are sparse or not. (This is determied by whether they are constructed using sparse basis matrices.) When sparse, these Lindblad gates take up less memory, but their action is slightly slower. Usually it's fine to leave this as the default (False), except when considering particularly high-weight terms (b/c then the Lindblad gates are higher dimensional and sparsity has a significant impact). sim_type : {"auto","matrix","map","termorder:<N>"} The type of forward simulation (probability computation) to use for the returned :class:`Model`. That is, how should the model compute operation sequence/circuit probabilities when requested. `"matrix"` is better for small numbers of qubits, `"map"` is better for larger numbers. The `"termorder"` option is designed for even larger numbers. Usually, the default of `"auto"` is what you want. parameterization : {"P", "P terms", "P clifford terms"} Where *P* can be any Lindblad parameterization base type (e.g. CPTP, H+S+A, H+S, S, D, etc.) This is the type of parameterizaton to use in the constructed model. Types without any "terms" suffix perform usual density-matrix evolution to compute circuit probabilities. The other "terms" options compute probabilities using a path-integral approach designed for larger numbers of qubits (experts only). spamtype : { "static", "lindblad", "tensorproduct" } Specifies how the SPAM elements of the returned `Model` are formed. Static elements are ideal (perfect) operations with no parameters, i.e. no possibility for noise. Lindblad SPAM operations are the "normal" way to allow SPAM noise, in which case error terms up to weight `maxSpamWeight` are included. Tensor-product operations require that the state prep and POVM effects have a tensor-product structure; the "tensorproduct" mode exists for historical reasons and is *deprecated* in favor of `"lindblad"`; use it only if you know what you're doing. addIdleNoiseToAllGates: bool, optional Whether the global idle should be added as a factor following the ideal action of each of the non-idle gates. errcomp_type : {"gates","errorgens"} How errors are composed when creating layer operations in the created model. `"gates"` means that the errors on multiple gates in a single layer are composed as separate and subsequent processes. Specifically, the layer operation has the form `Composed(target,idleErr,cloudErr)` where `target` is a composition of all the ideal gate operations in the layer, `idleErr` is idle error (`.operation_blks['layers']['globalIdle']`), and `cloudErr` is the composition (ordered as layer-label) of cloud- noise contributions, i.e. a map that acts as the product of exponentiated error-generator matrices. `"errorgens"` means that layer operations have the form `Composed(target, error)` where `target` is as above and `error` results from composing the idle and cloud-noise error *generators*, i.e. a map that acts as the exponentiated sum of error generators (ordering is irrelevant in this case). independent_clouds : bool, optional Currently this must be set to True. In a future version, setting to true will allow all the clouds of a given gate name to have a similar cloud-noise process, mapped to the full qubit graph via a stencil. verbosity : int, optional An integer >= 0 dictating how must output to send to stdout. """ printer = _VerbosityPrinter.build_printer(verbosity) if custom_gates is None: custom_gates = {} if nonstd_gate_unitaries is None: nonstd_gate_unitaries = {} std_unitaries = _itgs.get_standard_gatename_unitaries() #Get evotype _, evotype = _gt.split_lindblad_paramtype(parameterization) assert(evotype in ("densitymx", "svterm", "cterm")), "State-vector evolution types not allowed." gatedict = _collections.OrderedDict() for name in gate_names: if name in custom_gates: gatedict[name] = custom_gates[name] else: U = nonstd_gate_unitaries.get(name, std_unitaries.get(name, None)) if U is None: raise KeyError("'%s' gate unitary needs to be provided by `nonstd_gate_unitaries` arg" % name) if callable(U): # then assume a function: args -> unitary U0 = U(None) # U fns must return a sample unitary when passed None to get size. gatedict[name] = _opfactory.UnitaryOpFactory(U, U0.shape[0], evotype=evotype) else: gatedict[name] = _bt.change_basis(_gt.unitary_to_process_mx(U), "std", "pp") # assume evotype is a densitymx or term type #Add anything from custom_gates directly if it wasn't added already for lbl, gate in custom_gates.items(): if lbl not in gate_names: gatedict[lbl] = gate if qubit_labels is None: qubit_labels = tuple(range(nQubits)) if not independent_clouds: raise NotImplementedError("Non-independent noise clounds are not supported yet!") if isinstance(geometry, _qgraph.QubitGraph): qubitGraph = geometry else: qubitGraph = _qgraph.QubitGraph.common_graph(nQubits, geometry, directed=False, qubit_labels=qubit_labels) printer.log("Created qubit graph:\n" + str(qubitGraph)) #Process "auto" sim_type if sim_type == "auto": if evotype in ("svterm", "cterm"): sim_type = "termorder:1" else: sim_type = "map" if nQubits > 2 else "matrix" assert(sim_type in ("matrix", "map") or sim_type.startswith("termorder") or sim_type.startswith("termgap")) #Global Idle if maxIdleWeight > 0: printer.log("Creating Idle:") global_idle_layer = _build_nqn_global_noise( qubitGraph, maxIdleWeight, sparse, sim_type, parameterization, errcomp_type, printer - 1) else: global_idle_layer = None #SPAM if spamtype == "static" or maxSpamWeight == 0: if maxSpamWeight > 0: _warnings.warn(("`spamtype == 'static'` ignores the supplied " "`maxSpamWeight=%d > 0`") % maxSpamWeight) prep_layers = [_sv.ComputationalSPAMVec([0] * nQubits, evotype)] povm_layers = {'Mdefault': _povm.ComputationalBasisPOVM(nQubits, evotype)} elif spamtype == "tensorproduct": _warnings.warn("`spamtype == 'tensorproduct'` is deprecated!") basis1Q = _BuiltinBasis("pp", 4) prep_factors = []; povm_factors = [] from ..construction import basis_build_vector v0 = basis_build_vector("0", basis1Q) v1 = basis_build_vector("1", basis1Q) # Historical use of TP for non-term-based cases? # - seems we could remove this. FUTURE REMOVE? povmtyp = rtyp = "TP" if parameterization in \ ("CPTP", "H+S", "S", "H+S+A", "S+A", "H+D+A", "D+A", "D") \ else parameterization for i in range(nQubits): prep_factors.append( _sv.convert(_sv.StaticSPAMVec(v0), rtyp, basis1Q)) povm_factors.append( _povm.convert(_povm.UnconstrainedPOVM(([ ('0', _sv.StaticSPAMVec(v0)), ('1', _sv.StaticSPAMVec(v1))])), povmtyp, basis1Q)) prep_layers = [_sv.TensorProdSPAMVec('prep', prep_factors)] povm_layers = {'Mdefault': _povm.TensorProdPOVM(povm_factors)} elif spamtype == "lindblad": prepPure = _sv.ComputationalSPAMVec([0] * nQubits, evotype) prepNoiseMap = _build_nqn_global_noise( qubitGraph, maxSpamWeight, sparse, sim_type, parameterization, errcomp_type, printer - 1) prep_layers = [_sv.LindbladSPAMVec(prepPure, prepNoiseMap, "prep")] povmNoiseMap = _build_nqn_global_noise( qubitGraph, maxSpamWeight, sparse, sim_type, parameterization, errcomp_type, printer - 1) povm_layers = {'Mdefault': _povm.LindbladPOVM(povmNoiseMap, None, "pp")} else: raise ValueError("Invalid `spamtype` argument: %s" % spamtype) weight_maxhops_tuples_1Q = [(1, maxhops + extraWeight1Hops)] + \ [(1 + x, maxhops) for x in range(1, extraGateWeight + 1)] cloud_maxhops_1Q = max([mx for wt, mx in weight_maxhops_tuples_1Q]) # max of max-hops weight_maxhops_tuples_2Q = [(1, maxhops + extraWeight1Hops), (2, maxhops)] + \ [(2 + x, maxhops) for x in range(1, extraGateWeight + 1)] cloud_maxhops_2Q = max([mx for wt, mx in weight_maxhops_tuples_2Q]) # max of max-hops def build_cloudnoise_fn(lbl): gate_nQubits = len(lbl.sslbls) if gate_nQubits not in (1, 2): raise ValueError("Only 1- and 2-qubit gates are supported. %s acts on %d qubits!" % (str(lbl.name), gate_nQubits)) weight_maxhops_tuples = weight_maxhops_tuples_1Q if len(lbl.sslbls) == 1 else weight_maxhops_tuples_2Q return _build_nqn_cloud_noise( lbl.sslbls, qubitGraph, weight_maxhops_tuples, errcomp_type=errcomp_type, sparse=sparse, sim_type=sim_type, parameterization=parameterization, verbosity=printer - 1) def build_cloudkey_fn(lbl): cloud_maxhops = cloud_maxhops_1Q if len(lbl.sslbls) == 1 else cloud_maxhops_2Q cloud_inds = tuple(qubitGraph.radius(lbl.sslbls, cloud_maxhops)) cloud_key = (tuple(lbl.sslbls), tuple(sorted(cloud_inds))) # (sets are unhashable) return cloud_key return cls(nQubits, gatedict, availability, qubit_labels, geometry, global_idle_layer, prep_layers, povm_layers, build_cloudnoise_fn, build_cloudkey_fn, sim_type, evotype, errcomp_type, addIdleNoiseToAllGates, sparse, printer) def __init__(self, nQubits, gatedict, availability=None, qubit_labels=None, geometry="line", global_idle_layer=None, prep_layers=None, povm_layers=None, build_cloudnoise_fn=None, build_cloudkey_fn=None, sim_type="map", evotype="densitymx", errcomp_type="gates", addIdleNoiseToAllGates=True, sparse=False, verbosity=0): """ Create a n-qubit model using a low-weight and geometrically local error model with a common "global idle" operation. This constructor relies on factory functions being passed to it which generate the cloud-noise operators - noise thtat is specific to a gate but may act on a neighborhood or cloud around the gate's target qubits. Parameters ---------- nQubits : int The number of qubits gatedict : dict A dictionary (an `OrderedDict` if you care about insertion order) that associates with string-type gate names (e.g. `"Gx"`) :class:`LinearOperator`, `numpy.ndarray`, or :class:`OpFactory` objects. When the objects may act on fewer than the total number of qubits (determined by their dimension/shape) then they are repeatedly embedded into `nQubits`-qubit gates as specified by their `availability`. These operations represent the ideal target operations, and thus, any `LinearOperator` or `OpFactory` objects must be *static*, i.e., have zero parameters. availability : dict, optional A dictionary whose keys are the same gate names as in `gatedict` and whose values are lists of qubit-label-tuples. Each qubit-label-tuple must have length equal to the number of qubits the corresponding gate acts upon, and causes that gate to be embedded to act on the specified qubits. For example, `{ 'Gx': [(0,),(1,),(2,)], 'Gcnot': [(0,1),(1,2)] }` would cause the `1-qubit `'Gx'`-gate to be embedded three times, acting on qubits 0, 1, and 2, and the 2-qubit `'Gcnot'`-gate to be embedded twice, acting on qubits 0 & 1 and 1 & 2. Instead of a list of tuples, values of `availability` may take the special values: - `"all-permutations"` and `"all-combinations"` equate to all possible permutations and combinations of the appropriate number of qubit labels (deterined by the gate's dimension). - `"all-edges"` equates to all the vertices, for 1Q gates, and all the edges, for 2Q gates of the geometry. - `"arbitrary"` or `"*"` means that the corresponding gate can be placed on any target qubits via an :class:`EmbeddingOpFactory` (uses less memory but slower than `"all-permutations"`. If a gate name (a key of `gatedict`) is not present in `availability`, the default is `"all-edges"`. qubit_labels : tuple, optional The circuit-line labels for each of the qubits, which can be integers and/or strings. Must be of length `nQubits`. If None, then the integers from 0 to `nQubits-1` are used. geometry : {"line","ring","grid","torus"} or QubitGraph The type of connectivity among the qubits, specifying a graph used to define neighbor relationships. Alternatively, a :class:`QubitGraph` object with node labels equal to `qubit_labels` may be passed directly. global_idle_layer : LinearOperator A global idle operation which acts on all the qubits and is, if `addIdleNoiseToAllGates=True`, composed with the actions of specific gates to form the layer operation of any circuit layer. prep_layers, povm_layers : None or operator or dict or list, optional The SPAM operations as n-qubit layer operations. If `None`, then no preps (or POVMs) are created. If a dict, then the keys are labels and the values are layer operators. If a list, then the elements are layer operators and the labels will be assigned as "rhoX" and "MX" where X is an integer starting at 0. If a single layer operation is given, then this is used as the sole prep or POVM and is assigned the label "rho0" or "Mdefault" respectively. build_cloudnoise_fn : function, optional A function which takes a single :class:`Label` as an argument and returns the cloud-noise operation for that primitive layer operation. Note that if `errcomp_type="gates"` the returned operator should be a superoperator whereas if `errcomp_type="errorgens"` then the returned operator should be an error generator (not yet exponentiated). build_cloudkey_fn : function, optional An function which takes a single :class:`Label` as an argument and returns a "cloud key" for that primitive layer. The "cloud" is the set of qubits that the error (the operator returned from `build_cloudnoise_fn`) touches -- and the "key" returned from this function is meant to identify that cloud. This is used to keep track of which primitive layer-labels correspond to the same cloud - e.g. the cloud-key for ("Gx",2) and ("Gy",2) might be the same and could be processed together when selecing sequences that amplify the parameters in the cloud-noise operations for these two labels. The return value should be something hashable with the property that two noise which act on the same qubits should have the same cloud key. sim_type : {"matrix","map","termorder:<N>"} The type of forward simulation (probability computation) to use for the returned :class:`Model`. That is, how should the model compute operation sequence/circuit probabilities when requested. `"matrix"` is better for small numbers of qubits, `"map"` is better for larger numbers. The `"termorder"` option is designed for even larger numbers. Usually, the default of `"auto"` is what you want. evotype : {"densitymx","statevec","stabilizer","svterm","cterm"} The evolution type. errcomp_type : {"gates","errorgens"} How errors are composed when creating layer operations in the created model. `"gates"` means that the errors on multiple gates in a single layer are composed as separate and subsequent processes. Specifically, the layer operation has the form `Composed(target,idleErr,cloudErr)` where `target` is a composition of all the ideal gate operations in the layer, `idleErr` is idle error (`.operation_blks['layers']['globalIdle']`), and `cloudErr` is the composition (ordered as layer-label) of cloud- noise contributions, i.e. a map that acts as the product of exponentiated error-generator matrices. `"errorgens"` means that layer operations have the form `Composed(target, error)` where `target` is as above and `error` results from composing the idle and cloud-noise error *generators*, i.e. a map that acts as the exponentiated sum of error generators (ordering is irrelevant in this case). addIdleNoiseToAllGates: bool, optional Whether the global idle should be added as a factor following the ideal action of each of the non-idle gates. sparse : bool, optional Whether embedded Lindblad-parameterized gates within the constructed `nQubits`-qubit gates are sparse or not. verbosity : int, optional An integer >= 0 dictating how must output to send to stdout. """ if qubit_labels is None: qubit_labels = tuple(range(nQubits)) if availability is None: availability = {} # Build gate dictionaries. A value of `gatedict` can be an array, a LinearOperator, or an OpFactory. # For later processing, we'll create mm_gatedict to contain each item as a ModelMember. For cloud- # noise models, these gate operations should be *static* (no parameters) as they represent the target # operations and all noise (and parameters) are assumed to enter through the cloudnoise members. StaticDenseOp = _get_Static_factory(sim_type, evotype) # always a *gate* mm_gatedict = _collections.OrderedDict() # static *target* ops as ModelMembers #REMOVE self.gatedict = _collections.OrderedDict() # static *target* ops (unused) as numpy arrays for gn, gate in gatedict.items(): if isinstance(gate, _op.LinearOperator): assert(gate.num_params() == 0), "Only *static* ideal operators are allowed in `gatedict`!" #REMOVE self.gatedict[gn] = gate.todense() if gate._evotype != evotype and isinstance(gate, _op.StaticDenseOp): # special case: we'll convert static ops to the right evotype (convenient) mm_gatedict[gn] = StaticDenseOp(gate, "pp") else: mm_gatedict[gn] = gate elif isinstance(gate, _opfactory.OpFactory): assert(gate.num_params() == 0), "Only *static* ideal factories are allowed in `gatedict`!" # don't store factories in self.gatedict for now (no good dense representation) mm_gatedict[gn] = gate else: # presumably a numpy array or something like it: #REMOVE self.gatedict[gn] = _np.array(gate) mm_gatedict[gn] = StaticDenseOp(gate, "pp") assert(mm_gatedict[gn]._evotype == evotype) #Set other members self.nQubits = nQubits self.availability = availability self.qubit_labels = qubit_labels self.geometry = geometry #TODO REMOVE unneeded members #self.maxIdleWeight = maxIdleWeight #self.maxSpamWeight = maxSpamWeight #self.maxhops = maxhops #self.extraWeight1Hops = extraWeight1Hops #self.extraGateWeight = extraGateWeight self.sparse = sparse #self.parameterization = parameterization #self.spamtype = spamtype self.addIdleNoiseToAllGates = addIdleNoiseToAllGates self.errcomp_type = errcomp_type #REMOVE ##Process "auto" sim_type #_, evotype = _gt.split_lindblad_paramtype(parameterization) #assert(evotype in ("densitymx", "svterm", "cterm")), "State-vector evolution types not allowed." #if sim_type == "auto": # if evotype in ("svterm", "cterm"): sim_type = "termorder:1" # else: sim_type = "map" if nQubits > 2 else "matrix" assert(sim_type in ("matrix", "map") or sim_type.startswith("termorder") or sim_type.startswith("termgap")) qubit_dim = 2 if evotype in ('statevec', 'stabilizer') else 4 if not isinstance(qubit_labels, _ld.StateSpaceLabels): # allow user to specify a StateSpaceLabels object qubit_sslbls = _ld.StateSpaceLabels(qubit_labels, (qubit_dim,) * len(qubit_labels), evotype=evotype) else: qubit_sslbls = qubit_labels qubit_labels = [lbl for lbl in qubit_sslbls.labels[0] if qubit_sslbls.labeldims[lbl] == qubit_dim] #Only extract qubit labels from the first tensor-product block... if global_idle_layer is None: self.addIdleNoiseToAllGates = False # there is no idle noise to add! lizardArgs = {'add_idle_noise': self.addIdleNoiseToAllGates, 'errcomp_type': errcomp_type, 'dense_rep': not sparse} super(CloudNoiseModel, self).__init__(qubit_sslbls, "pp", {}, CloudNoiseLayerLizard, lizardArgs, sim_type=sim_type, evotype=evotype) flags = {'auto_embed': False, 'match_parent_dim': False, 'match_parent_evotype': True, 'cast_to_type': None} self.prep_blks['layers'] = _ld.OrderedMemberDict(self, None, None, flags) self.povm_blks['layers'] = _ld.OrderedMemberDict(self, None, None, flags) self.operation_blks['layers'] = _ld.OrderedMemberDict(self, None, None, flags) self.operation_blks['gates'] = _ld.OrderedMemberDict(self, None, None, flags) self.operation_blks['cloudnoise'] = _ld.OrderedMemberDict(self, None, None, flags) self.instrument_blks['layers'] = _ld.OrderedMemberDict(self, None, None, flags) self.factories['layers'] = _ld.OrderedMemberDict(self, None, None, flags) self.factories['gates'] = _ld.OrderedMemberDict(self, None, None, flags) self.factories['cloudnoise'] = _ld.OrderedMemberDict(self, None, None, flags) printer = _VerbosityPrinter.build_printer(verbosity) geometry_name = "custom" if isinstance(geometry, _qgraph.QubitGraph) else geometry printer.log("Creating a %d-qubit local-noise %s model" % (nQubits, geometry_name)) if isinstance(geometry, _qgraph.QubitGraph): qubitGraph = geometry else: qubitGraph = _qgraph.QubitGraph.common_graph(nQubits, geometry, directed=False, qubit_labels=qubit_labels) printer.log("Created qubit graph:\n" + str(qubitGraph)) if global_idle_layer is None: pass elif callable(global_idle_layer): self.operation_blks['layers'][_Lbl('globalIdle')] = global_idle_layer() else: self.operation_blks['layers'][_Lbl('globalIdle')] = global_idle_layer # a dictionary of "cloud" objects # keys = cloud identifiers, e.g. (target_qubit_indices, cloud_qubit_indices) tuples # values = list of gate-labels giving the gates (primitive layers?) associated with that cloud (necessary?) self.clouds = _collections.OrderedDict() #Get gates availability primitive_ops = [] gates_and_avail = _collections.OrderedDict() for gateName, gate in mm_gatedict.items(): # gate is a static ModelMember (op or factory) gate_nQubits = int(round(_np.log2(gate.dim) / 2)) if (evotype in ("densitymx", "svterm", "cterm")) \ else int(round(_np.log2(gate.dim))) # evotype in ("statevec","stabilizer") availList = self.availability.get(gateName, 'all-edges') if availList == 'all-combinations': availList = list(_itertools.combinations(qubit_labels, gate_nQubits)) elif availList == 'all-permutations': availList = list(_itertools.permutations(qubit_labels, gate_nQubits)) elif availList == 'all-edges': if gate_nQubits == 1: availList = [(i,) for i in qubit_labels] elif gate_nQubits == 2: availList = qubitGraph.edges(double_for_undirected=True) else: raise NotImplementedError(("I don't know how to place a %d-qubit gate " "on graph edges yet") % gate_nQubits) elif availList in ('arbitrary', '*'): availList = [('*', gate_nQubits)] # let a factory determine what's "available" self.availability[gateName] = tuple(availList) gates_and_avail[gateName] = (gate, availList) ssAllQ = qubit_sslbls # labls should also be node-names of qubitGraph EmbeddedDenseOp = _op.EmbeddedDenseOp if sim_type == "matrix" else _op.EmbeddedOp for gn, (gate, availList) in gates_and_avail.items(): #Note: gate was taken from mm_gatedict, and so is a static op or factory gate_is_factory = isinstance(gate, _opfactory.OpFactory) if gate_is_factory: self.factories['gates'][_Lbl(gn)] = gate else: self.operation_blks['gates'][_Lbl(gn)] = gate for inds in availList: # inds are target qubit labels #Target operation if inds[0] == '*': printer.log("Creating %dQ %s gate on arbitrary qubits!!" % (inds[1], gn)) self.factories['layers'][_Lbl(gn)] = _opfactory.EmbeddingOpFactory( ssAllQ, gate, dense=bool(sim_type == "matrix"), num_target_labels=inds[1]) # add any primitive ops for this embedding factory? else: printer.log("Creating %dQ %s gate on qubits %s!!" % (len(inds), gn, inds)) assert(_Lbl(gn, inds) not in gatedict), \ ("Cloudnoise models do not accept primitive-op labels, e.g. %s, in `gatedict` as this dict " "specfies the ideal target gates. Perhaps make the cloudnoise depend on the target qubits " "of the %s gate?") % (str(_Lbl(gn, inds)), gn) if gate_is_factory: self.factories['layers'][_Lbl(gn, inds)] = _opfactory.EmbeddedOpFactory( ssAllQ, inds, gate, dense=bool(sim_type == "matrix")) # add any primitive ops for this factory? else: self.operation_blks['layers'][_Lbl(gn, inds)] = EmbeddedDenseOp( ssAllQ, inds, gate) primitive_ops.append(_Lbl(gn, inds)) #Cloudnoise operation if build_cloudnoise_fn is not None: if inds[0] == '*': cloudnoise = build_cloudnoise_fn(_Lbl(gn)) assert(isinstance(cloudnoise, _opfactory.EmbeddingOpFactory)), \ ("`build_cloudnoise_fn` must return an EmbeddingOpFactory for gate %s" " with arbitrary availability") % gn self.factories['cloudnoise'][_Lbl(gn)] = cloudnoise else: cloudnoise = build_cloudnoise_fn(_Lbl(gn, inds)) if isinstance(cloudnoise, _opfactory.OpFactory): self.factories['cloudnoise'][_Lbl(gn, inds)] = cloudnoise else: self.operation_blks['cloudnoise'][_Lbl(gn, inds)] = cloudnoise #REMOVE #_build_nqn_cloud_noise( # (i,), qubitGraph, weight_maxhops_tuples_1Q, # errcomp_type=errcomp_type, sparse=sparse, sim_type=sim_type, # parameterization=parameterization, verbosity=printer - 1) #cloud_inds = tuple(qubitGraph.radius((i,), cloud_maxhops)) #cloud_key = ((i,), tuple(sorted(cloud_inds))) # (sets are unhashable) if inds[0] != '*' and build_cloudkey_fn is not None: # TODO: is there any way to get a default "key", e.g. the # qubits touched by the corresponding cloudnoise op? # need a way to identify a clound (e.g. Gx and Gy gates on some qubit will have the *same* cloud) cloud_key = build_cloudkey_fn(_Lbl(gn, inds)) if cloud_key not in self.clouds: self.clouds[cloud_key] = [] self.clouds[cloud_key].append(_Lbl(gn, inds)) #keep track of the primitive-layer labels in each cloud, # used to specify which gate parameters should be amplifiable by germs for a given cloud (?) TODO CHECK #SPAM (same as for local noise model) if prep_layers is None: pass # no prep layers elif isinstance(prep_layers, dict): for rhoname, layerop in prep_layers.items(): self.prep_blks['layers'][_Lbl(rhoname)] = layerop elif isinstance(prep_layers, _op.LinearOperator): # just a single layer op self.prep_blks['layers'][_Lbl('rho0')] = prep_layers else: # assume prep_layers is an iterable of layers, e.g. isinstance(prep_layers, (list,tuple)): for i, layerop in enumerate(prep_layers): self.prep_blks['layers'][_Lbl("rho%d" % i)] = layerop if povm_layers is None: pass # no povms elif isinstance(povm_layers, _povm.POVM): # just a single povm - must precede 'dict' test! self.povm_blks['layers'][_Lbl('Mdefault')] = povm_layers elif isinstance(povm_layers, dict): for povmname, layerop in povm_layers.items(): self.povm_blks['layers'][_Lbl(povmname)] = layerop else: # assume povm_layers is an iterable of layers, e.g. isinstance(povm_layers, (list,tuple)): for i, layerop in enumerate(povm_layers): self.povm_blks['layers'][_Lbl("M%d" % i)] = layerop #REMOVE #if spamtype == "static" or maxSpamWeight == 0: # if maxSpamWeight > 0: # _warnings.warn(("`spamtype == 'static'` ignores the supplied " # "`maxSpamWeight=%d > 0`") % maxSpamWeight) # self.prep_blks['layers'][_Lbl('rho0')] = _sv.ComputationalSPAMVec([0] * nQubits, evotype) # self.povm_blks['layers'][_Lbl('Mdefault')] = _povm.ComputationalBasisPOVM(nQubits, evotype) # #elif spamtype == "tensorproduct": # # _warnings.warn("`spamtype == 'tensorproduct'` is