content
stringlengths
5
1.05M
from handwrite.sheettopng import SHEETtoPNG from handwrite.pngtosvg import PNGtoSVG from handwrite.svgtottf import SVGtoTTF from handwrite.cli import converters
# $Id$ # # @rocks@ # Copyright (c) 2000 - 2010 The Regents of the University of California # All rights reserved. Rocks(r) v5.4 www.rocksclusters.org # https://github.com/Teradata/stacki/blob/master/LICENSE-ROCKS.txt # @rocks@ # # $Log$ # Revision 1.2 2010/09/07 23:53:03 bruno # star power for gb # # Revision 1.1 2010/06/07 23:50:12 bruno # added a command to swap two interfaces # # from stack.argument_processors.host import HostArgProcessor import stack.commands class command(HostArgProcessor, stack.commands.swap.command): pass
import os import argparse from utils.transaction import Crawl from utils.aws import Resource from utils.mysql import MySQL from utils.catch_exception import * from selenium.common.exceptions import NoSuchElementException def selenium_test(): # sleep 3초(delay=3), no headless(gui=True) crawl = Crawl(delay=3, gui=True) # python 을 검색한 google 페이지 crawl.fetch('https://www.google.co.kr/search?q=python') # <a> 태그를 가진 Selenium Web Element 들의 객체 리스트 a_tags_elements = crawl.chrome.browser.find_elements_by_css_selector('#rso div.rc h3.r a') # <a> 태그 추출 a_tags = [a.get_attribute('href') for a in a_tags_elements] for link in a_tags: crawl.fetch(link) # 웹 드라이버 파괴 crawl.destroy_webdriver() class MainExample: def __init__(self): # Selenium headless self.crawl = Crawl(delay=20, telegram_notify=False, gui=True) self.aws = Resource() self.mysql = MySQL() @context_manager def transaction(self, keyword, control_instances): # Base page, 생략된 결과를 포함하여 검색 self.crawl.fetch('https://www.google.co.kr/search?q={}&filter=0'.format(keyword)) # 페이지 탐색 self.navigate_page(5) # AWS 'Auxiliary' 인스턴스 실행 self.aws.ec2_on_off(control_instances) def navigate_page(self, max_page): # paginate pattern # nav > tbody > tr > td.cur > span # nav > tbody > tr > td:nth-child([next]) > a > span cur_page = None for _ in range(max_page): # <a> 태그를 가진 Selenium Web Element 들의 객체 리스트 a_tags_elements = self.crawl.chrome.browser.find_elements_by_css_selector('#rso div.rc h3.r a') # <a> 태그 추출 a_tags = [a.get_attribute('href') for a in a_tags_elements] # 현재 페이지 데이터베이스 저장 self.mysql.upload_page_lists(a_tags) # 현재 페이지 찾기 paginate = self.crawl.chrome.browser.find_elements_by_css_selector('#nav > tbody > tr > td') for i, e in enumerate(paginate): if e.get_attribute('class') == 'cur': cur_page = i break # 다음 페이지 없음 try: next_element = paginate[cur_page + 1].find_element_by_css_selector('a') next_page = next_element.get_attribute('href') except NoSuchElementException: break # 다음 페이지 요청 self.crawl.fetch(next_page) class AuxExample: def __init__(self): # Selenium headless self.crawl = Crawl(delay=20, telegram_notify=False, gui=False) self.mysql = MySQL() @context_manager def transaction(self): while True: # 데이터베이스에서 URL 가져오기 url = self.mysql.select_one_for_update() if not url: break # 해당 URL 요청 html = self.crawl.fetch(url) # raw_html 테이블에 업로드 self.mysql.upload_html(url, html) # 정상적으로 완료된 경우 자동으로 인스턴스 종료 os.system('poweroff') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--query') parser.add_argument('--instance_name') parser.add_argument('--aux', action='store_true') args = parser.parse_args() if args.aux: example = AuxExample() example.transaction() else: if args.query is not None: example = MainExample() # 검색어 변경 가능 example.transaction(args.query, args.instance_name) else: print('Required Search Keyword!')
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Configuration file for sphinxmark documentation.""" import os import sys from datetime import datetime try: import sphinx_rtd_theme except ImportError: sphinx_rtd_theme = None try: from sphinxcontrib import spelling except ImportError as e: print(e) spelling = None sys.path.insert(0, os.path.abspath("../sphinxmark")) extensions = [ "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.viewcode", ] if spelling is not None: extensions.append("sphinxcontrib.spelling") source_suffix = ".rst" master_doc = "index" project = "sphinxmark" copyright = f"{datetime.now().year}, Brian Moss" author = "Brian Moss" version = "1.0.0" language = None exclude_patterns = ["_build", "README.rst"] pygments_style = "sphinx" if sphinx_rtd_theme: html_theme = "sphinx_rtd_theme" else: html_theme = "default" html_logo = "_static/sphinx.png" html_favicon = "_static/sphinx.ico" html_use_smartypants = False htmlhelp_basename = "doc" html_permalinks = True html_permalinks_icon = "#"
# Copyright (c) 2020 Daniel Pietz # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import owl import csv import sys import os import datetime import threading import time as tm SERVER = "172.19.34.203" BodyCount = 4 def recordThread(): global shouldStop global frameIsReady global markerWriter global bodiesWriter global BodyCount global MarkerCount i = 0 # instantiate context o = owl.Context() # connect to server with timeout of 10000000 microseconds o.open(SERVER, "timeout=10000000") # initialize session o.initialize("streaming=1") BodyFiles = BodyCount * [None] BodyWriters = BodyCount * [None] for i in range(0, BodyCount): #BodyFiles[i] = open(os.path.join(SESSIONPATH,"Body " + str(i)) + ".csv", 'a+', newline='') #BodyWriters[i] = csv.writer(BodyFiles[i], delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) pass # main loop evt = None while (evt or (o.isOpen() and o.property("initialized"))) and (shouldStop == False): #while (frameIsReady == True): #pass # poll for events with a timeout (microseconds) evt = o.nextEvent(1000000) # nothing received, keep waiting if not evt: continue # process event if evt.type_id == owl.Type.FRAME: # print rigids if "rigids" in evt: for r in evt.rigids: BodyEventArr = [getTime(), r.pose] for P in r.pose: BodyEventArr.append(P) pass print(BodyEventArr) #BodyWriters[r.id].writerow(BodyEventArr) pass elif evt.type_id == owl.Type.ERROR: # handle errors print(evt.name, evt.data) if evt.name == "fatal": break elif evt.name == "done": # done event is sent when master connection stops session print("done") break #frameIsReady = True # end main loop # end session o.done() # close socket o.close() pass def getTime(): return tm.time() * 1000000 - startTime def userInputThread(): global shouldStop while(True): inputStr = input() if inputStr == "stop": print("STOPPING") shouldStop = True break def main(): global shouldStop global file shouldStop = False pThread = threading.Thread(target = userInputThread) RecordThread = threading.Thread(target = recordThread) pThread.start() RecordThread.start() print("Python Ready") print(file) pThread.join() if __name__ == "__main__": global startTime, file startTime = int(sys.argv[1:][0]) file = sys.argv[1:][1] SESSIONPATH = os.path.join(file, "MoCap.csv") main()
from flask_jwt_extended import JWTManager from dawdle.utils.errors import (build_400_error_response, build_401_error_response) jwt = JWTManager() @jwt.expired_token_loader def expired_token_loader(_): return build_400_error_response(messages={ "token": [ "Token expired.", ], }) @jwt.invalid_token_loader def invalid_token_loader(_): return build_400_error_response(messages={ "token": [ "Invalid token.", ], }) @jwt.needs_fresh_token_loader def needs_fresh_token_loader(): return build_400_error_response(messages={ "token": [ "Needs fresh token.", ], }) @jwt.unauthorized_loader def unauthorized_loader(_): return build_401_error_response()
from model.contact import Contact from random import randrange def test_contact_firstname(app, db, check_ui): if app.contact.count() == 0: app.contact.contact_create( Contact(firstname="Сергей", middlename="Сергеевич", lastname="Сергеев", nickname="Серега", address="г. Казань", homephone="11111", mobile="22222", work="333333", email="[email protected]", email2=111, email3=222, bday="", bmounth="May", byear="1975")) old_contacts = db.get_contact_list() index = randrange(len(old_contacts)) contact = Contact(firstname="aaaaaa", middlename="aaaaaaa", lastname="aaaaaaa", nickname="aaaaa", address="aaaaa", homephone="777777", mobile="77777", work="77777", email="[email protected]", email2=33, email3=44, bday="", bmounth="", byear="1111") contact.id = old_contacts[index].id app.contact.contact_update_by_index(index, contact) new_contacts = db.get_contact_list() assert len(old_contacts) == app.contact.count() old_contacts[index] = contact if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.group.get_group_list(), key=Contact.id_or_max)
from django.urls import path from . import views urlpatterns = [ # 127.0.0.1:8000/bookstore/all_book path('all_book',views.all_book), # 127.0.0.1:8000/bookstore/add_book path('add_book',views.add_book), # 127.0.0.1:8000/bookstore/update_book/1 path('update_book/<int:bid>',views.update_book), # 127.0.0.1:8000/bookstore/delete_book path('delete_book', views.delete_book), ]
from generate_gerrit_jenkins_project.generate_gerrit_jenkins_project import generate_gerrit_jenkins_project def main(): generate_gerrit_jenkins_project()
import numpy as np from .simulator_model_datagen import ModelAnimDataGenerator import matplotlib.pyplot as plt from matplotlib.patches import Rectangle, FancyBboxPatch import matplotlib.animation as animation class ModelSimulator(): def __init__(self, datapacket, modelname="S_I_R"): # Initialise the Figure plt.rcParams['figure.dpi'] = 50 self.sim_fig, self.sim_ax = plt.subplots(figsize=(19.5,8)) self.sim_fig.tight_layout() _,_,self.scaleFactor = datapacket # Initialise Datageneator self.dataGenerator = ModelAnimDataGenerator(modelname=modelname) self.modelDataGenerator = self.dataGenerator.dataGen(_dp = datapacket) self.sim_ani = animation.FuncAnimation(self.sim_fig, self.update_canvas, interval=100, init_func = self.setup_canvas, blit=True) plt.show() def setup_canvas(self): # Check the dates dates, data = next(self.modelDataGenerator) self.sim_ax.tick_params(left=False, labelleft=False,) self.sim_ax.set_facecolor('k') self.sim_ax.grid(which='both',linestyle='-.') self.sim_ax.set_ylim(0,1) # Add Pandemic Name Label prop = dict(facecolor='none', edgecolor='lightgray', lw=4, boxstyle='round, pad=0.2') self.sim_ax.text(0.015,0.87, 'COVID-19', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=60, bbox = prop) # Add population and succeptible prop = dict(facecolor='#5c5c5c', edgecolor='#ffe680', lw=2, boxstyle='round') self.pop_text = '1,00,00,000' self.sim_ax.text(0.015,0.77, 'Population', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.poptext = self.sim_ax.text(0.015,0.735, self.pop_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10) prop = dict(facecolor='#5c5c5c', edgecolor='#ffe680', lw=2, boxstyle='round') self.succep_text = '1,00,000' self.sim_ax.text(0.075,0.77, 'Succeptible', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.succeptext = self.sim_ax.text(0.075,0.735, self.succep_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10) # Add Infected prop = dict(facecolor='#ff7575', edgecolor='#ffe680', lw=2, boxstyle='round') self.sim_fig.patches.extend([Rectangle((0.035,0.55), 0.1, 0.152, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) self.sim_fig.patches.extend([Rectangle((0.08,0.55), 0.055, 0.07, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) self.sim_fig.patches.extend([Rectangle((0.08,0.63), 0.055, 0.07, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) prop = dict(facecolor='#a34d4d', edgecolor='w', lw=2) self.infected_text = '{0}\n %'.format('00.0') self.sim_ax.text(0.0153,0.558,'I\nN\nF\nE\nC\nT\nE\nD', transform=self.sim_ax.transAxes, color='w', fontweight='light', fontsize=8.2, bbox = prop) self.infectedtext = self.sim_ax.text(0.026,0.615, self.infected_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=13) prop = dict(facecolor='#a34d4d', edgecolor='w', lw=1) self.testing_text = '{0}%'.format('00.0') self.sim_ax.text(0.062,0.68,' Tested ', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.testingtext = self.sim_ax.text(0.067,0.64,self.testing_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=15) prop = dict(facecolor='#a34d4d', edgecolor='w', lw=1) self.asympto_text = '{0}%'.format('00.0') self.sim_ax.text(0.061,0.6,' Asympto ', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.asymptotext = self.sim_ax.text(0.067,0.56,self.asympto_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=15) # Add Removed prop = dict(facecolor='#5c5c5c', edgecolor='#ffe680', lw=2, boxstyle='round') self.sim_fig.patches.extend([Rectangle((0.035,0.35), 0.1, 0.152, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) self.sim_fig.patches.extend([Rectangle((0.08,0.35), 0.055, 0.07, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) self.sim_fig.patches.extend([Rectangle((0.08,0.43), 0.055, 0.07, fill=True, alpha=1, facecolor='none', edgecolor='w', lw=1, transform=self.sim_fig.transFigure, figure=self.sim_fig, zorder=1)]) prop = dict(facecolor='#5c5c5c', edgecolor='w', lw=2) self.removed_text = '{0}\n %'.format('00.0') self.sim_ax.text(0.015,0.342,'R\nE\nM\nO\nV\nE\nD\n', transform=self.sim_ax.transAxes, color='w', fontweight='light', fontsize=8.2, bbox = prop) self.removedtext = self.sim_ax.text(0.025, 0.4, self.infected_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=13) prop = dict(facecolor='#5c5c5c', edgecolor='w', lw=2) self.recov_text = '{0}%'.format('00.0') self.sim_ax.text(0.0625, 0.47,' Recovered ', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.recovtext = self.sim_ax.text(0.067,0.43,self.recov_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=15) prop = dict(facecolor='#5c5c5c', edgecolor='w', lw=2) self.death_text = '{0}%'.format('00.0') self.sim_ax.text(0.062,0.38,' Death ', transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10, bbox = prop) self.deathtext = self.sim_ax.text(0.066, 0.34,self.death_text, transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=15) self.infectedfill = self.sim_ax.fill_between(dates, data[:,1], interpolate=True, alpha=1.0, facecolor='#f5653d', edgecolor='k') self.removedfill = self.sim_ax.fill_between(dates, 1-data[:,2], y2=1, interpolate=True, alpha=0.5, facecolor='#999999', edgecolor='k') infec_val = data[:,1][-1] self.infeclbl_text = 'Infected \n{0}%' self.infeclbltext = self.sim_ax.text(0.96, infec_val*0.5, self.infeclbl_text.format(str(np.round(infec_val*100,2))), transform=self.sim_ax.transAxes, color='r', fontweight='heavy', fontsize=10) succep_val = data[:,0][-1] self.succeclbl_text ='Succeptible \n{0}%' self.succeclbltext = self.sim_ax.text(0.955, infec_val+succep_val*0.5, self.succeclbl_text.format(str(np.round(succep_val*100,2))), transform=self.sim_ax.transAxes, color='w', fontweight='heavy', fontsize=10) recov_val = data[:, 2][-1] self.recovlbl_text = 'Removed \n{0}%' self.recovlbltext = self.sim_ax.text(0.955,1 - 0.5*recov_val - 0.04, self.recovlbl_text.format(str(np.round(recov_val*100,2))), transform=self.sim_ax.transAxes, color='lightgray', fontweight='heavy', fontsize=10) return self.sim_fig, def update_canvas(self, i): dates, data = next(self.modelDataGenerator) self.sim_ax.set_xlim(dates[0], dates[-1]) succep_pct_lst = data[:,0][-1] infec_pct_lst = data[:,1][-1] remov_pct_lst = data[:,2][-1] self.succeptext.set_text(str(int(np.round(succep_pct_lst*self.scaleFactor)))) self.succeptext.set_text(str(int(np.round(succep_pct_lst*self.scaleFactor)))) self.infected_text = '{0}%'.format(np.round(infec_pct_lst*100, 1)) self.infectedtext.set_text(self.infected_text) self.testingtext.set_text('--.-') self.asymptotext.set_text('--.-') self.removed_text = '{0}%'.format(np.round(remov_pct_lst*100, 1)) self.removedtext.set_text(self.removed_text) self.recovtext.set_text('--.-') self.deathtext.set_text('--.-') _infectext = self.infeclbl_text.format(str(np.round(infec_pct_lst*100,2))) self.infeclbltext.set_text(_infectext) self.infeclbltext.set_position((0.96, infec_pct_lst*0.5)) _succectext = self.succeclbl_text.format(str(np.round(succep_pct_lst*100,2))) self.succeclbltext.set_text(_succectext) self.succeclbltext.set_position((0.955, infec_pct_lst+succep_pct_lst*0.5)) _removtext = self.recovlbl_text.format(str(np.round(remov_pct_lst*100,2))) self.recovlbltext.set_text(_removtext) self.recovlbltext.set_position((0.955,1 - 0.5*remov_pct_lst - 0.04)) self.infectedfill.remove() self.infectedfill = self.sim_ax.fill_between(dates, data[:,1], interpolate=True, alpha=1.0, facecolor='#f5653d', edgecolor='k') self.removedfill.remove() self.removedfill = self.sim_ax.fill_between(dates, 1-data[:,2], y2=1, interpolate=True, alpha=0.5, facecolor='#999999', edgecolor='k') return self.sim_fig,
# -*- coding: utf-8 -*- """ Created on Tue Jun 16 15:49:54 2020 @author: sdesnoo """ import logging from pulse_lib.schedule.hardware_schedule import HardwareSchedule from .hvi2_schedule_extensions import add_extensions from hvi2_script.system import HviSystem from hvi2_script.sequencer import HviSequencer import keysightSD1 as SD1 import uuid class Hvi2Schedule(HardwareSchedule): verbose = False def __init__(self, hardware, script): self.hardware = hardware self.script = script self.extensions = add_extensions self.hvi_system = None self.hvi_sequence = None self.hvi_exec = None self._is_loaded = False self._might_be_loaded = False self.schedule_parms = {} self.hvi_id = uuid.uuid4() def set_schedule_parameters(self, **kwargs): for key,value in kwargs.items(): self.schedule_parms[key] = value def configure_modules(self): for awg in self.hardware.awgs: for ch in range(1, 5): awg.awg_stop(ch) awg.set_channel_wave_shape(SD1.SD_Waveshapes.AOU_AWG, ch) awg.awg_queue_config(ch, SD1.SD_QueueMode.CYCLIC) for dig in self.hardware.digitizers: dig.daq_stop_multiple(0b1111) dig.daq_flush_multiple(0b1111) def reconfigure_modules(self): for awg in self.hardware.awgs: for ch in range(1, 5): awg.awg_stop(ch) # rewrite amplitude and offset bypassing cache. amplitude = awg._settings_cache['amplitude'][ch] if amplitude is not None: awg._settings_cache['amplitude'][ch] = None awg.set_channel_amplitude(amplitude, ch) offset = awg._settings_cache['offset'][ch] if offset is not None: awg._settings_cache['offset'][ch] = None awg.set_channel_offset(offset, ch) awg.set_channel_wave_shape(SD1.SD_Waveshapes.AOU_AWG, ch) awg.awg_queue_config(ch, SD1.SD_QueueMode.CYCLIC) for dig in self.hardware.digitizers: dig.daq_stop_multiple(0b1111) dig.daq_flush_multiple(0b1111) def compile(self): logging.info(f"Build HVI2 schedule with script '{self.script.name}'") hvi_system = HviSystem() for awg in self.hardware.awgs: sd_aou = awg.awg hvi_system.add_awg(sd_aou, awg.name) for dig in self.hardware.digitizers: sd_ain = dig.SD_AIN hvi_system.add_digitizer(sd_ain, dig.name) self.hvi_system = hvi_system if self.extensions is not None: self.extensions(hvi_system) sequencer = HviSequencer(hvi_system) self.sequencer = sequencer self.script.sequence(sequencer, self.hardware) if self.verbose: logging.debug(f"Script '{self.script.name}':\n" + self.sequencer.describe()) try: self.hvi_exec = self.sequencer.compile() except: logging.error(f"Exception in compilation of '{self.script.name}'", exc_info=True) raise def is_loaded(self): return self._is_loaded def load(self): if self._is_loaded: logging.info(f'HVI2 schedule already loaded') return self.hardware.release_schedule() self.configure_modules() if self.hvi_exec is None: self.compile() logging.info(f"Load HVI2 schedule with script '{self.script.name}' (id:{self.hvi_id})") self.hardware.set_schedule(self) self._might_be_loaded = True self.hvi_exec.load() if self.hvi_exec.is_running(): logging.warning(f'HVI running after load; attempting to stop HVI and modules') self.hvi_exec.stop() self.reconfigure_modules() if self.hvi_exec.is_running(): logging.eror(f'Still Running after stop') self._is_loaded = True def unload(self): if not self.hvi_exec: return if self._is_loaded: self.script.stop(self.hvi_exec) self._is_loaded = False if self._might_be_loaded: logging.info(f"Unload HVI2 schedule with script'{self.script.name}' (id:{self.hvi_id})") self.hvi_exec.unload() self._might_be_loaded = False self.hardware.release_schedule() def is_running(self): return self.hvi_exec.is_running() def start(self, waveform_duration, n_repetitions, sequence_variables): hvi_params = {**self.schedule_parms, **sequence_variables} if self.verbose: logging.debug(f'start: {hvi_params}') self.script.start(self.hvi_exec, waveform_duration, n_repetitions, hvi_params) def stop(self): self.script.stop(self.hvi_exec) def close(self): self.unload() self.hvi_exec = None def __del__(self): if self._is_loaded: try: logging.warning(f'Automatic close of Hvi2Schedule in __del__()') # self.unload() except: logging.error(f'Exception unloading HVI', exc_info=True)
import os import sys import numpy as np # Root directory of the project from PIL import Image ROOT_DIR = os.path.abspath(".") # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library sys.path.append("/content/backlash") # To find local version of the library on Google Colab from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize import skimage.io # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Directory of images to run detection on IMAGE_DIR = os.path.join(ROOT_DIR, "images") # web server with tasks to process WEB_SERVER = "http://backlash.graycake.com" import samples.coco.coco as coco import samples.backlash.backlash as backlash import samples.backlash2.backlash2 as backlash2 class MaskRCNNModel(): MODEL_FILE_NAME = "mask_rcnn_coco.h5" CLASSES = ['BG', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'] CONFIG_CLASS = coco.CocoConfig def __init__(self, model_file_name=None): # Local path to trained weights file COCO_MODEL_PATH = model_file_name if model_file_name else os.path.join(ROOT_DIR, self.MODEL_FILE_NAME) class InferenceConfig(self.CONFIG_CLASS): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 NUM_CLASSES = len(self.CLASSES) # COCO has 80 classes self.config = InferenceConfig() # config.display() # Create model object in inference mode. model = modellib.MaskRCNN(mode="inference", model_dir=MODEL_DIR, config=self.config) # Load weights model.load_weights(COCO_MODEL_PATH, by_name=True) # COCO Class names # Index of the class in the list is its ID. For example, to get ID of # the teddy bear class, use: class_names.index('teddy bear') class_names = self.CLASSES self.model = model class BacklashMaskRCNNModel(MaskRCNNModel): CLASSES = ['BG', 'policeman'] MODEL_FILE_NAME = "logs/police220211106T1204/mask_rcnn_police2_0019.h5" CONFIG_CLASS = backlash.PoliceConfig class Backlash2MaskRCNNModel(MaskRCNNModel): CLASSES = ['BG', 'policeman', 'protester'] MODEL_FILE_NAME = "logs/police220211106T1204/mask_rcnn_police2_0019.h5" CONFIG_CLASS = backlash2.PoliceConfig # IMAGE_DIR = os.path.join(ROOT_DIR, "datasets/police/val") # file_names = next(os.walk(IMAGE_DIR))[2] # file_names = list(filter(lambda x: not x.endswith("json"), file_names)) # image = skimage.io.imread(os.path.join(IMAGE_DIR, file_names[0])) def process_image(image, color=(1.0, 1.0, 0.0)): # Run detection global model_full, model if model_full is None: model = BacklashMaskRCNNModel() model_full = MaskRCNNModel() results = model_full.model.detect([image], verbose=1) results_policeman = model.model.detect([image], verbose=1) mask_other = np.logical_or.reduce(results[0]['masks'][:,:,results[0]['class_ids'] == 1], axis=2) mask_policeman = np.logical_or.reduce(results_policeman[0]['masks'][:,:,results_policeman[0]['scores'] > 0.5], axis=2) # mask = np.logical_or(mask_policeman, mask_other) # plt.imshow(mask.astype(np.uint8)) # masked_image = image.astype(np.uint32).copy() # masked_image = visualize.apply_mask(masked_image, mask, visualize.random_colors(2)[0], alpha=1) # # plt.imshow(masked_image.astype(np.uint8)) mask = np.logical_and(mask_other, np.logical_not(mask_policeman)) masked_image = image.astype(np.uint32).copy() masked_image = visualize.apply_mask(masked_image, mask, color, alpha=1) # plt.imshow(masked_image.astype(np.uint8)) return masked_image if __name__ == '__main__': image = process_image(skimage.io.imread("images/no-cops-test.jpg")) image = Image.fromarray(image.astype(np.uint8)) image.save("test.jpg")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 12 02:57:59 2020 @author: eduardo """ import warnings from .country import * from .dataset import * from .functions import * from .region import * from .models import * from .stat import * # neglecting warnings warnings.filterwarnings('ignore')