deprecated!") # basis1Q = _BuiltinBasis("pp", 4) # prep_factors = []; povm_factors = [] # # from ..construction import basis_build_vector # # v0 = basis_build_vector("0", basis1Q) # v1 = basis_build_vector("1", basis1Q) # # # Historical use of TP for non-term-based cases? # # - seems we could remove this. FUTURE REMOVE? # povmtyp = rtyp = "TP" if parameterization in \ # ("CPTP", "H+S", "S", "H+S+A", "S+A", "H+D+A", "D+A", "D") \ # else parameterization # # for i in range(nQubits): # prep_factors.append( # _sv.convert(_sv.StaticSPAMVec(v0), rtyp, basis1Q)) # povm_factors.append( # _povm.convert(_povm.UnconstrainedPOVM(([ # ('0', _sv.StaticSPAMVec(v0)), # ('1', _sv.StaticSPAMVec(v1))])), povmtyp, basis1Q)) # # # # Noise logic refactored from construction.nqnoiseconstruction.build_nqnoise_model # # if prepNoise is not None: # # if isinstance(prepNoise,tuple): # use as (seed, strength) # # seed,strength = prepNoise # # rndm = _np.random.RandomState(seed) # # depolAmts = _np.abs(rndm.random_sample(nQubits)*strength) # # else: # # depolAmts = prepNoise[0:nQubits] # # for amt,vec in zip(depolAmts,prep_factors): vec.depolarize(amt) # # # if povmNoise is not None: # # if isinstance(povmNoise,tuple): # use as (seed, strength) # # seed,strength = povmNoise # # rndm = _np.random.RandomState(seed) # # depolAmts = _np.abs(rndm.random_sample(nQubits)*strength) # # else: # # depolAmts = povmNoise[0:nQubits] # # for amt,povm in zip(depolAmts,povm_factors): povm.depolarize(amt) # # self.prep_blks['layers'][_Lbl('rho0')] = _sv.TensorProdSPAMVec('prep', prep_factors) # self.povm_blks['layers'][_Lbl('Mdefault')] = _povm.TensorProdPOVM(povm_factors) # #elif spamtype == "lindblad": # # prepPure = _sv.ComputationalSPAMVec([0] * nQubits, evotype) # prepNoiseMap = _build_nqn_global_noise( # qubitGraph, maxSpamWeight, sparse, sim_type, parameterization, errcomp_type, printer - 1) # self.prep_blks['layers'][_Lbl('rho0')] = _sv.LindbladSPAMVec(prepPure, prepNoiseMap, "prep") # # povmNoiseMap = _build_nqn_global_noise( # qubitGraph, maxSpamWeight, sparse, sim_type, parameterization, errcomp_type, printer - 1) # self.povm_blks['layers'][_Lbl('Mdefault')] = _povm.LindbladPOVM(povmNoiseMap, None, "pp") # #else: # raise ValueError("Invalid `spamtype` argument: %s" % spamtype) self.set_primitive_op_labels(primitive_ops) self.set_primitive_prep_labels(tuple(self.prep_blks['layers'].keys())) self.set_primitive_povm_labels(tuple(self.povm_blks['layers'].keys())) #(no instruments) printer.log("DONE! - created Model with dim=%d and op-blks=" % self.dim) for op_blk_lbl, op_blk in self.operation_blks.items(): printer.log(" %s: %s" % (op_blk_lbl, ', '.join(map(str, op_blk.keys())))) def get_clouds(self): """ Returns the set of cloud-sets used when creating sequences which amplify the parameters of this model. """ return self.clouds def _get_Lindblad_factory(sim_type, parameterization, errcomp_type): """ Returns a function that creates a Lindblad-type gate appropriate given the simulation type and parameterization """ _, evotype = _gt.split_lindblad_paramtype(parameterization) if errcomp_type == "gates": if evotype == "densitymx": cls = _op.LindbladDenseOp if sim_type == "matrix" \ else _op.LindbladOp elif evotype in ("svterm", "cterm"): assert(sim_type.startswith("termorder")) cls = _op.LindbladOp else: raise ValueError("Cannot create Lindblad gate factory for ", sim_type, parameterization) #Just call cls.from_operation_matrix with appropriate evotype def _f(opMatrix, # unitaryPostfactor=None, proj_basis="pp", mxBasis="pp", relative=False): unitaryPostfactor = None # we never use this in gate construction p = parameterization if relative: if parameterization == "CPTP": p = "GLND" elif "S" in parameterization: p = parameterization.replace("S", "s") elif "D" in parameterization: p = parameterization.replace("D", "d") return cls.from_operation_obj(opMatrix, p, unitaryPostfactor, proj_basis, mxBasis, truncate=True) return _f elif errcomp_type == "errorgens": def _f(errorGen, proj_basis="pp", mxBasis="pp", relative=False): p = parameterization if relative: if parameterization == "CPTP": p = "GLND" elif "S" in parameterization: p = parameterization.replace("S", "s") elif "D" in parameterization: p = parameterization.replace("D", "d") _, evotype, nonham_mode, param_mode = _op.LindbladOp.decomp_paramtype(p) return _op.LindbladErrorgen.from_error_generator(errorGen, proj_basis, proj_basis, param_mode, nonham_mode, mxBasis, truncate=True, evotype=evotype) return _f else: raise ValueError("Invalid `errcomp_type`: %s" % errcomp_type) def _get_Static_factory(sim_type, evotype): """ Returns a function that creates a static-type gate appropriate given the simulation and parameterization """ if evotype == "densitymx": if sim_type == "matrix": return lambda g, b: _op.StaticDenseOp(g, evotype) elif sim_type == "map": return lambda g, b: _op.StaticDenseOp(g, evotype) # TODO: create StaticGateMap? elif evotype in ("svterm", "cterm"): assert(sim_type.startswith("termorder") or sim_type.startswith("termgap")) def _f(opMatrix, mxBasis="pp"): return _op.LindbladOp.from_operation_matrix( None, opMatrix, None, None, mxBasis=mxBasis, evotype=evotype) # a LindbladDenseOp with None as ham_basis and nonham_basis => no parameters return _f raise ValueError("Cannot create Static gate factory for ", sim_type, evotype) def _build_nqn_global_noise(qubitGraph, maxWeight, sparse=False, sim_type="matrix", parameterization="H+S", errcomp_type="gates", verbosity=0): """ Create a "global" idle gate, meaning one that acts on all the qubits in `qubitGraph`. The gate will have up to `maxWeight` errors on *connected* (via the graph) sets of qubits. Parameters ---------- qubitGraph : QubitGraph A graph giving the geometry (nearest-neighbor relations) of the qubits. maxWeight : int The maximum weight errors to include in the resulting gate. sparse : bool, optional Whether the embedded Lindblad-parameterized gates within the constructed gate are represented as sparse or dense matrices. (This is determied by whether they are constructed using sparse basis matrices.) sim_type : {"matrix","map","termorder:<N>"} The type of forward simulation (probability computation) being used by the model this gate is destined for. This affects what type of gate objects (e.g. `ComposedDenseOp` vs `ComposedOp`) are created. parameterization : str The type of parameterizaton for the constructed gate. E.g. "H+S", "H+S terms", "H+S clifford terms", "CPTP", etc. errcomp_type : {"gates","errorgens"} How errors are composed when creating layer operations in the associated model. See :method:`CloudnoiseModel.__init__` for details. verbosity : int, optional An integer >= 0 dictating how must output to send to stdout. Returns ------- LinearOperator """ assert(maxWeight <= 2), "Only `maxWeight` equal to 0, 1, or 2 is supported" if errcomp_type == "gates": if sim_type == "matrix": Composed = _op.ComposedDenseOp Embedded = _op.EmbeddedDenseOp else: Composed = _op.ComposedOp Embedded = _op.EmbeddedOp elif errcomp_type == "errorgens": Composed = _op.ComposedErrorgen Embedded = _op.EmbeddedErrorgen else: raise ValueError("Invalid `errcomp_type`: %s" % errcomp_type) Lindblad = _get_Lindblad_factory(sim_type, parameterization, errcomp_type) #constructs a gate or errorgen based on value of errcomp_type printer = _VerbosityPrinter.build_printer(verbosity) printer.log("*** Creating global idle ***") termops = [] # gates or error generators to compose qubit_labels = qubitGraph.get_node_names() qubit_dim = 4 # cloud noise models always use density matrices, so not '2' here ssAllQ = _ld.StateSpaceLabels(qubit_labels, (qubit_dim,) * len(qubit_labels)) nQubits = qubitGraph.nqubits possible_err_qubit_inds = _np.arange(nQubits) nPossible = nQubits for wt in range(1, maxWeight + 1): printer.log("Weight %d: %d possible qubits" % (wt, nPossible), 2) basisEl_Id = basisProductMatrix(_np.zeros(wt, _np.int64), sparse) if errcomp_type == "gates": wtNoErr = _sps.identity(4**wt, 'd', 'csr') if sparse else _np.identity(4**wt, 'd') elif errcomp_type == "errorgens": wtNoErr = _sps.csr_matrix((4**wt, 4**wt)) if sparse else _np.zeros((4**wt, 4**wt), 'd') else: raise ValueError("Invalid `errcomp_type`: %s" % errcomp_type) wtBasis = _BuiltinBasis('pp', 4**wt, sparse=sparse) for err_qubit_inds in _itertools.combinations(possible_err_qubit_inds, wt): if len(err_qubit_inds) == 2 and not qubitGraph.is_directly_connected(err_qubit_inds[0], err_qubit_inds[1]): continue # TO UPDATE - check whether all wt indices are a connected subgraph errbasis = [basisEl_Id] errbasis_lbls = ['I'] for err_basis_inds in _iter_basis_inds(wt): error = _np.array(err_basis_inds, _np.int64) # length == wt basisEl = basisProductMatrix(error, sparse) errbasis.append(basisEl) errbasis_lbls.append(''.join(["IXYZ"[i] for i in err_basis_inds])) printer.log("Error on qubits %s -> error basis of length %d" % (err_qubit_inds, len(errbasis)), 3) errbasis = _ExplicitBasis(errbasis, errbasis_lbls, real=True, sparse=sparse) termErr = Lindblad(wtNoErr, proj_basis=errbasis, mxBasis=wtBasis) err_qubit_global_inds = err_qubit_inds fullTermErr = Embedded(ssAllQ, [qubit_labels[i] for i in err_qubit_global_inds], termErr) assert(fullTermErr.num_params() == termErr.num_params()) printer.log("Lindblad gate w/dim=%d and %d params -> embedded to gate w/dim=%d" % (termErr.dim, termErr.num_params(), fullTermErr.dim)) termops.append(fullTermErr) if errcomp_type == "gates": return Composed(termops) elif errcomp_type == "errorgens": errgen = Composed(termops) LindbladOp = _op.LindbladDenseOp if sim_type == "matrix" \ else _op.LindbladOp return LindbladOp(None, errgen, dense_rep=not sparse) else: assert(False) def _build_nqn_cloud_noise(target_qubit_inds, qubitGraph, weight_maxhops_tuples, errcomp_type="gates", sparse=False, sim_type="matrix", parameterization="H+S", verbosity=0): """ Create an n-qubit gate that is a composition of: `targetOp(target_qubits) -> idle_noise(all_qubits) -> loc_noise(local_qubits)` where `idle_noise` is given by the `idle_noise` argument and `loc_noise` is given by the rest of the arguments. `loc_noise` can be implemented either by a single (n-qubit) embedded Lindblad gate with all relevant error generators, or as a composition of embedded single-error-term Lindblad gates (see param `errcomp_type`). The local noise consists terms up to a maximum weight acting on the qubits given reachable by a given maximum number of hops (along the neareset- neighbor edges of `qubitGraph`) from the target qubits. Parameters ---------- target_qubit_inds : list The indices of the target qubits. qubitGraph : QubitGraph A graph giving the geometry (nearest-neighbor relations) of the qubits. weight_maxhops_tuples : iterable A list of `(weight,maxhops)` 2-tuples specifying which error weights should be included and what region of the graph (as a `maxhops` from the set of target qubits) should have errors of the given weight applied to it. errcomp_type : {"gates","errorgens"} How errors are composed when creating layer operations in the associated model. See :method:`CloudnoiseModel.__init__` for details. sparse : bool, optional Whether the embedded Lindblad-parameterized gates within the constructed gate are represented as sparse or dense matrices. (This is determied by whether they are constructed using sparse basis matrices.) sim_type : {"matrix","map","termorder:<N>"} The type of forward simulation (probability computation) being used by the model this gate is destined for. This affects what type of gate objects (e.g. `ComposedDenseOp` vs `ComposedOp`) are created. parameterization : str The type of parameterizaton for the constructed gate. E.g. "H+S", "H+S terms", "H+S clifford terms", "CPTP", etc. verbosity : int, optional An integer >= 0 dictating how must output to send to stdout. Returns ------- LinearOperator """ if sim_type == "matrix": ComposedDenseOp = _op.ComposedDenseOp EmbeddedDenseOp = _op.EmbeddedDenseOp else: ComposedDenseOp = _op.ComposedOp EmbeddedDenseOp = _op.EmbeddedOp if errcomp_type == "gates": Composed = ComposedDenseOp Embedded = EmbeddedDenseOp elif errcomp_type == "errorgens": Composed = _op.ComposedErrorgen Embedded = _op.EmbeddedErrorgen else: raise ValueError("Invalid `errcomp_type`: %s" % errcomp_type) Lindblad = _get_Lindblad_factory(sim_type, parameterization, errcomp_type) #constructs a gate or errorgen based on value of errcomp_type printer = _VerbosityPrinter.build_printer(verbosity) printer.log("Creating local-noise error factor (%s)" % errcomp_type) # make a composed-gate of embedded single-basis-element Lindblad-gates or -errorgens, # one for each specified error term loc_noise_termops = [] # list of gates to compose qubit_labels = qubitGraph.get_node_names() qubit_dim = 4 # cloud noise models always use density matrices, so not '2' here ssAllQ = _ld.StateSpaceLabels(qubit_labels, (qubit_dim,) * len(qubit_labels)) for wt, maxHops in weight_maxhops_tuples: ## loc_noise_errinds = [] # list of basis indices for all local-error terms possible_err_qubit_inds = _np.array(qubitGraph.radius(target_qubit_inds, maxHops), _np.int64) # we know node labels are integers nPossible = len(possible_err_qubit_inds) # also == "nLocal" in this case basisEl_Id = basisProductMatrix(_np.zeros(wt, _np.int64), sparse) # identity basis el if errcomp_type == "gates": wtNoErr = _sps.identity(4**wt, 'd', 'csr') if sparse else _np.identity(4**wt, 'd') elif errcomp_type == "errorgens": wtNoErr = _sps.csr_matrix((4**wt, 4**wt)) if sparse else _np.zeros((4**wt, 4**wt), 'd') else: raise ValueError("Invalid `errcomp_type`: %s" % errcomp_type) wtBasis = _BuiltinBasis('pp', 4**wt, sparse=sparse) printer.log("Weight %d, max-hops %d: %d possible qubits" % (wt, maxHops, nPossible), 3) # print("DB: possible qubits = ", possible_err_qubit_inds, # " (radius of %d around %s)" % (maxHops,str(target_qubit_inds))) for err_qubit_local_inds in _itertools.combinations(list(range(nPossible)), wt): # err_qubit_inds are in range [0,nPossible-1] qubit indices #Future: check that err_qubit_inds marks qubits that are connected errbasis = [basisEl_Id] errbasis_lbls = ['I'] for err_basis_inds in _iter_basis_inds(wt): error = _np.array(err_basis_inds, _np.int64) # length == wt basisEl = basisProductMatrix(error, sparse) errbasis.append(basisEl) errbasis_lbls.append(''.join(["IXYZ"[i] for i in err_basis_inds])) err_qubit_global_inds = possible_err_qubit_inds[list(err_qubit_local_inds)] printer.log("Error on qubits %s -> error basis of length %d" % (err_qubit_global_inds, len(errbasis)), 4) errbasis = _ExplicitBasis(errbasis, errbasis_lbls, real=True, sparse=sparse) termErr = Lindblad(wtNoErr, proj_basis=errbasis, mxBasis=wtBasis, relative=True) fullTermErr = Embedded(ssAllQ, [qubit_labels[i] for i in err_qubit_global_inds], termErr) assert(fullTermErr.num_params() == termErr.num_params()) printer.log("Lindblad gate w/dim=%d and %d params -> embedded to gate w/dim=%d" % (termErr.dim, termErr.num_params(), fullTermErr.dim)) loc_noise_termops.append(fullTermErr) fullCloudErr = Composed(loc_noise_termops) return fullCloudErr class CloudNoiseLayerLizard(_ImplicitLayerLizard): """ The layer lizard class for a :class:`CloudNoiseModel`, which creates layers by composing perfect target gates, global idle error, and local "cloud" errors. The value of `model._lizardArgs['errcomp_type']` determines which of two composition strategies are employed. When the errcomp_type is `"gates"`, the errors on multiple gates in a single layer are composed as separate and subsequent processes. Specifically, the layer operation has the form `Composed(target,idleErr,cloudErr)` where `target` is a composition of all the ideal gate operations in the layer, `idleErr` is idle error (`.operation_blks['layers']['globalIdle']`), and `cloudErr` is the composition (ordered as layer-label) of cloud-noise contributions, i.e. a map that acts as the product of exponentiated error-generator matrices. `"errorgens"`, on the other hand, means that layer operations have the form `Composed(target, error)` where `target` is as above and `error` results from composing the idle and cloud-noise error *generators*, i.e. a map that acts as the exponentiated sum of error generators (ordering is irrelevant in this case). """ def get_prep(self, layerlbl): return self.prep_blks['layers'][layerlbl] # prep_blks['layers'] are full prep ops def get_effect(self, layerlbl): if layerlbl in self.effect_blks['layers']: return self.effect_blks['layers'][layerlbl] # effect_blks['layer'] are full effect ops else: # See if this effect label could correspond to a *marginalized* POVM, and # if so, create the marginalized POVM and add its effects to self.effect_blks['layers'] if isinstance(layerlbl, _Lbl): # this should always be the case... povmName = _gt.eLabelToPOVM(layerlbl) if povmName in self.povm_blks['layers']: # implicit creation of marginalized POVMs whereby an existing POVM name is used with sslbls that # are not present in the stored POVM's label. mpovm = _povm.MarginalizedPOVM(self.povm_blks['layers'][povmName], self.model.state_space_labels, layerlbl.sslbls) # cache in FUTURE? mpovm_lbl = _Lbl(povmName, layerlbl.sslbls) self.effect_blks['layers'].update(mpovm.simplify_effects(mpovm_lbl)) assert(layerlbl in self.effect_blks['layers']), "Failed to create marginalized effect!" return self.effect_blks['layers'][layerlbl] raise KeyError("Could not build effect for '%s' label!" % str(layerlbl)) def get_operation(self, layerlbl): dense = bool(self.model._sim_type == "matrix") # whether dense matrix gates should be created if isinstance(layerlbl, _CircuitLabel): return self.get_circuitlabel_op(layerlbl, dense) add_idle_noise = self.model._lizardArgs['add_idle_noise'] errcomp_type = self.model._lizardArgs['errcomp_type'] dense_rep = self.model._lizardArgs['dense_rep'] or dense # can't create dense-rep LindbladOps with dense_rep=False Composed = _op.ComposedDenseOp if dense else _op.ComposedOp Lindblad = _op.LindbladDenseOp if dense else _op.LindbladOp Sum = _op.ComposedErrorgen #print("DB: CloudNoiseLayerLizard building gate %s for %s w/comp-type %s" % # (('matrix' if dense else 'map'), str(oplabel), self.errcomp_type) ) components = layerlbl.components if len(components) == 0: # or layerlbl == 'Gi': # OLD: special case: 'Gi' acts as global idle! return self.simpleop_blks['layers']['globalIdle'] # idle! #Compose target operation from layer's component labels, which correspond # to the perfect (embedded) target ops in op_blks if len(components) > 1: targetOp = Composed([self.get_layer_component_targetop(l) for l in components], dim=self.model.dim, evotype=self.model._evotype) else: targetOp = self.get_layer_component_targetop(components[0]) ops_to_compose = [targetOp] if errcomp_type == "gates": if add_idle_noise: ops_to_compose.append(self.simpleop_blks['layers']['globalIdle']) component_cloudnoise_ops = self.get_layer_component_cloudnoises(components) if len(component_cloudnoise_ops) > 0: if len(component_cloudnoise_ops) > 1: localErr = Composed(component_cloudnoise_ops, dim=self.model.dim, evotype=self.model._evotype) else: localErr = component_cloudnoise_ops[0] ops_to_compose.append(localErr) elif errcomp_type == "errorgens": #We compose the target operations to create a # final target op, and compose this with a *singe* Lindblad gate which has as # its error generator the composition (sum) of all the factors' error gens. errorGens = [self.simpleop_blks['layers']['globalIdle'].errorgen] if add_idle_noise else [] errorGens.extend(self.get_layer_component_cloudnoises(components)) if len(errorGens) > 0: if len(errorGens) > 1: error = Lindblad(None, Sum(errorGens, dim=self.model.dim, evotype=self.model._evotype), dense_rep=dense_rep) else: error = Lindblad(None, errorGens[0], dense_rep=dense_rep) ops_to_compose.append(error) else: raise ValueError("Invalid errcomp_type in CloudNoiseLayerLizard: %s" % errcomp_type) ret = Composed(ops_to_compose, dim=self.model.dim, evotype=self.model._evotype) self.model._init_virtual_obj(ret) # so ret's gpindices get set return ret def get_layer_component_targetop(self, complbl): if isinstance(complbl, _CircuitLabel): raise NotImplementedError("Cloud noise models cannot simulate circuits with partial-layer subcircuits.") # In the FUTURE, could easily implement this for errcomp_type == "gates", but it's unclear what to # do for the "errorgens" case - how do we gate an error generator of an entire (mulit-layer) sub-circuit? # Maybe we just need to expand the label and create a composition of those layers? elif complbl in self.simpleop_blks['layers']: return self.simpleop_blks['layers'][complbl] else: return _opfactory.op_from_factories(self.model.factories['layers'], complbl) def get_layer_component_cloudnoises(self, complbl_list): """ Get any present cloudnoise ops from a list of components. This function processes a list rather than an item because it's OK if some components don't have corresponding cloudnoise ops - we just leave those off. """ ret = [] for complbl in complbl_list: if complbl in self.simpleop_blks['cloudnoise']: ret.append(self.simpleop_blks['cloudnoise'][complbl]) else: try: ret.append(_opfactory.op_from_factories(self.model.factories['cloudnoise'], complbl)) except KeyError: pass # OK if cloudnoise doesn't exist (means no noise) return ret
from .text_detector import * from .text_recognizer import *
from shutil import make_archive, copytree, rmtree, unpack_archive, move import json import decimal import datetime import uuid import os import rdb.models.image as Image import rdb.models.mlModel as MLModel import rdb.models.feature as Feature import rdb.models.featureSet as FeatureSet import rdb.models.environment as Environment from rdb.rdb import db from flask import g PACKAGING_PATH_PREFIX = '/ketos/environments_data/packaging/' METADATA_DIR = '/ketos_metadata' def alchemyencoder(obj): """JSON encoder function for SQLAlchemy special classes.""" if isinstance(obj, datetime.date): return obj.isoformat() elif isinstance(obj, decimal.Decimal): return float(obj) def get_packaging_path(model): return PACKAGING_PATH_PREFIX + model.environment.container_name def package_model(model): # build relevant paths packaging_path = get_packaging_path(model) packaging_path_tmp = packaging_path + '/' + model.ml_model_name metadata_path = packaging_path_tmp + METADATA_DIR root_dir = model.environment.get_data_directory() + '/' + model.ml_model_name # initial cleanup if os.path.isdir(packaging_path_tmp): rmtree(packaging_path_tmp) # create root directory if needed if not os.path.isdir(root_dir): os.makedirs(root_dir, mode=0o777) # temporarily copy model data to packaging path copytree(root_dir, packaging_path_tmp) # create directory for metadata os.makedirs(metadata_path, mode=0o777) # create metadata json file with open(metadata_path + '/metadata.json', 'w') as metadata: metadata.write('[') # write image data to json file image = model.environment.base_image json.dump(image.as_dict(), metadata, default=alchemyencoder) metadata.write(',') # write environment data to json file env = model.environment env_print = env.as_dict() env_print['container_id'] = "xxxxxxxxxxxx" env_print['container_name'] = "xxxxxxxxxxxx" env_print['jupyter_token'] = "xxxxxxxxxxxx" env_print['jupyter_port'] = "xxxxxxxxxxxxx" json.dump(env_print, metadata, default=alchemyencoder) metadata.write(',') # write model data to json file model_print = model.as_dict() model_print['container_id'] = "xxxxxxxxxxxx" model_print['container_name'] = "xxxxxxxxxxxx" model_print['jupyter_token'] = "xxxxxxxxxxxx" model_print['jupyter_port'] = "xxxxxxxxxxxxx" json.dump(model_print, metadata, default=alchemyencoder) # write feature set data to json file feature_set = model.feature_set if feature_set: metadata.write(',') # write single feature data from feature set to json file metadata.write('[') features = feature_set.features if features: count = 0 for f in features: json.dump(f.as_dict(), metadata, default=alchemyencoder) count = count + 1 if count != len(features): metadata.write(',') metadata.write(']') metadata.write(',') json.dump(feature_set.as_dict(), metadata, default=alchemyencoder) metadata.write(']') # zip data to archive archive_path = packaging_path + '/' + model.ml_model_name if os.path.exists(archive_path + '.zip'): os.remove(archive_path + '.zip') make_archive(archive_path, 'zip', packaging_path_tmp) # remove temporary data rmtree(packaging_path_tmp) def load_model(file, environment_id=None, feature_set_id=None, raise_abort=True): # generate temporary path to save file to tmp_uuid = str(uuid.uuid4().hex) tmp_path = '/tmp/' + tmp_uuid # create temporary directory os.makedirs(tmp_path, mode=0o777) # save zip-file to temporary directory and unzip it file.save(tmp_path + '/' + file.filename) unpack_archive(tmp_path + '/' + file.filename, tmp_path, 'zip') os.remove(tmp_path + '/' + file.filename) # load metadata metadata = None with open(tmp_path + METADATA_DIR + '/metadata.json', 'r') as infile: metadata = json.load(infile) # first of all: get the image of the environment to create i = metadata[0] create_image = Image.get_by_name(image_name=i['name']) # create and start the new environment env_created = None e = metadata[1] if not environment_id or environment_id <= 0: env_created = Environment.create(name=e['name'], desc=e['description'], image_id=create_image.id) else: env_created = Environment.get(environment_id, raise_abort=raise_abort) # create the model which is to be loaded m = metadata[2] model_created = MLModel.create(name=m['name'], desc=m['description'], env_id=env_created.id, create_example_model=False, feature_set_id=None) if len(metadata) > 3: # create the features features_created = list() features = metadata[3] for f in features: # do not create duplicate features feature = Feature.get_by_res_par_val(resource=f['resource'], parameter_name=f['parameter_name'], value=f['value']) if not feature: feature = Feature.create(resource=f['resource'], parameter_name=f['parameter_name'], value=f['value'], name=f['name'], desc=f['description']) features_created.append(feature) # create the feature set with the features and model assigned feature_set_created = None fs = metadata[4] if not feature_set_id or feature_set_id <= 0: feature_set_created = FeatureSet.create(name=fs['name'], desc=fs['description']) else: feature_set_created = FeatureSet.get(feature_set_id, raise_abort=raise_abort) feature_set_created.features = features_created feature_set_created.ml_models.append(model_created) db.session.commit() # remove temporarily created directory and files if os.path.isdir(env_created.get_data_directory() + '/' + model_created.ml_model_name): rmtree(env_created.get_data_directory() + '/' + model_created.ml_model_name) os.makedirs(env_created.get_data_directory() + '/' + model_created.ml_model_name, mode=0o777) for filename in os.listdir(tmp_path): move(tmp_path + '/' + filename, env_created.get_data_directory() + '/' + model_created.ml_model_name) rmtree(env_created.get_data_directory() + '/' + model_created.ml_model_name + METADATA_DIR) def get_suitable_environments(file): metadata = json.load(file) image_metadata = metadata[0] image = Image.get_by_name(image_name=image_metadata['name']) return Environment.get_by_image_id(image.id) def get_suitable_feature_sets(file): metadata = json.load(file) if len(metadata) <= 3: return None features_metadata = metadata[3] feature_sets = FeatureSet.get_all_for_user(g.user.id) ret = list() cnt_features = len(features_metadata) for fs in feature_sets: cnt_match = 0 for f in fs.features: for f_metadata in features_metadata: if f_metadata['resource'] == f.resource and f_metadata['parameter_name'] == f.parameter_name and f_metadata['value'] == f.value: cnt_match += 1 break if cnt_match == cnt_features: ret.append(fs) return ret