import os import pytest from dvc.compat import fspath, fspath_py35 from dvc.dvcfile import Dvcfile @pytest.mark.parametrize("cached", [True, False]) def test_update_import(tmp_dir, dvc, erepo_dir, cached): gen = erepo_dir.dvc_gen if cached else erepo_dir.scm_gen with erepo_dir.branch("branch", new=True), erepo_dir.chdir(): gen("version", "branch", "add version file") old_rev = erepo_dir.scm.get_rev() stage = dvc.imp(fspath(erepo_dir), "version", "version", rev="branch") assert (tmp_dir / "version").read_text() == "branch" assert stage.deps[0].def_repo["rev_lock"] == old_rev # Update version file with erepo_dir.branch("branch", new=False), erepo_dir.chdir(): gen("version", "updated", "update version content") new_rev = erepo_dir.scm.get_rev() assert old_rev != new_rev dvc.update([stage.path]) assert (tmp_dir / "version").read_text() == "updated" stage = Dvcfile(dvc, stage.path).stage assert stage.deps[0].def_repo["rev_lock"] == new_rev def test_update_import_after_remote_updates_to_dvc(tmp_dir, dvc, erepo_dir): old_rev = None with erepo_dir.branch("branch", new=True), erepo_dir.chdir(): erepo_dir.scm_gen("version", "branch", commit="add version file") old_rev = erepo_dir.scm.get_rev() stage = dvc.imp(fspath(erepo_dir), "version", "version", rev="branch") imported = tmp_dir / "version" assert imported.is_file() assert imported.read_text() == "branch" assert stage.deps[0].def_repo == { "url": fspath(erepo_dir), "rev": "branch", "rev_lock": old_rev, } new_rev = None with erepo_dir.branch("branch", new=False), erepo_dir.chdir(): erepo_dir.scm.repo.index.remove(["version"]) erepo_dir.dvc_gen("version", "updated") erepo_dir.scm.add(["version", "version.dvc"]) erepo_dir.scm.commit("upgrade to DVC tracking") new_rev = erepo_dir.scm.get_rev() assert old_rev != new_rev (status,) = dvc.status([stage.path])["version.dvc"] (changed_dep,) = list(status["changed deps"].items()) assert changed_dep[0].startswith("version ") assert changed_dep[1] == "update available" dvc.update([stage.path]) assert dvc.status([stage.path]) == {} assert imported.is_file() assert imported.read_text() == "updated" stage = Dvcfile(dvc, stage.path).stage assert stage.deps[0].def_repo == { "url": fspath(erepo_dir), "rev": "branch", "rev_lock": new_rev, } def test_update_before_and_after_dvc_init(tmp_dir, dvc, git_dir): with git_dir.chdir(): git_dir.scm_gen("file", "first version", commit="first version") old_rev = git_dir.scm.get_rev() stage = dvc.imp(fspath(git_dir), "file", "file") with git_dir.chdir(): git_dir.init(dvc=True) git_dir.scm.repo.index.remove(["file"]) os.remove("file") git_dir.dvc_gen("file", "second version", commit="with dvc") new_rev = git_dir.scm.get_rev() assert old_rev != new_rev assert dvc.status([stage.path]) == { "file.dvc": [ { "changed deps": { "file ({})".format(fspath(git_dir)): "update available" } } ] } dvc.update([stage.path]) assert (tmp_dir / "file").read_text() == "second version" assert dvc.status([stage.path]) == {} def test_update_import_url(tmp_dir, dvc, tmp_path_factory): import_src = tmp_path_factory.mktemp("import_url_source") src = import_src / "file" src.write_text("file content") dst = tmp_dir / "imported_file" stage = dvc.imp_url(fspath(src), fspath(dst)) assert dst.is_file() assert dst.read_text() == "file content" # update data src.write_text("updated file content") assert dvc.status([stage.path]) == {} dvc.update([stage.path]) assert dvc.status([stage.path]) == {} assert dst.is_file() assert dst.read_text() == "updated file content" def test_update_rev(tmp_dir, dvc, scm, git_dir): with git_dir.chdir(): git_dir.scm_gen({"foo": "foo"}, commit="first") dvc.imp(fspath(git_dir), "foo") assert (tmp_dir / "foo.dvc").exists() with git_dir.chdir(), git_dir.branch("branch1", new=True): git_dir.scm_gen({"foo": "foobar"}, commit="branch1 commit") branch1_head = git_dir.scm.get_rev() with git_dir.chdir(), git_dir.branch("branch2", new=True): git_dir.scm_gen({"foo": "foobar foo"}, commit="branch2 commit") branch2_head = git_dir.scm.get_rev() stage = dvc.update(["foo.dvc"], rev="branch1")[0] assert stage.deps[0].def_repo == { "url": fspath(git_dir), "rev": "branch1", "rev_lock": branch1_head, } with open(fspath_py35(tmp_dir / "foo")) as f: assert "foobar" == f.read() stage = dvc.update(["foo.dvc"], rev="branch2")[0] assert stage.deps[0].def_repo == { "url": fspath(git_dir), "rev": "branch2", "rev_lock": branch2_head, } with open(fspath_py35(tmp_dir / "foo")) as f: assert "foobar foo" == f.read() def test_update_recursive(tmp_dir, dvc, erepo_dir): with erepo_dir.branch("branch", new=True), erepo_dir.chdir(): erepo_dir.scm_gen( {"foo1": "text1", "foo2": "text2", "foo3": "text3"}, commit="add foo files", ) old_rev = erepo_dir.scm.get_rev() tmp_dir.gen({"dir": {"subdir": {}}}) stage1 = dvc.imp( fspath(erepo_dir), "foo1", os.path.join("dir", "foo1"), rev="branch", ) stage2 = dvc.imp( fspath(erepo_dir), "foo2", os.path.join("dir", "subdir", "foo2"), rev="branch", ) stage3 = dvc.imp( fspath(erepo_dir), "foo3", os.path.join("dir", "subdir", "foo3"), rev="branch", ) assert (tmp_dir / os.path.join("dir", "foo1")).read_text() == "text1" assert ( tmp_dir / os.path.join("dir", "subdir", "foo2") ).read_text() == "text2" assert ( tmp_dir / os.path.join("dir", "subdir", "foo3") ).read_text() == "text3" assert stage1.deps[0].def_repo["rev_lock"] == old_rev assert stage2.deps[0].def_repo["rev_lock"] == old_rev assert stage3.deps[0].def_repo["rev_lock"] == old_rev with erepo_dir.branch("branch", new=False), erepo_dir.chdir(): erepo_dir.scm_gen( {"foo1": "updated1", "foo2": "updated2", "foo3": "updated3"}, "", "update foo content", ) new_rev = erepo_dir.scm.get_rev() assert old_rev != new_rev dvc.update(["dir"], recursive=True) stage1 = Dvcfile(dvc, stage1.path).stage stage2 = Dvcfile(dvc, stage2.path).stage stage3 = Dvcfile(dvc, stage3.path).stage assert stage1.deps[0].def_repo["rev_lock"] == new_rev assert stage2.deps[0].def_repo["rev_lock"] == new_rev assert stage3.deps[0].def_repo["rev_lock"] == new_rev
class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ # Runtime: 188 ms # Memory: 14.5 MB # Binary search start = 0 end = len(nums) - 1 while start <= end: mid = (start + end) // 2 if nums[mid] == target: return mid elif nums[mid] > target: end = mid - 1 else: start = mid + 1 return -1 class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: int """ # Runtime: 196 ms # Memory: 14.7 MB # Linear search try: return nums.index(target) except ValueError: return -1
"""Support for a ScreenLogic 'circuit' switch.""" import logging from screenlogicpy.const import ON_OFF from homeassistant.components.switch import SwitchEntity from . import ScreenlogicEntity from .const import DOMAIN _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up entry.""" entities = [] data = hass.data[DOMAIN][config_entry.entry_id] coordinator = data["coordinator"] for switch in data["devices"]["switch"]: entities.append(ScreenLogicSwitch(coordinator, switch)) async_add_entities(entities, True) class ScreenLogicSwitch(ScreenlogicEntity, SwitchEntity): """ScreenLogic switch entity.""" @property def name(self): """Get the name of the switch.""" return f"{self.gateway_name} {self.circuit['name']}" @property def is_on(self) -> bool: """Get whether the switch is in on state.""" return self.circuit["value"] == 1 async def async_turn_on(self, **kwargs) -> None: """Send the ON command.""" return await self._async_set_circuit(ON_OFF.ON) async def async_turn_off(self, **kwargs) -> None: """Send the OFF command.""" return await self._async_set_circuit(ON_OFF.OFF) async def _async_set_circuit(self, circuit_value) -> None: if await self.hass.async_add_executor_job( self.gateway.set_circuit, self._data_key, circuit_value ): _LOGGER.debug("Screenlogic turn %s %s", circuit_value, self._data_key) await self.coordinator.async_request_refresh() else: _LOGGER.info("Screenlogic turn %s %s error", circuit_value, self._data_key) @property def circuit(self): """Shortcut to access the circuit.""" return self.circuits_data[self._data_key] @property def circuits_data(self): """Shortcut to access the circuits data.""" return self.coordinator.data["circuits"]
import django_filters from .models import Organization, Application class ApplicationFilter(django_filters.FilterSet): name = django_filters.CharFilter(lookup_expr='icontains') organization = django_filters.ModelMultipleChoiceFilter(queryset=Organization.objects.all()) business_criticality = django_filters.MultipleChoiceFilter(choices=Application.BUSINESS_CRITICALITY_CHOICES) platform = django_filters.MultipleChoiceFilter(choices=Application.PLATFORM_CHOICES) lifecycle = django_filters.MultipleChoiceFilter(choices=Application.LIFECYCLE_CHOICES) origin = django_filters.MultipleChoiceFilter(choices=Application.ORIGIN_CHOICES) asvs_level = django_filters.MultipleChoiceFilter(choices=Application.ASVS_CHOICES) class Meta: model = Application fields = [ 'name', 'organization', 'business_criticality', 'platform', 'lifecycle', 'origin', 'external_audience', 'internet_accessible', 'technologies', 'regulations', 'service_level_agreements', 'tags', 'asvs_level' ]
"""Define abstract base classes of how the local chemical stock database should behave. This interface will be implemented in one of two ways: using sqlalchemy, and using puchdb. """ import typing import hashlib import json import datetime import serverlib.timelib as timelib import serverlib.qai_helper as qai_helper class BaseLocMutation: VALID_OPS = frozenset(['missing', 'found', 'moved']) def do_hash(dat: typing.Any) -> str: """Calculate a hash function of a data structure. This routine works by converting a data structure to a json string, then applying the SHA1 algorithm. Finally, the hexdigest is returned. Attention: Because conversion to json is involved, only serialisable data structures can be input. Note: In this routine, crucially, keys are sorted in dicts when converting to json. This ensures that identical dicts created differently (adding elements in a different order) produce the same hash. Args: dat: A serialisable python data structure to calculate the hash of. Returns: A string representing a hash function. """ return hashlib.sha1(json.dumps(dat, sort_keys=True).encode('utf-8')).hexdigest() class LocNode: """An internal helper class used to sort the hierarchical location names.""" def __init__(self, name: str) -> None: self.name = name self.child_dct: typing.Dict[str, "LocNode"] = {} self.val: typing.Optional[dict] = None def addtree(self, dct) -> None: """Add a location dictionary to a leaf in the tree based on its hierarchical name.""" namelst = dct['name'].split('\\') # print('nlst {}'.format(namelst)) n_n = self for curname in namelst: nextlevel = n_n.child_dct.get(curname, None) if nextlevel is None: nextlevel = n_n.child_dct[curname] = LocNode(curname) n_n = nextlevel n_n.setval(dct) def setval(self, newval) -> None: """Set the value of the LocNode exactly once""" if self.val is None: self.val = newval else: raise RuntimeError('LocNode value set twice!') def getval(self) -> typing.Optional[dict]: """Return this LocNode's value""" return self.val def dfslst(self, topname, lst) -> None: """Perform a DFS traversal starting from this node.""" fullname = "{}.{}".format(topname, self.name) val = self.getval() if val is not None: lst.append(val) for child in sorted(self.child_dct.values(), key=lambda a: a.name): child.dfslst(fullname, lst) def sortloclist(orglst: typing.List[dict]) -> typing.List[dict]: """Sort the list of location dicts in a hierarchically sensible order. The method applied is the following: Nodes are added to a tree based on name, then an in-order DFS traversal is performed (children are sorted alphabetically) to sort the list. Args: orglst: the original, unsorted list of location dicts Returns: A copy of the input list sorted according to hierarchical location. """ root = LocNode('') for dct in orglst: root.addtree(dct) rlst: typing.List[dict] = [] root.dfslst("", rlst) return rlst DBRecList = typing.List[typing.Dict[str, typing.Any]] LocChangeTup = typing.Tuple[int, str] LocChangeList = typing.List[LocChangeTup] class BaseDB: """Define some common operations between databases. This includes how to interact with QAI via HTTP requests. """ def __init__(self, qaisession: typing.Optional[qai_helper.QAISession], tz_name: str) -> None: """ This database is accessed by the stocky web server. It is passed a :class:`qai_helper.QAISession` instance which it uses to access the QAI database via an HTTP API. This stock information is stored to a local file locQAIfname as an sqlite3 database in the server state directory if a name is provided. Otherwise it is stored in memory. Args: qaisession: the session instance used to access the QAI server. tz_name: the name of the local timezone. """ self.qaisession = qaisession timelib.set_local_timezone(tz_name) self._current_date = timelib.loc_nowtime().date() self._db_has_changed = True self._cachedct: typing.Optional[dict] = None def has_changed(self) -> bool: """Return : the database has changed since the last time data for the webclient was extracted from it. """ return self._db_has_changed def get_ts_data(self) -> qai_helper.QAIChangedct: """Retrieve the current timestamp data from the database. For each database table, we keep a timestamp indicating the last time it was updated. The dict of these timestamps is returned. """ raise NotImplementedError("not implemented") def update_from_qai(self) -> dict: """Update the local ChemStock database using the qaisession. Returns: A dict describing what happened (success, error messages) """ qaisession = self.qaisession if qaisession is None or not qaisession.is_logged_in(): return dict(ok=False, msg="User not logged in") # get the locally stored timestamp data from our database cur_tsdata = self.get_ts_data() try: newds = qai_helper.QAIDataset(None, cur_tsdata) except RuntimeError as err: return dict(ok=False, msg="QAI access error: {}".format(str(err))) # load those parts from QAI that are out of date update_dct = qaisession.clever_update_qai_dump(newds) # if any value is True, then we did get something from QAI... num_updated = sum(update_dct.values()) if num_updated > 0: try: self._db_has_changed = self.load_qai_data(newds, update_dct) except TypeError as err: return dict(ok=False, msg="database error: {}".format(str(err))) return dict(ok=True, msg="Successfully updated {} tables for QAI".format(num_updated)) def load_qai_data(self, qai_ds: qai_helper.QAIDataset, update_dct: typing.Optional[qai_helper.QAIUpdatedct] = None) -> bool: """Replace the complete database contents with the data contained in qai_ds. If update_dct is provided, only update those tables for which update_dct[idname] is True. Args: qai_ds: the dataset provided by from QAI. update_dct: indicate those tables that need updating. Returns: 'the update was successful'. """ raise NotImplementedError('override this in subclasses') def calc_final_state(self, slst: typing.List[dict]) -> typing.Tuple[dict, bool, bool]: """ Calculate the final state from this list of states. We return the nominal state record and two booleans: ismissing, hasexpired. Strategy: we assign values to the various possible states and sort according to these values. Any missing record will be the first one. The exp record is the last one (should exist, check the date with current date) The nominal state is the second to last in the list. """ if len(slst) < 2: # raise RuntimeError("state list is too short {}".format(slst)) # the list may also contain a single EXPIRED record # or, in legacy cases, a single IN_USE record. nom_state = exp_dict = slst[0] ismissing = False # if exp_dict['status'] != 'EXPIRED': # raise RuntimeError('exp_dict is not expired {}'.format(exp_dict)) else: odct = dict(MISSING=-1, MADE=0, VALIDATED=1, IN_USE=2, USED_UP=5, EXPIRED=6, RUO_EXPIRED=7, DISPOSED=8) # create tuples of input dicts with scores from odct. try: plst = [(d, odct.get(d['status'], None)) for d in slst] except KeyError: raise RuntimeError("status field missing in state record {}".format(slst)) qlst = [tt for tt in plst if tt[1] is not None] qlst.sort(key=lambda a: a[1]) exp_dict = qlst[-1][0] nom_state = qlst[-2][0] ismissing = qlst[0][0]['status'] == 'MISSING' # we could have no expired record, but a used up record instead. exp_state = exp_dict.get('status', None) if exp_state is None: raise RuntimeError("status field missing in state record {}".format(exp_dict)) elif exp_state == 'EXPIRED': # Cannot use fromisoformat in 3.6... # expiry_date = datetime.date.fromisoformat(exp_dict['occurred']) # the string is of the form '2011-04-20' expiry_date = datetime.date(*[int(s) for s in exp_dict['occurred'].split('-')]) has_expired = expiry_date < self._current_date else: has_expired = False # print("FFF {}".format(slst)) rtup = (nom_state, ismissing, has_expired) # print("GGG {}".format(rtup)) return rtup def get_location_list(self) -> DBRecList: """Return a list of all defined locations.""" raise NotImplementedError('not implemented') def get_reagent_item_list(self) -> DBRecList: """Return a list of all reagent items.""" raise NotImplementedError('not implemented') def get_reagent_item_status_list(self) -> DBRecList: """Return a list of all reagent item statuses.""" raise NotImplementedError('not implemented') def get_reagent_list(self) -> DBRecList: """Return a list of all reagents.""" raise NotImplementedError('not implemented') def _do_generate_webclient_stocklist(self) -> dict: """Generate the stock list in a form required by the web client. Returns: The dict returned has the following entries: loclst: a list of dicts containing the stock locations, e.g. [{'id': 10000, 'name': 'SPH'}, {'id': 10001, 'name': 'SPH\\638'}, ... ] The itemlst is a list of dicts containing: {'id': 18478, 'last_seen': None, 'lot_num': '2019AD3EB', 'notes': '8 bottles of spare reagents', 'qcs_location_id': 10010, 'qcs_reag_id': 6297, 'rfid': 'REPLACE ME'}, {'id': 18479, 'last_seen': None, 'lot_num': 'INT.BP.17.02', 'notes': None, 'qcs_location_id': 10016, 'qcs_reag_id': 6217, 'rfid': 'REPLACE ME'} The itmstatlst is a list of dicts containing: {'id': 41418, 'occurred': '2021-04-30T07:00:00Z', 'qcs_reag_item_id': 18512, 'qcs_user_id': 113, 'status': 'EXPIRED'}, {'id': 41419, 'occurred': '2018-06-01T22:54:26Z', 'qcs_reag_item_id': 18513, 'qcs_user_id': 112, 'status': 'MADE'}, {'id': 41420, 'occurred': '2020-04-03T00:00:00Z', 'qcs_reag_item_id': 18513, 'qcs_user_id': 112, 'status': 'EXPIRED'} The reagentlst is a list of dicts containing: {'id': 8912, 'name': 'Atazanavir-bisulfate', 'basetype': 'reagent', 'catalog_number': None, 'category': 'TDM', 'date_msds_expires': None, 'disposed': None, 'expiry_time': None, 'hazards': 'Avoid inhalation, skin and eye contact. Wear PPE.', 'location': None, 'msds_filename': 'ATV_BS_A790050MSDS.pdf', 'needs_validation': None, 'notes': None, 'qcs_document_id': None, 'storage': '-20 C', 'supplier': None}, {'id': 8932, 'name': 'Triton X-100', 'basetype': 'stockchem', 'catalog_number': 'T8787', 'category': 'Other Chemicals', 'date_msds_expires': '2020-02-28T00:00:00Z', 'disposed': None, 'expiry_time': 2555, 'hazards': None, 'location': None, 'msds_filename': None, 'needs_validation': None, 'notes': None, 'qcs_document_id': None, 'storage': 'Room Temperature', 'supplier': 'Sigma Aldrich'}, {'id': 8952, 'name': 'Proviral V3 Primary 1st PCR mix', 'basetype': 'reagent', 'catalog_number': None, 'category': 'PCR', 'date_msds_expires': None, 'disposed': None, 'expiry_time': None, 'hazards': None, 'location': '604', 'msds_filename': None, 'needs_validation': None, 'notes': None, 'qcs_document_id': None, 'storage': '-20 C', 'supplier': None} """ # NOTE: as we want dicts and not Location instances, we go directly to # the 'SQL level' (session.execute() and not the 'ORM level' (session.query()) # of sqlquery. loclst = self.get_location_list() itmlst = self.get_reagent_item_list() itmstat = self.get_reagent_item_status_list() # create a Dict[locationid, List[reagentitem]] and a Dict[RFID, reagentitem] d_d: typing.Dict[typing.Optional[int], typing.List[dict]] = {} # rfid_reagitem_dct = ff = {} f_f: typing.Dict[str, dict] = {} for reag_item in itmlst: loc_id = reag_item.get('qcs_location_id', None) # we will keep a list of items with None locations... should not happen, but does # then we add these to the UNKNOWN list later on d_d.setdefault(loc_id, []).append(reag_item) # if loc_id is not None: # else: # raise RuntimeError("found None location {}".format(reag_item)) # rfidstr = reag_item.get('rfid', None) if rfidstr is not None: if rfidstr != 'REPLACE ME': f_f.setdefault(rfidstr, reag_item) else: raise RuntimeError("found None location {}".format(reag_item)) # unmangling for None... # find loc_id for 'UNKNOWN'... if None in d_d: none_lst = d_d[None] del d_d[None] flst = [loc for loc in loclst if loc['name'] == 'UNKNOWN'] assert len(flst) == 1, "cannot determine 'UNKNOWN' location" unknown_lst = d_d.setdefault(flst[0]['id'], []) unknown_lst.extend(none_lst) # # NOW, create a Dict[locationid, Tuple[locrecord, List[reagentitem]]] # which we send to the client r_r: typing.Dict[int, typing.Tuple[dict, typing.List[dict]]] = {} locid_reagitem_dct = r_r for location in loclst: loc_id = location.get('id', None) r_r[loc_id] = (location, d_d.get(loc_id, [])) assert len(r_r) == len(loclst), "problem with location ids!" # # collect the state records for each reagent item... z_z: typing.Dict[int, list] = {} for state in itmstat: reag_item_id = state['qcs_reag_item_id'] # we want to replace the occurred timedate entry with a simple date # to present to the user, i.e. # 'occurred': '2011-04-20T00:00:00Z' -> '2011-04-20' dstr = state['occurred'] state['occurred'] = dstr.split('T')[0] z_z.setdefault(reag_item_id, []).append(state) # and evaluate the 'final state' for each reagent item ritemdct = {} for reag_item in itmlst: reag_item_id = reag_item['id'] state_lst = z_z.get(reag_item_id, None) if state_lst is None: state_info = None else: state_info = self.calc_final_state(state_lst) # print("BLAAA {} {}".format(reag_item_id, state_info)) # we eliminate any reagent item that has a state of 'USED_UP'. dct, ismissing, hasexpired = state_info state_info = None if dct['status'] == 'USED_UP' else state_info if state_info is not None: ritemdct[reag_item_id] = (reag_item, state_info) # else: # print("skipping {}".format(reag_item)) # create a Dict[reagentid, reagent] rl = self.get_reagent_list() rg = {} for reagent in rl: # delete the legacy location field in reagents... reagent.pop('location', None) reagent_id = reagent.get('id', None) if reagent_id is not None: rg[reagent_id] = reagent else: raise RuntimeError("reagent ID is None") assert len(rg) == len(rl), "problem with reagent ids!" # "itmstatlst": itmstat, # finally, sort the loclst according to a hierarchy loclst = sortloclist(loclst) # , "rfiddct": rfid_reagitem_dct} return {"loclst": loclst, "locdct": locid_reagitem_dct, "ritemdct": ritemdct, "reagentdct": rg} def generate_webclient_stocklist(self) -> dict: """Generate the chemical stock list in a form suitable for the webclient. Returns: The dict of stock items for the webclient. Raises: RuntimeError: if the update from QAI failed. """ if self._db_has_changed: self._cachedct = self._do_generate_webclient_stocklist() self._db_has_changed = False if self._cachedct is None: raise RuntimeError('Internal error') return self._cachedct # location changes --- def reset_loc_changes(self) -> None: """Remove all location changes in the database. A location change occurs when, during stock taking, a reagent item was found in a location that does not agree with the database. The user enters a location change for that item to be uploaded to QAI at a later date. """ raise NotImplementedError('not implemented') def number_of_loc_changes(self) -> int: """Return the number of location changes currently in the database""" raise NotImplementedError('not implemented') def _verify_loc_changes(self, locid: int, locdat: LocChangeList) -> None: """Perform a sanity check on the location changes. This routine should be called in add_loc_changes() before any changes are actually committed to the database.""" # NOTE: type check all records before adding any records. In this way, # any type exception does no change the database. if not isinstance(locid, int): raise ValueError("locid must be an int") print("ADDLOCCHANGES : {}".format(locdat)) for reag_itm_id, opstring in locdat: if not isinstance(reag_itm_id, int): raise ValueError("reag_itm_id must be an int") if not isinstance(opstring, str): raise ValueError("opstring must be a string") if opstring not in BaseLocMutation.VALID_OPS: raise ValueError("unknown opstring '{}', valid ops: {}".format(opstring, BaseLocMutation.VALID_OPS)) def add_loc_changes(self, locid: int, locdat: LocChangeList) -> None: """Add a location change to the database. Any location mutation with an existing reagent_item id will be silently overwritten by any location id, and opstring. In addition, do_ignore will be set to False. Args: locid: the id of the new location of the reagent items in locdat locdat: a list of tuple with an reagent_item id (int) and an opstring (str) indicating the items to change the location of. (reagent item ID, string) For example: (18023, 'missing') Raises: ValueError: if the data types are not as expected. """ raise NotImplementedError('not implemented') def set_ignore_flag(self, reag_item_id: int, do_ignore: bool) -> dict: """Set/reset the ignore location change flag. Args: reag_item_id: the reagent item with a location change do_ignore: set this to True (the location change is ignored) or False Returns: A dict with a response that can be sent back to the webclient for diagnostics. The dict will have an 'ok' boolean entry, and a 'msg' string entry. """ raise NotImplementedError('not implemented') def get_loc_changes(self, oldhash: typing.Optional[str] = None) -> \ typing.Tuple[str, typing.Optional[typing.Dict[int, LocChangeList]]]: """Return all location changes in the database. Args: oldhash: an optional hashkey indicating the last retrieved database state. Returns: If oldhash does not match our current hash, return the new hash and a new dictionary. The dictionary keys are location id's, and the values are a list of tuples. The tuples are of the form (reagent item id, operation string, row id, row ignore boolean) If the hash does match, return the newhash and None. In this case, the stocky server will know that the webclient already has an a up-to-date version of the location changes. """ raise NotImplementedError('not implemented') def perform_loc_changes(self, move_dct: dict) -> dict: """ * Report the required changes from the list provided to QAI. * Update the local Locmutation table accordingly * Purge successfully recorded locmutations * Replenish our DB from QAI. * Return a dict in response (success/failure) """ raise NotImplementedError('not implemented')
# # Copyright (c) 2009-2012 Joshua Hughes <[email protected]> # import urllib import webbrowser import qmk class BeolingusCommand(qmk.Command): '''Look up a German word using Beolingus. A new tab will be opened in the default web browser with the search results.''' def __init__(self): self._name = 'beolingus' self._help = self.__doc__ self.__baseURL = 'http://dict.tu-chemnitz.de/?query=%s' \ '&service=deen&mini=1' @qmk.Command.actionRequiresArgument def action(self, arg): webbrowser.open_new_tab( self.__baseURL % urllib.quote_plus(arg.encode('latin_1'))) def commands(): return [ BeolingusCommand() ]
def much(x): return x+1
#!/usr/bin/env python from __future__ import print_function import setuptools import os, sys, os.path, glob, \ tempfile, subprocess, shutil def check_for_openmp(): # Create a temporary directory tmpdir = tempfile.mkdtemp() curdir = os.getcwd() exit_code = 1 if os.name == 'nt': return False try: os.chdir(tmpdir) # Get compiler invocation compiler = os.getenv('CC', 'cc') # Attempt to compile a test script. # See http://openmp.org/wp/openmp-compilers/ filename = r'test.c' file = open(filename,'wt', 1) file.write( "#include <omp.h>\n" "#include <stdio.h>\n" "int main() {\n" "#pragma omp parallel\n" "printf(\"Hello from thread %d, nthreads %d\\n\", omp_get_thread_num(), omp_get_num_threads());\n" "}" ) file.flush() with open(os.devnull, 'w') as fnull: exit_code = subprocess.call([compiler, '-fopenmp', filename], stdout=fnull, stderr=fnull) # Clean up file.close() finally: os.chdir(curdir) shutil.rmtree(tmpdir) return exit_code == 0 def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration('lib',parent_package,top_path) if check_for_openmp() == True: omp_args = ['-fopenmp'] else: omp_args = None # Because setjmp.h is included by lots of things, and because libpng hasn't # always properly checked its header files (see # https://bugzilla.redhat.com/show_bug.cgi?id=494579 ) we simply disable # support for setjmp. config.add_extension("bitarray", ["yt/utilities/lib/bitarray.pyx"], libraries=["m"], depends=["yt/utilities/lib/bitarray.pxd"]) config.add_extension("CICDeposit", ["yt/utilities/lib/CICDeposit.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("ContourFinding", ["yt/utilities/lib/ContourFinding.pyx"], include_dirs=["yt/utilities/lib/", "yt/geometry/"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd", "yt/utilities/lib/amr_kdtools.pxd", "yt/utilities/lib/ContourFinding.pxd", "yt/geometry/oct_container.pxd"]) config.add_extension("DepthFirstOctree", ["yt/utilities/lib/DepthFirstOctree.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("fortran_reader", ["yt/utilities/lib/fortran_reader.pyx"], include_dirs=["yt/utilities/lib/"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("geometry_utils", ["yt/utilities/lib/geometry_utils.pyx"], extra_compile_args=omp_args, extra_link_args=omp_args, libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("Interpolators", ["yt/utilities/lib/Interpolators.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("alt_ray_tracers", ["yt/utilities/lib/alt_ray_tracers.pyx"], libraries=["m"], depends=[]) config.add_extension("marching_cubes", ["yt/utilities/lib/marching_cubes.pyx", "yt/utilities/lib/FixedInterpolator.c"], include_dirs=["yt/utilities/lib/"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd", "yt/utilities/lib/fixed_interpolator.pxd", "yt/utilities/lib/FixedInterpolator.h", ]) config.add_extension("misc_utilities", ["yt/utilities/lib/misc_utilities.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("pixelization_routines", ["yt/utilities/lib/pixelization_routines.pyx", "yt/utilities/lib/pixelization_constants.c"], include_dirs=["yt/utilities/lib/"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd", "yt/utilities/lib/pixelization_constants.h"]) config.add_extension("Octree", ["yt/utilities/lib/Octree.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("origami", ["yt/utilities/lib/origami.pyx", "yt/utilities/lib/origami_tags.c"], include_dirs=["yt/utilities/lib/"], depends=["yt/utilities/lib/origami_tags.h"]) config.add_extension("image_utilities", ["yt/utilities/lib/image_utilities.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]), config.add_extension("PointsInVolume", ["yt/utilities/lib/PointsInVolume.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("QuadTree", ["yt/utilities/lib/QuadTree.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("RayIntegrators", ["yt/utilities/lib/RayIntegrators.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_extension("mesh_utilities", ["yt/utilities/lib/mesh_utilities.pyx"], include_dirs=["yt/utilities/lib/"], libraries=["m"], depends = ["yt/utilities/lib/fp_utils.pxd", ], ) config.add_extension("grid_traversal", ["yt/utilities/lib/grid_traversal.pyx", "yt/utilities/lib/FixedInterpolator.c", "yt/utilities/lib/kdtree.c"], include_dirs=["yt/utilities/lib/"], libraries=["m"], extra_compile_args=omp_args, extra_link_args=omp_args, depends = ["yt/utilities/lib/fp_utils.pxd", "yt/utilities/lib/kdtree.h", "yt/utilities/lib/FixedInterpolator.h", "yt/utilities/lib/fixed_interpolator.pxd", "yt/utilities/lib/field_interpolation_tables.pxd", ] ) config.add_extension("write_array", ["yt/utilities/lib/write_array.pyx"]) config.add_extension("ragged_arrays", ["yt/utilities/lib/ragged_arrays.pyx"]) config.add_extension("amr_kdtools", ["yt/utilities/lib/amr_kdtools.pyx"], libraries=["m"], depends=["yt/utilities/lib/fp_utils.pxd"]) config.add_subpackage("tests") if os.environ.get("GPERFTOOLS", "no").upper() != "NO": gpd = os.environ["GPERFTOOLS"] idir = os.path.join(gpd, "include") ldir = os.path.join(gpd, "lib") print(("INCLUDE AND LIB DIRS", idir, ldir)) config.add_extension("perftools_wrap", ["yt/utilities/lib/perftools_wrap.pyx"], libraries=["profiler"], library_dirs = [ldir], include_dirs = [idir], ) config.make_config_py() # installs __config__.py return config
#!/usr/bin/env python import numpy as np # ------ HELPER FUNCTIONS ------ # def sq(x): return np.sqrt(x) def calc_l0(A,Nv): return sq(A*4./(2*Nv-4)/sq(3)) def calc_kp(l0,lm,ks,m): return (6*ks*pow(l0,(m+1))*pow(lm,2) - 9*ks*pow(l0,(m+2))*lm + 4*ks*pow(l0,(m+3))) / (4*pow(lm,3)-8*l0*pow(lm,2)+4*pow(l0,2)*lm) def calc_mu0(x0,l0,ks,kp,m): return sq(3)*ks/(4.*l0) * (x0/(2.*pow((1-x0),3)) - 1./(4.*pow((1-x0),2)) + 1./4) + sq(3)*kp*(m+1)/(4.*pow(l0,(m+1))) # -------- COMPUTE QoIs -------- # def compute_mu(m, x0, ks, A, Nv): l0 = calc_l0(A,Nv) lm = l0/x0 kp = calc_kp(l0, lm, ks, m) return calc_mu0(x0, l0, ks, kp, m) def compute_mu_over_ks(m, x0, A, Nv): return compute_mu(m, x0, 1.0, A, Nv) # from optimal UQ results def set_rbc_params(mesh, x0, ks): m = 2.0 Nv = len(mesh.vertices) A = mesh.area V = mesh.volume # max likelihood estimate from Athena UQ, stretching # x0 = 0.48497214 2576 # ks = 22.6814565515 kb = 1.0 prms = { "tot_area" : A, "tot_volume" : V, "ka_tot" : 4900.0, "kv_tot" : 7500.0, "kBT" : 0.0, "gammaC" : 52.0, "gammaT" : 0.0, "shear_desc": "wlc", "ka" : 5000, "x0" : x0, "mpow" : m, "ks" : ks, "bending_desc" : "Kantor", "theta" : 0.0, "kb" : kb } mu = compute_mu(m, x0, ks, A, Nv) return prms # from Fedosov params def set_rbc_params0(prms, prms_bending, mesh): m = 2.0 Nv = len(mesh.vertices) A = mesh.area V = mesh.volume # max likelihood estimate from Athena UQ, stretching x0 = 1.0/2.2 ks = 35.429323407939094 kb = 27.105156961709344 prms = { "tot_area" : A, "tot_volume" : V, "ka_tot" : 4900.0, "kv_tot" : 7500.0, "kBT" : 0.0, "gammaC" : 52.0, "gammaT" : 0.0, "shear_desc": "wlc", "ka" : 5000, "x0" : x0, "mpow" : m, "ks" : ks, "bending_desc" : "Kantor", "theta" : 0.0, "kb" : kb } mu = compute_mu(m, x0, ks, A, Nv) return prms def print_rbc_params(p): print("A = {}".format(p.totArea)) print("V = {}".format(p.totVolume)) print("x0 = {}".format(p.x0)) print("kb = {}".format(pb.kb)) print("ks = {}".format(p.ks)) print("m = {}".format(p.mpow))
from hackerrank.HackerRankAPI import HackerRankAPI key = "" compiler = HackerRankAPI(api_key = key) source = """ for i in range(5): print i """ sample_msg = """:compile cpp ``` #include <iostream> int main() { std::cout << "hello world" << std::endl; return 0; } ``` """ # if sample_msg.startswith(":compile"): # arr = sample_msg.split('```') # lang = arr[0].split(' ')[1] # source = arr[1] # result = compiler.run({ # 'source': source, # 'lang':'cpp' # }) # out = result.output # if out != None: # print(str(out[0])) # else: # print(result.message) s = compiler.supportedlanguages() print(s)
import numpy as np x = np.c_[np.random.normal(size=1e4), np.random.normal(scale=4, size=1e4)] from nipy.neurospin.utils.emp_null import ENN enn = ENN(x) enn.threshold(verbose=True)
import cv2 import os import numpy as np import tensorflow as tf from tensorflow.keras.layers import Conv2D,Conv2DTranspose,MaxPool2D import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.keras.layers import Concatenate from utils import * class UNET: def __init__(self, classes): """ :param classes: No.of classes """ self.classes = classes self.ops = ops(self.classes) def down_conv_block(self, x, filters): """ :param x: :param filters: :return: """ s1 = self.ops.down_conv_(x, filters, filter_size= 3, stride= 1, padding= "SAME") s2 = self.ops.down_conv_(s1, filters, filter_size= 3, stride= 1, padding= "SAME") return s2 def up_conv_block(self, x, filters, skip_connection): """ :param x: input :param filters: no. of filters :param skip_connection: """ e1 = self.ops.up_conv_(x, filters, filter_size= 2, stride= 2, padding= "SAME") concat = tf.concat([e1, skip_connection], axis= -1) #layer 2 conv1 = self.ops.down_conv_(concat,filters,filter_size = 3,stride = 1, padding= "SAME") #layer3 conv2 = self.ops.down_conv_(conv1,filters,filter_size = 3,stride = 1, padding = "SAME") return conv2 def UNet(self, x): """ :param x: input :return: Output of the U-Net """ #encoder d1 = self.down_conv_block(x,32) m1 = self.ops.max_pool_(d1,filter_size=2,stride= 2,padding= "SAME") d2 = self.down_conv_block(m1,64) m2 = self.ops.max_pool_(d2,filter_size =2,stride=2,padding="SAME") d3 = self.down_conv_block(m2,128) m3 = self.ops.max_pool_(d3,filter_size=2,stride= 2,padding = "SAME") d4 =self.down_conv_block(m3,256) m4 = self.ops.max_pool_(d4,filter_size=2,stride= 2,padding = "SAME") #bottleneck bridge = self.ops.down_conv_(m4,1024,3,1,"SAME") bridge = self.ops.down_conv_(bridge,1024,3,1,"SAME") #decoder u1 = self.up_conv_block(bridge,256,d4) u2 = self.up_conv_block(u1,128,d3) u3 = self.up_conv_block(u2,64,d2) u4 = self.up_conv_block(u3,32,d1) #1x1 output logits = tf.keras.layers.Conv2D(self.classes,kernel_size=1,strides=1,padding="SAME")(u4) logits = tf.nn.sigmoid(logits) return logits def mini_batches_(self, X, Y, batch_size=64): """ function to produce minibatches for training :param X: input placeholder :param Y: mask placeholder :param batch_size: size of each batch :return: minibatches for training """ train_length = len(X) num_batches = int(np.floor(train_length / batch_size)) batches = [] for i in range(num_batches): batch_x = X[i * batch_size: i * batch_size + batch_size, :, :, :] batch_y = Y[i * batch_size:i * batch_size + batch_size, :, :] batches.append([batch_x, batch_y]) return batches
from bs4 import BeautifulSoup from scrapper.article_scrapper import ArticleScrapper class VoxArticleScrapper(ArticleScrapper): def scrap_header(self, dom: BeautifulSoup) -> str: return self.find_child_h1(dom, attrs={'class': 'c-page-title'}).text def scrap_content(self, dom: BeautifulSoup) -> str: return self.find_child_div(dom, attrs={'class': 'c-entry-content'}).text @staticmethod def domain(): return "vox.com"
from typing import Dict from botocore.paginate import Paginator class ListDetectors(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_detectors`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListDetectors>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'DetectorIds': [ 'string', ], } **Response Structure** - *(dict) --* 200 response - **DetectorIds** *(list) --* A list of detector Ids. - *(string) --* The unique identifier for a detector. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListFilters(Paginator): def paginate(self, DetectorId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_filters`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListFilters>`_ **Request Syntax** :: response_iterator = paginator.paginate( DetectorId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'FilterNames': [ 'string', ], } **Response Structure** - *(dict) --* 200 response - **FilterNames** *(list) --* A list of filter names - *(string) --* The unique identifier for a filter :type DetectorId: string :param DetectorId: **[REQUIRED]** The ID of the detector that specifies the GuardDuty service where you want to list filters. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListFindings(Paginator): def paginate(self, DetectorId: str, FindingCriteria: Dict = None, SortCriteria: Dict = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_findings`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListFindings>`_ **Request Syntax** :: response_iterator = paginator.paginate( DetectorId='string', FindingCriteria={ 'Criterion': { 'string': { 'Eq': [ 'string', ], 'Gt': 123, 'Gte': 123, 'Lt': 123, 'Lte': 123, 'Neq': [ 'string', ] } } }, SortCriteria={ 'AttributeName': 'string', 'OrderBy': 'ASC'|'DESC' }, PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'FindingIds': [ 'string', ], } **Response Structure** - *(dict) --* 200 response - **FindingIds** *(list) --* The list of the Findings. - *(string) --* The unique identifier for the Finding :type DetectorId: string :param DetectorId: **[REQUIRED]** The ID of the detector that specifies the GuardDuty service whose findings you want to list. :type FindingCriteria: dict :param FindingCriteria: Represents the criteria used for querying findings. - **Criterion** *(dict) --* Represents a map of finding properties that match specified conditions and values when querying findings. - *(string) --* - *(dict) --* Finding attribute (for example, accountId) for which conditions and values must be specified when querying findings. - **Eq** *(list) --* Represents the equal condition to be applied to a single field when querying for findings. - *(string) --* - **Gt** *(integer) --* Represents the greater than condition to be applied to a single field when querying for findings. - **Gte** *(integer) --* Represents the greater than equal condition to be applied to a single field when querying for findings. - **Lt** *(integer) --* Represents the less than condition to be applied to a single field when querying for findings. - **Lte** *(integer) --* Represents the less than equal condition to be applied to a single field when querying for findings. - **Neq** *(list) --* Represents the not equal condition to be applied to a single field when querying for findings. - *(string) --* :type SortCriteria: dict :param SortCriteria: Represents the criteria used for sorting findings. - **AttributeName** *(string) --* Represents the finding attribute (for example, accountId) by which to sort findings. - **OrderBy** *(string) --* Order by which the sorted findings are to be displayed. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListIPSets(Paginator): def paginate(self, DetectorId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_ip_sets`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListIPSets>`_ **Request Syntax** :: response_iterator = paginator.paginate( DetectorId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'IpSetIds': [ 'string', ], } **Response Structure** - *(dict) --* 200 response - **IpSetIds** *(list) --* A list of the IP set IDs - *(string) --* The unique identifier for an IP Set :type DetectorId: string :param DetectorId: **[REQUIRED]** The unique ID of the detector that you want to retrieve. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListInvitations(Paginator): def paginate(self, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_invitations`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListInvitations>`_ **Request Syntax** :: response_iterator = paginator.paginate( PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Invitations': [ { 'AccountId': 'string', 'InvitationId': 'string', 'InvitedAt': 'string', 'RelationshipStatus': 'string' }, ], } **Response Structure** - *(dict) --* 200 response - **Invitations** *(list) --* A list of invitation descriptions. - *(dict) --* Invitation from an AWS account to become the current account's master. - **AccountId** *(string) --* Inviter account ID - **InvitationId** *(string) --* This value is used to validate the inviter account to the member account. - **InvitedAt** *(string) --* Timestamp at which the invitation was sent - **RelationshipStatus** *(string) --* The status of the relationship between the inviter and invitee accounts. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListMembers(Paginator): def paginate(self, DetectorId: str, OnlyAssociated: str = None, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_members`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListMembers>`_ **Request Syntax** :: response_iterator = paginator.paginate( DetectorId='string', OnlyAssociated='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'Members': [ { 'AccountId': 'string', 'DetectorId': 'string', 'Email': 'string', 'InvitedAt': 'string', 'MasterId': 'string', 'RelationshipStatus': 'string', 'UpdatedAt': 'string' }, ], } **Response Structure** - *(dict) --* 200 response - **Members** *(list) --* A list of member descriptions. - *(dict) --* Contains details about the member account. - **AccountId** *(string) --* AWS account ID. - **DetectorId** *(string) --* The unique identifier for a detector. - **Email** *(string) --* Member account's email address. - **InvitedAt** *(string) --* Timestamp at which the invitation was sent - **MasterId** *(string) --* The master account ID. - **RelationshipStatus** *(string) --* The status of the relationship between the member and the master. - **UpdatedAt** *(string) --* The first time a resource was created. The format will be ISO-8601. :type DetectorId: string :param DetectorId: **[REQUIRED]** The unique ID of the detector of the GuardDuty account whose members you want to list. :type OnlyAssociated: string :param OnlyAssociated: Specifies what member accounts the response is to include based on their relationship status with the master account. The default value is TRUE. If onlyAssociated is set to TRUE, the response will include member accounts whose relationship status with the master is set to Enabled, Disabled. If onlyAssociated is set to FALSE, the response will include all existing member accounts. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass class ListThreatIntelSets(Paginator): def paginate(self, DetectorId: str, PaginationConfig: Dict = None) -> Dict: """ Creates an iterator that will paginate through responses from :py:meth:`GuardDuty.Client.list_threat_intel_sets`. See also: `AWS API Documentation <https://docs.aws.amazon.com/goto/WebAPI/guardduty-2017-11-28/ListThreatIntelSets>`_ **Request Syntax** :: response_iterator = paginator.paginate( DetectorId='string', PaginationConfig={ 'MaxItems': 123, 'PageSize': 123, 'StartingToken': 'string' } ) **Response Syntax** :: { 'ThreatIntelSetIds': [ 'string', ] } **Response Structure** - *(dict) --* 200 response - **ThreatIntelSetIds** *(list) --* The list of the threat intel set IDs - *(string) --* The unique identifier for an threat intel set :type DetectorId: string :param DetectorId: **[REQUIRED]** The detectorID that specifies the GuardDuty service whose ThreatIntelSets you want to list. :type PaginationConfig: dict :param PaginationConfig: A dictionary that provides parameters to control pagination. - **MaxItems** *(integer) --* The total number of items to return. If the total number of items available is more than the value specified in max-items then a ``NextToken`` will be provided in the output that you can use to resume pagination. - **PageSize** *(integer) --* The size of each page. - **StartingToken** *(string) --* A token to specify where to start paginating. This is the ``NextToken`` from a previous response. :rtype: dict :returns: """ pass