""" Visualize the apparent quasar proper motions caused by the acceleration of the solar sytem barycentre Use the results from Gaia Collaboration, Klioner, et al. (2020) to visualize the apparent proper motions of quasars caused by the acceleration of the solar system barycentre (also known as 'Galactic aberration'). Use equation (4) from the paper to calculate the apparent proper motions. Anthony Brown Nov 2020 - Dec 2020 """ import argparse import astropy.units as u import astropy_healpix.healpy as hp import cartopy.crs as ccrs import matplotlib.pyplot as plt import numpy as np from astropy.coordinates import Galactic from astropy_healpix import HEALPix from matplotlib.gridspec import GridSpec from matplotlib.patches import ArrowStyle def make_plot(args): """ Take the steps to make the plot. Parameters ---------- args: array-like Command line arguments Returns ------- Nothing """ basename = 'PMmap-qso-galactic-aberration' gx = 5.04 gy = -0.10 gz = -0.29 if args['quiver']: hplevel = 3 else: hplevel = 5 nside = hp.order2nside(hplevel) npix = hp.nside2npix(nside) ahp = HEALPix(nside=nside, order='nested', frame=Galactic()) hpindices = np.arange(npix) skycoords = ahp.healpix_to_skycoord(hpindices) pm_l_cosb = -gx * np.sin(skycoords.l.to(u.rad)) + gy * np.cos(skycoords.l.to(u.rad)) pm_b = -gx * np.sin(skycoords.b.to(u.rad)) * np.cos(skycoords.l.to(u.rad)) \ - gy * np.sin(skycoords.b.to(u.rad)) * np.sin(skycoords.l.to(u.rad)) \ + gz * np.cos(skycoords.b.to(u.rad)) pmtot = np.sqrt(pm_l_cosb ** 2 + pm_b ** 2) backgr = plt.imread('../star-trail-animation/sky-images/GaiaSky-colour-2k.png') default_proj = ccrs.PlateCarree() sky_proj = ccrs.Mollweide() fig = plt.figure(figsize=(16, 9), dpi=120, frameon=False, tight_layout={'pad': 0.01}) gs = GridSpec(1, 1, figure=fig) ax = fig.add_subplot(gs[0, 0], projection=sky_proj) ax.imshow(np.fliplr(backgr), transform=default_proj, zorder=-1, origin='upper') veccolor = plt.cm.get_cmap('tab10').colors[9] linecolor = plt.cm.get_cmap('tab10').colors[9] if args['quiver']: vscale = np.median(pmtot) / 50 ax.quiver(skycoords.l.value, skycoords.b.value, pm_l_cosb, pm_b, transform=default_proj, angles='xy', scale=vscale, scale_units='dots', color=veccolor, headwidth=4, headlength=4, headaxislength=3.5) else: if args['colourstreams']: ax.streamplot(skycoords.l.value, skycoords.b.value, pm_l_cosb, pm_b, transform=default_proj, linewidth=2.0, density=2, color=pmtot, cmap='viridis', maxlength=0.5, arrowsize=1, arrowstyle=ArrowStyle.Fancy(head_length=1.0, head_width=.4, tail_width=.4)) elif args['lwcode'] > 0: ax.streamplot(skycoords.l.value, skycoords.b.value, pm_l_cosb, pm_b, transform=default_proj, linewidth=args['lwcode'] * pmtot / np.median(pmtot), density=2, color=linecolor, maxlength=0.5, arrowsize=1, arrowstyle=ArrowStyle.Fancy(head_length=1.0, head_width=.4, tail_width=.4)) else: ax.streamplot(skycoords.l.value, skycoords.b.value, pm_l_cosb, pm_b, transform=default_proj, linewidth=1.5, density=2.5, color=linecolor, maxlength=0.5, arrowsize=1, arrowstyle=ArrowStyle.Fancy(head_length=1.0, head_width=.4, tail_width=.4)) # ax.gridlines() ax.invert_xaxis() if args['pdfOutput']: plt.savefig(basename + '.pdf') elif args['pngOutput']: plt.savefig(basename + '.png') else: plt.show() def parse_command_line_arguments(): """ Set up command line parsing. """ parser = argparse.ArgumentParser("Produce all-sky proper motion map.") parser.add_argument('--vectors', action="store_true", dest="quiver", help="Plot vectors instead of streamlines") parser.add_argument('--colourcode', action='store_true', dest='colourstreams', help="""Plot streamlines colour coded by magnitude of proper motion""") parser.add_argument('--lwcode', type=float, default=0.0, help="""Plot streamlines with the width indicating the magnitude of proper motion. Scale the widths by the factor provided""") parser.add_argument("-p", action="store_true", dest="pdfOutput", help="Make PDF plot") parser.add_argument("-b", action="store_true", dest="pngOutput", help="Make PNG plot") args = vars(parser.parse_args()) return args if __name__ in '__main__': cmdargs = parse_command_line_arguments() make_plot(cmdargs)
"""Provides data structures for encapsulating loss data.""" import numpy class Loss: """Encapsulates training loss data. .. py:attribute:: label A string that will be used in graph legends for this loss data. .. py:attribute:: loss_values A numpy.ndarray containing the training loss data. .. py:attribute:: precision_values A numpy.ndarray containing the training precision data. """ def __init__( self, label: str, loss_values: numpy.ndarray, precision_values: numpy.ndarray ): self.label = label self.loss_values = loss_values self.precision_values = precision_values LossList = list def has_invalid_values(loss: Loss) -> bool: """Determine if loss or precision data has invalid values. :param data: The loss or precision data to check for invalid values. This should be a Loss or Precision object. :returns: True is returned if data has at least one invalid value. False is returned if all values in data are valid. :rtype: bool This function will tell you if the data has any values that are NaN, +infinity, or -infinity. """ return numpy.any(numpy.logical_not(numpy.isfinite(loss.loss_values))) or numpy.any( numpy.logical_not(numpy.isfinite(loss.precision_values)) ) def sort_by_loss(losses: LossList, algorithm: str) -> None: """Sort the loss data according to the specified algorithm. :param LossList losses: The list of loss data to sort. This list is sorted in place. :param str algorithm: The algorithm to use for sorting. See the loss configuration item ``sort_algorithm`` for acceptable values. :returns: None This function sorts the loss data, based on loss values (not precision values). The list is sorted from best to worst. For loss, best is always the lowest. The list below defines what is compared to determine what is lowest. For the examples described below, assume two sets of loss data, with the given values: .. code-block:: baseline = [ 5, 2, 1, 2 ] new_loss = [ 4, 3, 2, 1 ] :last: Comparisons are made between the last value in each list of loss data. Using this algorithm for the example data, ``new_loss`` will be sorted ahead of ``baseline``. ``baseline[4]`` is 2, while ``new_loss[4]`` is 1. """ if algorithm == "last": losses.sort(key=lambda l: l.loss_values[-1]) def sort_by_precision(losses: LossList, algorithm: str) -> None: """Sort the loss data according to the specified algorithm. :param LossList losses: The list of loss data to sort. This list is sorted in place. :param str algorithm: The algorithm to use for sorting. See the loss configuration item ``sort_algorithm`` for acceptable values. :returns: None This function sorts the loss data, based on precision values (not loss values). The list is sorted from best to worst. For precision, best is always the highest. The list below defines what is compared to determine what is highest. For the examples described below, assume two sets of precision data, with the given values: .. code-block:: baseline = [ 5, 2, 1, 2 ] new_loss = [ 4, 3, 2, 1 ] :last: Comparisons are made between the last value in each list of loss data. Using this algorithm for the example data, ``baseline`` will be sorted ahead of ``new_loss``. ``baseline[4]`` is 2, while ``new_loss[4]`` is 1. """ if algorithm == "last": losses.sort(key=lambda l: l.precision_values[-1], reverse=True)
# Solution of; # Project Euler Problem 691: Long substring with many repetitions # https://projecteuler.net/problem=691 # # Given a character string $s$, we define $L(k,s)$ to be the length of the # longest substring of $s$ which appears at least $k$ times in $s$, or $0$ if # such a substring does not exist. For example, # $L(3,\text{“bbabcabcabcacba”})=4$ because of the three occurrences of the # substring $\text{“abca”}$, and $L(2,\text{“bbabcabcabcacba”})=7$ because of # the repeated substring $\text{“abcabca”}$. Note that the occurrences can # overlap. Let $a_n$, $b_n$ and $c_n$ be the $0/1$ sequences defined by:$a_0 = # 0$$a_{2n} = a_{n}$$a_{2n+1} = 1-a_{n}$$b_n = # \lfloor\frac{n+1}{\varphi}\rfloor - \lfloor\frac{n}{\varphi}\rfloor$ (where # $\varphi$ is the golden ratio)$c_n = a_n + b_n - 2a_nb_n$and $S_n$ the # character string $c_0\ldots c_{n-1}$. You are given that $L(2,S_{10})=5$, # $L(3,S_{10})=2$, $L(2,S_{100})=14$, $L(4,S_{100})=6$, $L(2,S_{1000})=86$, # $L(3,S_{1000}) = 45$, $L(5,S_{1000}) = 31$, and that the sum of non-zero # $L(k,S_{1000})$ for $k\ge 1$ is $2460$. Find the sum of non-zero # $L(k,S_{5000000})$ for $k\ge 1$. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 691 timed.caller(dummy, n, i, prob_id)
import asyncio from unittest import mock import pytest from distributed.core import ConnectionPool from distributed.utils_comm import gather_from_workers, pack_data, retry, subs_multiple from distributed.utils_test import BrokenComm, gen_cluster def test_pack_data(): data = {"x": 1} assert pack_data(("x", "y"), data) == (1, "y") assert pack_data({"a": "x", "b": "y"}, data) == {"a": 1, "b": "y"} assert pack_data({"a": ["x"], "b": "y"}, data) == {"a": [1], "b": "y"} def test_subs_multiple(): data = {"x": 1, "y": 2} assert subs_multiple((sum, [0, "x", "y", "z"]), data) == (sum, [0, 1, 2, "z"]) assert subs_multiple((sum, [0, ["x", "y", "z"]]), data) == (sum, [0, [1, 2, "z"]]) dsk = {"a": (sum, ["x", "y"])} assert subs_multiple(dsk, data) == {"a": (sum, [1, 2])} # Tuple key data = {"x": 1, ("y", 0): 2} dsk = {"a": (sum, ["x", ("y", 0)])} assert subs_multiple(dsk, data) == {"a": (sum, [1, 2])} @gen_cluster(client=True) async def test_gather_from_workers_permissive(c, s, a, b): rpc = await ConnectionPool() x = await c.scatter({"x": 1}, workers=a.address) data, missing, bad_workers = await gather_from_workers( {"x": [a.address], "y": [b.address]}, rpc=rpc ) assert data == {"x": 1} assert list(missing) == ["y"] class BrokenConnectionPool(ConnectionPool): async def connect(self, *args, **kwargs): return BrokenComm() @gen_cluster(client=True) async def test_gather_from_workers_permissive_flaky(c, s, a, b): x = await c.scatter({"x": 1}, workers=a.address) rpc = await BrokenConnectionPool() data, missing, bad_workers = await gather_from_workers({"x": [a.address]}, rpc=rpc) assert missing == {"x": [a.address]} assert bad_workers == [a.address] def test_retry_no_exception(cleanup): n_calls = 0 retval = object() async def coro(): nonlocal n_calls n_calls += 1 return retval async def f(): return await retry(coro, count=0, delay_min=-1, delay_max=-1) assert asyncio.run(f()) is retval assert n_calls == 1 def test_retry0_raises_immediately(cleanup): # test that using max_reties=0 raises after 1 call n_calls = 0 async def coro(): nonlocal n_calls n_calls += 1 raise RuntimeError(f"RT_ERROR {n_calls}") async def f(): return await retry(coro, count=0, delay_min=-1, delay_max=-1) with pytest.raises(RuntimeError, match="RT_ERROR 1"): asyncio.run(f()) assert n_calls == 1 def test_retry_does_retry_and_sleep(cleanup): # test the retry and sleep pattern of `retry` n_calls = 0 class MyEx(Exception): pass async def coro(): nonlocal n_calls n_calls += 1 raise MyEx(f"RT_ERROR {n_calls}") sleep_calls = [] async def my_sleep(amount): sleep_calls.append(amount) return async def f(): return await retry( coro, retry_on_exceptions=(MyEx,), count=5, delay_min=1.0, delay_max=6.0, jitter_fraction=0.0, ) with mock.patch("asyncio.sleep", my_sleep): with pytest.raises(MyEx, match="RT_ERROR 6"): asyncio.run(f()) assert n_calls == 6 assert sleep_calls == [0.0, 1.0, 3.0, 6.0, 6.0]
from ... pyaz_utils import _call_az def add(name, ip_address=None, no_wait=None, resource_group=None, subnet=None, vnet_name=None): ''' Required Parameters: - name -- Name of the Vault. Optional Parameters: - ip_address -- IPv4 address or CIDR range. Can supply a list: --ip-address ip1 [ip2]... - no_wait -- Do not wait for the long-running operation to finish. - resource_group -- Proceed only if Key Vault belongs to the specified resource group. - subnet -- Name or ID of subnet. If name is supplied, `--vnet-name` must be supplied. - vnet_name -- Name of a virtual network. ''' return _call_az("az keyvault network-rule add", locals()) def remove(name, ip_address=None, no_wait=None, resource_group=None, subnet=None, vnet_name=None): ''' Required Parameters: - name -- Name of the Vault. Optional Parameters: - ip_address -- IPv4 address or CIDR range. - no_wait -- Do not wait for the long-running operation to finish. - resource_group -- Proceed only if Key Vault belongs to the specified resource group. - subnet -- Name or ID of subnet. If name is supplied, `--vnet-name` must be supplied. - vnet_name -- Name of a virtual network. ''' return _call_az("az keyvault network-rule remove", locals()) def list(name, resource_group=None): ''' Required Parameters: - name -- Name of the Vault. Optional Parameters: - resource_group -- Proceed only if Key Vault belongs to the specified resource group. ''' return _call_az("az keyvault network-rule list", locals()) def wait(name, created=None, custom=None, deleted=None, exists=None, interval=None, resource_group=None, timeout=None, updated=None): ''' Place the CLI in a waiting state until a condition of the vault is met. Required Parameters: - name -- Name of the Vault. Optional Parameters: - created -- wait until created with 'provisioningState' at 'Succeeded' - custom -- Wait until the condition satisfies a custom JMESPath query. E.g. provisioningState!='InProgress', instanceView.statuses[?code=='PowerState/running'] - deleted -- wait until deleted - exists -- wait until the resource exists - interval -- polling interval in seconds - resource_group -- Proceed only if Key Vault belongs to the specified resource group. - timeout -- maximum wait in seconds - updated -- wait until updated with provisioningState at 'Succeeded' ''' return _call_az("az keyvault network-rule wait", locals())
import numpy as np import keras import logging import sys import pandas as pd from data.base import DataObject from keras.layers import Input from keras.layers import Conv1D from keras.layers import GRU from keras.layers import MaxPooling1D from keras.models import Model from keras.layers import Flatten, Dense from keras.layers import Embedding from keras.layers import Dropout from keras import backend as K from keras import regularizers from sklearn.metrics import roc_auc_score import matplotlib import matplotlib.pyplot as pyplot def printn(string): sys.stdout.write(string) sys.stdout.flush() def euclidean_distance(vects): eps = 1e-08 x, y = vects return K.sqrt(K.maximum(K.sum(K.square(x - y), axis=1, keepdims=True), eps)) def eucl_dist_output_shape(shapes): shape1, shape2 = shapes return (shape1[0], 1) def contrastive_loss(y_true, y_pred): margin = 1 return K.mean(y_true * K.square(y_pred) + (1 - y_true) * K.square(K.maximum(margin - y_pred, 0))) def _dg_embed_layers(k_poll, u_poll): #combining layers here for flexibility k_output = Flatten()(k_poll) k_output = Dense(64, activation='elu')(k_output) u_output = Flatten()(u_poll) u_output = Dense(64, activation='elu')(u_output) return k_output, u_output def _dg_cnn_base(data_builder, embed_dim, activation='relu'): k_input = Input(shape=(data_builder.target_doc_len,), dtype='int32', name="k_input") u_input = Input(shape=(data_builder.target_doc_len,), dtype='int32', name="u_input") embedding_layer = Embedding(input_length=data_builder.target_doc_len, input_dim=data_builder.vocabulary_size + 1, output_dim=embed_dim, weights=[data_builder.embed_matrix], trainable=False) k_embedded_seq = embedding_layer(k_input) u_embedded_seq = embedding_layer(u_input) conv_first = Conv1D(filters=128, kernel_size=5, activation='relu') poll_first = MaxPooling1D(pool_size=596) k_cov = conv_first(k_embedded_seq) k_poll = poll_first(k_cov) u_cov = conv_first(u_embedded_seq) u_poll = poll_first(u_cov) return k_input, u_input, k_poll, u_poll def rnn_yifan(data_builder, embed_dim=100): logging.info("BUILDING RNN USING CONCATENATION") embedding_layer = Embedding(input_length=data_builder.target_doc_len, input_dim=data_builder.vocabulary_size + 1, output_dim=100, weights=[data_builder.embed_matrix], trainable=False, mask_zero=True, name="embedding_layer") k_input = Input(shape=(data_builder.target_doc_len,), dtype='int32', name="k_doc_input") k_embedded_seq = embedding_layer(k_input) u_input = Input(shape=(data_builder.target_doc_len,), dtype='int32', name="u_doc_input") u_embedded_seq = embedding_layer(u_input) # shared first conv gru_layer = GRU(units=64, name="gru_layer", dropout=0.5, recurrent_dropout=0.5, kernel_regularizer = regularizers.l2(0.02), activity_regularizer = regularizers.l2(0.02)) k_feat = gru_layer(k_embedded_seq) u_feat = gru_layer(u_embedded_seq) # d_layer = Dense(8, activation='relu') all_feat = keras.layers.concatenate([k_feat, u_feat]) all_feat = Dropout(rate=0.5)(all_feat) all_feat = Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.02))(all_feat) model = Model([k_input, u_input], all_feat) return model def dg_cnn_yifan(data_builder, embed_dim=100): k_input, u_input, k_poll, u_poll = _dg_cnn_base(data_builder, embed_dim) x = keras.layers.subtract([k_poll, u_poll]) output = Flatten()(k_poll) model = Model([k_input, u_input], output) return model def dg_cnn_dainis(data_builder, embed_dim=100): k_input, u_input, k_poll, u_poll = _dg_cnn_base(data_builder, embed_dim) k_output, u_output = _dg_embed_layers(k_poll, u_poll) model = Model([k_input, u_input], [k_output, u_output]) return model def load_data(data_builder): train = data_builder.train_data test = data_builder.test_data pair_combo, y1, y2, y_combo = make_pairs(train) return (train), (pair_combo, y1, y2, y_combo), (test.value, test.label_doc) def make_pairs(data_object: DataObject): source_pair = [] target_pair = [] source_l = [] target_l = [] value_frame = data_object.value label_frame = data_object.label_doc for trs in range(len(value_frame)): for trt in range(trs + 1, len(value_frame)): source_pair.append(value_frame.iloc[[trs]]) target_pair.append(value_frame.iloc[[trt]]) source_l.append(label_frame[trs]) target_l.append(label_frame[trt]) source_pair = pd.concat(source_pair, axis=0) target_pair = pd.concat(target_pair, axis=0) source_l = np.array(source_l) target_l = np.array(target_l) source_pair.columns = ["s_k_doc", "s_u_doc"] target_pair.columns = ["t_k_doc", "t_u_doc"] source_pair = source_pair.reset_index(drop=True) target_pair = target_pair.reset_index(drop=True) pair_combo = source_pair.join(target_pair, how='outer') y_combo = source_l == target_l y_combo = y_combo.astype(int) return pair_combo, source_l, target_l, y_combo def training_the_model(model:Model, orig_train:DataObject, train, test, epochs=80, batch_size=256): pair_combo, y_src, y_tgt, y_combo = train test_value, test_label = test train_auc_list = [] test_auc_list = [] pyplot.ion() # fig = pyplot.figure() # ax = fig.add_subplot(111) # train_line, = ax.plot([1]) # test_line, = ax.plot([1]) # ax.legend(['train', 'test'], loc='upper right') # pyplot.draw() print('Training the model - Epochs '+str(epochs)) best_acc = 0 if batch_size > len(y_tgt): print('Lowering batch size, to %d, number of inputs is too small for it.' % len(y_tgt)) batch_size = len(y_tgt) for e in range(epochs): print(str(e) + '->') for i in range(len(y_tgt) // batch_size): # flipping stuff here from_sample = i * batch_size to_sample = (i + 1) * batch_size loss1 = model.train_on_batch([ np.array(pair_combo["s_k_doc"].iloc[from_sample:to_sample].tolist()), np.array(pair_combo["s_u_doc"].iloc[from_sample:to_sample].tolist()), np.array(pair_combo["t_k_doc"].iloc[from_sample:to_sample].tolist()), np.array(pair_combo["t_u_doc"].iloc[from_sample:to_sample].tolist()) ], [ y_src[from_sample:to_sample], y_combo[from_sample:to_sample] ]) # loss2 = model.train_on_batch([ # np.array(pair_combo["t_k_doc"].iloc[from_sample:to_sample].tolist()), # np.array(pair_combo["t_u_doc"].iloc[from_sample:to_sample].tolist()), # np.array(pair_combo["s_k_doc"].iloc[from_sample:to_sample].tolist()), # np.array(pair_combo["s_u_doc"].iloc[from_sample:to_sample].tolist()), # ], # [ y_tgt[from_sample:to_sample], y_combo[from_sample:to_sample] ]) pred_output = model.predict([np.array(test_value["k_doc"][:100].tolist()), np.array(test_value["u_doc"][:100].tolist()), np.array(test_value["k_doc"][:100].tolist()), np.array(test_value["u_doc"][:100].tolist())]) test_auc = roc_auc_score(test_label[:100], pred_output[0]) pred_output = model.predict([np.stack(orig_train.value["k_doc"][:100].as_matrix()), np.stack(orig_train.value["u_doc"][:100].as_matrix()), np.stack(orig_train.value["k_doc"][:100].as_matrix()), np.stack(orig_train.value["u_doc"][:100].as_matrix())]) train_auc = roc_auc_score(orig_train.label_doc[:100], pred_output[0]) train_auc_list.append(train_auc) test_auc_list.append(test_auc) # train_line.set_data([range(len(train_auc_list)), train_auc_list]) # test_line.set_data([range(len(train_auc_list)), test_auc_list]) # ax.set_xlim(left=0, right=len(train_auc_list)) # ax.set_ylim(bottom=0, top=1.0) # pyplot.draw() # pyplot.pause(0.02) print("step: " + str(i) + " : " + str(train_auc) + " : " + str(test_auc)) pyplot.plot(train_auc_list) pyplot.plot(test_auc_list) pyplot.legend(['train', 'test'], loc='upper right') pyplot.show() output = model.predict([np.array(test_value["k_doc"].tolist()), np.array(test_value["u_doc"].tolist()), np.array(test_value["k_doc"].tolist()), np.array(test_value["u_doc"].tolist()) ]) acc_v = np.array(output[0] > 0.5).astype(int).squeeze() == test_label acc = np.count_nonzero(acc_v) / len(output[0]) logging.info("ACCU: " + str(acc)) train_auc = roc_auc_score(test_label, output[0]) logging.info("ROC : " + str(train_auc)) # if best_acc < acc: # best_acc = acc # logging.info("BEST ACCU: " + str(acc)) # pyplot.ioff() # pyplot.show() return best_acc
# Generated by Django 3.2.11 on 2022-01-25 03:16 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("users", "0082_alter_userprofile_lang"), ] operations = [ migrations.AddField( model_name="editor", name="wp_block_hash", field=models.CharField( blank=True, default="", editable=False, help_text="A hash that is generated with a user's block data", max_length=255, ), ), ]
#!/usr/bin/env python import os, sys, re import unicodecsv as csv index = None def get_csv_path(repo): # NOTE: this assumes that everything is stored using a specific naming # convention: /usr/local/aclu/[repo]/data/data.csv (20180601/dphiffer) return "/usr/local/aclu/%s/data/data.csv" % repo def get_index(repo): global index if index and repo in index: return index[repo] if not index: index = {} if not repo in index: index[repo] = { 'count': 0, 'lookup': {}, 'list': [] } csv_path = get_csv_path(repo) if not os.path.isfile(csv_path): return index[repo] else: with open(csv_path, 'rb') as csv_file: reader = csv.reader(csv_file) row_num = 0 for row in reader: if row_num == 0: header = row else: id = row[0] path = row[1] name = row[2] match = re.search(r"\d+$", id) if match: number = int(match.group(0)) index['count'] = number index[repo]['lookup'][path] = row index[repo]['list'].append(row) row_num = row_num + 1 index[repo]['count'] = row_num return index[repo] def save_index(repo): csv_path = get_csv_path(repo) with open(csv_path, 'wb') as csv_file: writer = csv.writer(csv_file, delimiter=',', encoding='utf-8') headers = ['id', 'path', 'name'] writer.writerow(headers) for line in index[repo]['list']: writer.writerow(line) csv_file.close() def get_id(repo, type, path, name): index = get_index(repo) if path in index['lookup']: return index['lookup'][path][0] else: number = index['count'] index['count'] = index['count'] + 1 id = "aclu/%s/%s:%d" % (repo, type, number) record = [id, path, name] index['lookup'][path] = record index['list'].append(record) return id