# Copyright (c) by it's authors. # Some rights reserved. See LICENSE, AUTHORS. from wallaby.pf.room import * from wallaby.pf.peer.viewer import * from wallaby.pf.peer.editor import * class Invoice(Room): def __init__(self, name): Room.__init__(self, name) self._count = None self._price = None self._document = None def customPeers(self): Viewer(self._name, self._countChanged, 'articles.*.count', raw=True) Viewer(self._name, self._priceChanged, 'articles.*.price', raw=True) self._subTotal = Editor(self._name, path='articles.*.total', raw=True) self._netto = Editor(self._name, path='netto', raw=True) self._vat = Editor(self._name, path='vat', raw=True) self._brutto = Editor(self._name, path='brutto', raw=True) self.catch(Viewer.In.Document, self._setDocument) def _setDocument(self, action, doc): self._document = doc def _countChanged(self, value): try: self._count = float(value) except: self._count = 0.0 self.changeTotal() def _priceChanged(self, value): try: self._price = float(value) except: self._price = 0.0 self.changeTotal() def changeTotal(self): if self._document == None or self._count == None or self._price == None: return if self._subTotal.isReadOnly(): return self._subTotal.changeValue(self._count * self._price) articles = self._document.get('articles') if not articles: return total = 0.0 for article in articles: if 'total' in article: try: total = total + float(article['total']) except: pass vat = total*0.19 self._vat.changeValue(vat) self._netto.changeValue(total) self._brutto.changeValue(total + vat)
import math from typing import NoReturn, Tuple from .general import Distribution class Binomial(Distribution): def __init__(self, prob=.5, size=20): """Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float): Representing the mean value of the distribution. stdev (float): Representing the standard deviation of the distribution. data_list (list of floats): A list of floats to be extracted from the data file. p (float): Representing the probability of an event occurring. n (int): The total number of trials. """ self.p = None self.set_p(prob) self.n = None self.set_n(size) self.calculate_mean() self.calculate_stdev() def set_p(self, new_value: float) -> NoReturn: """Mutator method realizes encapsulation of p attribute. 'p' stands for 'probability'. Args: new_value (float): New value of p attribute. Returns: NoReturn """ self.p = new_value def get_p(self) -> float: """Accessor method realizes encapsulation of p attribute. 'p' stands for 'probability'. Returns: float: The probability of an event occurring. """ return self.p def set_n(self, new_value: int) -> NoReturn: """Mutator method realizes encapsulation of n attribute. 'n' stands for total number of trials. Args: new_value (float): New value of n attribute. Returns: NoReturn """ self.n = new_value def get_n(self) -> int: """Accessor method realizes encapsulation of n attribute. 'n' stands for total number of trials. Returns: int: The total number of trials. """ return self.n def calculate_mean(self) -> float: """Function to calculate the mean from p and n. Args: None Returns: float: mean of the data set. """ mean = self.get_p() * self.get_n() self.set_mean(mean) return mean def calculate_stdev(self) -> float: """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set. """ variance = self.get_n() * self.get_p() * (1 - self.get_p()) stdev = math.sqrt(variance) self.set_stdev(stdev) return stdev def replace_stats_with_data(self) -> Tuple[float, int]: """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ if len(self.get_data()) > 0: self.set_n(len(self.get_data())) self.set_p(len([k for k in self.get_data() if k > 0]) / len(self.get_data())) self.calculate_mean() self.calculate_stdev() return self.get_p(), self.get_n() else: raise Exception("The data set is empty.") def plot(self) -> NoReturn: # TODO: implement with matplotlib barplot """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ raise NotImplementedError def pdf(self, k) -> float: """Probability density function calculator for the gaussian distribution. Args: k (float): point for calculating the probability density function. Returns: float: probability density function output. """ likelihood = (math.factorial(int(self.get_n())) / (math.factorial(int(k)) * math.factorial(int(self.get_n() - k)))) \ * (self.get_p()**k * (1-self.get_p())**(self.get_n() - k)) return likelihood def plot_pdf(self) -> NoReturn: # TODO: implement with matplotlib barplot """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ raise NotImplementedError def __add__(self, other: 'Binomial') -> 'Binomial': """Function to add together two Binomial distributions with equal p. Args: other (Binomial): Binomial instance. Returns: Binomial: Binomial distribution. """ try: assert self.get_p() == other.get_p(), 'p values are not equal' except AssertionError as error: raise error total = Binomial() total.set_p(self.get_p()) total.set_n(self.get_n() + other.get_n()) total.calculate_mean() total.calculate_stdev() return total def __repr__(self) -> str: """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return f"""mean {self.get_mean()}, standard deviation {self.get_stdev()}, p {self.get_p()}, n {self.get_n()}"""
adressbuch = {"JONAS": 123456, "PETER": 8765435} gesuchter_kontakt = input("Bitte geben Sie den Kontakt ein, den Sie suchen: ").upper() # JONAS if gesuchter_kontakt in adressbuch: print("Die Telefonnummer von", gesuchter_kontakt ,"ist:", adressbuch[gesuchter_kontakt]) else: print("Dieser Eintrag ist nicht vorhanden.") for zaehler in range(11): print(zaehler)
""" File name: plot_results.py Author: Esra Zihni Date created: 27.07.2018 This script creates plots for performance assessment and feature importance assessment. It reads the implementation and path options from the config.yml script. It saves the created plots as .png files. """ import itertools import os import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd import yaml from scipy.stats import iqr from utils.helper_functions import plot_features_rating, plot_performance ######################################################################################## ###### ASSIGN CONFIGURATION VARIABLES ################################################## ######################################################################################## # You need to add constructor in order to be able to use the join command in the yaml # file def join(loader, node): seq = loader.construct_sequence(node) return "".join(str(i) for i in seq) yaml.add_constructor("!join", join) # Read the config file cfg = yaml.load(open("config.yml", "r"), Loader=yaml.Loader) # Assign variables to use models_to_use = cfg["models to use"] subsampling_types = cfg["subsampling to use"] performance_measures = cfg["final performance measures"] scores_folder = cfg["scores folder path"] importance_folder = cfg["importance folder path"] figures_folder = cfg["figures folder path"] feature_dict = cfg["features"] ######################################################################################## ###### CREATE PLOTS OF PERFORMANCE AND FEATURE RATING ################################## ######################################################################################## # Check if the feature rating figures folder path to save already exists. If not, # create folder. if not os.path.exists(f"{figures_folder}/feature_ratings"): os.makedirs(f"{figures_folder}/feature_ratings") # Check if the performance figures folder path to save already exists. If not, # create folder. if not os.path.exists(f"{figures_folder}/final_performance_scores"): os.makedirs(f"{figures_folder}/final_performance_scores") # PLOT PERFORMANCE # Iterate over subsampling types for subs in subsampling_types: all_scores = dict(zip(performance_measures, [None] * len(performance_measures))) for perf in performance_measures: scores = dict() for mdl in models_to_use: tmp_score = { mdl: pd.read_csv( f"{scores_folder}/{mdl}_{perf}_scores_{subs}_subsampling.csv", index_col=0, ) } scores.update(tmp_score) all_scores[perf] = scores plot_performance( scores=all_scores, model_names=models_to_use, sub_type=subs, path=f"{figures_folder}/final_performance_scores", ) # PLOT FEATURE IMPORTANCE # Iterate over subsampling types for subs in subsampling_types: values = dict() for mdl in models_to_use: if mdl not in ["Catboost", "MLP"]: tmp_weights = { mdl: pd.read_csv( f"{importance_folder}/{mdl}_weights_{subs}_subsampling.csv", index_col=0, ) } tmp_weights[mdl] = tmp_weights[mdl].rename(columns=feature_dict) values.update(tmp_weights) elif mdl == "Catboost": shaps = { mdl: pd.read_csv( f"{importance_folder}/{mdl}_shap_values_{subs}_subsampling.csv", index_col=0, ) } shaps[mdl] = shaps[mdl].rename(columns=feature_dict) values.update(shaps) elif mdl == "MLP": dts = { mdl: pd.read_csv( f"{importance_folder}/{mdl}_score_based_averaged_dt_values_{subs}_subsampling.csv", index_col=0, ) } dts[mdl] = dts[mdl].rename(columns=feature_dict) values.update(dts) plot_features_rating( values=values, sub_type=subs, path=f"{figures_folder}/feature_ratings" )
import pkgutil from collections import defaultdict from importlib import import_module from types import ModuleType from typing import Any, Dict, Iterable, List, Optional, Tuple, Union import click from click.core import Command, Context from click.formatting import HelpFormatter from valohai_cli.utils import match_prefix class PluginCLI(click.MultiCommand): aliases = { 'new': 'create', 'start': 'run', } def __init__(self, **kwargs: Any) -> None: self._commands_module = kwargs.pop('commands_module') self._command_modules: List[str] = [] self._command_to_canonical_map: Dict[str, str] = {} self.aliases = dict(self.aliases, **kwargs.get('aliases', {})) # instance level copy super().__init__(**kwargs) @property def commands_module(self) -> ModuleType: if isinstance(self._commands_module, str): self._commands_module = import_module(self._commands_module) return self._commands_module # type: ignore @property def command_modules(self) -> List[str]: if not self._command_modules: mod_path = self.commands_module.__path__ # type: ignore[attr-defined] self._command_modules = sorted(c[1] for c in pkgutil.iter_modules(mod_path)) return self._command_modules @property def command_to_canonical_map(self) -> Dict[str, str]: if not self._command_to_canonical_map: command_map = {command: command for command in self.command_modules} for alias_from, alias_to in self.aliases.items(): if alias_to in command_map: command_map[alias_from] = command_map.get(alias_to, alias_to) # resolve aliases self._command_to_canonical_map = command_map return self._command_to_canonical_map def list_commands(self, ctx: Context) -> List[str]: # noqa: U100 return self.command_modules def get_command(self, ctx: Context, name: str) -> Optional[Union[Command, 'PluginCLI']]: # Dashes aren't valid in Python identifiers, so let's just replace them here. name = name.replace('-', '_') command_map: Dict[str, str] = self.command_to_canonical_map if name in command_map: return self._get_command(command_map[name]) matches = match_prefix(command_map.keys(), name, return_unique=False) if matches is None: matches = [] if len(matches) == 1: match = command_map[matches[0]] return self._get_command(match) if ' ' not in name: cmd = self._try_suffix_match(ctx, name) if cmd: return cmd if len(matches) > 1: ctx.fail('"{name}" matches {matches}; be more specific?'.format( name=name, matches=', '.join(click.style(match, bold=True) for match in sorted(matches)) )) return None def _try_suffix_match(self, ctx: Context, name: str) -> Optional[Command]: # Try word suffix matching if possible. # That is, if the user attempts `vh link` but we know about `vh proj link`, do that. command_map: Dict[str, Command] = { ' '.join(trail): cmd for (trail, cmd) in self._get_all_commands(ctx) } s_matches = [key for key in command_map.keys() if ' ' in key and key.endswith(' ' + name)] if len(s_matches) == 1: match = s_matches[0] click.echo('(Resolved {name} to {match}.)'.format( name=click.style(name, bold=True), match=click.style(match, bold=True), ), err=True) return command_map[match] return None def resolve_command(self, ctx: Context, args: List[str]) -> Tuple[Optional[str], Optional[Command], List[str]]: cmd_name, cmd, rest_args = super().resolve_command(ctx, args) return ( getattr(cmd, "name", cmd_name), # Always use the canonical name of the command cmd, rest_args, ) def _get_command(self, name: str) -> Command: module = import_module(f'{self.commands_module.__name__}.{name}') obj = getattr(module, name) assert isinstance(obj, Command) return obj def _get_all_commands(self, ctx: Context) -> Iterable[Tuple[Tuple[str, ...], Command]]: yield from walk_commands(ctx, self) def walk_commands( ctx: click.Context, multicommand: click.MultiCommand, name_trail: Tuple[str, ...] = (), ) -> Iterable[Tuple[Tuple[str, ...], Command]]: for subcommand in multicommand.list_commands(ctx): cmd = multicommand.get_command(ctx, subcommand) if not (cmd and cmd.name): continue new_name_trail = name_trail + (cmd.name,) yield (new_name_trail, cmd) if isinstance(cmd, click.MultiCommand): yield from walk_commands(ctx, cmd, new_name_trail) class RecursiveHelpPluginCLI(PluginCLI): def format_commands(self, ctx: Context, formatter: HelpFormatter) -> None: rows_by_prefix = defaultdict(list) for trail, command in self._get_all_commands(ctx): prefix = (' '.join(trail[:1]) if len(trail) > 1 else '') help = (command.short_help or command.help or '').partition('\n')[0] rows_by_prefix[prefix.strip()].append((' '.join(trail).strip(), help)) for prefix, rows in sorted(rows_by_prefix.items()): title = ( f'Commands ({prefix} ...)' if prefix else 'Commands' ) with formatter.section(title): formatter.write_dl(rows)
from helpers.common_imports import * import clean.matrix_builder as mb import clean.schuster as sch class Restorer(object): """restores clean spectrum, algorithm steps 18 to 21 ref 2""" def __init__(self, iterations, super_resultion_vector, number_of_freq_estimations, time_grid, max_freq): self.__iterations = iterations if iterations != 0: self.__super_resultion_vector = super_resultion_vector self.__number_of_freq_estimations = number_of_freq_estimations self.__max_freq = max_freq self.__uniform_time_grid = self.__build_uniform_time_grid(time_grid) self.__index_vector = mb.generate_index_vector( mb.size_of_spectrum_vector(self.__number_of_freq_estimations) ) self.__freq_vector = mb.generate_freq_vector( self.__index_vector, self.__max_freq, self.__number_of_freq_estimations ) self.__clean_window_vector = self.__build_clean_window_vector() def restore(self): """restores spectrum and series""" # if nothing was detected: if self.__iterations == 0: return None else: ccs_restoration_result = self.__restore_ccs() fap_restoration_result = self.__restore_fap() result = { 'freq_vector': self.__freq_vector, 'uniform_time_grid': self.__uniform_time_grid } result.update(ccs_restoration_result) result.update(fap_restoration_result) return result def __restore_ccs(self): """restores clean spectrum, algorithm steps 18 to 21 ref 2""" clean_spectrum = self.__build_clean_spectrum() correlogram = self.__build_correlogram(clean_spectrum) uniform_series = self.__build_uniform_series(clean_spectrum) result = { 'clean_spectrum': clean_spectrum, 'correlogram': correlogram, 'uniform_series': uniform_series } return result def __restore_fap(self): """req 143 and 144 ref 2""" non_zeroes = np.extract(np.abs(self.__super_resultion_vector) != 0, self.__super_resultion_vector) freqs = np.extract(np.abs(self.__super_resultion_vector) != 0, self.__freq_vector) amplitudes = 2*np.abs(non_zeroes) phases = np.arctan2(np.imag(non_zeroes),np.real(non_zeroes)) result = { 'frequencies': freqs.reshape(-1,1), 'amplitudes': amplitudes.reshape(-1,1), 'phases': phases.reshape(-1,1) } return result def __build_clean_window_vector(self): """eq 157 ref 2""" clean_window_vector = mb.calculate_window_vector( self.__uniform_time_grid, self.__number_of_freq_estimations, self.__max_freq ) return clean_window_vector def __build_uniform_time_grid(self, time_grid): """eq 158 ref 2""" step_size = (time_grid[-1][0] - time_grid[0][0])/(time_grid.shape[0] - 1) start = 0 stop = step_size*time_grid.shape[0] result = np.arange(start,stop,step_size).reshape(-1,1) return result def __build_clean_spectrum(self): """eq 159 ref 2""" number_of_rows = self.__super_resultion_vector.shape[0] array = [] for index in range(0, number_of_rows): max_index = index + 2*self.__number_of_freq_estimations min_index = max_index - 2*self.__number_of_freq_estimations subvector = self.__clean_window_vector[min_index:max_index+1] # subvector is flipped, because in eq 159 index of vector C (k) is substracted from index for vector S (j) array.append(np.matmul(self.__super_resultion_vector.T, np.flip(subvector, axis=0))[0][0]) result = np.array(array).reshape(-1,1) return result def __build_correlogram(self, clean_spectrum): """eq 160 ref 2""" values = sch.squared_abs(clean_spectrum) result = self.__build_correlogram_or_uniform_series(values) return result def __build_uniform_series(self, clean_spectrum): """eq 161 ref 2""" result = self.__build_correlogram_or_uniform_series(clean_spectrum) return result def __build_correlogram_or_uniform_series(self, values): """eq 160 and 161 ref 2""" result = mb.run_ft( self.__uniform_time_grid, values, self.__freq_vector, self.__number_of_freq_estimations, 'inverse' ) return result
#!/usr/bin/env python3 import argparse import sys from pathlib import Path from lib.reddit import Redditor from lib.db_helper import sqliteHelper from lib.youtube_helper import YoutubeDL def main(): arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-s', '--subreddit', required=True, help='The subreddit you want to scan') arg_parser.add_argument('-d', '--dest', help='The path you want to save downloaded files to') arg_parser.add_argument('--scan-only', dest='scan_only', action='store_true', default=False, help="Don't download new tracks only scan and update the database") arg_parser.add_argument('--download-only', dest='download_only', action='store_true', default=False, help="Don't scan for new tracks only fetch undownloaded content") arg_parser.add_argument('-m', '--del-failed', dest='del_failed', action='store_true', default=False, help="Mark tracks that fail to download as downloaded so we no longer try to download them") arg_parser.add_argument('-l', '--list', action='store_true', default=False, help="List the current contents of the database cache and exit") args = arg_parser.parse_args() sql = sqliteHelper() if args.list: sql.display_content_table() sys.exit() reddit = Redditor(sql) youtube = YoutubeDL(sql) # Update our database with latest youtube content if not args.download_only: reddit.update_cache(args.subreddit) # Collect youtube videos, extract audio, and move created mp3s to the requested destination path if not args.scan_only: youtube.fetch_undownloaded(args.dest, mark_failed_downloaded=args.del_failed) if __name__ == "__main__": main()
import random def GetChar(st): s = [] i = 0 while i < len(st): s.append(st[i]) i = i + 1 # print(s) return s def CountR(st): sout = [] cnt1 = 0 for x in st: sout = GetChar(x) i, j, start, cnt = 0, 0, 0, 0 for z in range(len(sout)): if sout[z] == 'K': if cnt == 0: start, cnt = z, cnt + 1 else: cnt = cnt + 1 else: i, j, start, cnt = start, cnt, 0, 0 # i=random.randint(0,len(sout)/2) # j=random.randint(len(sout)/2,len(sout)-1) print(i, j) for m in range(i, j + 1): if sout[m] == 'R': sout[m] = 'K' else: sout[m] = 'R' print(sout) for n in sout: if n == 'R': cnt1 = cnt1 + 1 print(cnt1) cnt1 = 0 n = input() st = [] if n <= 10: for i in range(n): st.insert(i, input()) CountR(st)
idade = int(input('Qual sua idade? ')) preço = float(input('Informe o valor: ')) desconto = 7.0 if preço >= 23 and preço <= idade: print('Você terá um desconto de: R${:.2f}'.format(desconto)) else: print('sem desconto') #https://pt.stackoverflow.com/q/446362/101
import datetime import logging # LOGGING ---------------------------------------------------------------- filename = "logs/logfile {}.log".format(datetime.date.today()) handler = logging.FileHandler(filename, "a") frm = logging.Formatter("%(asctime)s [%(levelname)-8s] [%(funcName)-20s] [%(lineno)-4s] %(message)s", "%d.%m.%Y %H:%M:%S") handler.setFormatter(frm) logger = logging.getLogger() logger.addHandler(handler) """ +----------+---------------+ | Level | Numeric value | +----------+---------------+ | CRITICAL | 50 | | ERROR | 40 | | WARNING | 30 | | INFO | 20 | | DEBUG | 10 | | NOTSET | 0 | +----------+---------------+ """ logger.setLevel(logging.DEBUG) # LOGGING ---------------------------------------------------------------- logging.debug("Test: Debug") logging.info("Test: Info") logging.warning("Test: Warning") logging.error("Test: Error") logging.critical("Test: Critical") try: 1 / 0 except ZeroDivisionError: logging.exception("Test: Exception.")