import json from py42 import settings from py42._compat import str from py42.sdk.queries.query_filter import create_eq_filter_group from py42.services import BaseService from py42.services.util import get_all_pages class AlertService(BaseService): _uri_prefix = u"/svc/api/v1/{0}" _CREATED_AT = u"CreatedAt" _RULE_METADATA = u"ruleMetadata" _SEARCH_KEY = u"alerts" def __init__(self, connection, user_context): super(AlertService, self).__init__(connection) self._user_context = user_context def search(self, query, page_num=1, page_size=None): query.page_number = page_num - 1 if page_size: query.page_size = page_size query = self._add_tenant_id_if_missing(query) uri = self._uri_prefix.format(u"query-alerts") return self._connection.post(uri, data=query) def get_search_page(self, query, page_num, page_size): query.page_number = page_num - 1 query.page_size = page_size uri = self._uri_prefix.format(u"query-alerts") query = self._add_tenant_id_if_missing(query) return self._connection.post(uri, data=query) def search_all_pages(self, query): return get_all_pages( self.get_search_page, self._SEARCH_KEY, query=query, page_size=query.page_size, ) def get_details(self, alert_ids): if not isinstance(alert_ids, (list, tuple)): alert_ids = [alert_ids] tenant_id = self._user_context.get_current_tenant_id() uri = self._uri_prefix.format(u"query-details") data = {u"tenantId": tenant_id, u"alertIds": alert_ids} results = self._connection.post(uri, json=data) return _convert_observation_json_strings_to_objects(results) def update_state(self, state, alert_ids, note=None): if not isinstance(alert_ids, (list, tuple)): alert_ids = [alert_ids] tenant_id = self._user_context.get_current_tenant_id() uri = self._uri_prefix.format(u"update-state") data = { u"tenantId": tenant_id, u"alertIds": alert_ids, u"note": note, u"state": state, } return self._connection.post(uri, json=data) def _add_tenant_id_if_missing(self, query): query_dict = json.loads(str(query)) tenant_id = query_dict.get(u"tenantId", None) if tenant_id is None: query_dict[u"tenantId"] = self._user_context.get_current_tenant_id() return json.dumps(query_dict) else: return str(query) def get_rules_page( self, page_num, groups=None, sort_key=None, sort_direction=None, page_size=None ): # This API expects the first page to start with zero. page_num = page_num - 1 page_size = page_size or settings.items_per_page data = { u"tenantId": self._user_context.get_current_tenant_id(), u"groups": groups or [], u"groupClause": u"AND", u"pgNum": page_num, u"pgSize": page_size, u"srtKey": sort_key, u"srtDirection": sort_direction, } uri = self._uri_prefix.format(u"rules/query-rule-metadata") return self._connection.post(uri, json=data) def get_all_rules(self, sort_key=_CREATED_AT, sort_direction=u"DESC"): return get_all_pages( self.get_rules_page, self._RULE_METADATA, groups=None, sort_key=sort_key, sort_direction=sort_direction, ) def get_all_rules_by_name( self, rule_name, sort_key=_CREATED_AT, sort_direction=u"DESC" ): return get_all_pages( self.get_rules_page, self._RULE_METADATA, groups=[json.loads(str(create_eq_filter_group(u"Name", rule_name)))], sort_key=sort_key, sort_direction=sort_direction, ) def get_rule_by_observer_id( self, observer_id, sort_key=_CREATED_AT, sort_direction=u"DESC" ): results = get_all_pages( self.get_rules_page, self._RULE_METADATA, groups=[ json.loads(str(create_eq_filter_group(u"ObserverRuleId", observer_id))) ], sort_key=sort_key, sort_direction=sort_direction, ) return next(results) def update_note(self, alert_id, note): tenant_id = self._user_context.get_current_tenant_id() uri = self._uri_prefix.format(u"add-note") data = { u"tenantId": tenant_id, u"alertId": alert_id, u"note": note, } return self._connection.post(uri, json=data) def get_aggregate_data(self, alert_id): uri = self._uri_prefix.format(u"query-details-aggregate") data = { u"alertId": alert_id, } return self._connection.post(uri, json=data) def _convert_observation_json_strings_to_objects(results): for alert in results[u"alerts"]: if u"observations" in alert: for observation in alert[u"observations"]: try: observation[u"data"] = json.loads(observation[u"data"]) except Exception: continue return results
def basis2(n,uv): # Shape function values and their derivatives for a given point in the # in the reference triangle with 3 or 6 nodes # # Inputs: n number of nodes in the triangle # uv coordinates of the pont (size 2x1) # Outputs: N shape function values (size n x 1) # dN shape function derivative values (size n x 2) import numpy as np # Coordinates in the reference element u = uv[0,:] v = uv[1,:] o = 0.0*u # 3-node triangle if n == 3: N = [[]]*3; dN = [[]]*2; N[0] = u; N[1] = v; N[2] = 1-u-v; dN[0] = [o+1.0, o, o-1.0]; dN[1] = [o, o+1.0, o-1.0]; #6-node triangle else: if n == 6: N = [[]]*6; dN = [[]]*2; w = 1-u-v; # N = [(2*u-1).*u ; (2*v-1).*v ; (2*w-1).*w ; 4*u.*v ; 4*v.*w ; 4*w.*u ]; # dN(:,1) = [4*u-1 ; 0 ; 1-4*w ; 4*v ; -4*v ; 4*(w-u)]; # dN(:,2) = [0 ; 4*v-1 ; 1-4*w ; 4*u ; 4*(w-v) ; -4*u ]; dN[0] = [ 4*u-1 , 0.0 , 1-4*w , 4*w , -4*v , 4*w-u ]; dN[1] = [ 0.0 , 4*v-1 , 1-4*w , 4*u , 4*(w-v) , -4*u ]; else: print(str(n), '-node shape functions not implemented for triangles') return np.array(N), np.array(dN)
import os import json import redis redis_connection = redis.Redis(decode_responses=True) if not os.path.isdir('logs_json'): os.mkdir('logs_json') for key in redis_connection.scan_iter('*'): file_name = 'logs_json/' + '_'.join(key.split(':')) + '.json' print(key) data = redis_connection.lrange(key, 0, -1)[::-1] with open(file_name, "w+") as f: f.write('[') f.write(',\n'.join(data)) f.write(']\n')
import discord from cogs.utils.Cache import cache class RequestView(discord.ui.View): def __init__(self): super().__init__(timeout=None) @discord.ui.button(label="Received", style=discord.ButtonStyle.blurple, emoji='📩') async def receive_button_callback(self, button, interaction): pass @discord.ui.button(label='Process', style=discord.ButtonStyle.blurple, emoji='✏') async def process_button_callback(self, button, interaction): pass @discord.ui.button(label='Dismiss', style=discord.ButtonStyle.danger, emoji='❌') async def dismiss_button_callback(self, button, interaction): pass @discord.ui.button(label='Finish', style=discord.ButtonStyle.green, emoji='✅') async def finish_button_callback(self, button, interaction): pass class SetupView(discord.ui.View): def __init__(self): super().__init__(timeout=None) @discord.ui.button(label='Archive', style=discord.ButtonStyle.green, emoji='✅') async def toggle_archive_button_callback(self, button, interaction): if button.style is discord.ButtonStyle.green: button.style = discord.ButtonStyle.danger button.emoji = '❌' cache.cache['Guild']['archive'] = False await interaction.response.edit_message(view=self) else: button.style = discord.ButtonStyle.green button.emoji = '✅' cache.cache['Guild']['archive'] = True await interaction.response.edit_message(view=self) @discord.ui.button(label='Delete All', style=discord.ButtonStyle.blurple, emoji='👮‍♂️') async def add_role_button_callback(self, button, interaction): await cache.category.channels[0].delete() await cache.category.delete() await cache.category_archive.delete() cache.cache['Guild']['setup'] = False
""" Code for sidebar navigation inclusion tags for blog. :author: Douglas Daly :date: 1/4/2018 """ # # Imports # from django import template from ..models import Post, Category, Tag, Author # # Tag Definitions # register = template.Library() @register.inclusion_tag("blog/tags/sidebar_menu.html") def sidebar_menu(sort_by="date"): """Tag for side menu links""" heading_objects = True if sort_by == "date": ret = __sidebar_menu_helper_date() elif sort_by == "categories": categories = Category.objects.all() all_posts = Post.get_displayable() ret = list() for category in categories: posts = all_posts.filter(category=category).order_by('title') if len(posts) <= 0: continue temp = list() for post in posts: temp.append((post.title, post.get_absolute_url())) ret.append((category, temp)) elif sort_by == "tags": heading_objects = False all_tags = Tag.objects.all() all_posts = Post.get_displayable() ret = list() letters = all_tags.values_list("_category", flat=True).distinct() for letter in letters: tags = all_tags.filter(_category=letter) temp = list() for tag in tags: has_posts = all_posts.filter(tags=tag).exists() if not has_posts: continue temp.append((tag.name, tag.get_absolute_url())) if temp: ret.append((letter, temp)) elif sort_by == "authors": heading_objects = False ret = list() all_authors = Author.get_displayable() for author in all_authors: posts = author.get_all_posts() if len(posts) <= 0: continue temp = list() for post in posts: temp.append((post.title, post.get_absolute_url())) ret.append((author.get_display_name(), temp)) else: ret = None return { "sidemenu_sort": sort_by, "sidemenu_dict": ret, "sidemenu_heading_objects": heading_objects, } @register.filter(is_safe=True) def smallnavbtn(target_nav, current_nav): """Tag for small nav items""" if current_nav is not None and target_nav == current_nav: return "btn-primary" return "btn-secondary" # # Helper Functions # class YearHelper(object): """ Small helper object for displaying posts by year """ def __init__(self, year): self.name = str(year) self.slug = "Y" + str(year) def __sidebar_menu_helper_date(previews=False): """Helper to get all posts by year""" ret = list() all_posts = Post.get_displayable(previews=previews) date_years = all_posts.dates('display_date', 'year').distinct() for year in reversed(date_years): posts = all_posts.filter(published=True, display_date__year=year.year) if len(posts) <= 0: continue t_year = YearHelper(year.year) temp = list() for post in posts: temp.append((post.title, post.get_absolute_url())) ret.append((t_year, temp)) return ret
import numpy as np import matplotlib.pyplot as plt import cos_doubles x = np.arange(0, 2 * np.pi, 0.1) y = np.empty_like(x) cos_doubles.cos_doubles_func(x, y) plt.plot(x, y) plt.show()
# TODO: Use batch API instead of sending 1-by-1: https://github.com/Azure-Samples/cognitive-services-speech-sdk/tree/master/samples/batch/python import azure.cognitiveservices.speech as speechsdk import os from tqdm import tqdm from glob import glob import time LANGUAGE = 'en-IN' SPEECH_CONFIG = speechsdk.SpeechConfig(subscription="<paste-speech-key-here>", region="<paste-speech-region-here>", speech_recognition_language=LANGUAGE) def log(text): # print(text) return def recognize_single_utterance(local_file_path): audio_input = speechsdk.AudioConfig(filename=local_file_path) speech_recognizer = speechsdk.SpeechRecognizer(speech_config=SPEECH_CONFIG, audio_config=audio_input, language=LANGUAGE) result = speech_recognizer.recognize_once() return result.text def recognize_continuous(local_file_path): ''' Modified from: https://github.com/Azure-Samples/cognitive-services-speech-sdk/blob/4f9ee79c2287a5a00dcd1a50112cd43694aa7286/samples/python/console/speech_sample.py#L321 ''' audio_config = speechsdk.audio.AudioConfig(filename=local_file_path) speech_recognizer = speechsdk.SpeechRecognizer(speech_config=SPEECH_CONFIG, audio_config=audio_config, language=LANGUAGE) done = False transcript = '' def stop_cb(evt): """callback that signals to stop continuous recognition upon receiving an event `evt`""" log('CLOSING on {}'.format(evt)) nonlocal done done = True def recognized_cb(evt): """When recognizing phase is complete for a single instance, it returns a final utterance before proceeding next""" log('RECOGNIZED: {}'.format(evt)) nonlocal transcript transcript += ' ' + evt.result.text # Connect callbacks to the events fired by the speech recognizer speech_recognizer.recognizing.connect(lambda evt: log('RECOGNIZING: {}'.format(evt))) speech_recognizer.recognized.connect(recognized_cb) speech_recognizer.session_started.connect(lambda evt: log('SESSION STARTED: {}'.format(evt))) speech_recognizer.session_stopped.connect(lambda evt: log('SESSION STOPPED {}'.format(evt))) speech_recognizer.canceled.connect(lambda evt: log('CANCELED {}'.format(evt))) # stop continuous recognition on either session stopped or canceled events speech_recognizer.session_stopped.connect(stop_cb) speech_recognizer.canceled.connect(stop_cb) # Start continuous speech recognition speech_recognizer.start_continuous_recognition() while not done: time.sleep(.5) speech_recognizer.stop_continuous_recognition() return transcript.strip() def recognize_bulk_wav(wav_folder, output_folder, overwrite=True): print('Running STT for audio files in:', wav_folder) os.makedirs(output_folder, exist_ok=True) audio_files = sorted(glob(os.path.join(wav_folder, '*.wav'))) for audio_file in tqdm(audio_files, unit='transcript'): txt_file = os.path.join(output_folder, os.path.basename(audio_file).replace('.wav', '.txt')) if not overwrite and os.path.isfile(txt_file): continue transcript = recognize_continuous(audio_file) if not transcript: print('Failed for:', audio_file) continue with open(txt_file, 'w', encoding='utf-8') as f: f.write(transcript) return if __name__ == '__main__': recognize_bulk_wav('wav_folder', 'output_ms')
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0011_element_concept'), ] operations = [ migrations.AddField( model_name='element', name='action', field=models.TextField(null=True, blank=True), ), migrations.AddField( model_name='element', name='audio', field=models.TextField(null=True, blank=True), ), migrations.AddField( model_name='element', name='image', field=models.TextField(null=True, blank=True), ), migrations.AddField( model_name='element', name='mime_type', field=models.CharField(max_length=128, null=True, blank=True), ), migrations.AddField( model_name='element', name='required', field=models.BooleanField(default=False), ), migrations.AlterField( model_name='element', name='element_type', field=models.CharField(blank=True, max_length=12, null=True, choices=[(b'DATE', b'DATE'), (b'ENTRY', b'ENTRY'), (b'SELECT', b'SELECT'), (b'MULTI_SELECT', b'MULTI_SELECT'), (b'RADIO', b'RADIO'), (b'PICTURE', b'PICTURE'), (b'PLUGIN', b'PLUGIN'), (b'ENTRY_PLUGIN', b'ENTRY_PLUGIN')]), ), ]
from locust import TaskSet, User from appian_locust.helper import ENV from .mock_client import CustomLocust from .mock_reader import read_mock_file from appian_locust import AppianTaskSet from appian_locust.uiform import (ComponentNotFoundException, ChoiceNotFoundException, InvalidComponentException, SailUiForm) import os import unittest CURR_FILE_PATH = os.path.dirname(os.path.realpath(__file__)) # Set these values to an integration endpoint for etoe testing, integration_url = "" auth = ["a", "b"] class TestAppImport(unittest.TestCase): def setUp(self) -> None: record_mode = True if integration_url else False self.custom_locust = CustomLocust(User(ENV), integration_url=integration_url, record_mode=record_mode) parent_task_set = TaskSet(self.custom_locust) setattr(parent_task_set, "host", integration_url) setattr(parent_task_set, "auth", auth) setattr(self.custom_locust, "record_mode", True) self.task_set = AppianTaskSet(parent_task_set) ENV.stats.clear_all() def test_app_importer_e_to_e(self) -> None: self.task_set.on_start() path_to_file = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.zip") if not os.path.exists(path_to_file): raise Exception(f"file not found {path_to_file}") # Order of execution is, navigate to /design, click import, upload doc, fill upload field, click import again if not integration_url: self.custom_locust.enqueue_response(200, read_mock_file("design_landing_page.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_init.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_soap_app_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_final.json")) self.task_set.appian.app_importer.import_app(path_to_file) def test_app_importer_e_to_e_for_inspect_and_import(self) -> None: self.task_set.on_start() path_to_file = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.zip") if not os.path.exists(path_to_file): raise Exception(f"file not found {path_to_file}") # Order of execution is, navigate to /design, click import, upload doc, fill upload field, click import again if not integration_url: self.custom_locust.enqueue_response(200, read_mock_file("design_landing_page.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_init.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_soap_app_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_inspection_results_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_final.json")) self.task_set.appian.app_importer.import_app(app_file_path=path_to_file, inspect_and_import=True) def test_app_importer_e_to_e_with_cust_file(self) -> None: self.task_set.on_start() path_to_app = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.zip") path_to_cust_file = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.properties") for path_to_file in [path_to_app, path_to_cust_file]: if not os.path.exists(path_to_file): raise Exception(f"file not found {path_to_file}") if not integration_url: self.custom_locust.enqueue_response(200, read_mock_file("design_landing_page.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_init.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_soap_app_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_check_import_cust_box.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_constant_props_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_final.json")) self.task_set.appian.app_importer.import_app(path_to_app, customization_file_path=path_to_cust_file) def test_app_importer_e_to_e_with_cust_file_error(self) -> None: self.task_set.on_start() path_to_app = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.zip") path_to_cust_file = os.path.join(CURR_FILE_PATH, "resources", "Constant Test App.properties") for path_to_file in [path_to_app, path_to_cust_file]: if not os.path.exists(path_to_file): raise Exception(f"file not found {path_to_file}") if not integration_url: self.custom_locust.enqueue_response(200, read_mock_file("design_landing_page.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_button_resp_init.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_soap_app_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_check_import_cust_box.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_constant_props_upload_response.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_upload_to_file_upload_field_doc_resp.json")) self.custom_locust.enqueue_response(200, read_mock_file("design_click_import_failed_validation.json")) with self.assertRaises(Exception) as e: self.task_set.appian.app_importer.import_app(path_to_app, customization_file_path=path_to_cust_file) if __name__ == '__main__': unittest.main()
"""Import-Related Tasks""" import time import uuid from celery import shared_task from django.conf import settings from django.core.exceptions import ValidationError import requests import unicodecsv import newrelic.agent from accounts.utils_user import create_user from mailer.mailserver import deliver from user_import.models import UserImport, ImportRecord, ImportRecordStatus def load_file(file_field): """Generate the path to a local file for a filefield Working with local files is great! You can scan through them easily and manipulate them much faster than if they're remote objects. There are two ways a file in django could be local: it could be part of a local-based storage (and thus have a `path` attribute) or it could be downloaded and put into a temporary folder. This function addresses both instances. Args: file_field: a file field on an object Returns: path to file string """ try: return file_field.path except NotImplementedError: filename = '/tmp/{uuid}'.format(uuid=uuid.uuid4()) request = requests.get(file_field.url, stream=True) with open(filename, 'wb') as file_obj: for chunk in request.iter_content(chunk_size=1024): if chunk: file_obj.write(chunk) return filename @shared_task def ingest_import(user_import_id): """Ingest an import file""" user_import = UserImport.objects.get(pk=user_import_id) newrelic.agent.add_custom_parameter( 'organization_id', user_import.organization.pk) newrelic.agent.add_custom_parameter( 'user_import_id', user_import_id) user_import.status = 'ingesting' user_import.save() try: filename = load_file(user_import.file) with open(filename, 'rb') as file_obj: reader = unicodecsv.DictReader(file_obj, encoding='utf-8-sig') if reader.fieldnames != [u'first_name', u'last_name', u'email', u'address']: raise Exception('Invalid fields.') count = 0 new_records = [] for row in reader: count += 1 new_records.append(ImportRecord( user_import=user_import, first_name=row.get('first_name', ''), last_name=row.get('last_name', ''), email=row.get('email', ''), address=row.get('address', ''))) if not count % 5000: ImportRecord.objects.bulk_create(new_records) # Empty the list new_records = [] # Import any records not imported in the "by-5000" iterator ImportRecord.objects.bulk_create(new_records) user_import.ingested = len(new_records) user_import.save() trigger_import.delay(user_import.pk) except Exception as error: user_import.status = 'failed' user_import.note = unicode(error) user_import.save() alert_failed_import.delay(user_import.pk) raise @shared_task def alert_failed_import(user_import_id): """Alert someone that an import failed""" user_import = UserImport.objects.get(pk=user_import_id) newrelic.agent.add_custom_parameter( 'organization_id', user_import.organization.pk) newrelic.agent.add_custom_parameter( 'user_import_id', user_import_id) deliver( user_import.uploader.email, settings.DEFAULT_FROM_EMAIL, u'Import Processing Failure {}'.format(user_import.name), user_import.note) @shared_task def trigger_import(user_import_id): """Queue up all pending records that need to be imported""" user_import = UserImport.objects.get(id=user_import_id) newrelic.agent.add_custom_parameter( 'organization_id', user_import.organization_id) newrelic.agent.add_custom_parameter( 'user_import_id', user_import_id) imported_records = ImportRecordStatus.objects.filter( user_import_id=user_import_id).values_list( 'import_record_id', flat=True) import_records = ImportRecord.objects.filter( user_import_id=user_import_id).exclude( id__in=imported_records).only('pk') total_records = import_records.count() user_import.status = 'creating' user_import.save() current_record = 1 for record in import_records: final = bool(current_record == total_records) import_user.delay(record.pk, current_record, final) current_record += 1 @shared_task def import_user(import_record_id, current_record, final=False): """Import a specific user""" import_record = ImportRecord.objects.select_related( 'user_import', 'user_import__organization').get(pk=import_record_id) newrelic.agent.add_custom_parameter( 'organization_id', import_record.user_import.organization_id) newrelic.agent.add_custom_parameter( 'user_import_id', import_record.user_import.pk) status_record = ImportRecordStatus() status_record.user_import_id = import_record.user_import_id status_record.import_record = import_record # Overly broad exception handling system to handle all possible exceptions. # We're basically logging exceptions to the database instead of to stdout # or NewRelic, because digging through NewRelic to try to address issues # would be a nightmare. We should clean this up later. # pylint: disable=broad-except try: status_record.account = None status_record.status = 'success' status_record.account = create_user( import_record.user_import.organization, import_record.email, import_record.address, import_record.first_name, import_record.last_name) except ValidationError as error: status_record.status = 'failed' status_record.error_type = 'ValidationError' status_record.account = None status_record.note = unicode(error.message) except Exception as error: status_record.status = 'failed' status_record.error_type = type(error) status_record.note = unicode(error.message) status_record.account = None status_record.save() # Every 250 records or on the final record update the status of the job if not current_record % 250 or final: user_import = import_record.user_import # If it's the final record, sleep for 10 seconds to let other tasks # complete if final: time.sleep(10) user_import.status = 'finished' all_import_statuses = ImportRecordStatus.objects.filter( user_import=user_import) user_import.total_succeeded = all_import_statuses.filter( status='success').count() user_import.total_failed = all_import_statuses.filter( status='failed').count() import_record.user_import.save()