"""Looks after the data set, trimming it when necessary etc""" import logging from google.appengine.ext import ndb import models from flask import Flask import flask app = Flask(__name__) MAX_RECORDS = 5000 @app.route('/_maintain') def datastore_maintenance(): """Performs necessary checks on the datastore""" logging.info('Beginning datastore mainenance...') num_records = models.Message.query().count() if num_records > MAX_RECORDS: logging.info(' %d records, deleting %d', num_records, num_records-MAX_RECORDS) trim_records(num_records - MAX_RECORDS) # what else should we check? return '<h1>done!</h1>' def trim_records(num_records): """Trims records from the datastore until there are only `max_records`. Should remove oldest first. Args: num_records (int) - the number of the oldest records to delete. Returns: None """ to_go = models.Message.query().order(-models.Message.timestamp) ndb.delete_multi(to_go.fetch(num_records, keys_only=True))
import re import csv import urllib import datetime from django.utils.encoding import smart_unicode, force_unicode from django.db.models import Avg, Sum, Min, Max, Count from time import strptime, strftime import time from urlparse import urljoin from BeautifulSoup import BeautifulSoup from fumblerooski.college.models import * from fumblerooski.rankings.models import * """ The functions here are a collection of utilities that help with data loading or otherwise populate records that are not part of the scraping process. """ def create_missing_collegeyears(year): """ Create collegeyears where they are missing (legacy data only). >>> create_missing_collegeyears(2009) """ games = Game.objects.filter(season=year) for game in games: try: game.team1 except CollegeYear.DoesNotExist: try: c = College.objects.get(pk=game.team1_id) cy, created = CollegeYear.objects.get_or_create(college=c, season=year) if created: print "created CollegeYear for %s in %s" % (c, year) except: print "Could not find a college for %s" % game.team1_id def opposing_coaches(coach): coach_list = Coach.objects.raw("SELECT college_coach.id, college_coach.slug, count(college_game.*) as games from college_coach inner join college_game on college_coach.id = college_game.coach2_id where coach1_id = %s group by 1,2 order by 3 desc", [coach.id]) return coach_list def calculate_team_year(year, month): if int(month) < 8: team_year = int(year)-1 else: team_year = int(year) return team_year def calculate_record(totals): """ Given a dictionary of game results, calculates the W-L-T record from those games. Used to calculate records for team vs opponent and coach vs coach views. """ d = {} for i in range(len(totals)): d[totals[i]['t1_result']] = totals[i]['count'] try: wins = d['W'] except KeyError: wins = 0 try: losses = d['L'] or None except KeyError: losses = 0 try: ties = d['T'] except KeyError: ties = 0 return wins, losses, ties def last_home_loss_road_win(games): """ Given a list of games, returns the most recent home loss and road win. """ try: last_home_loss = games.filter(t1_game_type='H', t1_result='L')[0] except: last_home_loss = None try: last_road_win = games.filter(t1_game_type='A', t1_result='W')[0] except: last_road_win = None return last_home_loss, last_road_win def set_head_coaches(): """ One-time utility to add a boolean value to college coach records. Used to prepare the populate_head_coaches function for games. """ cc = CollegeCoach.objects.select_related().filter(jobs__name='Head Coach').update(is_head_coach=True) def populate_head_coaches(game): """ Given a game, tries to find and save the head coaches for that game. If it cannot, it leaves the head coaching fields as 0. Can be run on an entire season or as part of the game loader. As college coach data grows, will need to be run periodically on games without head coaches: >>> games = Game.objects.filter(coach1__isnull=True, coach2__isnull=True) >>> for game in games: ... populate_head_coaches(game) ... """ try: hc = game.team1.collegecoach_set.filter(is_head_coach=True).order_by('-start_date') if hc.count() > 0: if hc.count() == 1: game.coach1 = hc[0].coach else: coach1, coach2 = [c for c in hc] if coach1.end_date: if game.date < coach1.end_date: game.coach1 = coach1.coach elif game.date >= coach2.start_date: game.coach1 = coach2.coach else: game.coach1_id = 0 else: game.coach1_id = 0 except: game.coach1_id = 0 game.save() try: hc2 = game.team2.collegecoach_set.filter(is_head_coach=True).order_by('-start_date') if hc2.count() > 0: if hc2.count() == 1: game.coach2 = hc2[0].coach else: coach1, coach2 = [c for c in hc2] if coach1.end_date: if game.date < coach1.end_date: game.coach2 = coach1.coach elif game.date >= coach2.start_date: game.coach2 = coach2.coach else: game.coach2_id = 0 else: game.coach2_id = 0 except: game.coach2_id = 0 game.save() def next_coach_id(): """ Generates the next id for newly added coaches, since their slugs (which combine the id and name fields) are added post-commit. """ c = Coach.objects.aggregate(Max("id")) return c['id__max']+1 def update_conference_membership(year): # check prev year conference and update current year with it, then mark conf games. previous_year = year-1 teams = CollegeYear.objects.filter(season=previous_year, conference__isnull=False) for team in teams: cy = CollegeYear.objects.get(season=year, college=team.college) cy.conference = team.conference cy.save() def update_conf_games(year): """ Marks a game as being a conference game if teams are both in the same conference. """ games = Game.objects.filter(season=year, team1__college__updated=True, team2__college__updated=True) for game in games: try: if game.team1.conference == game.team2.conference: game.is_conference_game = True game.save() except: pass def update_quarter_scores(game): """ Utility to update quarter scores for existing games. New games handled via ncaa_loader. """ doc = urllib.urlopen(game.get_ncaa_xml_url()).read() soup = BeautifulSoup(doc) quarters = len(soup.findAll('score')[1:])/2 t2_quarters = soup.findAll('score')[1:quarters+1] #visiting team t1_quarters = soup.findAll('score')[quarters+1:] #home team for i in range(quarters): vqs, created = QuarterScore.objects.get_or_create(game = game, team = game.team2, season=game.season, quarter = i+1, points = int(t2_quarters[i].contents[0])) hqs, created = QuarterScore.objects.get_or_create(game = game, team = game.team1, season=game.season, quarter = i+1, points = int(t1_quarters[i].contents[0])) def update_college_year(year): """ Updates season and conference records for teams. Run at the end of a game loader. """ teams = CollegeYear.objects.select_related().filter(season=year, college__updated=True).order_by('college_college.id') for team in teams: games = Game.objects.filter(team1=team, season=year, t1_result__isnull=False).values("t1_result").annotate(count=Count("id")).order_by('t1_result') d = {} for i in range(games.count()): d[games[i]['t1_result']] = games[i]['count'] try: wins = d['W'] except KeyError: wins = 0 try: losses = d['L'] except KeyError: losses = 0 try: ties = d['T'] except KeyError: ties = 0 if team.conference: conf_games = Game.objects.select_related().filter(team1=team, season=year, is_conference_game=True, t1_result__isnull=False).values("t1_result").annotate(count=Count("id")).order_by('t1_result') if conf_games: c = {} for i in range(conf_games.count()): c[conf_games[i]['t1_result']] = conf_games[i]['count'] try: conf_wins = c['W'] except KeyError: conf_wins = 0 try: conf_losses = c['L'] except KeyError: conf_losses = 0 try: conf_ties = c['T'] except KeyError: conf_ties = 0 team.conference_wins=conf_wins team.conference_losses=conf_losses team.conference_ties=conf_ties team.wins=wins team.losses=losses team.ties=ties team.save() def add_college_years(year): """ Creates college years for teams. Used at the beginning of a new season or to backfill. """ teams = College.objects.all().order_by('id') for team in teams: cy, created = CollegeYear.objects.get_or_create(season=year, college=team) def create_weeks(year): """ Given a year with games in the db, creates weeks for that year. """ min = Game.objects.filter(season=year).aggregate(Min('date'))['date__min'] max = Game.objects.filter(season=year).aggregate(Max('date'))['date__max'] date = min week = 1 while date <= max: if date.weekday() < 5: dd = 5 - date.weekday() end_date = date + datetime.timedelta(days=dd) else: end_date = date new_week, created = Week.objects.get_or_create(season=min.year, week_num = week, end_date = end_date) date += datetime.timedelta(days=7) week += 1 def game_weeks(year): """ Populates week foreign key for games. """ weeks = Week.objects.filter(season=year).order_by('week_num') for week in weeks: games = Game.objects.filter(season=year, date__lte=week.end_date, week__isnull=True) for game in games: game.week = week game.save() def advance_coaching_staff(team, year): """ Takes an existing coaching staff, minus any who have an end_date value, and creates new CollegeCoach records for them in the provided year. Usage: >>> from fumblerooski.utils import advance_coaching_staff >>> from fumblerooski.college.models import * >>> team = College.objects.get(id = 8) >>> advance_coaching_staff(team, 2010) """ previous_year = int(year)-1 college = College.objects.get(id=team.id) old_cy = CollegeYear.objects.get(college=college, year=previous_year) new_cy = CollegeYear.objects.get(college=college, year=year) old_staff = CollegeCoach.objects.filter(collegeyear=old_cy, end_date__isnull=True) for coach in old_staff: cc, created = CollegeCoach.objects.get_or_create(collegeyear=new_cy, coach=coach.coach) for job in coach.jobs.all(): cc.jobs.add(job)
import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import numpy as np import os def calc_top_percent(betweenness_list, percent): height = int(len(betweenness_list) * percent) sum_top_betweenness = 0 sum_total_betweenness = sum(betweenness_list) for i in range(height): sum_top_betweenness += betweenness_list[i] top_percent_betweenness = sum_top_betweenness / sum_total_betweenness return top_percent_betweenness def plot_line(betweenness_percentages, percentage, dates): plt.figure() df_plot = pd.DataFrame({'bt_percentage': betweenness_percentages}, index=dates) ax = df_plot.plot.area(ylim=(0.65, 1), rot=20, alpha=0.65, stacked=False, color=['red']) # Annotate for i in range(len(dates)): ax.annotate('{:.1f}'.format(betweenness_percentages[i] * 100) + '%', xytext=(i - 0.2, betweenness_percentages[i] + 0.02), xy=(i, betweenness_percentages[i]), arrowprops=dict(arrowstyle='-'),fontsize=20, color='black', rotation=90) plt.xticks(fontsize=20) plt.yticks(fontsize=20) ax.set_xlabel('Timestamps', fontsize=20) ax.set_ylabel('Share of Centrality in %', fontsize=20) ax.get_legend().remove() Path("plots/top").mkdir(parents=True, exist_ok=True) filePath = cwd + '/plots/top/top_line_' + str(percentage) + '.png' # plt.savefig(filePath, bbox_inches='tight', dpi=400) plt.show() timestamps = [ 1554112800, 1564653600, 1572606000, 1585735200, 1596276000, 1606820400, 1609498800 ] top_betweenness_percentages = list() percentage =0.1 dates = ['01 Apr. 2019', '01 Aug. 2019', '01 Nov. 2019', '01 Apr. 2020', '01 Aug. 2020', '01 Dec. 2020', '01 Jan. 2021'] for timestamp in timestamps: baseAmount = [10000000, 1000000000, 10000000000] cwd = str(Path().resolve()) filepath = cwd + '/' + str(timestamp) + '/' + str(baseAmount[0]) filenames = next(os.walk(filepath), (None, None, []))[2] # [] if no file df = pd.read_csv(cwd + '/' + str(timestamp) + '/' + str(baseAmount[0]) + '/' + filenames[0]) df_2 = pd.read_csv(cwd + '/' + str(timestamp) + '/' + str(baseAmount[1]) + '/' + filenames[0]) df_3 = pd.read_csv(cwd + '/' + str(timestamp) + '/' + str(baseAmount[2]) + '/' + filenames[0]) betweenness = (list(filter(lambda a: a != 0.0, df['betweenness']))) betweenness_2 = (list(filter(lambda a: a != 0.0, df_2['betweenness']))) betweenness_3 = (list(filter(lambda a: a != 0.0, df_3['betweenness']))) avg_betwenness = list() for b1, b2, b3 in zip(betweenness, betweenness_2, betweenness_3): avg_betwenness.append(np.average([b1, b2, b3])) top_betweenness_percentages.append(calc_top_percent(avg_betwenness, percentage)) plot_line(top_betweenness_percentages, percentage, dates)
#!/usr/bin/env python # Copyright 2019 Banco Santander S.A. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- from tkinter import * from tkinter import ttk from PIL import ImageTk, Image from tkinter.filedialog import askopenfilename, asksaveasfilename import pandas as pd import json import uuid import worker import signature import signingAlgorithm import encryptionAlg users = [] transactions = [] country = "" numberUsers = 0 numberTransactions = 0 class App(): def __init__(self): global root global users global country global numberUsers global transactions global numberTransactions global preprocess global e0, e1, e2, e4, e5, e7 preprocess = "" root = Tk() root.geometry('700x520') root.configure(bg='white') root.title('AML client') # Setting the countries we are using ttk.Label( root, text="Countries participating").grid( row=0, padx=(100, 10), pady=(30, 7)) e0 = ttk.Entry(root) b0 = ttk.Button(root, text='Initialize', command=self.loadCountries) e0.grid(row=0, column=1, pady=(30, 7)) b0.grid(row=0, column=2, pady=(30, 7)) # Creating the jsons from CSVs ttk.Label(root, text="Users CSV").grid( row=1, padx=(100, 10), pady=(30, 4)) ttk.Label( root, text="Transactions CSV").grid( row=2, padx=(100, 10), pady=(0, 7)) e1 = ttk.Entry(root) e2 = ttk.Entry(root) b1 = ttk.Button(root, text='Select', command=self.selectUsers) b2 = ttk.Button(root, text='Select', command=self.selectTransactions) b3 = ttk.Button(root, text='Create Json from CSVs', command=self.createJsonFile) e1.grid(row=1, column=1, pady=(30, 4)) e2.grid(row=2, column=1, pady=(0, 7)) b1.grid(row=1, column=2, pady=(30, 4)) b2.grid(row=2, column=2, pady=(0, 7)) b3.grid(row=3, column=1) # Cont # Initializing encryption information ttk.Label( root, text="Worker info").grid( row=4, padx=(100, 10), pady=(30, 4)) ttk.Label( root, text="EC private key").grid( row=5, padx=(100, 10), pady=(0, 7)) e4 = ttk.Entry(root) e5 = ttk.Entry(root) b4 = ttk.Button(root, text='Select', command=self.selectWorkerObj) b5 = ttk.Button(root, text='Select', command=self.selecECPrivK) b6 = ttk.Button(root, text='Init cipher info', command=self.initCipherInfo) e4.grid(row=4, column=1, pady=(30, 4)) e5.grid(row=5, column=1, pady=(0, 7)) b4.grid(row=4, column=2, pady=(30, 4)) b5.grid(row=5, column=2, pady=(0, 7)) b6.grid(row=6, column=1) # Encrypt JSON ttk.Label( root, text="Workload's JSON").grid( row=7, padx=(100, 10), pady=(30, 4)) e7 = ttk.Entry(root) b7 = ttk.Button(root, text='Select', command=self.selectWorkloadJson) b8 = ttk.Button( root, text="Encrypt Workload's JSON", command=self.encryptJsonInData) e7.grid(row=7, column=1, pady=(30, 4)) b7.grid(row=7, column=2, pady=(30, 4)) b8.grid(row=8, column=1) # Logo img_logo = ImageTk.PhotoImage(Image.open( "./images/santander_logo.png")) panel_logo = Label(root, image=img_logo) panel_logo.grid(row=10, column=1, sticky=S, pady=(40, 0)) root.mainloop() def loadCountries(self): global preprocess countries = e0.get() preprocess = countries.replace(",", "_") def selectUsers(self): global users_filename global e1 users_filename = askopenfilename() e1.delete(0, END) e1.insert(0, users_filename.rsplit('/', 1)[-1]) def selectTransactions(self): global transactions_filename global e2 transactions_filename = askopenfilename() e2.delete(0, END) e2.insert(0, transactions_filename.rsplit('/', 1)[-1]) def createJsonFile(self): global preprocess global users_filename, transactions_filename global save_json_filename save_json_filename = asksaveasfilename() users = pd.read_csv(users_filename) country = users['userId'][0][0:2] numberUsers = len(users) transactions = pd.read_csv(transactions_filename) numberTransactions = len(transactions) index = 0 base_json_file = open("./json_building_blocks/base.json", "r") inData_json_file = open("./json_building_blocks/inData.json", "r") output_json_file = open(save_json_filename, "w") base_json_str = base_json_file.read() inData_json_str = inData_json_file.read() base_json = json.loads(base_json_str) inData_json = json.loads(inData_json_str) inData_str = "[" if preprocess != "": inData_json_aux = inData_json inData_json_aux["index"] = index index += 1 inData_aux = ( preprocess + "|" + ( country + "," + str(numberUsers) + "," + str(numberTransactions))) for i in range(0, numberUsers): inData_aux = ( inData_aux + "|" + users['userId'][i] + "," + users['name'][i]) for j in range(0, numberTransactions): inData_aux = ( inData_aux + "|" + transactions['from'][j] + "," + transactions['to'][j] + "," + str(transactions['amount'][j]) + "," + transactions['currency'][j] + "," + transactions['date'][j]) inData_json_aux["data"] = inData_aux inData_str = inData_str + json.dumps(inData_json_aux) + "\n]" inData_full_json = json.loads(inData_str) workOrderId = "0x" + uuid.uuid4().hex[:16].upper() base_json["params"]["workOrderId"] = workOrderId base_json["params"]["inData"] = inData_full_json workloadId = base_json["params"]["workloadId"] workloadIdHex = workloadId.encode("UTF-8").hex() base_json["params"]["workloadId"] = workloadIdHex resultString = json.dumps(base_json) output_json_file.write(resultString) output_json_file.close() base_json_file.close() inData_json_file.close() def selectWorkerObj(self): global workerObj_filename global e4 workerObj_filename = askopenfilename() e4.delete(0, END) e4.insert(0, workerObj_filename.rsplit('/', 1)[-1]) def selecECPrivK(self): global ECPrivk_filename global e5 ECPrivk_filename = askopenfilename() e5.delete(0, END) e5.insert(0, ECPrivk_filename.rsplit('/', 1)[-1]) def initCipherInfo(self): global workerObj_filename, ECPrivk_filename global EC_key global worker_obj ec_file = open(ECPrivk_filename, "r") EC_key = ec_file.read() worker_file = open(workerObj_filename, "r") worker_str = worker_file.read().rstrip('\n') worker_json = json.loads(worker_str) worker_obj = worker.SGXWorkerDetails() worker_obj.load_worker(worker_json) worker_file.close() ec_file.close() def selectWorkloadJson(self): global WorkloadJson_filename global e7 global save_json_filename WorkloadJson_filename = askopenfilename( initialdir="/".join(save_json_filename.split("/")[:-1])) e7.delete(0, END) e7.insert(0, WorkloadJson_filename.rsplit('/', 1)[-1]) def encryptJsonInData(self): global EC_key global WorkloadJson_filename global worker_obj enc_json_file = asksaveasfilename() save_key_file = asksaveasfilename() json_file = open(WorkloadJson_filename, "r") workload_str = json_file.read() workload_json = json.loads(workload_str) workload_json["params"]["workerId"] = worker_obj.worker_id workload_str = json.dumps(workload_json) sig_obj = signature.ClientSignature() signing_key = signingAlgorithm.signAlgorithm() signing_key.loadKey(EC_key) session_iv = sig_obj.generate_sessioniv() enc_obj = encryptionAlg.encAlgorithm() session_key = enc_obj.generateKey() enc_session_key = sig_obj.generate_encrypted_key( session_key, worker_obj.encryption_key) request_json = sig_obj.generate_client_signature( workload_str, worker_obj, signing_key, session_key, session_iv, enc_session_key) enc_json_file = open(enc_json_file, "w") enc_json_file.write(request_json) enc_session_json = '{"key": ' + str(list(session_key)) + ',"iv": ' \ + str(list(session_iv)) + '}' enc_session_key_file = open(save_key_file, "w") enc_session_key_file.write(enc_session_json) json_file.close() enc_json_file.close() enc_session_key_file.close() def main(): App() return 0 if __name__ == '__main__': main()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_fl.paddle_fl.core.trainer.fl_trainer import FLTrainerFactory from paddle_fl.paddle_fl.core.master.fl_job import FLRunTimeJob import paddle_fl.paddle_fl.dataset.femnist as femnist import numpy import sys import paddle import paddle.fluid as fluid import logging import math import time logging.basicConfig( filename="test.log", filemode="w", format="%(asctime)s %(name)s:%(levelname)s:%(message)s", datefmt="%d-%M-%Y %H:%M:%S", level=logging.DEBUG) trainer_id = int(sys.argv[1]) # trainer id for each guest job_path = "fl_job_config" job = FLRunTimeJob() job.load_trainer_job(job_path, trainer_id) job._scheduler_ep = "127.0.0.1:9091" # Inform the scheduler IP to trainer print(job._target_names) trainer = FLTrainerFactory().create_fl_trainer(job) trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id) place = fluid.CPUPlace() trainer.start(place) print(trainer._step) test_program = trainer._main_program.clone(for_test=True) img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') feeder = fluid.DataFeeder(feed_list=[img, label], place=fluid.CPUPlace()) def train_test(train_test_program, train_test_feed, train_test_reader): acc_set = [] for test_data in train_test_reader(): acc_np = trainer.exe.run(program=train_test_program, feed=train_test_feed.feed(test_data), fetch_list=["accuracy_0.tmp_0"]) acc_set.append(float(acc_np[0])) acc_val_mean = numpy.array(acc_set).mean() return acc_val_mean epoch_id = 0 step = 0 epoch = 10 count_by_step = False if count_by_step: output_folder = "model_node%d" % trainer_id else: output_folder = "model_node%d_epoch" % trainer_id while not trainer.stop(): count = 0 epoch_id += 1 if epoch_id > epoch: break print("{} Epoch {} start train".format(time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())), epoch_id)) #train_data,test_data= data_generater(trainer_id,inner_step=trainer._step,batch_size=64,count_by_step=count_by_step) train_reader = paddle.batch( paddle.reader.shuffle( femnist.train( trainer_id, inner_step=trainer._step, batch_size=64, count_by_step=count_by_step), buf_size=500), batch_size=64) test_reader = paddle.batch( femnist.test( trainer_id, inner_step=trainer._step, batch_size=64, count_by_step=count_by_step), batch_size=64) if count_by_step: for step_id, data in enumerate(train_reader()): acc = trainer.run(feeder.feed(data), fetch=["accuracy_0.tmp_0"]) step += 1 count += 1 if count % trainer._step == 0: break # print("acc:%.3f" % (acc[0])) else: trainer.run_with_epoch( train_reader, feeder, fetch=["accuracy_0.tmp_0"], num_epoch=1) acc_val = train_test( train_test_program=test_program, train_test_reader=test_reader, train_test_feed=feeder) print("Test with epoch %d, accuracy: %s" % (epoch_id, acc_val)) if trainer_id == 0: save_dir = (output_folder + "/epoch_%d") % epoch_id trainer.save_inference_program(output_folder)
# https://www.acmicpc.net/problem/2468 import copy import sys sys.setrecursionlimit(100000) def DFS(x, y, tempMap): tempMap[x][y] = 0 for i in range(4): nx = x + dx[i] ny = y + dy[i] if (0 <= nx < N) and (0 <= ny < N): if tempMap[nx][ny]!=0: DFS(nx, ny, tempMap) N = int(input()) map = [list(map(int, input().split())) for _ in range(N)] dx = [1, -1, 0, 0] dy = [0, 0, 1, -1] maxlist = [] maxvalue = 0 answer = 1 for i in range(len(map)): maxlist.append(max(map[i])) maxvalue = max(maxlist) for k in range(1, maxvalue+1): tempMap = copy.deepcopy(map) for i in range(len(tempMap)): for j in range(len(tempMap[i])): if tempMap[i][j] <= k: tempMap[i][j] = 0 count = 0 for x in range(len(tempMap)): for y in range(len(tempMap[x])): if tempMap[x][y] != 0: DFS(x, y, tempMap) count += 1 answer = max(answer, count) print(answer)
'''Escreva um progrma que leia um n inteiro qualquer e mostra na tela os n primeiros elementos de uma sequencia de Fibonacci. Ex: 0 1 1 2 3 5 8''' n = int(input('Informe um número: ')) t1 = 0 t2 = 1 print('{} > {}'.format(t1, t2), end=' ') cont = 3 while cont <= n: t3 = t1 + t2 print(' > {}'.format(t3), end=' ') t1 = t2 t2 = t3 cont += 1 print('> FIM!')
import os from tests.config import redis_cache_server EXTENSIONS = ( 'lux.ext.base', 'lux.ext.rest', 'lux.ext.content', 'lux.ext.admin', 'lux.ext.auth', 'lux.ext.odm' ) APP_NAME = COPYRIGHT = HTML_TITLE = 'website.com' SECRET_KEY = '01W0o2gOG6S1Ldz0ig8qtmdkEick04QlN84fS6OrAqsMMs64Wh' SESSION_STORE = redis_cache_server EMAIL_DEFAULT_FROM = '[email protected]' EMAIL_BACKEND = 'lux.core.mail.LocalMemory' SESSION_COOKIE_NAME = 'test-website' SESSION_STORE = 'redis://127.0.0.1:6379/13' DATASTORE = 'postgresql+green://lux:[email protected]:5432/luxtests' SERVE_STATIC_FILES = os.path.join(os.path.dirname(__file__), 'media') CONTENT_REPO = os.path.dirname(__file__) CONTENT_LOCATION = 'content' CONTENT_GROUPS = { "articles": { "path": "articles", "body_template": "home.html", "meta": { "priority": 1 } }, "site": { "path": "*", "body_template": "home.html", "meta": { "priority": 1, "image": "/media/lux/see.jpg" } } } DEFAULT_POLICY = [ { "resource": "contents:*", "action": "read" } ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : tql-Python. # @File : weather # @Time : 2020/8/24 9:01 下午 # @Author : yuanjie # @Email : [email protected] # @Software : PyCharm # @Description : import time import json import requests def get_data(year='2020', month='08'): url = f'http://d1.weather.com.cn/calendar_new/{year}/101010100_{year}{month}.html?_={int(time.time())}' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.110 Safari/537.36', 'Referer': 'http://www.weather.com.cn/weather40d/101010100.shtml' } r = requests.get(url, headers=headers) return json.loads(r.content[11:]) # pd.DataFrame(data)
# coding=utf-8 from OTLMOW.OTLModel.BaseClasses.OTLAttribuut import OTLAttribuut from abc import abstractmethod from OTLMOW.OTLModel.Classes.BijlageVoertuigkering import BijlageVoertuigkering from OTLMOW.OTLModel.Classes.LijnvormigElement import LijnvormigElement from OTLMOW.OTLModel.Datatypes.BooleanField import BooleanField from OTLMOW.OTLModel.Datatypes.DtcDocument import DtcDocument from OTLMOW.OTLModel.Datatypes.DtcProductidentificatiecode import DtcProductidentificatiecode from OTLMOW.OTLModel.Datatypes.KlLEACMateriaal import KlLEACMateriaal from OTLMOW.OTLModel.Datatypes.StringField import StringField # Generated with OTLClassCreator. To modify: extend, do not edit class AfschermendeConstructie(BijlageVoertuigkering, LijnvormigElement): """Abstracte die een lijn- of puntvormige constructie,geïnstalleerd langs de weg om een kerend vermogen te bieden aan een dwalend voertuig,samenvat.""" typeURI = 'https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie' """De URI van het object volgens https://www.w3.org/2001/XMLSchema#anyURI.""" @abstractmethod def __init__(self): BijlageVoertuigkering.__init__(self) LijnvormigElement.__init__(self) self._certificaathouder = OTLAttribuut(field=StringField, naam='certificaathouder', label='certificaathouder', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.certificaathouder', definition='De houder van het uitvoeringscertificaat.', owner=self) self._isPermanent = OTLAttribuut(field=BooleanField, naam='isPermanent', label='is permanent', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.isPermanent', definition='Vermelding of de afschermende constructie al dan niet van permanente aard is.', owner=self) self._materiaal = OTLAttribuut(field=KlLEACMateriaal, naam='materiaal', label='materiaal', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.materiaal', definition='Het gebruikte materiaal voor de afschermende constructie.', owner=self) self._metTandGroef = OTLAttribuut(field=BooleanField, naam='metTandGroef', label='met tand-groef', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.metTandGroef', definition='Geeft aan of de afschermende constructie bevestigd is aan de onderliggende laag door middel van een tand-groef aansluiting.', owner=self) self._productidentificatiecode = OTLAttribuut(field=DtcProductidentificatiecode, naam='productidentificatiecode', label='productidentificatiecode', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.productidentificatiecode', definition='De productidentificatiecode voor het bepalen van de code van het gebruikte product (bv. COPRO/BENOR).', owner=self) self._productnaam = OTLAttribuut(field=StringField, naam='productnaam', label='productnaam', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.productnaam', definition='Dit is de commerciële naam van de afschermende constructie.', owner=self) self._testrapport = OTLAttribuut(field=DtcDocument, naam='testrapport', label='testrapport', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.testrapport', usagenote='Attribuut uit gebruik sinds versie 2.0.0 ', deprecated_version='2.0.0', kardinaliteit_max='*', definition='De testresultaten van een afschermende constructie.', owner=self) self._uitvoeringscertificatie = OTLAttribuut(field=DtcDocument, naam='uitvoeringscertificatie', label='uitvoeringscertificatie', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.uitvoeringscertificatie', usagenote='Bestanden van het type xlsx of pdf.', definition='Documentatie van het certificaat.', owner=self) self._video = OTLAttribuut(field=DtcDocument, naam='video', label='video', objectUri='https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#AfschermendeConstructie.video', usagenote='Attribuut uit gebruik sinds versie 2.0.0 ', deprecated_version='2.0.0', kardinaliteit_max='*', definition='Video van de testen op afschermende constructies.', owner=self) @property def certificaathouder(self): """De houder van het uitvoeringscertificaat.""" return self._certificaathouder.get_waarde() @certificaathouder.setter def certificaathouder(self, value): self._certificaathouder.set_waarde(value, owner=self) @property def isPermanent(self): """Vermelding of de afschermende constructie al dan niet van permanente aard is.""" return self._isPermanent.get_waarde() @isPermanent.setter def isPermanent(self, value): self._isPermanent.set_waarde(value, owner=self) @property def materiaal(self): """Het gebruikte materiaal voor de afschermende constructie.""" return self._materiaal.get_waarde() @materiaal.setter def materiaal(self, value): self._materiaal.set_waarde(value, owner=self) @property def metTandGroef(self): """Geeft aan of de afschermende constructie bevestigd is aan de onderliggende laag door middel van een tand-groef aansluiting.""" return self._metTandGroef.get_waarde() @metTandGroef.setter def metTandGroef(self, value): self._metTandGroef.set_waarde(value, owner=self) @property def productidentificatiecode(self): """De productidentificatiecode voor het bepalen van de code van het gebruikte product (bv. COPRO/BENOR).""" return self._productidentificatiecode.get_waarde() @productidentificatiecode.setter def productidentificatiecode(self, value): self._productidentificatiecode.set_waarde(value, owner=self) @property def productnaam(self): """Dit is de commerciële naam van de afschermende constructie.""" return self._productnaam.get_waarde() @productnaam.setter def productnaam(self, value): self._productnaam.set_waarde(value, owner=self) @property def testrapport(self): """De testresultaten van een afschermende constructie.""" return self._testrapport.get_waarde() @testrapport.setter def testrapport(self, value): self._testrapport.set_waarde(value, owner=self) @property def uitvoeringscertificatie(self): """Documentatie van het certificaat.""" return self._uitvoeringscertificatie.get_waarde() @uitvoeringscertificatie.setter def uitvoeringscertificatie(self, value): self._uitvoeringscertificatie.set_waarde(value, owner=self) @property def video(self): """Video van de testen op afschermende constructies.""" return self._video.get_waarde() @video.setter def video(self, value): self._video.set_waarde(value, owner=self)
import os from solartf.core.generator import KerasGeneratorBase from solartf.data.image.processor import ImageInput class ImageDirectoryGenerator(KerasGeneratorBase): def __init__(self, image_dir, image_type, image_shape, image_format=None): if image_format is None: image_format = ('.png', '.jpg', '.jpeg') self.image_dir = image_dir self.image_type = image_type self.image_shape = image_shape self.image_format = image_format self.image_path_list = [os.path.join(root, fname) for root, _, fnames in os.walk(self.image_dir) for fname in fnames if fname.endswith(image_format)] def __len__(self): return len(self.image_path_list) def on_epoch_end(self): pass def __getitem__(self, index): input_image_path = self.image_path_list[index] image_input = ImageInput(input_image_path, image_type=self.image_type, image_shape=self.image_shape) return image_input
""" This program generates a gene/cell counts table for the mutations found in a given set of vcf files """ import numpy as np import vcf import os import csv import pandas as pd import sys import multiprocessing as mp import warnings import click warnings.simplefilter(action='ignore', category=FutureWarning) def get_filenames_test(): """ get file names, for the test condition""" files = [] for file in os.listdir(cwd + "artificalVCF/"): PATH = cwd + 'artificalVCF/' + file files.append(PATH) return files def get_filenames(): """ get file names based on specified path """ files = [] for file in os.listdir(cwd + "scVCF_filtered_all/"): PATH = cwd + 'scVCF_filtered_all/' + file files.append(PATH) return files def get_laud_db(): """ returns the COSMIC database after lung adeno filter """ print('setting up LAUD filtered database...') #pHistList = database.index[database['Primary histology'] == 'carcinoma'].tolist() pSiteList = database.index[database['Primary site'] == 'lung'].tolist() #shared = list(set(pHistList) & set(pSiteList)) database_filter = database.iloc[pSiteList] return database_filter def get_genome_pos(sample): """ returns the genome position string that will match against the ones in COSMIC db """ try: chr = str(sample[0]) chr = chr.replace("chr", "") pos = int(sample[1]) ref = str(sample[3]) alt = str(sample[4]) if (len(ref) == 1) & (len(alt) == 1): # most basic case secondPos = pos genomePos = chr + ':' + str(pos) + '-' + str(secondPos) elif (len(ref) > 1) & (len(alt) == 1): secondPos = pos + len(ref) genomePos = chr + ':' + str(pos) + '-' + str(secondPos) elif (len(alt) > 1) & (len(ref) == 1): secondPos = pos + len(alt) genomePos = chr + ':' + str(pos) + '-' + str(secondPos) else: # multibase-for-multibase substitution secondPos = '1' genomePos = chr + ':' + str(pos) + '-' + str(secondPos) except: # NOTE: Should probably throw here. genomePos = 'ERROR' return genomePos def parse_genome_pos(pos_str): chrom, pos_range = pos_str.split(':')[0:2] start_pos, end_pos = pos_range.split('-')[0:2] return (chrom, start_pos, end_pos) def make_genome_pos(record): # Although including `chr` in the CHR column constitutes malformed VCF, it # may be present, so it should be removed. CHROM = record.CHROM.replace("chr", "") POS = record.POS ref_len = len(record.REF) alt_len = len(record.ALT) if ref_len == 1 and alt_len == 1: return (CHROM, POS, POS) elif ref_len > 1 and alt_len == 1: return (CHROM, POS, POS + ref_len) elif alt_len > 1 and ref_len == 1: return (CHROM, POS, POS + alt_len) else: # multibase-for-multibase substitution return (CHROM, POS, 1) def find_gene_name(genome_pos): """ return the gene name from a given genome position string (ie. '1:21890111-21890111'), by querying the hg38-plus.gtf """ chrom, pos_start, pos_end = genome_pos # work on hg38_gtf chromStr = 'chr' + str(chrom) hg38_gtf_filt = hg38_gtf.where(hg38_gtf[0] == chromStr).dropna() hg38_gtf_filt = hg38_gtf_filt.where(hg38_gtf_filt[3] <= int(pos_start)).dropna() # lPos good hg38_gtf_filt = hg38_gtf_filt.where(hg38_gtf_filt[4] >= int(pos_end)).dropna() # rPos good try: returnStr = str(hg38_gtf_filt.iloc[0][8]) # keep just the gene name / metadata col returnStr = returnStr.split(';')[1] returnStr = returnStr.strip(' gene_name') returnStr = returnStr.strip(' ') returnStr = returnStr.strip('"') except IndexError: returnStr = '' return returnStr def find_cell_mut_gene_names(filename): """ creates a dictionary obj where each key is a cell and each value is a list of the genes we found mutations for in that cell """ tup = [] cell = filename.replace(cwd, "") cell = cell.replace('scVCF_filtered_all/', "") cell = cell.replace(".vcf", "") # PyVCF documentation claims that it automatically infers compression type # from the file extension. vcf_reader = vcf.Reader(filename=filename) filtered_gene_names = [] for record in vcf_reader: genome_pos = make_genome_pos(record) # TODO: Filter out duplicates? # And is it better to filter out positional duplicates or gene name # duplicates? # No COSMIC filter in test mode if not test_bool: # Skip this gene if it isn't in the laud_db if genome_pos in genome_pos_laud_db: continue gene_name = find_gene_name(genome_pos) filtered_gene_names.append(gene_name) filtered_series = pd.Series(filtered_gene_names) tup = (cell, filtered_series) return tup def format_dataframe(raw_df): """ creates the cell/mutation counts table from the raw output that get_gene_cell_muts_counts provides """ cellNames = list(raw_df.index) genesList = [] for i in range(0, raw_df.shape[0]): currList = list(raw_df.iloc[i].unique()) # unique genes for curr_cell for elm in currList: if elm not in genesList: genesList.append(elm) genesList1 = pd.Series(genesList) df = pd.DataFrame(columns=genesList1, index=cellNames) # initialize blank dataframe for col in df.columns: # set everybody to zero df[col] = 0 for i in range(0,raw_df.shape[0]): currCell = raw_df.index[i] currRow = raw_df.iloc[i] for currGene in currRow: df[currGene][currCell] += 1 return df """ get cmdline input """ @click.command() @click.option('--nthread', default = 64, prompt='number of threads', required=True, type=int) @click.option('--test', default = False) @click.option('--wrkdir', default = '/home/ubuntu/cerebra/cerebra/wrkdir/', prompt='s3 import directory', required=True) def get_mutationcounts_table(nthread, test, wrkdir): """ generate a cell x gene mutation counts table from a set of germline filtered vcfs """ global database global database_laud global hg38_gtf global genome_pos_laud_db global cwd global test_bool cwd = wrkdir test_bool = test database = pd.read_csv(cwd + "CosmicGenomeScreensMutantExport.tsv", delimiter = '\t') database_laud = get_laud_db() genome_pos_laud_db = set(map(parse_genome_pos, database_laud['Mutation genome position'])) hg38_gtf = pd.read_csv(cwd + 'hg38-plus.gtf', delimiter = '\t', header = None) if test: fNames = get_filenames_test() else: fNames = get_filenames() print('creating pool') p = mp.Pool(processes=nthread) print('running...') try: cell_genes_pairs = p.map(find_cell_mut_gene_names, fNames, chunksize=1) # default chunksize=1 finally: p.close() p.join() # convert to dictionary cells_dict = {} naSeries = pd.Series([np.nan]) for cell, gene_names in cell_genes_pairs: if len(gene_names.index) == 0: toAdd = {cell:naSeries} else: toAdd = {cell:gene_names} cells_dict.update(toAdd) print('writing file') filterDict_pd = pd.DataFrame.from_dict(cells_dict, orient="index") # orient refers to row/col orientation filterDict_format = format_dataframe(filterDict_pd) filterDict_format.to_csv(cwd + "intermediate.csv") intermediate = pd.read_csv(cwd + 'intermediate.csv') # rename 0th col intermediate.rename(columns={'Unnamed: 0' :'cellName'}, inplace=True) cols = intermediate.columns dropList = [] for col in cols: if 'Unnamed' in col: dropList.append(col) # want to drop the cols that contain 'Unnamed' intermediate = intermediate.drop(dropList, axis=1) if test_bool: intermediate.to_csv(cwd + "test/mutationcounts_table/geneCellMutationCounts_artifical.csv", index=False) else: intermediate.to_csv(cwd + "geneCellMutationCounts.csv", index=False) cmd = 'rm ' + cwd + 'intermediate.csv' os.system(cmd)
import unittest.mock import freezegun import pandas as pd import pytest import functions import src.getraenkeKasse.getraenkeapp columns_purchases = ['timestamp', 'user', 'code', 'paid'] columns_products = ['nr', 'code', 'desc', 'price', 'stock'] TEST_PRODUCTS_FILE = 'test_file_1' TEST_PURCHASES_FILE = 'test_file_2' TEST_USERS_FILE = 'test_file_3' def get_stock_for_product(gk: src.getraenkeKasse.getraenkeapp.GetraenkeApp, code: str) -> int: return gk.file_contents.products.loc[gk.file_contents.products['code'] == code, 'stock'].item() def get_purchases_for_user(gk: src.getraenkeKasse.getraenkeapp.GetraenkeApp, user: str) -> pd.DataFrame: return gk.file_contents.purchases[gk.file_contents.purchases['user'] == user] @pytest.fixture(autouse=False) def mock_functions(request, monkeypatch): mock_git_pull = unittest.mock.Mock(return_value=request.param['status_git_pull']) monkeypatch.setattr(target=functions, name='git_pull', value=mock_git_pull) mock_git_push = unittest.mock.Mock(return_value=True) monkeypatch.setattr(target=functions, name='git_push', value=mock_git_push) mock_write_csv = unittest.mock.Mock(return_value=None) monkeypatch.setattr(target=functions, name='write_csv_file', value=mock_write_csv) return mock_git_pull, mock_git_push, mock_write_csv @pytest.fixture(autouse=False) def mock_getraenkekasse(): with unittest.mock.patch('wx.App', autospec=True), \ unittest.mock.patch('wx.SystemSettings', autospec=True), \ unittest.mock.patch('wx.Font', autospec=True): gk = src.getraenkeKasse.getraenkeapp.GetraenkeApp(button_height=1, button_width=1, font_size=1, offset=1, file_names={'products': TEST_PRODUCTS_FILE, 'purchases': TEST_PURCHASES_FILE, 'users': TEST_USERS_FILE}) products = [[1, '1111111111111', 'xxxx', 0.60, 20], [2, '2222222222222', 'yyyy', 0.80, 0]] gk.file_contents.products = pd.DataFrame(products, columns=columns_products) purchases = [['2019-12-10T12:20:00', 'aaa', '1111111111111', False], ['2019-12-10T16:30:00', 'bbb', '2222222222222', False], ['2019-12-10T16:35:00', 'bbb', '2222222222222', False]] gk.file_contents.purchases = pd.DataFrame(purchases, columns=columns_purchases) gk.file_contents.users = None return gk def test_set_stock_for_product(mock_getraenkekasse): mock_getraenkekasse._set_stock_for_product(nr=1, stock=23) assert get_stock_for_product(mock_getraenkekasse, '1111111111111') == 23 @pytest.mark.parametrize('mock_functions', [dict(status_git_pull=True)], indirect=True) def test_replenish_stock(mock_getraenkekasse, mock_functions): mock_git_pull, mock_git_push, mock_write_csv = mock_functions mock_getraenkekasse.replenish_stock([[1, 20, 23], [2, 0, 0]]) assert get_stock_for_product(mock_getraenkekasse, '1111111111111') == 23 assert get_stock_for_product(mock_getraenkekasse, '2222222222222') == 0 mock_git_pull.assert_called_once() mock_git_push.assert_called_once() mock_write_csv.assert_called_once_with(file=TEST_PRODUCTS_FILE, df=mock_getraenkekasse.file_contents.products) def test_decrease_stock_for_product0(mock_getraenkekasse): status = mock_getraenkekasse._decrease_stock_for_product('1111111111111') assert status is True assert get_stock_for_product(mock_getraenkekasse, '1111111111111') == 19 def test_decrease_stock_for_product1(mock_getraenkekasse): status = mock_getraenkekasse._decrease_stock_for_product('2222222222222') assert status is False assert get_stock_for_product(mock_getraenkekasse, '2222222222222') == 0 def test_set_paid_for_user(mock_getraenkekasse): mock_getraenkekasse._set_paid_for_user(user='bbb') assert mock_getraenkekasse.file_contents.purchases['paid'].tolist() == [False, True, True] @pytest.mark.parametrize('mock_functions', [dict(status_git_pull=True)], indirect=True) def test_pay_for_user(mock_getraenkekasse, mock_functions): mock_git_pull, mock_git_push, mock_write_csv = mock_functions mock_getraenkekasse.pay_for_user('aaa') assert mock_getraenkekasse.file_contents.purchases['paid'].tolist() == [True, False, False] mock_git_pull.assert_called_once_with(path_repo='./.') mock_git_push.assert_called_once_with(path_repo='./.', files=[TEST_PURCHASES_FILE], commit_message='pay for user aaa via getraenkeKasse.py') mock_write_csv.assert_called_once_with(file=TEST_PURCHASES_FILE, df=mock_getraenkekasse.file_contents.purchases) @freezegun.freeze_time('2019-12-10 17:00:00') @pytest.mark.parametrize('mock_functions', [dict(status_git_pull=True)], indirect=True) def test_make_purchase_stock_available(mock_getraenkekasse, mock_functions): mock_git_pull, mock_git_push, mock_write_csv = mock_functions expected_df = pd.DataFrame([['2019-12-10T12:20:00', 'aaa', '1111111111111', False], ['2019-12-10T17:00:00', 'aaa', '1111111111111', False]], columns=columns_purchases, index=[0, 3]) mock_getraenkekasse.make_purchase(user='aaa', code='1111111111111') pd.testing.assert_frame_equal(get_purchases_for_user(gk=mock_getraenkekasse, user='aaa'), expected_df) assert get_stock_for_product(mock_getraenkekasse, '1111111111111') == 19 mock_git_pull.assert_called_once_with(path_repo='./.') mock_git_push.assert_called_once_with(path_repo='./.', files=[TEST_PURCHASES_FILE, TEST_PRODUCTS_FILE], commit_message='purchase via getraenkeKasse.py') mock_write_csv.assert_has_calls([unittest.mock.call(file=TEST_PURCHASES_FILE, df=mock_getraenkekasse.file_contents.purchases), unittest.mock.call(file=TEST_PRODUCTS_FILE, df=mock_getraenkekasse.file_contents.products)]) @freezegun.freeze_time('2019-12-10 18:00:00') @pytest.mark.parametrize('mock_functions', [dict(status_git_pull=True)], indirect=True) def test_make_purchase_stock_empty(mock_getraenkekasse, mock_functions): mock_git_pull, mock_git_push, mock_write_csv = mock_functions expected_df = pd.DataFrame([['2019-12-10T12:20:00', 'aaa', '1111111111111', False], ['2019-12-10T18:00:00', 'aaa', '2222222222222', False]], columns=columns_purchases, index=[0, 3]) mock_getraenkekasse.make_purchase(user='aaa', code='2222222222222') pd.testing.assert_frame_equal(get_purchases_for_user(gk=mock_getraenkekasse, user='aaa'), expected_df) assert get_stock_for_product(mock_getraenkekasse, '2222222222222') == 0 mock_git_pull.assert_called_once_with(path_repo='./.') mock_git_push.assert_called_once_with(path_repo='./.', files=[TEST_PURCHASES_FILE], commit_message='purchase via getraenkeKasse.py') mock_write_csv.assert_called_once_with(file=TEST_PURCHASES_FILE, df=mock_getraenkekasse.file_contents.purchases)