import argparse import cv2 import numpy as np import os import tensorflow as tf import time from atom import Element from atom.messages import LogLevel, Response from autolab_core import YamlConfig from keras.backend.tensorflow_backend import set_session from mrcnn import model as modellib from sd_maskrcnn.config import MaskConfig from threading import Thread MODES = set(["depth", "both"]) MODEL_PATHS = { "depth": "models/sd_maskrcnn.h5", "both": "models/ydd.h5", } PUBLISH_RATE = 10 # Hz NUM_OF_COLORS = 640 SEGMENT_SCORE = 0.98 class SDMaskRCNNEvaluator: def __init__(self, mode="both", input_size=512, scaling_factor=2, config_path="sd-maskrcnn/cfg/benchmark.yaml"): self.element = Element("instance-segmentation") self.input_size = input_size self.scaling_factor = scaling_factor self.config_path = config_path self.mode = mode # Streaming of masks is disabled by default to prevent consumption of resources self.stream_enabled = False config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 config.gpu_options.visible_device_list = "0" set_session(tf.Session(config=config)) self.set_mode(b"both") # Initiate tensorflow graph before running threads self.get_masks() self.element.command_add("segment", self.segment, 10000) self.element.command_add("get_mode", self.get_mode, 100) self.element.command_add("set_mode", self.set_mode, 10000) self.element.command_add("stream", self.set_stream, 100) t = Thread(target=self.element.command_loop, daemon=True) t.start() self.publish_segments() def get_mode(self, _): """ Returns the current mode of the algorithm (both or depth). """ return Response(self.mode) def set_mode(self, data): """ Sets the mode of the algorithm and loads the corresponding weights. 'both' means that the algorithm is considering grayscale and depth data. 'depth' means that the algorithm only considers depth data. """ mode = data.decode().strip().lower() if mode not in MODES: return Response(f"Invalid mode {mode}") self.mode = mode config = YamlConfig(self.config_path) inference_config = MaskConfig(config['model']['settings']) inference_config.GPU_COUNT = 1 inference_config.IMAGES_PER_GPU = 1 model_path = MODEL_PATHS[self.mode] model_dir, _ = os.path.split(model_path) self.model = modellib.MaskRCNN( mode=config['model']['mode'], config=inference_config, model_dir=model_dir) self.model.load_weights(model_path, by_name=True) self.element.log(LogLevel.INFO, f"Loaded weights from {model_path}") return Response(f"Mode switched to {self.mode}") def set_stream(self, data): """ Sets streaming of segmented masks to true or false. """ data = data.decode().strip().lower() if data == "true": self.stream_enabled = True elif data == "false": self.stream_enabled = False else: return Response(f"Expected bool, got {type(data)}.") return Response(f"Streaming set to {self.stream_enabled}") def inpaint(self, img, missing_value=0): """ Fills the missing values of the depth data. """ # cv2 inpainting doesn't handle the border properly # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border img = cv2.copyMakeBorder(img, 1, 1, 1, 1, cv2.BORDER_DEFAULT) mask = (img == missing_value).astype(np.uint8) # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. scale = np.abs(img).max() img = img.astype(np.float32) / scale # Has to be float32, 64 not supported. img = cv2.inpaint(img, mask, 1, cv2.INPAINT_NS) # Back to original size and value range. img = img[1:-1, 1:-1] img = img * scale return img def normalize(self, img, max_dist=1000): """ Scales the range of the data to be in 8-bit. Also shifts the values so that maximum is 255. """ img = np.clip(img / max_dist, 0, 1) * 255 img = np.clip(img + (255 - img.max()), 0, 255) return img.astype(np.uint8) def scale_and_square(self, img, scaling_factor, size): """ Scales the image by scaling_factor and creates a border around the image to match size. Reducing the size of the image tends to improve the output of the model. """ img = cv2.resize( img, (int(img.shape[1] / scaling_factor), int(img.shape[0] / scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (size - img.shape[0]) // 2, (size - img.shape[1]) // 2 img = cv2.copyMakeBorder(img, v_pad, v_pad, h_pad, h_pad, cv2.BORDER_REPLICATE) return img def unscale(self, results, scaling_factor, size): """ Takes the results of the model and transforms them back into the original dimensions of the input image. """ masks = results["masks"].astype(np.uint8) masks = cv2.resize( masks, (int(masks.shape[1] * scaling_factor), int(masks.shape[0] * scaling_factor)), interpolation=cv2.INTER_NEAREST) v_pad, h_pad = (masks.shape[0] - size[0]) // 2, (masks.shape[1] - size[1]) // 2 masks = masks[v_pad:-v_pad, h_pad:-h_pad] rois = results["rois"] * scaling_factor for roi in rois: roi[0] = min(max(0, roi[0] - v_pad), size[0]) roi[1] = min(max(0, roi[1] - h_pad), size[1]) roi[2] = min(max(0, roi[2] - v_pad), size[0]) roi[3] = min(max(0, roi[3] - h_pad), size[1]) return masks, rois def publish_segments(self): """ Publishes visualization of segmentation masks continuously. """ self.colors = [] for i in range(NUM_OF_COLORS): self.colors.append((np.random.rand(3) * 255).astype(int)) while True: if not self.stream_enabled: time.sleep(1 / PUBLISH_RATE) continue start_time = time.time() scores, masks, rois, color_img = self.get_masks() masked_img = np.zeros(color_img.shape).astype("uint8") contour_img = np.zeros(color_img.shape).astype("uint8") if masks is not None and scores.size != 0: number_of_masks = masks.shape[-1] # Calculate the areas of masks mask_areas = [] for i in range(number_of_masks): width = np.abs(rois[i][0] - rois[i][2]) height = np.abs(rois[i][1] - rois[i][3]) mask_area = width * height mask_areas.append(mask_area) np_mask_areas = np.array(mask_areas) mask_indices = np.argsort(np_mask_areas) # Add masks in the order of there areas. for i in mask_indices: if (scores[i] > SEGMENT_SCORE): indices = np.where(masks[:, :, i] == 1) masked_img[indices[0], indices[1], :] = self.colors[i] # Smoothen masks masked_img = cv2.medianBlur(masked_img, 15) # find countours and draw boundaries. gray_image = cv2.cvtColor(masked_img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray_image, 50, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) # Draw contours: for contour in contours: area = cv2.contourArea(contour) cv2.drawContours(contour_img, contour, -1, (255, 255, 255), 5) masked_img = cv2.addWeighted(color_img, 0.6, masked_img, 0.4, 0) masked_img = cv2.bitwise_or(masked_img, contour_img) _, color_serialized = cv2.imencode(".tif", masked_img) self.element.entry_write( "color_mask", {"data": color_serialized.tobytes()}, maxlen=30) time.sleep(max(0, (1 / PUBLISH_RATE) - (time.time() - start_time))) def get_masks(self): """ Gets the latest data from the realsense, preprocesses it and returns the segmentation masks, bounding boxes, and scores for each detected object. """ color_data = self.element.entry_read_n("realsense", "color", 1) depth_data = self.element.entry_read_n("realsense", "depth", 1) try: color_data = color_data[0]["data"] depth_data = depth_data[0]["data"] except IndexError or KeyError: raise Exception("Could not get data. Is the realsense element running?") depth_img = cv2.imdecode(np.frombuffer(depth_data, dtype=np.uint16), -1) original_size = depth_img.shape[:2] depth_img = self.scale_and_square(depth_img, self.scaling_factor, self.input_size) depth_img = self.inpaint(depth_img) depth_img = self.normalize(depth_img) if self.mode == "both": gray_img = cv2.imdecode(np.frombuffer(color_data, dtype=np.uint16), 0) color_img = cv2.imdecode(np.frombuffer(color_data, dtype=np.uint16), 1) gray_img = self.scale_and_square(gray_img, self.scaling_factor, self.input_size) input_img = np.zeros((self.input_size, self.input_size, 3)) input_img[..., 0] = gray_img input_img[..., 1] = depth_img input_img[..., 2] = depth_img else: input_img = np.stack((depth_img, ) * 3, axis=-1) # Get results and unscale results = self.model.detect([input_img], verbose=0)[0] masks, rois = self.unscale(results, self.scaling_factor, original_size) if masks.ndim < 2 or results["scores"].size == 0: masks = None results["scores"] = None elif masks.ndim == 2: masks = np.expand_dims(masks, axis=-1) return results["scores"], masks, rois, color_img def segment(self, _): """ Command for getting the latest segmentation masks and returning the results. """ scores, masks, rois, color_img = self.get_masks() # Encoded masks in TIF format and package everything in dictionary encoded_masks = [] if masks is not None and scores is not None: for i in range(masks.shape[-1]): _, encoded_mask = cv2.imencode(".tif", masks[..., i]) encoded_masks.append(encoded_mask.tobytes()) response_data = { "rois": rois.tolist(), "scores": scores.tolist(), "masks": encoded_masks } else: response_data = { "rois": [], "scores": [], "masks": [] } return Response(response_data, serialize=True) if __name__ == "__main__": evaluator = SDMaskRCNNEvaluator()
from scraper import * # Currently just a script to run a few demo cases for anity checking purposes # TODO: programatically compare results # Ordinary case print(get_card_price("tarmogoyf")) # 'Splinter' is a card with a name that is a substring of another # this should return the correct card print(get_card_price("splinter")) # testing that you can search with random unicode characters print(get_card_price("jace, vryn's prodigy")) # testing search-by-set print(get_card_price('Wasteland', 'Tempest'))
# vim: tabstop=2 shiftwidth=2 softtabstop=2 expandtab autoindent smarttab from manipulator import * import random # sv_swarm def testInteger(): name = 'int1' pmin = -10 pmax = 10 # vals = [random.randint(1, 100) for i in range(pmin, pmax+1)] p = IntegerParameter(name, pmin, pmax) v = -10 pos = {name:0} gb = {name:4} lb = {name:9} p.sv_swarm(pos, gb, lb, 0.5, 0.3, 0.3, v) print pos def testBoolean(): name = 'bool1' p = BooleanParameter(name) v = 0 pos = {name:0} gb = {name:1} lb = {name:0} p.sv_swarm(pos, gb, lb, 0.5, 0.3, 0.3) def testPermutation(): name = 'perm1' p = PermutationParameter(name, range(10)) pos = {name: [7,3,1,4,2,5,8, 0,9,6]} print pos gb = {name: [3,1,4,2,5,7,8,6,9,0]} lb = {name: [3,1,4,7,5,2,8, 0,9,6]} p.sv_swarm(pos, gb, lb, 0, 0.5, 0.5, 'CX') print pos def testBooleanArray(func): name = 'BA' p = BooleanArray(name, 8) pos = {name: numpy.array([1,0,0,1,0,0,1,1])} gb = {name: numpy.array([0,0,0,0,1,1,1,1])} lb = {name: numpy.array([1,0,0,1,0,1,1,0])} print pos, gb, lb getattr(p, func)(pos, gb, lb) # p.sv_cross(pos, gb, lb, 0.3) # p.sv_swarm(pos, gb, lb, 0.5, 0.3, 0.3) # p.randomize(pos) # print p.seed_value() # p.sv_swarm_parallel(pos, gb, lb, 0.5, 0.3, 0.3) print pos def testFloatArray(): pass testBooleanArray('sv_cross')
import os def check_file_exists(full_path): if not os.path.isfile(full_path): message = "File NOT found \n"+full_path raise Exception(message)
import argparse import ast import json import sys def normalize(input): data = [] with open(input) as f: for line in f: data.append(json.loads(line)) return data def in_memory_normalize(input): # may be OOM killed r = normalize(args.input) jr = ast.literal_eval(json.dumps(r, sort_keys=True, indent=2)) nr = str(jr).replace("'", "\"") print(nr) def streaming_normalize(input): data = [] # get the total line number totalLine = sum(1 for line in open(input)) if totalLine > 1: print("[\n") # with open(input) as f: curLine = 0 for line in f: curLine = curLine + 1 l = line.rstrip() if l.endswith(','): a = l[0:-1] l = a line=l try: a=json.loads(line) except Exception as e: #print(line) continue jr = ast.literal_eval(json.dumps(a, sort_keys=True, indent=2)) nr = str(jr).replace("'", "\"") print(nr) if curLine < totalLine: print(",") else: print("]") return data if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", help="Specify the input Yaml file") args = parser.parse_args() if args.input is None: print("Input file is not specified!") else: #in_memory_normalize(args.input) streaming_normalize(args.input)
import numpy as np a = intBuffer.data[1] + 0 # plus zero to make a copy or a&b is changed in the for loop b = intBuffer.data[3] + 0 for i in range(0,intBuffer.data.shape[0]): intBuffer.data[i] = i*i
# Copyright 2022 Shuhei Nitta. All rights reserved. import os from pathlib import Path DATA_DIR = Path(os.environ.get("YA3_REPORT_DATA_DIR", "data")) DATAFILE_SUFFIX = os.environ.get("YA3_REPORT_DATAFILE_SUFFIX", ".csv.gz")
class InvalidQueryException(BaseException): pass
# Generated by Django 2.2.24 on 2021-12-02 09:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0002_customtext_homepage'), ] operations = [ migrations.CreateModel( name='Demo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('emailid', models.EmailField(max_length=254)), ], ), migrations.CreateModel( name='Test', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user', models.EmailField(max_length=244)), ], ), migrations.AddField( model_name='homepage', name='username', field=models.TextField(blank=True, null=True), ), ]
from django.http import HttpResponse, HttpResponseRedirect # noqa: 401 from django.shortcuts import get_object_or_404, render from django.urls import reverse from django.views import generic from collections import Counter import uuid from .models import Choice, Question, Product def home(request): products = Product.objects.all()[:3] return render(request, "home.html",{ 'products':products }) def about(request): return render(request, "about.html",{}) def product(request, pid): product = Product.objects.get(id=pid) return render(request, "product.html",{ 'product':product }) def thanks(request): products = {} total = 0.00 transactionId = uuid.uuid1() if request.COOKIES.get('basket'): ids = request.COOKIES.get('basket').split(',') products = Product.objects.filter(id__in=ids) quantities = [] for p in products: p.quantity = ids.count(str(p.id)) total = round(total + float(p.price) * p.quantity,2) return render(request, "thanks.html",{ 'products':products, 'total':total+5.99, 'transactionId': transactionId }) def contact(request): return render(request, "contact.html",{}) def payment(request): products = {} total = 0.00 transactionId = uuid.uuid1() if request.COOKIES.get('basket'): ids = request.COOKIES.get('basket').split(',') products = Product.objects.filter(id__in=ids) quantities = [] for p in products: p.quantity = ids.count(str(p.id)) total = round(total + float(p.price) * p.quantity,2) return render(request, "payment.html",{ 'products':products, 'total':total+5.99, 'transactionId': transactionId }) def products(request): products = Product.objects.all() return render(request, "products.html",{ 'products':products }) def basket(request): products = {} total = 0.00 if request.COOKIES.get('basket'): ids = request.COOKIES.get('basket').split(',') products = Product.objects.filter(id__in=ids) quantities = [] for p in products: p.quantity = ids.count(str(p.id)) total = round(total + float(p.price) * p.quantity,2) return render(request, "basket.html",{ 'products':products, 'total':total }) def searchResults(request): products = Product.objects.all() results = len(products) return render(request, "searchResults.html",{ 'products':products, 'results':results }) class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): """Return the last five published questions.""" return Question.objects.order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): # Redisplay the question voting form. return render(request, 'polls/detail.html', { 'question': question, 'error_message': "You didn't select a choice.", }) else: selected_choice.votes += 1 selected_choice.save() # Always return an HttpResponseRedirect after successfully dealing # with POST data. This prevents data from being posted twice if a # user hits the Back button. return HttpResponseRedirect( reverse('polls:results', args=(question.id,)) )
import re from imbi.endpoints import base class _RequestHandlerMixin: ID_KEY = ['id'] FIELDS = ['id', 'project_type_ids', 'name', 'fact_type', 'data_type', 'description', 'ui_options', 'weight'] DEFAULTS = { 'data_type': 'string', 'fact_type': 'free-form', 'weight': 0 } GET_SQL = re.sub(r'\s+', ' ', """\ SELECT id, created_at, created_by, last_modified_at, last_modified_by, project_type_ids, name, fact_type, data_type, description, ui_options, weight FROM v1.project_fact_types WHERE id=%(id)s""") class CollectionRequestHandler(_RequestHandlerMixin, base.CollectionRequestHandler): NAME = 'fact-types' ITEM_NAME = 'fact-type' COLLECTION_SQL = re.sub(r'\s+', ' ', """\ SELECT id, project_type_ids, name, fact_type, data_type, description, ui_options, weight FROM v1.project_fact_types ORDER BY name, project_type_ids""") POST_SQL = re.sub(r'\s+', ' ', """\ INSERT INTO v1.project_fact_types (project_type_ids, created_by, name, fact_type, data_type, description, ui_options, weight) VALUES (%(project_type_ids)s, %(username)s, %(name)s, %(fact_type)s, %(data_type)s, %(description)s, %(ui_options)s, %(weight)s) RETURNING id""") class RecordRequestHandler(_RequestHandlerMixin, base.AdminCRUDRequestHandler): NAME = 'fact-type' DELETE_SQL = 'DELETE FROM v1.project_fact_types WHERE id=%(id)s' PATCH_SQL = re.sub(r'\s+', ' ', """\ UPDATE v1.project_fact_types SET last_modified_at=CURRENT_TIMESTAMP, last_modified_by=%(username)s, project_type_ids=%(project_type_ids)s, name=%(name)s, fact_type=%(fact_type)s, data_type=%(data_type)s, description=%(description)s, ui_options=%(ui_options)s, weight=%(weight)s WHERE id=%(id)s""")
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Trains and evaluates unprocessing neural network. Unprocessing Images for Learned Raw Denoising http://timothybrooks.com/tech/unprocessing """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow.compat.v1 as tf from unprocessing import dataset from unprocessing import estimator from unprocessing import network from tensorflow.contrib import training as contrib_training FLAGS = flags.FLAGS flags.DEFINE_string( 'model_dir', None, 'Location at which to save model logs and checkpoints.') flags.DEFINE_string( 'train_pattern', None, 'Pattern for directory containing source JPG images for training.') flags.DEFINE_string( 'test_pattern', None, 'Pattern for directory containing source JPG images for testing.') flags.DEFINE_integer( 'image_size', 256, 'Width and height to crop training and testing frames. ' 'Must be a multiple of 16', lower_bound=16) flags.DEFINE_integer( 'batch_size', 16, 'Training batch size.', lower_bound=1) flags.DEFINE_float( 'learning_rate', 2e-5, 'Learning rate for Adam optimization.', lower_bound=0.0) flags.register_validator( 'image_size', lambda image_size: image_size % 16 == 0, message='\'image_size\' must multiple of 16.') flags.mark_flag_as_required('model_dir') flags.mark_flag_as_required('train_pattern') flags.mark_flag_as_required('test_pattern') def main(_): inference_fn = network.inference hparams = contrib_training.HParams(learning_rate=FLAGS.learning_rate) model_fn = estimator.create_model_fn(inference_fn, hparams) config = tf.estimator.RunConfig(FLAGS.model_dir) tf_estimator = tf.estimator.Estimator(model_fn=model_fn, config=config) train_dataset_fn = dataset.create_dataset_fn( FLAGS.train_pattern, height=FLAGS.image_size, width=FLAGS.image_size, batch_size=FLAGS.batch_size) eval_dataset_fn = dataset.create_dataset_fn( FLAGS.test_pattern, height=FLAGS.image_size, width=FLAGS.image_size, batch_size=FLAGS.batch_size) train_spec, eval_spec = estimator.create_train_and_eval_specs( train_dataset_fn, eval_dataset_fn) tf.logging.set_verbosity(tf.logging.INFO) tf.estimator.train_and_evaluate(tf_estimator, train_spec, eval_spec) if __name__ == '__main__': tf.app.run(main)
""" This module provides utilities to write cross-version python code. """ import sys py_version = sys.version_info if py_version.major == 3: BASE_STRING_TYPE = str else: BASE_STRING_TYPE = basestring if py_version.major == 3 and py_version.minor >= 5: from http import HTTPStatus as HTTPStatus elif py_version.major == 3 and py_version.minor < 5: import http.client as HTTPStatus else: import httplib as HTTPStatus def is_string(value): """ Returns whether the specified value is a version independent string. :param value: Value we want to evalute :return: Boolean indicating if the value is a string. In Python 2.7 is an object derived from ``basestring`` and in Python 3.x is an instance of ``str``. """ return isinstance(value, BASE_STRING_TYPE)
""" Contains data utils. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from rdkit import Chem from rdkit.Chem import AllChem from rdkit.Chem.SaltRemover import SaltRemover from rdkit.Chem.FilterCatalog import * import numpy as np import pandas as pd """ Computes tanimoto dissimilarity array between two feature matrices. Compares each row of X with each row of Y. """ def tanimoto_dissimilarity(X, Y, X_batch_size=50, Y_batch_size=50): n_features = X.shape[-1] if X.ndim == 1: X = X.reshape(-1, n_features) if Y.ndim == 1: Y = Y.reshape(-1, n_features) tan_sim = [] X_total_batches = X.shape[0] // X_batch_size + 1 Y_total_batches = Y.shape[0] // Y_batch_size + 1 for X_batch_i in range(X_total_batches): X_start_idx = X_batch_i*X_batch_size X_end_idx = min((X_batch_i+1)*X_batch_size, X.shape[0]) X_batch = X[X_start_idx:X_end_idx,:] for Y_batch_i in range(Y_total_batches): Y_start_idx = Y_batch_i*Y_batch_size Y_end_idx = min((Y_batch_i+1)*Y_batch_size, Y.shape[0]) Y_batch = Y[Y_start_idx:Y_end_idx,:] # adapted from: https://github.com/deepchem/deepchem/blob/2531eca8564c1dc68910d791b0bcd91fd586afb9/deepchem/trans/transformers.py#L752 numerator = np.dot(X_batch, Y_batch.T).flatten() # equivalent to np.bitwise_and(X_batch, Y_batch), axis=1) denominator = n_features - np.dot(1-X_batch, (1-Y_batch).T).flatten() # np.sum(np.bitwise_or(X_rep, Y_rep), axis=1) tan_sim.append(numerator / denominator) tan_sim = np.hstack(tan_sim) return 1.0 - tan_sim """ Computes tanimoto dissimilarity between two vectors. """ def feature_dist_func_dict(): return {"tanimoto_dissimilarity": tanimoto_dissimilarity} """ Returns indices of duplicated smiles from x_smiles in y_smiles. """ def get_duplicate_smiles_in1d(x_smiles, y_smiles, smiles_are_canonical=True): x_canon_smiles = x_smiles y_canon_smiles = y_smiles if not smiles_are_canonical: x_canon_smiles = np.array([Chem.MolToSmiles(Chem.MolFromSmiles(x)) for x in x_smiles]) y_canon_smiles = np.array([Chem.MolToSmiles(Chem.MolFromSmiles(y)) for y in y_smiles]) y_duplicates = np.in1d(y_canon_smiles, x_canon_smiles) idx_to_drop = list(np.arange(len(y_canon_smiles))[y_duplicates]) return idx_to_drop """ Computes avg cluster dissimilarity/distance of candidate clusters towards selected clusters. clusters_ordered_ids is the ordering of clusters_avg_dissimilarity. Assumes feature distance function returns array with distances between rows of X and Y. """ def get_avg_cluster_dissimilarity(clusters, features, selected_cluster_ids, candidate_cluster_ids, feature_dist_func=tanimoto_dissimilarity, candidate_cluster_batch_size=2056): clusters_ordered_ids = candidate_cluster_ids #[:] no need to make a copy #clusters_avg_dissimilarity = np.zeros(shape=(len(candidate_cluster_ids),)) selected_cid_instances = np.in1d(clusters, selected_cluster_ids) cluster_dist_means_list = [] total_batches = candidate_cluster_ids.shape[0] // candidate_cluster_batch_size + 1 for batch_i in range(total_batches): start_idx = batch_i*candidate_cluster_batch_size end_idx = min((batch_i+1)*candidate_cluster_batch_size, candidate_cluster_ids.shape[0]) candidate_batch = candidate_cluster_ids[start_idx:end_idx] candidate_cid_instances = np.in1d(clusters, candidate_batch) candidate_cluster_rep = np.repeat(clusters[candidate_cid_instances], len(clusters[selected_cid_instances])) candidate_cluster_dist = feature_dist_func(features[selected_cid_instances,:], features[candidate_cid_instances,:]) dist_df = pd.DataFrame(data=np.hstack([candidate_cluster_dist.reshape(-1,1), candidate_cluster_rep.reshape(-1,1)]), columns=['dist', 'candidate_group']) cluster_dist_means_list.append(dist_df.groupby('candidate_group').mean().loc[candidate_batch].values.flatten()) clusters_avg_dissimilarity = np.hstack(cluster_dist_means_list) return clusters_ordered_ids, clusters_avg_dissimilarity """ ---- curr_clusters_dissimilarity = np.zeros(shape=(len(candidate_cluster_ids),)) for selected_cid in selected_cluster_ids: selected_cid_instances = np.where(clusters == selected_cid)[0] candidate_cid_instances = np.in1d(clusters, candidate_cluster_ids) candidate_cluster_rep = np.repeat(clusters[candidate_cid_instances], len(selected_cid_instances)) candidate_cluster_dist = feature_dist_func(features[selected_cid_instances,:], features[candidate_cid_instances,:]) dist_df = pd.DataFrame(data=np.hstack([candidate_cluster_dist.reshape(-1,1), candidate_cluster_rep.reshape(-1,1)]), columns=['dist', 'group']) cluster_dist_means = dist_df.groupby('group').mean().values.flatten() sorted_idx = np.argsort(candidate_cluster_ids) rev_sorted_idx = np.zeros(len(candidate_cluster_ids), dtype=int) rev_sorted_idx[sorted_idx] = np.arange(len(candidate_cluster_ids)) # adapted from: https://stackoverflow.com/a/10831155 curr_clusters_dissimilarity[:] = cluster_dist_means[rev_sorted_idx] clusters_avg_dissimilarity += curr_clusters_dissimilarity clusters_avg_dissimilarity /= len(selected_cluster_ids) """ """ Computes avg cluster dissimilarity/distance of candidate clusters towards selected clusters. Uses a disk-stored np.memmap matrix storing the instance dissimilarities. """ def get_avg_cluster_dissimilarity_from_file(clusters, memmap_filename, n_instances, selected_cluster_ids, candidate_cluster_ids, candidate_cluster_batch_size=2056, batched_clusters_method=True): dissimilarity_matrix = np.memmap(memmap_filename, shape=(n_instances, n_instances), dtype='float16', mode='r') clusters_ordered_ids = candidate_cluster_ids[:] clusters_avg_dissimilarity = np.zeros(shape=(len(candidate_cluster_ids),)) cluster_dist_means_list = [] selected_cid_instances = np.in1d(clusters, selected_cluster_ids) if batched_clusters_method: total_batches = candidate_cluster_ids.shape[0] // candidate_cluster_batch_size + 1 for batch_i in range(total_batches): start_idx = batch_i*candidate_cluster_batch_size end_idx = min((batch_i+1)*candidate_cluster_batch_size, candidate_cluster_ids.shape[0]) candidate_batch = candidate_cluster_ids[start_idx:end_idx] candidate_cid_instances = np.in1d(clusters, candidate_batch) candidate_cluster_rep = np.repeat(clusters[candidate_cid_instances], len(clusters[selected_cid_instances])) dm_slice = dissimilarity_matrix[candidate_cid_instances, :][:,selected_cid_instances] dm_slice = dm_slice.flatten().reshape(-1,1) dist_df = pd.DataFrame(data=np.hstack([dm_slice, candidate_cluster_rep.reshape(-1,1)]), columns=['dist', 'candidate_group']) cluster_dist_means_list.append(dist_df.groupby('candidate_group').mean().loc[candidate_batch].values.flatten()) else: for ccid in clusters_ordered_ids: ccid_instances_idx = np.where(clusters == ccid)[0] dm_slice = dissimilarity_matrix[ccid_instances_idx, :][:,selected_cid_instances] cluster_dist_means_list.append(np.mean(dm_slice)) clusters_avg_dissimilarity = np.hstack(cluster_dist_means_list) del dissimilarity_matrix return clusters_ordered_ids, clusters_avg_dissimilarity """ Computes dissimilarity matrix for a given row of features. """ def get_dissimilarity_matrix(features, feature_dist_func=tanimoto_dissimilarity): row_count = features.shape[0] dissimilarity_matrix = np.zeros(shape=(row_count, row_count)) for i in range(row_count): for j in range(row_count): dissimilarity_matrix[i,j] = feature_dist_func(features[i:i+1,:], features[j:j+1,:]) return dissimilarity_matrix """ Returns dissimilarity matrix slice from disk-stored np.memmap matrix. . """ def get_dissimilarity_matrix_from_file(instances_idx, memmap_filename, n_instances): dissimilarity_matrix = np.memmap(memmap_filename, shape=(n_instances, n_instances), dtype='float16', mode='r') dm_slice = dissimilarity_matrix[instances_idx, :][:,instances_idx] del dissimilarity_matrix return dm_slice
st = input('Input number') try: num = int(st) result = num *100 print('%d, %d' % (num, result)) except: print('Invalid Number') print('end')
#!/usr/bin/env python3 import os from aws_cdk import core from ds_dashboard.spoke import SpokeStack app = core.App() usecase_stack = SpokeStack( app, "ds-dashboard-spoke-stack", ) app.synth()
# -*- coding: utf-8 -*- import unittest from ...util.byteutil import ByteUtil # from ...util.hexutil import HexUtil class ByteUtilTest(unittest.TestCase): def test_split(self): # okm = HexUtil.decodeHex('02a9aa6c7dbd64f9d3aa92f92a277bf54609dadf0b00' # '828acfc61e3c724b84a7bfbe5efb603030526742e3ee' # '89c7024e884e440f1ff376bb2317b2d64deb7c8322f4' # 'c5015d9d895849411ba1d793a827') data = [i for i in range(0, 80)] a_data = [i for i in range(0, 32)] b_data = [i for i in range(32, 64)] c_data = [i for i in range(64, 80)] a, b, c = ByteUtil.split(data, 32, 32, 16) self.assertEqual(a, a_data) self.assertEqual(b, b_data) self.assertEqual(c, c_data)
#------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. #-------------------------------------------------------------------------- # It is a tool to compare the inference results of the original model and optimized model. import sys import argparse import numpy as np import os import random from pathlib import Path import statistics import onnx import onnx.utils import psutil import csv import timeit from datetime import datetime from onnx import ModelProto, TensorProto, numpy_helper from OnnxModel import OnnxModel from bert_test_data import get_bert_inputs, generate_test_data, output_test_data from bert_perf_test import create_session, onnxruntime_inference, setup_openmp_environ def run_model(model_path, all_inputs, use_gpu, use_openmp, disable_optimization): # Import onnxruntime shall be after OpenMP environment variable setting. # So we put import here to delay importing. import onnxruntime graph_optimization_level = None if disable_optimization: graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL intra_op_num_threads = 1 if use_openmp else psutil.cpu_count(logical=False) session = create_session(model_path, use_gpu, intra_op_num_threads, graph_optimization_level) output_names = [output.name for output in session.get_outputs()] results, latency_list = onnxruntime_inference(session, all_inputs, output_names) return results, latency_list, output_names def compare(baseline_results, treatment_results, verbose, rtol=1e-3, atol=1e-4): # Validate the output of baseline and treatment, to make sure the results are similar. diff_count = 0 max_rel_diff = 0 max_abs_diff = 0 for test_case_id, results in enumerate(baseline_results): case_passed = True for i in range(len(results)): treatment_output = treatment_results[test_case_id][i] rel_diff = np.amax(np.abs((treatment_output - results[i]) / results[i])) abs_diff = np.amax(np.abs(treatment_output - results[i])) max_rel_diff = max(max_rel_diff, rel_diff) max_abs_diff = max(max_abs_diff, abs_diff) if not np.allclose(results[i].tolist(), treatment_output.tolist(), rtol=rtol, atol=atol): if case_passed: case_passed = False diff_count += 1 if verbose: print("case {} output {}".format(test_case_id, i)) print("baseline={}\ntreatment={}".format(results[i].tolist(), treatment_output)) print("rel_diff={} abs_diff={}".format(rel_diff, abs_diff)) if diff_count == 0: print("100% passed for {} random inputs given thresholds (rtol={}, atol={}).".format(len(baseline_results), rtol, atol)) else: print("{} out of {} results not passed for thresholds (rtol={}, atol={}).".format(diff_count, len(baseline_results), rtol, atol)) print("maximum absolute difference={}".format(max_abs_diff)) print("maximum relative difference={}".format(max_rel_diff)) def run_test(baseline_model, optimized_model, output_dir, batch_size, sequence_length, use_gpu, test_cases, seed, use_openmp, verbose, rtol, atol): # Try deduce input names from optimized model. input_ids, segment_ids, input_mask = get_bert_inputs(optimized_model) # Use random mask length for accuracy test. It might introduce slight inflation in latency reported in this script. all_inputs = generate_test_data(batch_size, sequence_length, test_cases, seed, verbose, input_ids, segment_ids, input_mask, random_mask_length=True) # OpenMP environment variables must be set before the very first "import onnxruntime" if use_openmp: setup_openmp_environ(omp_num_threads=psutil.cpu_count(logical=False), omp_wait_policy='ACTIVE') else: setup_openmp_environ(omp_num_threads=1, omp_wait_policy='ACTIVE') baseline_results, baseline_latency, output_names = run_model(baseline_model, all_inputs, use_gpu, use_openmp, disable_optimization=True) if verbose: print("baseline average latency (all optimizations disabled): {} ms".format(statistics.mean(baseline_latency) * 1000)) if output_dir is not None: for i, inputs in enumerate(all_inputs): output_test_data(output_dir, i, inputs) treatment_results, treatment_latency, treatment_output_names = run_model(optimized_model, all_inputs, use_gpu, use_openmp, disable_optimization=False) if verbose: print("treatment average latency: {} ms".format(statistics.mean(treatment_latency) * 1000)) # Validate the output of baseline and treatment, to make sure the results are similar. compare(baseline_results, treatment_results, verbose, rtol, atol) def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--baseline_model', required=True, type=str, help="baseline onnx model path.") parser.add_argument('--optimized_model', required=True, type=str, default=None, help="path of the optimized model. It shall have same inputs as the baseline model.") parser.add_argument('--output_dir', required=False, type=str, default=None, help="output test data path. If not specified, test data will not be saved.") parser.add_argument('--batch_size', required=True, type=int, help="batch size of input") parser.add_argument('--sequence_length', required=True, type=int, help="maximum sequence length of input") parser.add_argument('--rtol', required=False, type=float, default=1e-3, help="relative tolerance") parser.add_argument('--atol', required=False, type=float, default=1e-4, help="absolute tolerance") parser.add_argument('--samples', required=False, type=int, default=100, help="number of test cases to be generated") parser.add_argument('--seed', required=False, type=int, default=3, help="random seed") parser.add_argument('--use_gpu', required=False, action='store_true', help="use GPU") parser.set_defaults(use_gpu=False) parser.add_argument('--openmp', required=False, action='store_true', help="use openmp") parser.set_defaults(openmp=False) parser.add_argument('--verbose', required=False, action='store_true', help="print verbose information") parser.set_defaults(verbose=False) args = parser.parse_args() return args def main(): args = parse_arguments() if args.output_dir is not None: # create the output directory if not existed path = Path(args.output_dir) path.mkdir(parents=True, exist_ok=True) run_test( args.baseline_model, args.optimized_model, args.output_dir, args.batch_size, args.sequence_length, args.use_gpu, args.samples, args.seed, args.openmp, args.verbose, args.rtol, args.atol) if __name__ == "__main__": main()
import ccobra class Matching(ccobra.CCobraModel): """ This model returns True if the mood of the prediction matches the mood of the conclusion for the syllogisms AE1, AE2, EA1, EA2 """ def __init__(self, name='Matching'): super(Matching, self).__init__( name, ['syllogistic'], ['verify']) def predict(self, item, **kwargs): enc_conclusion = ccobra.syllogistic.encode_response(item.choices[0], item.task) if enc_conclusion in ["Eac", "Eca"]: return True return False
import itertools from termtable.utils import RamCacheWrapper _COLOUR_LISTS = { 'basic': [ ('00', '000000'), ('01', '800000'), ('02', '008000'), ('03', '808000'), ('04', '000080'), ('05', '800080'), ('06', '008080'), ('07', 'c0c0c0'), ('08', '808080'), ('09', 'ff0000'), ('10', '00ff00'), ('11', 'ffff00'), ('12', '0000ff'), ('13', 'ff00ff'), ('14', '00ffff'), ('15', 'ffffff'), ], 'extended': [ ('16', '000000'), ('17', '00005f'), ('18', '000087'), ('19', '0000af'), ('20', '0000d7'), ('21', '0000ff'), ('22', '005f00'), ('23', '005f5f'), ('24', '005f87'), ('25', '005faf'), ('26', '005fd7'), ('27', '005fff'), ('28', '008700'), ('29', '00875f'), ('30', '008787'), ('31', '0087af'), ('32', '0087d7'), ('33', '0087ff'), ('34', '00af00'), ('35', '00af5f'), ('36', '00af87'), ('37', '00afaf'), ('38', '00afd7'), ('39', '00afff'), ('40', '00d700'), ('41', '00d75f'), ('42', '00d787'), ('43', '00d7af'), ('44', '00d7d7'), ('45', '00d7ff'), ('46', '00ff00'), ('47', '00ff5f'), ('48', '00ff87'), ('49', '00ffaf'), ('50', '00ffd7'), ('51', '00ffff'), ('52', '5f0000'), ('53', '5f005f'), ('54', '5f0087'), ('55', '5f00af'), ('56', '5f00d7'), ('57', '5f00ff'), ('58', '5f5f00'), ('59', '5f5f5f'), ('60', '5f5f87'), ('61', '5f5faf'), ('62', '5f5fd7'), ('63', '5f5fff'), ('64', '5f8700'), ('65', '5f875f'), ('66', '5f8787'), ('67', '5f87af'), ('68', '5f87d7'), ('69', '5f87ff'), ('70', '5faf00'), ('71', '5faf5f'), ('72', '5faf87'), ('73', '5fafaf'), ('74', '5fafd7'), ('75', '5fafff'), ('76', '5fd700'), ('77', '5fd75f'), ('78', '5fd787'), ('79', '5fd7af'), ('80', '5fd7d7'), ('81', '5fd7ff'), ('82', '5fff00'), ('83', '5fff5f'), ('84', '5fff87'), ('85', '5fffaf'), ('86', '5fffd7'), ('87', '5fffff'), ('88', '870000'), ('89', '87005f'), ('90', '870087'), ('91', '8700af'), ('92', '8700d7'), ('93', '8700ff'), ('94', '875f00'), ('95', '875f5f'), ('96', '875f87'), ('97', '875faf'), ('98', '875fd7'), ('99', '875fff'), ('100', '878700'), ('101', '87875f'), ('102', '878787'), ('103', '8787af'), ('104', '8787d7'), ('105', '8787ff'), ('106', '87af00'), ('107', '87af5f'), ('108', '87af87'), ('109', '87afaf'), ('110', '87afd7'), ('111', '87afff'), ('112', '87d700'), ('113', '87d75f'), ('114', '87d787'), ('115', '87d7af'), ('116', '87d7d7'), ('117', '87d7ff'), ('118', '87ff00'), ('119', '87ff5f'), ('120', '87ff87'), ('121', '87ffaf'), ('122', '87ffd7'), ('123', '87ffff'), ('124', 'af0000'), ('125', 'af005f'), ('126', 'af0087'), ('127', 'af00af'), ('128', 'af00d7'), ('129', 'af00ff'), ('130', 'af5f00'), ('131', 'af5f5f'), ('132', 'af5f87'), ('133', 'af5faf'), ('134', 'af5fd7'), ('135', 'af5fff'), ('136', 'af8700'), ('137', 'af875f'), ('138', 'af8787'), ('139', 'af87af'), ('140', 'af87d7'), ('141', 'af87ff'), ('142', 'afaf00'), ('143', 'afaf5f'), ('144', 'afaf87'), ('145', 'afafaf'), ('146', 'afafd7'), ('147', 'afafff'), ('148', 'afd700'), ('149', 'afd75f'), ('150', 'afd787'), ('151', 'afd7af'), ('152', 'afd7d7'), ('153', 'afd7ff'), ('154', 'afff00'), ('155', 'afff5f'), ('156', 'afff87'), ('157', 'afffaf'), ('158', 'afffd7'), ('159', 'afffff'), ('160', 'd70000'), ('161', 'd7005f'), ('162', 'd70087'), ('163', 'd700af'), ('164', 'd700d7'), ('165', 'd700ff'), ('166', 'd75f00'), ('167', 'd75f5f'), ('168', 'd75f87'), ('169', 'd75faf'), ('170', 'd75fd7'), ('171', 'd75fff'), ('172', 'd78700'), ('173', 'd7875f'), ('174', 'd78787'), ('175', 'd787af'), ('176', 'd787d7'), ('177', 'd787ff'), ('178', 'd7af00'), ('179', 'd7af5f'), ('180', 'd7af87'), ('181', 'd7afaf'), ('182', 'd7afd7'), ('183', 'd7afff'), ('184', 'd7d700'), ('185', 'd7d75f'), ('186', 'd7d787'), ('187', 'd7d7af'), ('188', 'd7d7d7'), ('189', 'd7d7ff'), ('190', 'd7ff00'), ('191', 'd7ff5f'), ('192', 'd7ff87'), ('193', 'd7ffaf'), ('194', 'd7ffd7'), ('195', 'd7ffff'), ('196', 'ff0000'), ('197', 'ff005f'), ('198', 'ff0087'), ('199', 'ff00af'), ('200', 'ff00d7'), ('201', 'ff00ff'), ('202', 'ff5f00'), ('203', 'ff5f5f'), ('204', 'ff5f87'), ('205', 'ff5faf'), ('206', 'ff5fd7'), ('207', 'ff5fff'), ('208', 'ff8700'), ('209', 'ff875f'), ('210', 'ff8787'), ('211', 'ff87af'), ('212', 'ff87d7'), ('213', 'ff87ff'), ('214', 'ffaf00'), ('215', 'ffaf5f'), ('216', 'ffaf87'), ('217', 'ffafaf'), ('218', 'ffafd7'), ('219', 'ffafff'), ('220', 'ffd700'), ('221', 'ffd75f'), ('222', 'ffd787'), ('223', 'ffd7af'), ('224', 'ffd7d7'), ('225', 'ffd7ff'), ('226', 'ffff00'), ('227', 'ffff5f'), ('228', 'ffff87'), ('229', 'ffffaf'), ('230', 'ffffd7'), ('231', 'ffffff'), ], 'greyscale': [ ('232', '080808'), ('233', '121212'), ('234', '1c1c1c'), ('235', '262626'), ('236', '303030'), ('237', '3a3a3a'), ('238', '444444'), ('239', '4e4e4e'), ('240', '585858'), ('241', '626262'), ('242', '6c6c6c'), ('243', '767676'), ('244', '808080'), ('245', '8a8a8a'), ('246', '949494'), ('247', '9e9e9e'), ('248', 'a8a8a8'), ('249', 'b2b2b2'), ('250', 'bcbcbc'), ('251', 'c6c6c6'), ('252', 'd0d0d0'), ('253', 'dadada'), ('254', 'e4e4e4'), ('255', 'eeeeee'), ] } def _build_map(colour_tuples): bins = {} l = None for tup in colour_tuples: if l is None: l = len(tup[1]) component = tup[1][:2] if component not in bins: bins[component] = [] bins[component].append((tup[0], tup[1][2:])) if l == 2: for c in [key for key in bins]: bins[c] = int(bins[c][0][0]) else: for c in [key for key in bins]: bins[c] = _build_map(bins[c]) return bins def mult_colspace_to_hex(value): return str(hex(int(value * 255)))[2:].rjust(2, '0') def hex_colspace_to_mult(hex_str): value = int(hex_str, 16) return float(value)/255.0 def hex_col_to_mult(hex_col, default_alpha=1): hex_components = [hex_col[1:3], hex_col[3:5], hex_col[5:7]] if len(hex_col) == 9: hex_components.append(hex_col[7:9]) else: hex_components.append(mult_colspace_to_hex(default_alpha)) return [hex_colspace_to_mult(s) for s in hex_components] def mult_col_to_hex(mult_col): return '#{}'.format(''.join(mult_colspace_to_hex(comp) for comp in mult_col)) @RamCacheWrapper def blend_colours(fg_hex_col, bg_hex_col, default_fg_col='#ffffff', default_bg_col='#000000', default_fg_alpha=0.9, default_bg_alpha=1.0): if not fg_hex_col or fg_hex_col < 0: fg_hex_col = default_fg_col if not bg_hex_col or bg_hex_col < 0: bg_hex_col = default_bg_col fg_col = hex_col_to_mult(fg_hex_col, default_fg_alpha) bg_col = hex_col_to_mult(bg_hex_col, default_bg_alpha) res_alpha = 1.0 - (1.0 - fg_col[3]) * (1.0 - bg_col[3]) res_col = [(fg_col[i] * fg_col[3] + bg_col[i] * bg_col[3] * (1 - fg_col[3])) / res_alpha for i in xrange(3)] res_col.append(res_alpha) return mult_col_to_hex(res_col) def colour_distance(hex_col_1, hex_col_2): m1 = hex_col_to_mult(hex_col_1)[:3] m2 = hex_col_to_mult(hex_col_2)[:3] return sum((comp1 - comp2) ** 2 for comp1, comp2 in zip(m1, m2)) _BASIC_MAP = _build_map(_COLOUR_LISTS['basic']) _EXTENDED_MAP = _build_map(_COLOUR_LISTS['extended']) _GREYSCALE_MAP = _build_map(_COLOUR_LISTS['greyscale']) _TERM_COL_MAP = dict(itertools.chain(*[_COLOUR_LISTS[key] for key in _COLOUR_LISTS])) @RamCacheWrapper def get_closest_term_colour(hex_col, cmap=None, include_details=False): if hex_col.startswith('#'): hex_col = hex_col[1:] if len(hex_col) > 6: hex_col = hex_col[:6] if cmap is None: if hex_col[0:2] == hex_col[2:4] and hex_col[2:4] == hex_col[4:6]: return get_closest_term_colour(hex_col, cmap=_GREYSCALE_MAP, include_details=include_details) return get_closest_term_colour(hex_col, cmap=_EXTENDED_MAP, include_details=include_details) component = hex_col[:2] c_val = int(component, 16) closest = min((max(c_val - int(c, 16), int(c, 16) - c_val), c) for c in cmap)[1] if isinstance(cmap[closest], int): if include_details: return cmap[closest], closest return cmap[closest] if include_details: term_col, hex_part = get_closest_term_colour(hex_col[2:], cmap[closest], include_details=True) if len(hex_col) == 6: return term_col, '#' + closest + hex_part return term_col, closest + hex_part return get_closest_term_colour(hex_col[2:], cmap[closest]) def term_col_to_hex(term_col): return '#' + _TERM_COL_MAP[str(term_col)]
""" This script determines whether a 450 Hz camera can observe multiple frames during the partial occulation of a star by the moon. If the begin and end time of a partial occultation could be measured accurately, it could be used to determine the radius of the star and hence the radius of its transiting planets. """ import numpy as np import matplotlib.pyplot as pl import astropy.units as u from astropy import log LUNAR_PERIOD = 27.3 * u.day LUNAR_RADIUS = 1737.4 * u.km LUNAR_DISTANCE = 384472 * u.km RADII_MIN, RADII_MAX = 0.1, 30 DISTANCE_MIN, DISTANCE_MAX = 1, 100 def angular_diameter(radius, distance): """Returns the apparent (angular) diameter of an object on the sky [arcsec], given its intrinsic radius and distance. Parameters ---------- radius : astropy `Quantity` object distance : astropy `Quantity` object Returns ------- angular_diameter : astropy `Quantity` object apparent diameter in arcseconds """ result = 2 * np.arctan2(2 * radius, 2. * distance) return result.to(u.arcsec) def angular_speed_of_the_moon(): """Returns the angular speed of the moon in the sky, relative to the stars.""" return (360.*u.deg / LUNAR_PERIOD).to(u.arcsec / u.second) if __name__ == '__main__': log.info("The moon moves at {:.2f}".format(angular_speed_of_the_moon())) log.info("The apparent diameter of the moon is {:.2f}".format(angular_diameter(LUNAR_RADIUS, LUNAR_DISTANCE))) radii = np.linspace(RADII_MIN, RADII_MAX, 100) * u.solRad distances = np.linspace(DISTANCE_MIN, DISTANCE_MAX, 100) * u.pc grid = np.meshgrid(radii, distances) durations = angular_diameter(grid[0], grid[1]) / angular_speed_of_the_moon() hz_for_10_samples = 450 * durations.value pl.figure() pl.imshow(hz_for_10_samples, extent=(RADII_MIN, RADII_MAX, DISTANCE_MIN, DISTANCE_MAX), origin="lower", aspect="auto", vmin=0, vmax=10, interpolation="nearest", label="duration [s]", cmap="ocean_r") cbar = pl.colorbar() cbar.ax.set_ylabel("# Frames", fontsize=20) pl.xlabel("Stellar radius [sol rad]", fontsize=20) pl.ylabel("Distance to the star [pc]", fontsize=20) pl.legend() pl.title("# Frames obtained by a 450 Hz camera during\n" "the partial occulation of a star by the moon", fontsize=20) pl.tight_layout() pl.savefig("the-answer.pdf") pl.close()
import re import unittest from stix_shifter.stix_translation import stix_translation from stix_shifter_utils.utils.error_response import ErrorCode translation = stix_translation.StixTranslation() def _remove_timestamp_from_query_ver1(queries): pattern = r'\s*AND\s*EventTime\s*BETWEEN\s*\\"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z\\"\s*AND\s*\\"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z\\"",\s*"fromDate":\s*"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z",\s*"toDate":\s*"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z",\s*"limit":\s*10000' if isinstance(queries, list): return [re.sub(pattern, '', str(query)) for query in queries] elif isinstance(queries, str): return re.sub(pattern, '', queries) def _remove_timestamp_from_query_ver2(queries): pattern = r'\s*AND\s*EventTime\s*BETWEEN\s*\\"\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:' \ r'\d{2}\.\d{3}Z\\"\s*AND\s*\\"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z\\"\)",\s*"fromDate":\s*"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z",\s*"toDate":\s*"\d{4}-\d{2}-\d{2}T\d{2}:' \ r'\d{2}:\d{2}\.\d{3}Z",\s*"limit":\s*10000' if isinstance(queries, list): return [re.sub(pattern, '', str(query)) for query in queries] elif isinstance(queries, str): return re.sub(pattern, '', queries) class TestQueryTranslator(unittest.TestCase): """ class to perform unit test case for sentinelone translate query """ if __name__ == "__main__": unittest.main() def _test_query_assertions(self, query, queries): """ to assert the each query in the list against expected result """ self.assertIsInstance(queries, list) self.assertIsInstance(query, dict) self.assertIsInstance(query['queries'], list) for index, each_query in enumerate(query.get('queries'), start=0): self.assertEqual(each_query, queries[index]) def test_ipv4_query(self): """ test to check ipv4 stix pattern to native data source query """ stix_pattern = "[ipv4-addr:value = '164.132.169.172']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcIp = \\"164.132.169.172\\" ' 'OR dstIp = \\"164.132.169.172\\" ' 'OR srcMachineIP = \\"164.132.169.172\\") AND EventTime ' 'BETWEEN \\"2022-04-15T12:33:32.255Z\\" ' 'AND \\"2022-04-15T12:38:32.255Z\\"", ' '"fromDate": "2022-04-15T12:33:32.255Z", ' '"toDate": "2022-04-15T12:38:32.255Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_traffic_query(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port= 3389]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort = \\"3389\\" AND EventTime ' 'BETWEEN \\"2022-02-22T09:16:24.526Z\\" AND \\"2022-02-22T09:21:24.526Z\\"", ' '"fromDate": "2022-02-22T09:16:24.526Z", ' '"toDate": "2022-02-22T09:21:24.526Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_greater_than(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port> 3000]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort > \\"3000\\" AND EventTime ' 'BETWEEN \\"2022-02-22T09:18:09.727Z\\" AND \\"2022-02-22T09:23:09.727Z\\"", ' '"fromDate": "2022-02-22T09:18:09.727Z", ' '"toDate": "2022-02-22T09:23:09.727Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_not_equals(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port!= 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort != \\"22\\" AND EventTime ' 'BETWEEN \\"2022-02-22T09:20:09.933Z\\" AND \\"2022-02-22T09:25:09.933Z\\"", ' '"fromDate": "2022-02-22T09:20:09.933Z", ' '"toDate": "2022-02-22T09:25:09.933Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_less_than(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port< 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort < \\"22\\" AND EventTime ' 'BETWEEN \\"2022-02-22T09:21:54.124Z\\" ' 'AND \\"2022-02-22T09:26:54.124Z\\"", ' '"fromDate": "2022-02-22T09:21:54.124Z", ' '"toDate": "2022-02-22T09:26:54.124Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_lessthan_or_equals(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port<= 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort <= \\"22\\" AND EventTime ' 'BETWEEN \\"2022-02-22T09:23:42.790Z\\" ' 'AND \\"2022-02-22T09:28:42.790Z\\"", ' '"fromDate": "2022-02-22T09:23:42.790Z", ' '"toDate": "2022-02-22T09:28:42.790Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_greaterthan_or_equals(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port>= 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = [ '{"query": "dstPort >= \\"22\\" AND EventTime BETWEEN \\"2022-02-20T12:16:36.638Z\\" ' 'AND \\"2022-02-20T12:21:36.638Z\\"", "fromDate": "2022-02-20T12:16:36.638Z", ' '"toDate": "2022-02-20T12:21:36.638Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_network_query_in_operator(self): """ test to check network traffic stix pattern to native data source query """ stix_pattern = "[network-traffic:dst_port IN (80,3389)]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = [ '{"query": "dstPort IN (\\"80\\",\\"3389\\") AND EventTime ' 'BETWEEN \\"2022-02-20T12:23:23.975Z\\" AND \\"2022-02-20T12:28:23.975Z\\"", ' '"fromDate": "2022-02-20T12:23:23.975Z", ' '"toDate": "2022-02-20T12:28:23.975Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_process_like_operator(self): """ test to check process stix pattern to native data source query """ stix_pattern = "[process:name LIKE 'svchost.exe']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcProcName in contains anycase (\\"svchost.exe\\") ' 'OR srcProcParentName in contains anycase (\\"svchost.exe\\") ' 'OR tgtProcName in contains anycase (\\"svchost.exe\\")) ' 'AND EventTime BETWEEN \\"2022-03-17T06:49:36.915Z\\" ' 'AND \\"2022-03-17T06:54:36.915Z\\"", ' '"fromDate": "2022-03-17T06:49:36.915Z", ' '"toDate": "2022-03-17T06:54:36.915Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_process_matches_operator(self): """ test to check process stix pattern to native data source query """ stix_pattern = "[process:name MATCHES 'svchost.exe']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcProcName regexp \\"svchost.exe\\" ' 'OR srcProcParentName regexp \\"svchost.exe\\" ' 'OR tgtProcName regexp \\"svchost.exe\\") ' 'AND EventTime BETWEEN \\"2022-03-17T06:53:00.681Z\\" ' 'AND \\"2022-03-17T06:58:00.681Z\\"", ' '"fromDate": "2022-03-17T06:53:00.681Z", ' '"toDate": "2022-03-17T06:58:00.681Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_process_created_query(self): """ test to check process stix pattern to native data source query """ stix_pattern = "[process:created >= '2019-09-04T09:29:29.0882Z']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcProcStartTime >= \\"2019-09-04T09:29:29.0882Z\\" ' 'OR tgtProcStartTime >= \\"2019-09-04T09:29:29.0882Z\\" ' 'OR srcProcParentStartTime >= \\"2019-09-04T09:29:29.0882Z\\") ' 'AND EventTime BETWEEN \\"2022-04-15T12:45:11.518Z\\" ' 'AND \\"2022-04-15T12:50:11.518Z\\"", ' '"fromDate": "2022-04-15T12:45:11.518Z", ' '"toDate": "2022-04-15T12:50:11.518Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_query_from_multiple_comparison_expressions_joined_by_and(self): """ test to check multiple comparison stix pattern to native data source query """ stix_pattern = "[ x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows' AND " \ "file:extensions.'x-sentinelone-file'.file_type IN ('PE')]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(tgtFileType IN (\\"PE\\") ' 'AND endpointOs = \\"WINDOWS\\") AND EventTime ' 'BETWEEN \\"2022-03-11T10:34:07.700Z\\" ' 'AND \\"2022-03-11T10:39:07.700Z\\"", ' '"fromDate": "2022-03-11T10:34:07.700Z", ' '"toDate": "2022-03-11T10:39:07.700Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_file_query(self): """ test to check file stix pattern to native data source query """ stix_pattern = "[file:name LIKE 'WindowsApplication1']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "fileFullName in contains anycase (\\"WindowsApplication1\\") ' 'AND EventTime BETWEEN \\"2022-03-17T04:25:39.478Z\\" ' 'AND \\"2022-03-17T04:30:39.478Z\\"", ' '"fromDate": "2022-03-17T04:25:39.478Z", ' '"toDate": "2022-03-17T04:30:39.478Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_query_from_morethan_two_comparison_expressions_joined_by_and(self): """ test to check more than two comparison