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import json import logging import os from argparse import Namespace import torch from torch.utils.tensorboard import SummaryWriter import torch.nn as nn import numpy as np import rouge_score from rouge_score import rouge_scorer from fairseq import metrics, options, utils from fairseq.data import ( AppendTokenDataset, ConcatDataset, LanguagePairDataset, PrependTokenDataset, StripTokenDataset, TruncateDataset, data_utils, encoders, indexed_dataset, ) from fairseq.tasks import LegacyFairseqTask, register_task from fairseq.tasks.translation import TranslationTask EVAL_BLEU_ORDER = 4 logger = logging.getLogger(__name__) @register_task("simple_vae_translation") class SimpleVaeTranslationTask(TranslationTask): def __init__(self, args, src_dict, tgt_dict): super().__init__(args, src_dict, tgt_dict) self.src_dict = src_dict self.tgt_dict = tgt_dict self.period = int(args.period) self.store_gradient = False self.mse_loss = nn.MSELoss() self.rouge_scorer = rouge_scorer.RougeScorer(['rouge1'], use_stemmer=False) @staticmethod def add_args(parser): TranslationTask.add_args(parser) parser.add_argument('--period', help='use pretrained model when training [True, ...]') parser.add_argument("--grad") def calculate_rouge(self, tensor1, tensor2): rouges = [] for i in range(tensor1.size(0)): s1, s2 = tensor1[i,:], tensor2[i,:] s1, s2 = s1.tolist(), s2.tolist() s1, s2 = " ".join(list(map(str, s1))), " ".join(list(map(str, s2))) rouge = self.rouge_scorer.score(s1,s2)['rouge1'][2] rouges.append(rouge) return torch.tensor(rouges).cuda().unsqueeze(dim=1) def optimize_rouge(self, sample, model, num_updates ,ignore_grad=False): optimizer = torch.optim.Adam(model.rouge_predict_net.parameters(), lr=1e-4) net_input = sample['net_input']['src_tokens'] # [B, T1] src_lengths = sample['net_input']['src_lengths'] target = sample['target'] # [B, T2] # --- predict ROUGE score encoder_out = model.encoder.forward(net_input, src_lengths) alpha = model.rouge_predict_net(encoder_out['encoder_out'][0]) # --- calculate ROUGE score rouges = self.calculate_rouge(net_input, target) loss = self.mse_loss(alpha, rouges) # --- optimize optimizer.zero_grad() loss.backward() optimizer.step() return loss def train_step( self, sample, model, criterion, optimizer, update_num, ignore_grad=False ): """ Do forward and backward, and return the loss as computed by *criterion* for the given *model* and *sample*. Args: sample (dict): the mini-batch. The format is defined by the :class:`~fairseq.data.FairseqDataset`. model (~fairseq.models.BaseFairseqModel): the model criterion (~fairseq.criterions.FairseqCriterion): the criterion optimizer (~fairseq.optim.FairseqOptimizer): the optimizer update_num (int): the current update ignore_grad (bool): multiply loss by 0 if this is set to True Returns: tuple: - the loss - the sample size, which is used as the denominator for the gradient - logging outputs to display while training """ model.train() model.set_num_updates(update_num) rouge_loss = self.optimize_rouge(sample, model, update_num) with torch.autograd.profiler.record_function("forward"): loss, sample_size, logging_output = criterion(model, sample) logging_output['rouge_loss'] = rouge_loss.item() if ignore_grad: loss *= 0 with torch.autograd.profiler.record_function("backward"): optimizer.backward(loss) if self.store_gradient and update_num%50==0: target_names = [ "XZtoV.weight", "XtoV.weight", "ZtoV.weight"] dic = {} for name, param in model.named_parameters(): if name in target_names: #dic[name]=param.grad.data.norm(2).item() dic[name]=param.grad.data.abs().mean().item() #torch.save(param.grad.data.norm(2), f"{self.gradient_dir}/{name}_{update_num}.pt") # self.writer.add_scalars("Grad/Norm", dic, update_num) # if update_num==200: # for param in model.encoder.parameters(): # param.requires_grad = False return loss, sample_size, logging_output
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import random import numpy as np import tensorflow as tf # TF2 from tensorflow_examples.lite.model_maker.core.data_util import image_dataloader def _fill_image(rgb, image_size): r, g, b = rgb return np.broadcast_to( np.array([[[r, g, b]]], dtype=np.uint8), shape=(image_size, image_size, 3)) def _write_filled_jpeg_file(path, rgb, image_size): tf.keras.preprocessing.image.save_img(path, _fill_image(rgb, image_size), 'channels_last', 'jpeg') class ImageDataLoaderTest(tf.test.TestCase): def setUp(self): super(ImageDataLoaderTest, self).setUp() self.image_path = os.path.join(self.get_temp_dir(), 'random_image_dir') if os.path.exists(self.image_path): return os.mkdir(self.image_path) for class_name in ('daisy', 'tulips'): class_subdir = os.path.join(self.image_path, class_name) os.mkdir(class_subdir) _write_filled_jpeg_file( os.path.join(class_subdir, '0.jpeg'), [random.uniform(0, 255) for _ in range(3)], 224) def test_split(self): ds = tf.data.Dataset.from_tensor_slices([[0, 1], [1, 1], [0, 0], [1, 0]]) data = image_dataloader.ImageClassifierDataLoader(ds, 4, 2, ['pos', 'neg']) train_data, test_data = data.split(0.5, shuffle=False) self.assertEqual(train_data.size, 2) for i, elem in enumerate(train_data.dataset): self.assertTrue((elem.numpy() == np.array([i, 1])).all()) self.assertEqual(train_data.num_classes, 2) self.assertEqual(train_data.index_to_label, ['pos', 'neg']) self.assertEqual(test_data.size, 2) for i, elem in enumerate(test_data.dataset): self.assertTrue((elem.numpy() == np.array([i, 0])).all()) self.assertEqual(test_data.num_classes, 2) self.assertEqual(test_data.index_to_label, ['pos', 'neg']) def test_from_folder(self): data = image_dataloader.ImageClassifierDataLoader.from_folder( self.image_path) self.assertEqual(data.size, 2) self.assertEqual(data.num_classes, 2) self.assertEqual(data.index_to_label, ['daisy', 'tulips']) for image, label in data.dataset: self.assertTrue(label.numpy() == 1 or label.numpy() == 0) if label.numpy() == 0: raw_image_tensor = image_dataloader.load_image( os.path.join(self.image_path, 'daisy', '0.jpeg')) else: raw_image_tensor = image_dataloader.load_image( os.path.join(self.image_path, 'tulips', '0.jpeg')) self.assertTrue((image.numpy() == raw_image_tensor.numpy()).all()) if __name__ == '__main__': assert tf.__version__.startswith('2') tf.test.main()
#!/usr/bin/env python # -*- coding: utf-8 -*- """Test with MuJoCo. """ import os import time import numpy as np from itertools import count # from pyrobolearn.simulators.bullet import Bullet from pyrobolearn.simulators.mujoco import Mujoco import mujoco_py as mujoco # sim = Bullet(render=True) sim = Mujoco(render=True, update_dynamically=True) print("Gravity: {}".format(sim.get_gravity())) print("Timestep: {}".format(sim.get_time_step())) # sim.set_gravity(np.zeros(3)) # load floor # floor = sim.load_floor(dimension=20) print("qpos (before loading): ", sim.sim.data.qpos) # create box # box = sim.create_primitive_object(sim.GEOM_BOX, position=(0, 0, 2), mass=1, rgba_color=(1, 0, 0, 1)) # sphere = sim.create_primitive_object(sim.GEOM_SPHERE, position=[0.5, 0., 1.], mass=0, radius=0.05, # rgba_color=(1, 0, 0, 0.5)) # cylinder = sim.create_primitive_object(sim.GEOM_CYLINDER, position=(0, 2, 2), mass=1) # capsule = sim.create_primitive_object(sim.GEOM_CAPSULE, position=(0, -2, 2), mass=1, rgba_color=(0, 0, 1, 1)) print("qpos (after loading sphere): ", sim.sim.data.qpos) # print("Sphere id: ", sphere) # print("Num bodies before loading robot: ", sim.num_bodies()) # load robot path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/rrbot/pendulum.urdf' # path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/rrbot/rrbot.urdf' path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/franka/franka.urdf' # path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/kuka/kuka_iiwa/iiwa14.urdf' path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/hyq2max/hyq2max.urdf' # path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/anymal/anymal.urdf' # path = os.path.dirname(os.path.abspath(__file__)) + '/../robots/urdfs/centauro/centauro_stick.urdf' robot_name = path.split('/')[-1].split('.')[0] robot = sim.load_urdf(path, position=(0, 0, 0.8), use_fixed_base=True) print("qpos (after loading robot): ", sim.sim.data.qpos) print("Base position: ", sim.get_base_position(robot)) print("Num bodies after loading robot: ", sim.num_bodies()) # print("Robot") # print("base name: ", sim.get_body_info(robot)) # print("mass: ", sim.get_base_mass(body_id=robot)) # sim.remove_body(sphere) print(sim.sim.data.qpos) # sim.step() model = sim.model mjc_sim = sim.sim data = mjc_sim.data # The ones that appear in the following are because of the floor print("nbody", model.nbody - 1) # total number of links # print("nuser_body", model.nuser_body) print("njnt", model.njnt) # total number of joints print("nq", model.nq) # total number of generalized coordinates (=num_actuated_joints); for free joints 7 print("nv", model.nv) # generalized velocities (nq - 1) print("na", model.na) print("nu", model.nu) print("qpos", data.qpos) print("qvel", data.qvel) print("act", data.act) # print("qpos", data.qpos, len(data.qpos)) # nqx1 print("body_dofnum: ", model.body_dofnum) print("body_mass: ", model.body_mass) print("body_subtreemass", model.body_subtreemass) print("subtree_com", data.subtree_com) print("body_xpos: ", data.body_xpos) print("body pos: ", model.body_pos) print("body_xquat: ", data.body_xquat) # print("get_xpos: ", data.get_body_xpos(sim._bodies[sphere].tag_name)) print("xfrc_applied: ", data.xfrc_applied) # joints # print("jnt_type: ", [["free", "ball", "slide", "hinge"][idx] for idx in model.jnt_type]) # print("jnt_qposadr: ", model.jnt_qposadr) data.body_xpos[1] = np.array(range(3)) num_joints = sim.num_joints(robot) num_actuated_joints = sim.num_actuated_joints(robot) num_links = sim.num_links(robot) joint_ids = sim.get_joint_type_ids(robot, list(range(num_joints))) joint_ids = np.array([i for i in range(num_joints) if joint_ids[i] != sim.JOINT_FIXED]) # define amplitude and angular velocity when moving the sphere w = 0.01/2 r = 0.2 print("\nncam: ", model.ncam) print("cam_xpos: ", data.cam_xpos) print("cam_xmat: ", data.cam_xmat) print("cam_fovy: ", model.cam_fovy) print("Masses: ", sim.get_link_masses(robot)) print("Names: ", sim.get_link_names(robot)) print("Num links: ", num_links) print("Num joints: ", num_joints) print("Num actuated joints: ", num_actuated_joints) print("Contacts: ", data.contact) print("Sim state: ", mjc_sim.get_state()) print("time: ", data.time) for i in range(num_joints): print(sim.get_joint_info(robot, i)) for i in range(num_links): print(sim.get_link_state(robot, i)) print("Jacobian: ", sim.calculate_jacobian(robot, num_actuated_joints)) data.qpos[:] = np.zeros(model.nq) viewer = sim.viewer print(viewer.cam) print(dir(viewer.cam)) # sim.reset_joint_states(robot, positions=[8.84305270e-05, 7.11378917e-02, -1.68059886e-04, -9.71690439e-01, # 1.68308810e-05, 3.71467111e-01, 5.62890805e-05]) print(sim.print_xml()) # TODO: the angles are reversed when setting qpos0 # TODO: the robots if robot_name == 'franka': positions = np.array([0.0277854, -0.97229678, -0.028778385, -2.427800237, -0.086976557, 1.442695354, -0.711514286, 0., 0.]) sim.reset_joint_states(robot, joint_ids=joint_ids, positions=positions) elif robot_name == 'iiwa14': sim.reset_joint_state(robot, joint_id=3, position=-np.pi/2) elif robot_name == 'pendulum': sim.reset_joint_state(robot, joint_id=1, position=np.pi/8) # perform step for t in count(): # print("nbody", model.nbody) # print("njnt", model.njnt) # print("nq", model.nq) # print("nv", model.nv) # print("na", model.na) # print("nu", model.nu) # print("qpos", mjc_sim.data.qpos) # nqx1 # print("body_dofnum: ", model.body_dofnum) # print("body_mass: ", model.body_mass) # print("body_subtreemass", model.body_subtreemass) # if (t % 200) == 0: # print("Resetting position") # model.body_pos[1] = range(3) # # data.qpos[:3] = range(3) # print(model.body_pos) # print(mjc_sim.data.body_xpos[1]) # if t % 200 == 0: # # print(mjc_sim.data.subtree_com) # pos = np.zeros(3) # jacp = np.zeros(3 * model.nv) # jacr = np.zeros(3 * model.nv) # mujoco.functions.mj_jac(model, data, jacp, jacr, pos, 4) # print(jacp) # print(jacr) # # model.body_pos[1] = range(3) # # sim.reset_base_position(sphere, [2, -1, 3]) # position = np.array([0.5, r * np.cos(w * t + np.pi / 2), (1. - r) + r * np.sin(w * t + np.pi / 2)]) # sim.reset_base_position(sphere, position) # data.qpos[:] = np.zeros(model.nq) # print joint positions # print(sim.get_joint_positions(robot)) # sim.set_joint_positions(robot, joint_ids, 0 * np.ones(num_actuated_joints)) # sim.reset_joint_states(robot, joint_ids=joint_ids, positions=positions) # sim.set_joint_positions(robot, joint_ids, positions) # sim.set_joint_positions(robot, joint_ids, [0., 0., 0., np.pi/2, 0., 0., 0.]) sim.set_joint_positions(robot, joint_ids, np.zeros(num_actuated_joints), kps=50, kds=1) # sim.set_joint_positions(robot, joint_ids, np.pi/2 * np.ones(num_actuated_joints), kps=100, kds=10) # sim.set_joint_positions(robot, joint_ids=1, positions=np.pi/2, kps=100, kds=10) # sim.set_joint_velocities(robot, joint_ids, np.zeros(num_actuated_joints)) # sim.set_joint_velocities(robot, joint_ids, velocities=5 * np.ones(num_actuated_joints)) # sim.set_joint_torques(robot, joint_ids, torques=np.zeros(num_actuated_joints)) # sim.set_joint_torques(robot, joint_ids, torques=5 * np.ones(num_actuated_joints)) # if t == 500: # cylinder = sim.create_primitive_object(sim.GEOM_CYLINDER, position=(0, 2, 2), mass=1) # if t == 2000: # sim.remove_body(cylinder) # qpos = data.qpos # print("time: ", data.time) # # print(qpos) # data.qpos[:] = np.zeros(len(qpos)) # print(data.xfrc_applied.shape) # print(data.mocap_quat) # print(mjc_sim.data.contact) sim.step(sleep_time=sim.dt)
import sqlite3 class PipelineDatabase: def __init__(self, name): self.connection = sqlite3.connect(name) self.cursor = self.connection.cursor() def create_if_not_exists(self): self.cursor.execute('''create table if not exists files (file int, name text, suff text, format text, primary key (file))''') self.cursor.execute('''create table if not exists programs (program int, status int, name text, log text, out text, cmd text, primary key(program))''') self.cursor.execute('''create table if not exists files_programs (parent int, child int)''') self.cursor.execute('''create table if not exists programs_programs (parent int, child int, label text)''') self.cursor.execute('''create table if not exists programs_files (parent int, child int)''') def truncate_all(self): self.cursor.execute('delete from files') self.cursor.execute('delete from programs') self.cursor.execute('delete from files_programs') self.cursor.execute('delete from programs_programs') self.cursor.execute('delete from programs_files') def close(self): self.connection.close() def execute(self, sql): self.cursor.execute(sql) def fetchall(self): return self.cursor.fetchall() def commit(self): self.connection.commit()
#!/usr/bin/env python3 from django.core.management.base import BaseCommand from seqauto.models import JobScript, JobScriptStatus class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('--job_script_id', type=int, required=True) parser.add_argument('--job_id') def handle(self, *args, **options): job_script_id = options["job_script_id"] job_id = options.get("job_id") job_script = JobScript.objects.get(id=job_script_id) job_script.job_status = JobScriptStatus.SUBMITTED if job_id: job_script.job_id = job_id job_script.save()
import tkinter as tk from tkinter import messagebox import random import numpy as np window = tk.Tk() window.title('sudoku') window.geometry('600x600') sudoku = np.array([[1, 9, 6, 4, 3, 8, 7, 5, 2], [3, 8, 4, 5, 7, 2, 1, 6, 9], [7, 2, 5, 6, 1, 9, 3, 4, 8], [5, 7, 2, 1, 6, 3, 9, 8, 4], [6, 3, 1, 8, 9, 4, 5, 2, 7], [9, 4, 8, 2, 5, 7, 6, 1, 3], [2, 5, 7, 9, 4, 1, 8, 3, 6], [4, 1, 9, 3, 8, 6, 2, 7, 5], [8, 6, 3, 7, 2, 5, 4, 9, 1]]) def change_root(shudu): """ Change sudoku map""" numofexchange = 1 temp_list = [1, 2, 3, 4, 5, 6, 7, 8, 9] while numofexchange < 10: random.shuffle(temp_list) random_num = temp_list[1] if random_num == 9: for i in range(9): for j in range(9): if shudu[i][j] == random_num: shudu[i][j] = 1 elif shudu[i][j] == 1: shudu[i][j] = 9 else: for i in range(9): for j in range(9): if shudu[i][j] == random_num: shudu[i][j] = random_num+1 elif shudu[i][j] == random_num+1: shudu[i][j] = random_num numofexchange += 1 return shudu def rowcolumn_exchange(shudu): """ Row and column transformation""" numofexchange = 1 temp_list = [1, 2, 3, 4, 5, 6, 7, 8] while numofexchange < 4: random.shuffle(temp_list) rownum = temp_list[1] if (rownum % 3) == 2: shudu[[rownum, rownum-1], :] = shudu[[rownum-1, rownum], :] else: shudu[[rownum, rownum+1], :] = shudu[[rownum+1, rownum], :] shudu = shudu.T numofexchange += 1 return shudu EntryList = [] s = set() # tk.Text(window,height=1, width=5).grid(row = 15) def newproblem(shudu): temp_list1 = [4, 5, 6] temp_list2 = [0, 1, 2, 3, 4, 5, 6, 7, 8] for row in range(9): random.shuffle(temp_list1) num1 = temp_list1[1] random.shuffle(temp_list2) for col in range(num1): shudu[row][temp_list2[col]] = 0 return shudu def solving_sudoku(): col_num = [] row_num = [] sqr_num = [[0]*3 for _ in range(3)] for i in range(9): col_num.append(set(tuple(range(1, 10)))) row_num.append(set(tuple(range(1, 10)))) for i in range(3): for j in range(3): sqr_num[i][j] = set(tuple(range(1, 10))) for i in range(9): for j in range(9): if sudoku[i][j] != 0: if sudoku[i][j] in row_num[i]: row_num[i].remove(sudoku[i][j]) if sudoku[i][j] in col_num[j]: col_num[j].remove(sudoku[i][j]) if sudoku[i][j] in sqr_num[i//3][j//3]: sqr_num[i//3][j//3].remove(sudoku[i][j]) tag = 1 for i in range(9): if len(row_num[i]) != 0: tag = 0 if len(col_num[i]) != 0: tag = 0 for i in range(3): for j in range(3): if len(sqr_num[i][j]): tag = 0 return tag def insert_end(): try: for (row, col) in s: sudoku[row][col] = EntryList[row*9+col].get() tag = solving_sudoku() if tag == 1: tk.messagebox.showinfo(title='恭喜', message='正确') else: tk.messagebox.showinfo(title='糟糕', message='检查一下哦,有些地方好像不对!') except Exception: tk.messagebox.showinfo(title='未完成数独', message='还有空格没有填入数字哦!') def show(shudu): for i in range(9): for j in range(9): if shudu[i][j] == 0: EntryList.append(tk.Entry(window, font=("Calibri", 12), justify="center", width=6, fg="black", highlightbackground="black", highlightcolor="red", highlightthickness=1, bd=0)) EntryList[i*9+j].grid(row=i, column=j, ipady=14) s.add((i, j)) else: EntryList.append( tk.Label(window, text=shudu[i][j], font=("Calibri", 12), width=6)) EntryList[i*9+j].grid(row=i, column=j, ipady=14) sudoku = change_root(sudoku) sudoku = rowcolumn_exchange(sudoku) print(sudoku) sudoku = newproblem(sudoku) show(sudoku) b2 = tk.Button(window, text="提交", command=insert_end) b2.grid(row=12, column=5) window.mainloop()
#!/usr/bin/env python # -*- coding: utf-8 -*- """ TODO """ import mir_eval import bss_eval_base class BSSEvalImages(bss_eval_base.BSSEvalBase): """ """ def __init__(self, true_sources_list, estimated_sources_list, source_labels=None, algorithm_name=None, do_mono=False, compute_permutation=True): super(BSSEvalImages, self).__init__(true_sources_list=true_sources_list, estimated_sources_list=estimated_sources_list, source_labels=source_labels, do_mono=do_mono, compute_permutation=compute_permutation) self._mir_eval_func = mir_eval.separation.bss_eval_images def _preprocess_sources(self): reference, estimated = super(BSSEvalImages, self)._preprocess_sources() if self.num_channels == 1: raise Exception("Can't run bss_eval_images on mono audio signals!") mir_eval.separation.validate(reference, estimated) return reference, estimated def _populate_scores_dict(self, bss_output): sdr_list, isr_list, sir_list, sar_list, perm = bss_output # Unpack assert len(sdr_list) == len(sir_list) \ == len(sar_list) == len(isr_list) == len(self.true_sources_list) * self.num_channels self.scores[self.RAW_VALUES] = {self.SDR: sdr_list, self.ISR: isr_list, self.SIR: sir_list, self.SAR: sar_list, self.PERMUTATION: perm} idx = 0 for i, label in enumerate(self.source_labels): self.scores[label] = {} for ch in range(self.num_channels): chan = 'Ch {}'.format(ch) self.scores[label][chan] = {} self.scores[label][chan][self.SDR] = sdr_list[perm[idx]] self.scores[label][chan][self.ISR] = isr_list[perm[idx]] self.scores[label][chan][self.SIR] = sir_list[perm[idx]] self.scores[label][chan][self.SAR] = sar_list[perm[idx]] idx += 1 self.scores[self.PERMUTATION] = perm