expressions """ stix_pattern = "[user-account:account_login LIKE 'ADMINISTRATOR' " \ "AND x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows' " \ "AND x-sentinelone-indicator:indicator_name = 'PreloadInjection']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(indicatorName = \\"PreloadInjection\\" ' 'AND (endpointOs = \\"WINDOWS\\" ' 'AND loginsUserName in contains anycase (\\"ADMINISTRATOR\\"))) ' 'AND EventTime BETWEEN \\"2022-04-15T12:48:51.738Z\\" ' 'AND \\"2022-04-15T12:53:51.738Z\\"", ' '"fromDate": "2022-04-15T12:48:51.738Z", ' '"toDate": "2022-04-15T12:53:51.738Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_multiple_observation_query(self): """ test to check multiple observation query """ stix_pattern = "([file: hashes.MD5 = '0bbd4d92d3a0178463ef6e0ad46c986a' " \ "AND file:extensions.'x-sentinelone-file'.file_extension = 'log'" \ " AND x-oca-event:action = 'File Rename'] AND " \ "[file:extensions.'x-sentinelone-file'.file_type = 'PE'] AND " \ "[ x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "agent_version = '21.6.6.1200' " \ "AND network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status ='SUCCESS' ])" \ "START t'2019-10-01T00:00:00.030Z' STOP t'2021-10-07T00:00:00.030Z' " query = translation.translate('sentinelone', 'query', '{}', stix_pattern) queries = ['{"query": "((eventType = \\"FILE RENAME\\" AND ' '(tgtFileExtension = \\"log\\" AND ' '(tgtFileMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" OR ' 'tgtFileOldMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" OR ' 'srcProcImageMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" OR ' 'tgtProcImageMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\"))) ' 'AND EventTime BETWEEN \\"2019-10-01T00:00:00.030Z\\" ' 'AND \\"2021-10-07T00:00:00.030Z\\") ' 'OR (tgtFileType = \\"PE\\" AND EventTime ' 'BETWEEN \\"2019-10-01T00:00:00.030Z\\" AND \\"2021-10-07T00:00:00.030Z\\") ' 'OR ((netConnStatus = \\"SUCCESS\\" AND agentVersion = \\"21.6.6.1200\\") ' 'AND EventTime BETWEEN \\"2019-10-01T00:00:00.030Z\\" ' 'AND \\"2021-10-07T00:00:00.030Z\\")", ' '"fromDate": "2019-10-01T00:00:00.030Z", ' '"toDate": "2021-10-07T00:00:00.030Z", "limit": 10000}'] self._test_query_assertions(query, queries) def test_negate_query(self): """ test to check negate query """ stix_pattern = "[x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os NOT IN('windows')]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "endpointOs NOT IN (\\"WINDOWS\\") AND EventTime ' 'BETWEEN \\"2022-02-25T11:17:57.613Z\\" AND \\"2022-02-25T11:22:57.613Z\\"", ' '"fromDate": "2022-02-25T11:17:57.613Z", ' '"toDate": "2022-02-25T11:22:57.613Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_boolean_true_value_query(self): """ test to check boolean true query """ stix_pattern = "[user-account:is_privileged = 'true']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "loginIsAdministratorEquivalent is true AND EventTime ' 'BETWEEN \\"2022-02-20T13:17:01.361Z\\" AND \\"2022-02-20T13:22:01.361Z\\"", ' '"fromDate": "2022-02-20T13:17:01.361Z", ' '"toDate": "2022-02-20T13:22:01.361Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_boolean_false_value_query(self): """ test to check boolean false query """ stix_pattern = "[user-account:is_privileged = 'false']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = [ '{"query": "loginIsAdministratorEquivalent is false AND EventTime ' 'BETWEEN \\"2022-02-20T13:18:21.764Z\\" AND \\"2022-02-20T13:23:21.764Z\\"", ' '"fromDate": "2022-02-20T13:18:21.764Z", ' '"toDate": "2022-02-20T13:23:21.764Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_merge_similar_element_timestamp_query(self): """ test to check similar element timestamp query """ stix_pattern = "[network-traffic:src_port = 62024 AND " \ "network-traffic:protocols[*] = 'tcp'] START " \ "t'2019-10-01T08:43:10.003Z' STOP t'2019-11-30T10:43:10.005Z' " query = translation.translate('sentinelone', 'query', '{}', stix_pattern) queries = ['{"query": "(netProtocolName = \\"tcp\\" AND srcPort = \\"62024\\") ' 'AND EventTime BETWEEN \\"2019-10-01T08:43:10.003Z\\" ' 'AND \\"2019-11-30T10:43:10.005Z\\"", ' '"fromDate": "2019-10-01T08:43:10.003Z", ' '"toDate": "2019-11-30T10:43:10.005Z", "limit": 10000}'] self._test_query_assertions(query, queries) def test_is_reversed_parm_query(self): """ test to check reversed parameter query """ stix_pattern = "[process:extensions.'x-sentinelone-process'." \ "publisher = 'MICROSOFT WINDOWS PUBLISHER' " \ "AND network-traffic:src_port = 62024 ] START " \ "t'2019-10-01T08:43:10.003Z' STOP t'2019-11-30T10:43:10.005Z' " query = translation.translate('sentinelone', 'query', '{}', stix_pattern) queries = ['{"query": "(srcPort = \\"62024\\" ' 'AND (srcProcPublisher = \\"MICROSOFT WINDOWS PUBLISHER\\" ' 'OR tgtProcPublisher = \\"MICROSOFT WINDOWS PUBLISHER\\")) ' 'AND EventTime BETWEEN \\"2019-10-01T08:43:10.003Z\\" ' 'AND \\"2019-11-30T10:43:10.005Z\\"", ' '"fromDate": "2019-10-01T08:43:10.003Z", ' '"toDate": "2019-11-30T10:43:10.005Z", "limit": 10000}'] self._test_query_assertions(query, queries) def test_multiple_observation_with_qualifier_query(self): """ test to check multiple observation qualifier query """ stix_pattern = "[file:size > 10 ] START t'2022-01-01T00:00:00.030Z' " \ "STOP t'2022-02-28T00:00:00.030Z' AND [ " \ "file:extensions.'x-sentinelone-file'." \ "file_description = 'Windows Push " \ "Notifications User Service_2d02eb' AND " \ "x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows'] " query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver2(query['queries']) queries = ['{"query": "(tgtFileSize > \\"10\\" AND EventTime ' 'BETWEEN \\"2022-01-01T00:00:00.030Z\\" ' 'AND \\"2022-02-28T00:00:00.030Z\\") ' 'OR ((endpointOs = \\"WINDOWS\\" AND ' 'tgtFileDescription = \\"Windows Push Notifications ' 'User Service_2d02eb\\") AND EventTime ' 'BETWEEN \\"2022-03-03T06:11:48.907Z\\" ' 'AND \\"2022-03-03T06:16:48.907Z\\")", ' '"fromDate": "2022-01-01T00:00:00.030Z", ' '"toDate": "2022-03-03T06:16:48.907Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver2(queries) self._test_query_assertions(query, queries) def test_not_include_filter_query(self): """test to check not include filter query""" stix_pattern = "[domain-name:value!='dc-integrations.traps.paloaltonetworks.com']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(dnsRequest != \\"dc-integrations.traps.paloaltonetworks.com\\" ' 'OR dnsResponse != \\"dc-integrations.traps.paloaltonetworks.com\\" ' 'OR loginAccountDomain != \\"dc-integrations.traps.paloaltonetworks.com\\") ' 'AND EventTime BETWEEN \\"2022-04-15T12:42:44.494Z\\" ' 'AND \\"2022-04-15T12:47:44.494Z\\"", "fromDate": "2022-04-15T12:42:44.494Z", ' '"toDate": "2022-04-15T12:47:44.494Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_creation_with_in_operator_query(self): """test to check in operator query""" stix_pattern = "[process:pid IN (443) ]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcProcPid IN (\\"443\\") OR tgtProcPid IN (\\"443\\") ' 'OR srcProcParentPid IN (\\"443\\")) AND EventTime ' 'BETWEEN \\"2022-02-22T16:10:35.305Z\\" AND \\"2022-02-22T16:15:35.305Z\\"", ' '"fromDate": "2022-02-22T16:10:35.305Z", ' '"toDate": "2022-02-22T16:15:35.305Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_negate_for_like_operator(self): """test to check negate for like query""" stix_pattern = "[file:extensions.'x-sentinelone-file'." \ "file_description NOT LIKE 'Windows']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "NOT tgtFileDescription in contains anycase (\\"Windows\\") ' 'AND EventTime BETWEEN \\"2022-03-17T04:33:13.901Z\\" ' 'AND \\"2022-03-17T04:38:13.901Z\\"", ' '"fromDate": "2022-03-17T04:33:13.901Z", ' '"toDate": "2022-03-17T04:38:13.901Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_negate_for_greater_than_or_equals_operator(self): """test to check negate greater than or equal query""" stix_pattern = "[network-traffic:dst_port NOT >= 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort < \\"22\\" AND EventTime ' 'BETWEEN \\"2022-02-25T11:25:55.150Z\\" AND \\"2022-02-25T11:30:55.150Z\\"", ' '"fromDate": "2022-02-25T11:25:55.150Z", ' '"toDate": "2022-02-25T11:30:55.150Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_negate_for_less_than_operator(self): """test to check negate for lessthan query""" stix_pattern = "[network-traffic:dst_port NOT < 22]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "dstPort >= \\"22\\" AND EventTime ' 'BETWEEN \\"2022-02-25T11:28:23.103Z\\" ' 'AND \\"2022-02-25T11:33:23.103Z\\"", ' '"fromDate": "2022-02-25T11:28:23.103Z", ' '"toDate": "2022-02-25T11:33:23.103Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_unmapped_attribute_handling_with_and(self): """test to check unmapped attribute""" stix_pattern = "[url:value = 'http://www.testaddress.com' AND unmapped:attribute = 'something']" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_MAPPING_ERROR.value == result['code'] assert 'Unable to map the following STIX objects and properties' in result['error'] def test_invalid_stix_pattern(self): """test to check invalid stix pattern""" stix_pattern = "[not_a_valid_pattern]" result = translation.translate('cybereason', 'query', '{}', stix_pattern, {'validate_pattern': 'true'}) assert result['success'] is False assert ErrorCode.TRANSLATION_STIX_VALIDATION.value == result['code'] assert stix_pattern[1:-1] in result['error'] def test_for_match_operator(self): """test to check regex operator query""" stix_pattern = "[process:name MATCHES '[a-zA-Z0-9_%]+[.exe]']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(srcProcName regexp \\"[a-zA-Z0-9_%]+[.exe]\\" ' 'OR srcProcParentName regexp \\"[a-zA-Z0-9_%]+[.exe]\\" ' 'OR tgtProcName regexp \\"[a-zA-Z0-9_%]+[.exe]\\") ' 'AND EventTime BETWEEN \\"2022-03-17T06:45:46.514Z\\" ' 'AND \\"2022-03-17T06:50:46.514Z\\"", ' '"fromDate": "2022-03-17T06:45:46.514Z", ' '"toDate": "2022-03-17T06:50:46.514Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_for_multiple_observation_with_timestamp(self): """test to multiple start stop qualifier observation query""" stix_pattern = "[file: hashes.MD5 = '0bbd4d92d3a0178463ef6e0ad46c986a']START " \ "t'2022-01-05T00:00:00.030Z' STOP t'2022-02-20T00:00:00.030Z' " \ "AND [ x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "agent_version = '21.6.6.1200']START " \ "t'2022-01-01T00:00:00.030Z' STOP t'2022-02-28T00:00:00.030Z'" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) queries = ['{"query": "((tgtFileMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" ' 'OR tgtFileOldMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" ' 'OR srcProcImageMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\" ' 'OR tgtProcImageMd5 = \\"0bbd4d92d3a0178463ef6e0ad46c986a\\") ' 'AND EventTime BETWEEN \\"2022-01-05T00:00:00.030Z\\" ' 'AND \\"2022-02-20T00:00:00.030Z\\") ' 'OR (agentVersion = \\"21.6.6.1200\\" ' 'AND EventTime BETWEEN \\"2022-01-01T00:00:00.030Z\\" ' 'AND \\"2022-02-28T00:00:00.030Z\\")", ' '"fromDate": "2022-01-01T00:00:00.030Z", ' '"toDate": "2022-02-28T00:00:00.030Z", "limit": 10000}'] self._test_query_assertions(query, queries) def test_invalid_boolean_value(self): """test to check invalid boolean pattern""" stix_pattern = "[user-account:is_privileged = '2']" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE.value == result['code'] assert 'wrong parameter : Invalid boolean type input' in result['error'] def test_or_operator_query(self): """test to check or pattern to query""" stix_pattern = "[x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows' " \ "OR network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status ='SUCCESS' " \ "AND network-traffic:src_port > 100 ]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "((srcPort > \\"100\\" AND netConnStatus = \\"SUCCESS\\") ' 'OR endpointOs = \\"WINDOWS\\") AND EventTime ' 'BETWEEN \\"2022-03-03T06:45:13.380Z\\" ' 'AND \\"2022-03-03T06:50:13.380Z\\"", ' '"fromDate": "2022-03-03T06:45:13.380Z", ' '"toDate": "2022-03-03T06:50:13.380Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_multiple_pattern_with_or_query(self): """test to check multiple pattern with or to query""" stix_pattern = "[network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status ='SUCCESS' " \ "AND network-traffic:src_port > 100] START " \ "t'2019-10-01T08:43:10.003Z' STOP t'2019-11-30T10:43:10.005Z' " \ "AND [x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows' " \ "OR x-oca-event:action = 'File Rename']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver2(query['queries']) queries = ['{"query": "((srcPort > \\"100\\" AND netConnStatus = \\"SUCCESS\\") ' 'AND EventTime BETWEEN \\"2019-10-01T08:43:10.003Z\\" ' 'AND \\"2019-11-30T10:43:10.005Z\\") ' 'OR ((eventType = \\"FILE RENAME\\" OR endpointOs = \\"WINDOWS\\") ' 'AND EventTime BETWEEN \\"2022-03-11T10:24:41.029Z\\" ' 'AND \\"2022-03-11T10:29:41.029Z\\")", ' '"fromDate": "2019-10-01T08:43:10.003Z", ' '"toDate": "2022-03-11T10:29:41.029Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver2(queries) self._test_query_assertions(query, queries) def test_multiple_combination_or_pattern_query(self): """test to check multiple combination or operator to query""" stix_pattern = "[network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status ='SUCCESS' " \ "OR network-traffic:src_port > 100 " \ "AND x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows' " \ "OR process:extensions.'x-sentinelone-process'." \ "integrity_level = 'SYSTEM' ]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "((srcProcIntegrityLevel = \\"SYSTEM\\" ' 'OR tgtProcIntegrityLevel = \\"SYSTEM\\") ' 'OR ((endpointOs = \\"WINDOWS\\" AND srcPort > \\"100\\") ' 'OR netConnStatus = \\"SUCCESS\\")) ' 'AND EventTime BETWEEN \\"2022-03-11T09:51:06.719Z\\" ' 'AND \\"2022-03-11T09:56:06.719Z\\"", ' '"fromDate": "2022-03-11T09:51:06.719Z", ' '"toDate": "2022-03-11T09:56:06.719Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_multiple_or_operator_query(self): """test to check multiple or operator to query""" stix_pattern = "[network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status ='SUCCESS' " \ "OR network-traffic:src_port > 100 " \ "OR x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os = 'windows']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(endpointOs = \\"WINDOWS\\" OR (srcPort > \\"100\\" ' 'OR netConnStatus = \\"SUCCESS\\")) AND EventTime ' 'BETWEEN \\"2022-03-03T10:09:10.017Z\\" ' 'AND \\"2022-03-03T10:14:10.017Z\\"", ' '"fromDate": "2022-03-03T10:09:10.017Z", ' '"toDate": "2022-03-03T10:14:10.017Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_pattern_with_enum_fields_query(self): """test to check enum fields to query""" stix_pattern = "[file:extensions.'x-sentinelone-file'.file_type IN ('PE') " \ "OR windows-registry-key:extensions.'x-sentinelone-registry'." \ "full_size = 72]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "(registryValueFullSize = \\"72\\" ' 'OR tgtFileType IN (\\"PE\\")) AND EventTime ' 'BETWEEN \\"2022-03-11T10:30:30.099Z\\" ' 'AND \\"2022-03-11T10:35:30.099Z\\"", ' '"fromDate": "2022-03-11T10:30:30.099Z", ' '"toDate": "2022-03-11T10:35:30.099Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_multiple_enum_fields_query(self): """test to check multiple enum fields to query""" stix_pattern = "[network-traffic:extensions.'x-sentinelone-network-action'." \ "connection_status " \ "IN ('SUCCESS') OR " \ " file:extensions.'x-sentinelone-file'." \ "file_type IN ('PE') " \ "AND user-account:extensions.'x-sentinelone-login'." \ "login_type IN ('SYSTEM') ]" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "((loginType IN (\\"SYSTEM\\") ' 'AND tgtFileType IN (\\"PE\\")) OR netConnStatus ' 'IN (\\"SUCCESS\\")) AND EventTime ' 'BETWEEN \\"2022-03-11T09:59:55.322Z\\" ' 'AND \\"2022-03-11T10:04:55.322Z\\"", ' '"fromDate": "2022-03-11T09:59:55.322Z", ' '"toDate": "2022-03-11T10:04:55.322Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries) def test_invalid_enum_fields_query(self): """test to check invalid enum field pattern """ stix_pattern = "[file:extensions.'x-sentinelone-file'.file_type = 'abc']" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE.value == result['code'] assert result['error'] == "sentinelone connector error => " \ "wrong parameter : Unsupported ENUM values provided. " \ "Possible supported enum values " \ "are['UNKNOWN', 'PE', 'ELF', 'MACH', 'VECT', 'PDF', " \ "'COM', 'OLE', 'OPENXML', 'PKZIP', 'RAR', " \ "'LZMA', 'BZIP2', 'TAR', 'CABINET', 'SFX', " \ "'DOTNET', 'EICAR', 'LNK']" def test_invalid_enum_fields_with_in_operator(self): """test to check invalid enum fields """ stix_pattern = "[x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os IN ('mac')]" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE.value == result['code'] assert result['error'] == "sentinelone connector error => " \ "wrong parameter : Unsupported ENUM values provided. " \ "Possible supported enum values " \ "are['windows', 'osx', 'linux']" def test_invalid_enum_fields_with_multiple_element(self): """test to check invalid enum fields with multiple element""" stix_pattern = "[x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os IN ('mac') " \ "OR file:extensions.'x-sentinelone-file'.file_type IN ('PE')]" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE.value == result['code'] assert result['error'] == "sentinelone connector error => " \ "wrong parameter : Unsupported ENUM values provided. " \ "Possible supported enum values " \ "are['windows', 'osx', 'linux']" def test_multiple_invalid_fields(self): """test to check multiple invalid fields""" stix_pattern = "[x-oca-asset:extensions.'x-sentinelone-endpoint'." \ "endpoint_os IN ('mac') " \ "OR file:extensions.'x-sentinelone-file'.file_type IN ('abc')]" result = translation.translate('sentinelone', 'query', '{}', stix_pattern) assert result['success'] is False assert ErrorCode.TRANSLATION_NOTIMPLEMENTED_MODE.value == result['code'] assert result['error'] == "sentinelone connector error => " \ "wrong parameter : Unsupported ENUM values provided. " \ "Possible supported enum values " \ "are['UNKNOWN', 'PE', 'ELF', 'MACH', 'VECT', 'PDF', " \ "'COM', 'OLE', 'OPENXML', 'PKZIP', 'RAR', " \ "'LZMA', 'BZIP2', 'TAR', 'CABINET', 'SFX', " \ "'DOTNET', 'EICAR', 'LNK']" def test_indicator_field_query(self): """test to check indicator fields""" stix_pattern = "[x-sentinelone-indicator:indicator_category = 'Malware']" query = translation.translate('sentinelone', 'query', '{}', stix_pattern) query['queries'] = _remove_timestamp_from_query_ver1(query['queries']) queries = ['{"query": "indicatorCategory = \\"MALWARE\\" ' 'AND EventTime BETWEEN \\"2022-03-30T06:17:37.577Z\\" ' 'AND \\"2022-03-30T06:22:37.577Z\\"", ' '"fromDate": "2022-03-30T06:17:37.577Z", ' '"toDate": "2022-03-30T06:22:37.577Z", "limit": 10000}'] queries = _remove_timestamp_from_query_ver1(queries) self._test_query_assertions(query, queries)
#!/usr/bin/env python # -*- coding: utf-8 -*- import subprocess def main(): result = "pass" try: ver = subprocess.check_output(["./version.py"]) except OSError: result = "fail" ver = 0 except subprocess.CalledProcessError: result = "fail" ver = 0 subprocess.Popen(["lava-test-case", "code-version-%s" % ver, "--result", result]) return 0 if __name__ == '__main__': main()
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############export checkpoint file into onnx models################# python export.py """ import numpy as np import mindspore as ms from mindspore import Tensor, context from mindspore.train.serialization import load_checkpoint, load_param_into_net, export from src.models.APDrawingGAN_G import Generator from src.option.options_test import TestOptions context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) if __name__ == '__main__': print(ms.__version__) opt = TestOptions().get_settings() opt.isExport = True net = Generator(opt) param_dict = load_checkpoint(opt.model_path) load_param_into_net(net, param_dict) real_A = Tensor(np.ones([1, 3, 512, 512]) * 1.0, ms.float32) real_A_bg = Tensor(np.ones([1, 3, 512, 512]) * 1.0, ms.float32) real_A_eyel = Tensor(np.ones([1, 3, 80, 112]) * 1.0, ms.float32) real_A_eyer = Tensor(np.ones([1, 3, 80, 112]) * 1.0, ms.float32) real_A_nose = Tensor(np.ones([1, 3, 96, 96]) * 1.0, ms.float32) real_A_mouth = Tensor(np.ones([1, 3, 80, 128]) * 1.0, ms.float32) real_A_hair = Tensor(np.ones([1, 3, 512, 512]) * 1.0, ms.float32) mask = Tensor(np.ones([1, 1, 512, 512]) * 1.0, ms.float32) mask2 = Tensor(np.ones([1, 1, 512, 512]) * 1.0, ms.float32) center = np.array([[199., 238.], [313., 238.], [254., 300.], [256., 369.]]) net.set_pad(center) input_arr = [real_A, real_A_bg, real_A_eyel, real_A_eyer, real_A_nose, real_A_mouth, real_A_hair, mask, mask2] export(net, *input_arr, file_name=opt.mindir_filename, file_format="MINDIR") if opt.isModelarts: from src.utils.tools import modelarts_result2obs modelarts_result2obs(opt)
# Copyright (c) 2019, CRS4 # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. from django.core.management.base import BaseCommand, CommandError import requests from urllib.parse import urljoin from slides_manager.models import Slide from promort.settings import OME_SEADRAGON_BASE_URL class Command(BaseCommand): help = 'check if OMERO images related to ProMort slides still exist' def _check_slide(self, slide_id, ome_image_id, image_type): if image_type == 'MIRAX': url = urljoin(OME_SEADRAGON_BASE_URL, 'mirax/deepzoom/get/%s_metadata.json' % slide_id) else: url = urljoin(OME_SEADRAGON_BASE_URL, 'deepzoom/get/%s_metadata.json' % ome_image_id) response = requests.get(url) if response.json()['tile_sources']: return True else: return False def handle(self, *args, **opts): try: slides = Slide.objects.filter(omero_id__isnull=False) except Slide.DoesNotExist: raise CommandError('There is no Slide related to an OMERO image') for slide in slides.all(): self.stdout.write('CHECKING SLIDE %s' % slide.id) ome_slide_exists = self._check_slide(slide.id, slide.omero_id, slide.image_type) if not ome_slide_exists: self.stdout.write('[SLIDE %s] There is no slide in OMERO with ID %s' % (slide.id, slide.omero_id)) slide.omero_id = None slide.image_type = None slide.save()
# Generated by Django 3.2.5 on 2021-07-11 15:35 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='book_detail', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Book_name', models.CharField(max_length=120)), ('Author', models.CharField(max_length=130)), ('genre', models.CharField(max_length=123)), ('language', models.CharField(max_length=123)), ], ), ]
"""p2 S3 URLs""" from django.conf import settings from django.urls import include, path, register_converter from p2.s3.urls import EverythingConverter, S3BucketConverter from p2.s3.views import buckets, get, objects register_converter(S3BucketConverter, 's3') register_converter(EverythingConverter, 'everything') app_name = 'p2_s3' # These patterns are only loaded when a X-AWS-* Header is detected # as these paths can interfere with p2.serve urlpatterns = [ path('<s3:bucket>', buckets.BucketView.as_view(), name='bucket'), path('<s3:bucket>/', buckets.BucketView.as_view(), name='bucket'), path('<s3:bucket>/<everything:path>', objects.ObjectView.as_view(), name='bucket-object'), path('', get.ListView.as_view(), name='list'), ] if settings.DEBUG: import debug_toolbar urlpatterns = [ path('_/debug/', include(debug_toolbar.urls)), ] + urlpatterns
# Copyright (c) initOS GmbH 2019 # Distributed under the MIT License (http://opensource.org/licenses/MIT). from ..commands import CommandError, parse_commands from ..config import OCABOT_EXTRA_DOCUMENTATION, OCABOT_USAGE from ..router import router from ..tasks.add_pr_comment import add_pr_comment @router.register("issue_comment", action="created") async def on_command(event, gh, *args, **kwargs): """On pull request review, tag if approved or ready to merge.""" if not event.data["issue"].get("pull_request"): # ignore issue comments return org, repo = event.data["repository"]["full_name"].split("/") pr = event.data["issue"]["number"] username = event.data["comment"]["user"]["login"] text = event.data["comment"]["body"] try: for command in parse_commands(text): command.delay(org, repo, pr, username) except CommandError as e: # Add a comment on the current PR, if # the command were misunderstood by the bot add_pr_comment.delay( org, repo, pr, f"Hi @{username}. Your command failed:\n\n" f"``{e}``.\n\n" f"{OCABOT_USAGE}\n\n" f"{OCABOT_EXTRA_DOCUMENTATION}", )
# Note: The profiles/__init__.py bits are not required if you are already referring to your AppConfig in the INSTALLED_APPS settings. # default_app_config = 'invoices.apps.InvoicesConfig'
# Copyright (c) 2018 Phil Vachon <[email protected]> # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from .state import TruePositionState from .uart import TruePositionUART from .http import TruePositionHTTPApi from .sat_writer import TruePositionSatWriter from .nmea_writer import TruePositionNMEAWriter from .shm_writer import TruePositionSHMWriter
# Dialog used to select cells for assigning protocols or types import bisect from PyQt5.QtCore import pyqtSignal from PyQt5.QtWidgets import QLabel, QGridLayout, QPushButton, \ QTextEdit, QDialog, QListWidget, QListWidgetItem, QVBoxLayout, \ QHBoxLayout class SelectCellDialog(QDialog): ''' Dialog used to select cells or trials for assigning protocols or types. ''' selected = pyqtSignal(tuple) def __init__(self, parent = None): ''' Initialize and build the window. Parameters ---------- parent: QWidget Parent window. Attributes ---------- items: list of QListWidgetItem Items to display in QListWidget. included: list of int Included cell numbers. excluded: list of int Excluded cell numbers. ''' super().__init__(parent) self.incLW = QListWidget(self) self.excLW = QListWidget(self) self.incLb = QLabel("Included") self.excLb = QLabel("Excluded") incVB = QVBoxLayout() excVB = QVBoxLayout() incVB.addWidget(self.incLb) incVB.addWidget(self.incLW) excVB.addWidget(self.excLb) excVB.addWidget(self.excLW) excAllBtn = QPushButton(">>", self) excBtn = QPushButton('>', self) incBtn = QPushButton('<', self) incAllBtn = QPushButton("<<", self) btnVB = QVBoxLayout() btnVB.addWidget(excAllBtn) btnVB.addWidget(excBtn) btnVB.addWidget(incBtn) btnVB.addWidget(incAllBtn) selectHB = QHBoxLayout() selectHB.addLayout(incVB) selectHB.addLayout(btnVB) selectHB.addLayout(excVB) acceptBtn = QPushButton("OK", self) acceptBtn.setDefault(True) cancelBtn = QPushButton("Cancel", self) btnHB = QHBoxLayout() btnHB.addWidget(acceptBtn) btnHB.addWidget(cancelBtn) topVB = QVBoxLayout(self) topVB.addLayout(selectHB) topVB.addLayout(btnHB) self.items = [] self.included = [] self.excluded = [] # key binding incAllBtn.clicked.connect(self.includeAll) excAllBtn.clicked.connect(self.excludeAll) incBtn.clicked.connect(self.include) excBtn.clicked.connect(self.exclude) acceptBtn.clicked.connect(self.finish) cancelBtn.clicked.connect(self.reject) def start(self, inc, exc): ''' Overload dialog open function, initializing items before showing the dialog. Parameters ---------- inc: list of int Predefined included cell numbers. exc: list of int Predefined excluded cell numbers. ''' self.included = sorted(inc) self.excluded = sorted(exc) self.incLW.clear() self.excLW.clear() self.items = [None] * (max(self.included + self.excluded)) for c in self.included: self.items[c - 1] = QListWidgetItem(str(c)) self.incLW.addItem(self.items[c - 1]) for c in self.excluded: self.items[c - 1] = QListWidgetItem(str(c)) self.excLW.addItem(self.items[c - 1]) super().open() def finish(self): ''' Finish selection, raise selectd signal with (inc, exc) as parameter. Signals ------- selected: Signalling selection is finished and return selection results. ''' self.accept() self.selected.emit((self.included, self.excluded)) def include(self): ''' Move the selected items from excluded list to included list. ''' for item in self.excLW.selectedItems(): c = int(item.text()) i = bisect.bisect_left(self.excluded, c) self.excLW.takeItem(i) self.excluded.pop(i) j = bisect.bisect_left(self.included, c) self.included.insert(j, c) self.incLW.insertItem(j, item) self.incLW.update() self.excLW.update() def exclude(self): ''' Move the selected items from included list to excluded list. ''' for item in self.incLW.selectedItems(): c = int(item.text()) i = bisect.bisect_left(self.included, c) self.incLW.takeItem(i) self.included.pop(i) j = bisect.bisect_left(self.excluded, c) self.excluded.insert(j, c) self.excLW.insertItem(j, item) self.incLW.update() self.excLW.update() def includeAll(self): ''' Move all items from excluded list ot included list. ''' while len(self.excluded): item = self.excLW.takeItem(0) c = self.excluded.pop(0) j = bisect.bisect_left(self.included, c) self.included.insert(j, c) self.incLW.insertItem(j, item) self.excLW.update() self.incLW.update() def excludeAll(self): ''' Move all items from included list ot excluded list. ''' while len(self.included): item = self.incLW.takeItem(0) c = self.included.pop(0) j = bisect.bisect_left(self.excluded, c) self.excluded.insert(j, c) self.excLW.insertItem(j, item) self.incLW.update() self.excLW.update() def changeTarget(self, target): ''' Change display included or excluded subject. ''' self.incLb.setText("Included " + target) self.excLb.setText("Excluded " + target)
# -*- coding: utf-8 -*- """Untitled0.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1_BEDlHOdtbAEWSvPgI5Lp00ZydRk48QX """ # ! git clone import cv2 import os import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import pickle from pathlib import Path from datetime import datetime class VIDEO : _defaults = { "id": 0, "save": False, "anotate": False, "save_path" :'./images/from_video/', "path" : "./videos/challenge_video.mp4", "period" : 0.1 } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.save : bool self.period : float self.save_path : str self.anotate : bool self.fps : int self.path : str self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.video = None self.fps : int self.step : int # self.extract_frames() # 비디오 영상으로부터 여러개 이미지로 변환을합니다. def extract_frames(self): self.video = cv2.VideoCapture(self.path) self.fps = self.video.get(cv2.CAP_PROP_FPS) # self.step = int(self.period* self.fps) count = 0 success = 1 while success: success, image = self.video.read() fn = int(datetime.utcnow().timestamp()*10000) cv2.imwrite(self.save_path+str(fn)+".jpg",image) count += 1 print(count, self.fps) class CAMERA : def __init__(self): self.callibration_done = False self.cam_matrix = None self.dist_coeffs= None self.img_size = None self.rvecs = None self.tvecs = None # self.callibrate() def callibrate(self , folder = 'camera_cal',n_x = 7, n_y = 7, verbose = False): objp = np.zeros((n_y*n_x, 3), np.float32) objp[:, :2] = np.mgrid[0:n_x, 0:n_y].T.reshape(-1, 2) image_points = [] object_points = [] criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) directory = Path(folder) for image_file in directory.glob("*.jpg"): img = cv2.imread(str( image_file)) img= cv2.resize(img, (400,300)) img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) found, corners = cv2.findChessboardCorners(img_gray, (n_x, n_y)) if found: self.callibration_done = True corners2 = cv2.cornerSubPix(img_gray, corners, (11, 11), (-1, -1), criteria) image_points.append(corners2) object_points.append(objp) if verbose: cv2.drawChessboardCorners(img, (n_x, n_y), corners, found) plt.imshow(img) plt.show() # pefrorm the calibration ret, self.cam_matrix, self.dist_coeffs, self.rvecs, self.tvecs = cv2.calibrateCamera(object_points, image_points, img_gray.shape[::-1], None, None) self.img_size = img.shape def undistort(self, image) : if self.callibration_done : image = cv2.undistort(image, self.cam_matrix, self.dist_coeffs) return image class EVENT : def __init__(self): # TAILGAITING , FCAS WARNING , LANE CHANGING, TRAFFIC LIGHT JUMP self.time_stamp : int self.image_path : str self.type : int self.speed : float self.coordinates : [float, float] if __name__ == "__main__": video = VIDEO(path = "./videos/challenge_video.mp4", save=True,period = 1) video.extract_frames()
import math from miscellanies.torch.distributed import is_dist_available_and_initialized, is_main_process import torch.distributed from miscellanies.yaml_ops import load_yaml import os from .mixin_utils import apply_mixin_rules def _update_sweep_config_(config: dict): wandb_tuner_config = config['tune'] for parameter in wandb_tuner_config['parameters'].values(): if 'distribution' in parameter and parameter['distribution'] in ('log_uniform', 'q_log_uniform', 'log_normal', 'q_log_normal'): if 'min_raw' in parameter: parameter['min'] = math.log(parameter['min_raw']) del parameter['min_raw'] if 'max_raw' in parameter: parameter['max'] = math.log(parameter['max_raw']) del parameter['max_raw'] return config def get_sweep_config(args): if args.sweep_config is not None: if args.sweep_config.startswith('/' or '\\'): config_path = os.path.join(args.config_path, args.sweep_config) else: config_path = os.path.join(args.config_path, args.method_name, args.config_name, 'sweep', args.sweep_config) else: config_path = os.path.join(args.config_path, args.method_name, args.config_name, 'sweep', 'sweep.yaml') config = load_yaml(config_path) _update_sweep_config_(config) return config def prepare_sweep(args, wandb_instance, config): # get the config of this run from wandb server if is_main_process(): this_run_config = wandb_instance.config.as_dict() else: this_run_config = None if is_dist_available_and_initialized(): object_list = [this_run_config] torch.distributed.broadcast_object_list(object_list, src=0) this_run_config, = object_list sweep_config = get_sweep_config(args) apply_mixin_rules(sweep_config['mixin'], config, this_run_config) if args.debug: import pprint pprint.pprint(config)
""" This module loads trained models to predict properties of organic molecules """ from __future__ import print_function import os import pkg_resources import numpy as np import pandas as pd from tensorflow.keras import backend as K from tensorflow.keras.models import load_model from rdkit import Chem from rdkit.Chem.rdMolDescriptors import GetMorganFingerprintAsBitVect from chemml.models.keras.trained.engine import check_array_input class OrganicLorentzLorenz(): """ A machine learning model for Lorentz-Lorenz (LL) estimates of refractive index. The model predicts refractive index, polarizability, and density of an organic molecule using its SMILES representation. The model is trained on 100K small organic molecules with their polarizabilities from DFT calculations, densities from molecular dynamics simulations, and refractive index by feeding calculated polarizabilities and densities into the LL model. The model is a fully connected artificial neural network with 3 hidden layers. The number of neurons per layers from input layer to the output layer are as follow: 1024 --> 128 --> 64 --> 32 --> [1, 1, 1]. """ def __init__(self): self.path = pkg_resources.resource_filename('chemml', os.path.join('datasets', 'data','organic_lorentz_lorenz')) # load x and y scalers self.x_scaler = pd.read_csv(os.path.join(self.path, 'x_standard_scaler.csv')) self.y_scaler = pd.read_csv(os.path.join(self.path, 'y_standard_scaler.csv')) def load(self, summary=True): """ This function loads the Keras model. The model consists of 3 hidden layers and more than 140K parameters. Parameters ---------- summary: bool if True a summary of Keras model will be printed out. """ self.model = load_model(os.path.join(self.path, 'Morgan_100k.h5')) if isinstance(summary, bool): if summary: self.model.summary() def __represent(self, smiles): # The descriptor must be a binary Morgan fingerprint with radius 2 and 1024 bits. mol = Chem.MolFromSmiles(smiles.strip()) if mol is None: msg = '%s is not a valid SMILES representation'%smiles raise ValueError(msg) else: return np.array(GetMorganFingerprintAsBitVect(mol, radius=2, nBits=1024)) def predict(self, smiles, pprint=False): """ After loading the model, this function predicts refractive index, polarizability, and density of the entery. Parameters ---------- smiles: str The SMILES representaion of a molecule. pprint: bool If True, a short description of the predicted properties will be printed out. Returns ------- tuple includes estimates of refractive index, polarizability, and density, respectively. """ # Todo: smiles can be a list or file path?! # check smiles type if isinstance(smiles, str): # find descriptor self.descriptor = self.__represent(smiles) else: msg = "smiles must has `str` type." raise ValueError(msg) # preprocess fingerprint: keep all of them for this model xin = (self.descriptor - self.x_scaler['ss_mean'].values) / self.x_scaler['ss_scale'].values xin = xin.reshape(1, 1024) # y1: RI, y2: polarizability (Bohr^3), y3: density (Kg/m^3) y1, y2, y3 = self.model.predict(xin) ri = float(y1 * self.y_scaler['ss_scale'][0] + self.y_scaler['ss_mean'][0]) pol = float(y2 * self.y_scaler['ss_scale'][1] + self.y_scaler['ss_mean'][1]) den = float(y3 * self.y_scaler['ss_scale'][2] + self.y_scaler['ss_mean'][2]) # print out predictions if pprint: print ('\ndata-driven model estimates:') print (' LL refractive index: ', '%.2f' % ri) print (' polarizability (Bohr^3):', '%.2f' % pol) print (' density (Kg/m^3): ', '%.2f' % den) return (ri, pol, den) def train(self, X, Y, scale=True, kwargs_for_compile={}, kwargs_for_fit={}): """ This function allows the user to retrain the model on a given data set for some further steps. Thus, all the parameters you are able to pass to a keras model's compile or fit methods can be passed to this function as well. Parameters ---------- X: ndarray or dataframe If 2D array, must be with 1024 dimension and numerical type. It is recommended to be Morgan fingerprint representation of the molecules. If 1D array, must be an array of `str` type, each element represents a molecule in the SMILES format. If dataframe, it can be a 2D frame with one column of SMILES or 1024 columns of features. Y: list or dataframe a list of three numpy arrays for refractive index, polarizability, and density, respectively. The length of arrays must be same as the length of X. If dataframe, it must be a 2D frame with 3 columns, each for one of the properties. scale: bool, optional (default: True) If True the X and Y will be scaled in the same fashion as the original traning process (recommended). kwargs_for_compile: dict, optional (default: {}) This dictionary could contain all the parameters that the compile method of keras models can receive. kwargs_for_fit: dict, optional (default: {}) This dictionary could contain all the parameters that the fit method of keras models can receive. """ # convert dataframe to ndarray if isinstance(X, pd.DataFrame): if X.ndim == 2 and X.shape[1] == 1: X = X.iloc[:,0].values elif X.ndim == 2 and X.shape[1] == 1024: X = X.values else: msg = "This function doesn't support the format of the input X." raise ValueError(msg) if isinstance(Y, pd.DataFrame): if Y.ndim == 2 and Y.shape[1] == 3: Y = [Y.iloc[:,0].values, Y.iloc[:,1].values, Y.iloc[:,2].values] else: msg = "This function doesn't support the format of the input Y." raise ValueError(msg) # check dimension of X itis, msg = check_array_input(X, 'X', 2, (None, 1024)) if not itis: itis, msg = check_array_input(X, 'X', 1, (None,)) if itis: X = np.array([self.__represent(i) for i in X]) else: raise ValueError(msg) # check dimension of Y if isinstance(Y, list): if len(Y) == 3: if isinstance(Y[0], np.ndarray) and isinstance(Y[1], np.ndarray) and \ isinstance(Y[2], np.ndarray) and Y[0].ndim == Y[1].ndim == Y[2].ndim == 1: if len(Y[0]) == len(Y[1]) == len(Y[2]) == len(X): pass else: msg = "The length of all Y arrays and X must be same." raise ValueError(msg) else: msg = "All the Y arrays must be numpy 1D array of properties." raise ValueError(msg) else: msg = "Y must contain 3 arrays." raise ValueError(msg) else: msg = "Y must be a list of arrays or a pandas dataframe." raise ValueError(msg) # scale if isinstance(scale, bool) and scale: # scale X xin = (X - self.x_scaler['ss_mean'].values) / self.x_scaler['ss_scale'].values xin = xin.reshape(X.shape[0], 1024) # scale Ys y1 = (Y[0] - self.y_scaler['ss_mean'][0]) / self.y_scaler['ss_scale'][0] y2 = (Y[1] - self.y_scaler['ss_mean'][1]) / self.y_scaler['ss_scale'][1] y3 = (Y[2] - self.y_scaler['ss_mean'][2]) / self.y_scaler['ss_scale'][2] else: msg = "The parameter scale must be boolean" raise ValueError(msg) # the actual compile and training from tensorflow.keras.optimizers import Adam adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0) default_kwargs = {'optimizer': adam, 'loss': 'mean_squared_error', 'metrics': ['mean_absolute_error']} default_kwargs.update(kwargs_for_compile) self.model.compile(**default_kwargs) self.model.fit(X, [y1, y2, y3], **kwargs_for_fit) def get_hidden_layer(self, X, id=1): """ This functions return the first hidden layer of the model. Parameters ---------- X: ndarray If 2D array, must be with 1024 dimension and numerical type. It is recommended to be Morgan fingerprint representation of the molecules. If 1D array, must be an array of `str` type, each element represents a molecule in the SMILES format. id: int This is the id of hidden layers. It can be any of 1, 2, or 3 for the first, second, or third hidden layer, respectively. Returns ------- ndarray The array of shape (length_of_X, 128) as the outputs of the first hidden layer (id=1). The array of shape (length_of_X, 64) as the outputs of the first hidden layer (id=2). The array of shape (length_of_X, 32) as the outputs of the first hidden layer (id=3). """ # check dimension of X itis, msg = check_array_input(X, 'X', 2, (None, 1024)) if not itis: itis, msg = check_array_input(X, 'X', 1, (None,)) if itis: X = np.array([self.__represent(i) for i in X]) else: raise ValueError(msg) get_layer_output = K.function([self.model.layers[0].input], [self.model.layers[id].output]) return get_layer_output([X])[0]
def crash_add(a, b): raise RuntimeError("I can't calculate anything :(")
# coding=utf-8 from django.conf.urls import url from . import views urlpatterns = [ url(r'^conta/$', views.index, name='index'), url(r'^alterar-dados/$', views.alterar_dados_usuario, name='alterar-dados-usuario'), url(r'^alterar-senha/$', views.update_password, name='update_password'), url(r'^registro/$', views.register, name='register'), ]
# Time: O(nlogn) # Space: O(n) class BIT(object): # 0-indexed def __init__(self, n): self.__bit = [0]*(n+1) def add(self, i, val): i += 1 while i < len(self.__bit): self.__bit[i] += val i += (i & -i) def query(self, i): i += 1 ret = 0 while i > 0: ret += self.__bit[i] i -= (i & -i) return ret # greedy, bit, fenwick tree class Solution(object): def minMovesToMakePalindrome(self, s): """ :type s: str :rtype: int """ idxs = [[] for _ in xrange(26)] for i, c in enumerate(s): idxs[ord(c)-ord('a')].append(i) targets, pairs = [0]*len(s), [] for c, idx in enumerate(idxs): for i in xrange(len(idx)//2): pairs.append((idx[i], idx[~i])) if len(idx)%2: targets[idx[len(idx)//2]] = len(s)//2 pairs.sort() for i, (l, r) in enumerate(pairs): targets[l], targets[r] = i, (len(s)-1)-i bit = BIT(len(s)) result = 0 for i in targets: result += i-bit.query(i-1) # move from bit.query(i-1) to i bit.add(i, 1) return result # Time: O(n^2) # Space: O(n) # greedy class Solution2(object): def minMovesToMakePalindrome(self, s): """ :type s: str :rtype: int """ s = list(s) result = 0 while s: i = s.index(s[-1]) if i == len(s)-1: result += i//2 else: result += i s.pop(i) s.pop() return result
#!/usr/bin.env/python # -*- coding: utf-8 -*- """ This module contains the base class KerasCellClassifier for using deep learning methods, trained on some labeled FileGroup (has existing Populations), to predict single cell classifications. Copyright 2020 Ross Burton Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from ..build_models import build_keras_model from .cell_classifier import CellClassifier, check_data_init, check_model_init from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import History from matplotlib.pyplot import Axes import matplotlib.pyplot as plt import pandas as pd import numpy as np class KerasCellClassifier(CellClassifier): """ Use Keras deep learning models to predict the classification of single cell data. Training data should be provided in the form of a FileGroup with existing Populations. Supports multi-class and multi-label classification; if multi-label classification is chosen, the tree structure of training data is NOT conserved - all resulting populations will have the same parent population. Note, this class assumes you use the Keras Sequential API. Objects can be constructed using a pre-built model, or the model designed through the parameters 'optimizer', 'loss' and 'metrics, and then a model constructed using the 'build_model' method. Parameters ---------- model: Sequential, optional Pre-compiled Keras Sequential model optimizer: str, optional Provide if you intend to compile a model with the 'build_model' method. See https://keras.io/api/optimizers/ for optimizers loss: str, optional Provide if you intend to compile a model with the 'build_model' method. See https://keras.io/api/losses/ for valid loss functions metrics: list, optional Provide if you intend to compile a model with the 'build_model' method. See https://keras.io/api/metrics/ for valid metrics features: list List of channels/markers to use as features in prediction target_populations: list List of populations from training data to predict multi_label: bool (default=False) If True, single cells can belong to more than one population. The tree structure of training data is NOT conserved - all resulting populations will have the same parent population. logging_level: int (default=logging.INFO) Level to log events at log: str, optional Path to log output to; if not given, will log to stdout population_prefix: str (default="CellClassifier_") Prefix applied to populations generated Attributes ---------- scaler: Scaler Scaler object transformer: Transformer Transformer object class_weights: dict Sample class weights; key is sample index, value is weight. Set by calling compute_class_weights. x: Pandas.DataFrame Training feature space y: numpy.ndarray Target labels logger: logging.Logger features: list target_populations: list """ def __init__(self, model: Sequential or None = None, optimizer: str or None = None, loss: str or None = None, metrics: list or None = None, **kwargs): self.optimizer = optimizer self.loss = loss self.metrics = metrics if model is not None: self.model = model else: if any([x is None for x in [optimizer, loss, metrics]]): raise ValueError("If model is not provided, must provide optimizer, loss and metrics, and " "call 'build_model' prior to fit") super().__init__(**kwargs) def build_model(self, layers: list, layer_params: list, input_shape: tuple or None = None, **compile_kwargs): """ If Sequential model is not constructed and provided at object construction, this method can be used to specify a sequential model to be built. Parameters ---------- layers: list List of keras layer class names (see https://keras.io/api/layers/) layer_params: list List of parameters to use when constructing layers (order must match layers) input_shape: tuple, optional Shape of input data to first layer, if None, then passed as (N, ) where N is the number of features compile_kwargs: Additional keyword arguments passed when calling compile Returns ------- self """ if self.model is not None: raise ValueError("Model already defined.") input_shape = input_shape or (len(self.features),) self.model = build_keras_model(layers=layers, layer_params=layer_params, optimizer=self.optimizer, loss=self.loss, metrics=self.metrics, input_shape=input_shape, **compile_kwargs) return self @check_model_init def _predict(self, x: pd.DataFrame, threshold: float = 0.5): """ Overrides parent _predict method to facilitate Keras predict methods. If multi_class is True, then threshold is used to assign labels using the predicted probabilities; positive association where probability exceeds threshold. Parameters ---------- x: Pandas.DataFrame Feature space threshold: float (default=0.5) Threshold for positivity when multi_class is True Returns ------- numpy.ndarray, numpy.ndarray Predicted labels, prediction probabilities """ y_score = self.model.predict(x) if self.multi_label: y_pred = list(map(lambda yi: [int(i > threshold) for i in yi], y_score)) else: y_pred = np.argmax(self.model.predict(x), axis=-1) return y_pred, y_score def _fit(self, x: pd.DataFrame, y: np.ndarray, epochs: int = 100, validation_x: pd.DataFrame or None = None, validation_y: np.ndarray or None = None, **kwargs): """ Overwrites the _fit method of CellClassifier to support Keras classifier. If a validation feature space and labels are provided, then these are passed to 'validation_data' of keras 'fit' method. Parameters ---------- x: Pandas.DataFrame Training feature space to fit y: numpy.ndarray Training labels epochs: int (default=100) Number of training rounds validation_x: Pandas.DataFrame Validation feature space validation_y: numpy.ndarray Validation labels kwargs: Additional keyword arguments passed to fit method of Keras sequential API Returns ------- Keras.callbacks.History Keras History object Raises ------ AssertionError validation_y not provided but validation_x is """ if validation_x is not None: assert validation_y is not None, "validation_y cannot be None if validation_x given" return self.model.fit(x, to_categorical(y), epochs=epochs, validation_data=(validation_x, validation_y), **kwargs) return self.model.fit(x, to_categorical(y), epochs=epochs, **kwargs) @check_model_init @check_data_init def fit(self, validation_frac: float or None = 0.3, train_test_split_kwargs: dict or None = None, epochs: int = 100, **kwargs): """ Fit the Keras model to the associated training data. If 'validation_frac' is provided, then a given proportion of the training data will be set apart and given to the 'validation_data' parameter to Keras fit method of the sequential API. The validation data is created using the train_test_split function from Scikit-Learn; additional keyword arguments can be provided as a dictionary with 'train_test_split_kwargs'. Parameters ---------- validation_frac: float (optional; default=0.3) Proportion of training data to set aside for validation train_test_split_kwargs: dict (optional) Additional keyword arguments for train_test_split function from Scikit-Learn epochs: int (default=100) Number of training rounds kwargs: Additional keyword arguments passed to fit method of keras sequential API Returns ------- Keras.callbacks.History Keras History object """ train_test_split_kwargs = train_test_split_kwargs or {} validation_x, validation_y = None, None x, y = self.x, self.y if validation_frac is not None: x, validation_x, y, validation_y = train_test_split(self.x, self.y, test_size=validation_frac, **train_test_split_kwargs) return self._fit(x=x, y=y, validation_x=validation_x, validation_y=validation_y, epochs=epochs, **kwargs) @check_model_init def plot_learning_curve(self, history: History or None = None, ax: Axes or None = None, figsize: tuple = (10, 10), plot_kwargs: dict or None = None, **fit_kwargs): """ This method will generate a learning curve using the History object generated from the fit method from the Keras sequential API. Parameters ---------- history: History (optional) If not given, then the 'fit' method will be called and use the associated training data. ax: Matplotlib.Axes figsize: tuple (default=(10,10)) plot_kwargs: dict (optional) Keyword arguments passed to Pandas.DataFrame.plot method fit_kwargs: Keyword arguments passed to fit method if 'history' is not given Returns ------- Matplotlib.Axes """ history = history or self.fit(**fit_kwargs) plot_kwargs = plot_kwargs or {} ax = ax or plt.subplots(figsize=figsize)[1] return pd.DataFrame(history.history).plot(ax=ax, **plot_kwargs)