#! /usr/bin/env python """Post-install / configuration script for Iromlab""" import os import sys import imp import site import sysconfig from shutil import copyfile import threading import logging import pythoncom from win32com.client import Dispatch try: import tkinter as tk # Python 3.x import tkinter.scrolledtext as ScrolledText import tkinter.messagebox as tkMessageBox except ImportError: import Tkinter as tk # Python 2.x import ScrolledText import tkMessageBox def errorExit(error): """Show error message in messagebox and then exit after userv presses OK""" tkMessageBox.showerror("Error", error) os._exit(0) def get_reg(name, path): """Read variable from Windows Registry""" import winreg # From http://stackoverflow.com/a/35286642 try: registry_key = winreg.OpenKey(winreg.HKEY_CURRENT_USER, path, 0, winreg.KEY_READ) value, regtype = winreg.QueryValueEx(registry_key, name) winreg.CloseKey(registry_key) return value except WindowsError: return None def main_is_frozen(): return (hasattr(sys, "frozen") or # new py2exe hasattr(sys, "importers") # old py2exe or imp.is_frozen("__main__")) # tools/freeze def get_main_dir(): if main_is_frozen(): return os.path.dirname(sys.executable) return os.path.dirname(sys.argv[0]) def post_install(): """Install config file + pre-packaged tools to user dir + Create a Desktop shortcut to the installed software """ # This is needed to avoid 'CoInitialize has not been called' # error with Dispatch. See: https://stackoverflow.com/a/26753031 pythoncom.CoInitialize() # Package name packageName = 'iromlab' # Scripts directory (location of launcher script) scriptsDir = get_main_dir() # Package directory (parent of scriptsDir) packageDir = os.path.abspath(os.path.join(scriptsDir, os.pardir)) # Part 1: install config file # Locate Windows user directory userDir = os.path.expanduser('~') # Config directory configDirUser = os.path.join(userDir, packageName) logging.info("User configuration directory: " + configDirUser) # Create config directory if it doesn't exist if not os.path.isdir(configDirUser): logging.info("Creating user configuration directory ...") try: os.makedirs(configDirUser) logging.info("Done!") except IOError: msg = 'could not create configuration directory' errorExit(msg) # Config file name configFileUser = os.path.join(configDirUser, 'config.xml') if not os.path.isfile(configFileUser): # No config file in user dir, so copy it from location in package. # Location is /iromlab/conf/config.xml in 'site-packages' directory # if installed with pip) logging.info("Copying configuration file to user directory ...") # Locate global site-packages dir (this returns multiple entries) sitePackageDirsGlobal = site.getsitepackages() # Assumptions: site package dir is called 'site-packages' and is # unique (?) for directory in sitePackageDirsGlobal: if 'site-packages' in directory: sitePackageDirGlobal = directory try: logging.info("Global site package directory: " + sitePackageDirGlobal) except: pass # Locate user site-packages dir sitePackageDirUser = site.getusersitepackages() logging.info("User site package directory: " + sitePackageDirUser) # Determine which site package dir to use if packageDir in sitePackageDirGlobal: sitePackageDir = sitePackageDirGlobal elif packageDir in sitePackageDirUser: sitePackageDir = sitePackageDirUser else: msg = 'could not establish package dir to use' errorExit(msg) logging.info("Site package directory: " + sitePackageDir) # Construct path to config file configFilePackage = os.path.join(sitePackageDir, packageName, 'conf', 'config.xml') if os.path.isfile(configFilePackage): try: copyfile(configFilePackage, configFileUser) logging.info("Done!") except IOError: msg = 'could not copy configuration file to ' + configFileUser errorExit(msg) # This should never happen but who knows ... else: msg = 'no configuration file found in package' errorExit(msg) # Part 2: create Desktop shortcut logging.info("Creating desktop shortcut ...") try: # Target of shortcut target = os.path.join(scriptsDir, packageName + '.exe') # Name of link file linkName = packageName + '.lnk' # Read location of Windows desktop folder from registry regName = 'Desktop' regPath = r'Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders' desktopFolder = os.path.normpath(get_reg(regName, regPath)) logging.info("Desktop directory: " + desktopFolder) # Path to location of link file pathLink = os.path.join(desktopFolder, linkName) shell = Dispatch('WScript.Shell') shortcut = shell.CreateShortCut(pathLink) shortcut.Targetpath = target shortcut.WorkingDirectory = scriptsDir shortcut.IconLocation = target shortcut.save() logging.info("Done!") except Exception: msg = 'Failed to create desktop shortcut' errorExit(msg) msg = 'Iromlab configuration completed successfully, click OK to exit!' tkMessageBox.showinfo("Info", msg) os._exit(0) class TextHandler(logging.Handler): """This class allows you to log to a Tkinter Text or ScrolledText widget Adapted from Moshe Kaplan: https://gist.github.com/moshekaplan/c425f861de7bbf28ef06 """ def __init__(self, text): # run the regular Handler __init__ logging.Handler.__init__(self) # Store a reference to the Text it will log to self.text = text def emit(self, record): msg = self.format(record) def append(): self.text.configure(state='normal') self.text.insert(tk.END, msg + '\n') self.text.configure(state='disabled') # Autoscroll to the bottom self.text.yview(tk.END) # This is necessary because we can't modify the Text from other threads self.text.after(0, append) class myGUI(tk.Frame): """This class defines the graphical user interface""" def __init__(self, parent, *args, **kwargs): tk.Frame.__init__(self, parent, *args, **kwargs) self.root = parent self.build_gui() def build_gui(self): # Build GUI self.root.title('Iromlab Configuration Tool') self.root.option_add('*tearOff', 'FALSE') self.grid(column=0, row=0, sticky='ew') self.grid_columnconfigure(0, weight=1, uniform='a') self.grid_columnconfigure(1, weight=1, uniform='a') self.grid_columnconfigure(2, weight=1, uniform='a') self.grid_columnconfigure(3, weight=1, uniform='a') # Add text widget to display logging info st = ScrolledText.ScrolledText(self, state='disabled') st.configure(font='TkFixedFont') st.grid(column=0, row=1, sticky='w', columnspan=4) # Create textLogger text_handler = TextHandler(st) # Logging configuration logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Add the handler to logger logger = logging.getLogger() logger.addHandler(text_handler) def main(): """Main function""" root = tk.Tk() myGUI(root) t1 = threading.Thread(target=post_install, args=[]) t1.start() root.mainloop() t1.join() if __name__ == "__main__": main()
import h5py import numpy as np import pandas as pd import os from argparse import ArgumentParser def dataframe_to_deepsurv_ds(df, event_col='Event', time_col='Time'): # Extract the event and time columns as numpy arrays e = df[event_col].values.astype(np.int32) t = df[time_col].values.astype(np.float32) # Extract the patient's covariates as a numpy array x_df = df.drop([event_col, time_col], axis=1) x = x_df.values.astype(np.float32) # Return the deep surv dataframe return { 'x': x, 'e': e, 't': t } def dataframes_to_hd5(df, ofile, event_col, time_col): with h5py.File(ofile, 'w') as h: for k in df: ds = dataframe_to_deepsurv_ds(df[k], event_col, time_col) group = h.create_group(k) group.create_dataset('x', data=ds['x']) group.create_dataset('e', data=ds['e']) group.create_dataset('t', data=ds['t']) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('ifile_os') parser.add_argument('ifile_pfs') # parser.add_argument('-e', '--event_col', default='OSEvent') # parser.add_argument('-t', '--time_col', default='TTDy') # parser.add_argument('--txcol', type=str, default='SBRT') # parser.add_argument('--drop', help='drop columns', nargs='+', type=str) # parser.add_argument('--droprows', help='drop rows where [cols] have value --droprowsval', nargs='+', type=str) # parser.add_argument( # '--droprowsval', help='value at which to drop the rows from --droprows, default 1', type=int, default=1) # parser.add_argument('--droprows2', help='drop rows where [cols] have value --droprowsval2', nargs='+', type=str) # parser.add_argument( # '--droprowsval2', help='value at which to drop the rows from --droprows2, default 0', type=int, default=0) args = parser.parse_args() print(args) df = pd.read_csv(args.ifile_os) # print(df) drop_sbrtVS = ['Treatment', 'RFA', 'SBRT_OR_RFA'] drop_rfaVS = ['Treatment', 'SBRT', 'SBRT_OR_RFA'] drop_sbrtORrfa = ['Treatment', 'SBRT', 'RFA'] # # THIS IS FOR OS FIRST frac = 0.5 ds = { 'SBRT_train': df[df.SBRT == 1].sample(frac=frac), 'RFA_train': df[df.RFA == 1].sample(frac=frac), 'NONE_train': df[df.SBRT_OR_RFA == 0].sample(frac=frac) } ds |= { 'SBRT_test': df.loc[df[df.SBRT == 1].index.symmetric_difference(ds['SBRT_train'].index)], 'RFA_test': df.loc[df[df.RFA == 1].index.symmetric_difference(ds['RFA_train'].index)], 'NONE_test': df.loc[df[df.SBRT_OR_RFA == 0].index.symmetric_difference(ds['NONE_train'].index)], } df_sbrtVSnone = { 'train': pd.concat([ds['SBRT_train'], ds['NONE_train']]).drop(columns=drop_sbrtVS), 'test': pd.concat([ds['SBRT_test'], ds['NONE_test']]).drop(columns=drop_sbrtVS) } df_rfaVSnone = { 'train': pd.concat([ds['RFA_train'], ds['NONE_train']]).drop(columns=drop_rfaVS), 'test': pd.concat([ds['RFA_test'], ds['NONE_test']]).drop(columns=drop_rfaVS) } df_sbrtVSrfa = { 'train': pd.concat([ds['SBRT_train'], ds['RFA_train']]).drop(columns=drop_sbrtVS), 'test': pd.concat([ds['SBRT_test'], ds['RFA_test']]).drop(columns=drop_sbrtVS) } df_sbrtORrfa = { 'train': pd.concat([ds['SBRT_train'], ds['RFA_train'], ds['NONE_train']]).drop(columns=drop_sbrtORrfa), 'test': pd.concat([ds['SBRT_test'], ds['RFA_test'], ds['NONE_test']]).drop(columns=drop_sbrtORrfa) } ofile_os = os.path.join(os.path.dirname(args.ifile_os), 'liver_os_sbrtVSnone.hd5') dataframes_to_hd5(df_sbrtVSnone, ofile_os, 'OSEvent', 'TTDy') ofile_os = os.path.join(os.path.dirname(args.ifile_os), 'liver_os_rfaVSnone.hd5') dataframes_to_hd5(df_rfaVSnone, ofile_os, 'OSEvent', 'TTDy') ofile_os = os.path.join(os.path.dirname(args.ifile_os), 'liver_os_sbrtVSrfa.hd5') dataframes_to_hd5(df_sbrtVSrfa, ofile_os, 'OSEvent', 'TTDy') ofile_os = os.path.join(os.path.dirname(args.ifile_os), 'liver_os_sbrtORrfa.hd5') dataframes_to_hd5(df_sbrtORrfa, ofile_os, 'OSEvent', 'TTDy') # # USE INDICES FROM OS FOR PFS df_PFS = pd.read_csv(args.ifile_pfs) df_sbrtVSnone_pfs = { 'train': df_PFS.loc[df_sbrtVSnone['train'].index].drop(columns=drop_sbrtVS), 'test': df_PFS.loc[df_sbrtVSnone['test'].index].drop(columns=drop_sbrtVS) } df_rfaVSnone_pfs = { 'train': df_PFS.loc[df_rfaVSnone['train'].index].drop(columns=drop_rfaVS), 'test': df_PFS.loc[df_rfaVSnone['test'].index].drop(columns=drop_rfaVS) } df_sbrtVSrfa_pfs = { 'train': df_PFS.loc[df_sbrtVSrfa['train'].index].drop(columns=drop_sbrtVS), 'test': df_PFS.loc[df_sbrtVSrfa['test'].index].drop(columns=drop_sbrtVS) } df_sbrtORrfa_pfs = { 'train': df_PFS.loc[df_sbrtORrfa['train'].index].drop(columns=drop_sbrtORrfa), 'test': df_PFS.loc[df_sbrtORrfa['test'].index].drop(columns=drop_sbrtORrfa) } ofile_pfs = os.path.join(os.path.dirname(args.ifile_os), 'liver_pfs_sbrtVSnone.hd5') dataframes_to_hd5(df_sbrtVSnone_pfs, ofile_pfs, 'PFSEvent', 'TTPy') ofile_pfs = os.path.join(os.path.dirname(args.ifile_os), 'liver_pfs_rfaVSnone.hd5') dataframes_to_hd5(df_rfaVSnone_pfs, ofile_pfs, 'PFSEvent', 'TTPy') ofile_pfs = os.path.join(os.path.dirname(args.ifile_os), 'liver_pfs_sbrtVSrfa.hd5') dataframes_to_hd5(df_sbrtVSrfa_pfs, ofile_pfs, 'PFSEvent', 'TTPy') ofile_pfs = os.path.join(os.path.dirname(args.ifile_os), 'liver_pfs_sbrtORrfa.hd5') dataframes_to_hd5(df_sbrtORrfa_pfs, ofile_pfs, 'PFSEvent', 'TTPy')
from icevision.models.ultralytics.yolov5.dataloaders import * from icevision.models.ultralytics.yolov5.model import * from icevision.models.ultralytics.yolov5.prediction import * from icevision.models.ultralytics.yolov5.show_results import * from icevision.models.ultralytics.yolov5.utils import * from icevision.models.ultralytics.yolov5.backbones import * from icevision.models.ultralytics.yolov5.show_batch import * # Soft dependencies from icevision.soft_dependencies import SoftDependencies if SoftDependencies.fastai: from icevision.models.ultralytics.yolov5 import fastai if SoftDependencies.pytorch_lightning: from icevision.models.ultralytics.yolov5 import lightning
from dbs.apis.dbsClient import * url="https://cmsweb.cern.ch/dbs/prod/global/DBSReader/" #url="https://dbs3-test2.cern.ch/dbs/dev/global/DBSReader/" dbs3api = DbsApi(url=url) dataset = '/JetHT/Run2018A-v1/RAW' print(dbs3api.listFileSummaries(dataset=dataset, validFileOnly=1)) print("\n") print(dbs3api.listFileSummaries(dataset=dataset)) print("\n") block='/JetHT/Run2018A-v1/RAW#e347a08b-e10d-49a5-b704-f4a2bdae190a' print(dbs3api.listFileSummaries(block_name=block, validFileOnly=1)) print("\n") block='/JetHT/Run2018A-v1/RAW#e347a08b-e10d-49a5-b704-f4a2bdae190a' print(dbs3api.listFileSummaries(block_name=block)) print("\n") dataset = '/DoubleEG/CMSSW_9_2_3_patch2-2017_07_11_19_22_PRref_92X_dataRun2_Prompt_RefGT_week28_2017-v1/RECO' print(dbs3api.listFileSummaries(dataset=dataset)) print("\n") dataset = '/DoubleEG/CMSSW_9_2_3_patch2-2017_07_11_19_22_PRref_92X_dataRun2_Prompt_RefGT_week28_2017-v1/RECO' print(dbs3api.listFileSummaries(dataset=dataset, sumOverLumi=1)) print("\n") dataset = '/DoubleEG/CMSSW_9_2_3_patch2-2017_07_11_19_22_PRref_92X_dataRun2_Prompt_RefGT_week28_2017-v1/RECO' print(dbs3api.listFileSummaries(dataset=dataset, run_num=297723)) print("\n") dataset = '/DoubleEG/CMSSW_9_2_3_patch2-2017_07_11_19_22_PRref_92X_dataRun2_Prompt_RefGT_week28_2017-v1/RECO' print(dbs3api.listFileSummaries(dataset=dataset, sumOverLumi=1, run_num=297723)) print("\n") print("All Done")
import unittest from chalmers.event_dispatcher import EventDispatcher from chalmers import config, errors from os.path import join import tempfile import os class TestEventDispatcher(EventDispatcher): @property def name(self): return 'test' def dispatch_foo(self, value): self.foo = value def dispatch_error(self, value): raise Exception("Expected dispatch error") class Test(unittest.TestCase): def setUp(self): self.root_config = join(tempfile.gettempdir(), 'chalmers_tests') config.set_relative_dirs(self.root_config) unittest.TestCase.setUp(self) def test_init(self): dispatcher = TestEventDispatcher() self.assertFalse(dispatcher.is_listening) def test_listen(self): d = TestEventDispatcher() if os.path.exists(d.addr): os.unlink(d.addr) self.assertFalse(d.is_listening) d.start_listener() self.assertTrue(d.is_listening) if os.name != 'nt': self.assertTrue(os.path.exists(d.addr)) d.send('foo', 1) d.send('exitloop') d._listener_thread.join() self.assertFalse(d.is_listening) self.assertEqual(d.foo, 1) def test_exception(self): d = TestEventDispatcher() if os.path.exists(d.addr): os.unlink(d.addr) self.assertFalse(d.is_listening) d.start_listener() with self.assertRaises(errors.ChalmersError): d.send('error', 1) self.assertTrue(d.is_listening) d.send('exitloop') d._listener_thread.join() self.assertFalse(d.is_listening) if __name__ == "__main__": # import sys;sys.argv = ['', 'Test.testName'] unittest.main()
from __future__ import absolute_import, division, print_function from libtbx.test_utils import approx_equal from cctbx import dmtbx from cctbx import maptbx from cctbx import miller from scitbx import fftpack from libtbx import complex_math import scitbx.math from cctbx.array_family import flex from cctbx.development import random_structure from cctbx.development import debug_utils import random import math import sys from six.moves import range def direct_space_squaring(start, selection_fixed): map_gridding = miller.index_span( miller.set.expand_to_p1(start).indices()).map_grid() if (selection_fixed is None): fixed = start var = start else: fixed = start.select(selection_fixed) var = start.select(~selection_fixed) rfft = fftpack.real_to_complex_3d([n*3//2 for n in map_gridding]) conjugate_flag = True structure_factor_map = maptbx.structure_factors.to_map( space_group=fixed.space_group(), anomalous_flag=fixed.anomalous_flag(), miller_indices=fixed.indices(), structure_factors=fixed.data(), n_real=rfft.n_real(), map_grid=flex.grid(rfft.n_complex()), conjugate_flag=conjugate_flag) real_map = rfft.backward(structure_factor_map.complex_map()) squared_map = flex.pow2(real_map) squared_sf_map = rfft.forward(squared_map) allow_miller_indices_outside_map = False from_map = maptbx.structure_factors.from_map( anomalous_flag=var.anomalous_flag(), miller_indices=var.indices(), complex_map=squared_sf_map, conjugate_flag=conjugate_flag, allow_miller_indices_outside_map=allow_miller_indices_outside_map) if (selection_fixed is None): return from_map.data() result = start.data().deep_copy() result.set_selected(~selection_fixed, from_map.data()) assert result.select(selection_fixed).all_eq(fixed.data()) return result def reciprocal_space_squaring(start, selection_fixed, verbose): tprs = dmtbx.triplet_generator(miller_set=start) if (0 or verbose): for ih in range(start.indices()[:1].size()): for relation in tprs.relations_for(ih): print(relation.format(start.indices(), ih), end=' ') if (not relation.is_sigma_2(ih)): print("not sigma-2", end=' ') print() amplitudes = abs(start).data() if (selection_fixed is not None): amplitudes.set_selected(~selection_fixed, 0) input_phases = flex.arg(start.data()) result = tprs.apply_tangent_formula( amplitudes=amplitudes, phases_rad=input_phases, selection_fixed=selection_fixed, use_fixed_only=selection_fixed is not None) if (selection_fixed is not None): assert result.select(selection_fixed).all_eq( input_phases.select(selection_fixed)) return result def exercise_truncate(q_large): tprs_full = dmtbx.triplet_generator( miller_set=q_large, discard_weights=True) tprs = dmtbx.triplet_generator( miller_set=q_large, amplitudes=q_large.data(), max_relations_per_reflection=0, discard_weights=True) assert tprs.n_relations().all_eq(tprs_full.n_relations()) for n in (1,10,100,1000): tprs = dmtbx.triplet_generator( miller_set=q_large, amplitudes=q_large.data(), max_relations_per_reflection=n, discard_weights=True) assert (tprs.n_relations() >= n).all_eq(tprs.n_relations() == n) n = 3 tprs = dmtbx.triplet_generator( miller_set=q_large, amplitudes=q_large.data(), max_relations_per_reflection=n, discard_weights=True) n_rel_full = tprs_full.n_relations() n_rel = tprs.n_relations() amp = q_large.data() for ih in range(q_large.indices().size()): if (n_rel[ih] == n_rel_full[ih]): continue aa_full = flex.double() for relation in tprs_full.relations_for(ih): aa_full.append(amp[relation.ik()] * amp[relation.ihmk()]) aa = flex.double() for relation in tprs.relations_for(ih): aa.append(amp[relation.ik()] * amp[relation.ihmk()]) aa_full = aa_full.select(flex.sort_permutation(data=aa_full, reverse=True)) assert approx_equal(aa_full[:n], aa) def exercise(space_group_info, n_scatterers=8, d_min=2, verbose=0, e_min=1.5): structure = random_structure.xray_structure( space_group_info, elements=["const"]*n_scatterers, volume_per_atom=200, min_distance=3., general_positions_only=True, u_iso=0.0) if (0 or verbose): structure.show_summary().show_scatterers() f_calc = structure.structure_factors( d_min=d_min, anomalous_flag=False).f_calc() f_obs = abs(f_calc) q_obs = miller.array( miller_set=f_obs, data=f_obs.data() / math.sqrt(f_obs.space_group().order_p() * n_scatterers) / f_obs.space_group().n_ltr()) q_obs = q_obs.sort(by_value="abs") q_obs.setup_binner(auto_binning=True) n_obs = q_obs.quasi_normalize_structure_factors() r = flex.linear_regression(q_obs.data(), n_obs.data()) if (0 or verbose): r.show_summary() assert r.is_well_defined() assert abs(r.y_intercept()) < 0.1 assert abs(r.slope() - 1) < 0.2 q_large = q_obs.select( q_obs.quasi_normalized_as_normalized().data() > e_min) if (0 or verbose): print("Number of e-values > %.6g: %d" % (e_min, q_large.size())) other_structure = random_structure.xray_structure( space_group_info, elements=["const"]*n_scatterers, volume_per_atom=200, min_distance=3., general_positions_only=True, u_iso=0.0) assert other_structure.unit_cell().is_similar_to(structure.unit_cell()) q_calc = q_large.structure_factors_from_scatterers( other_structure, algorithm="direct").f_calc() start = q_large.phase_transfer(q_calc.data()) for selection_fixed in ( None, flex.double([random.random() for i in range(start.size())]) < 0.4): from_map_data = direct_space_squaring(start, selection_fixed) direct_space_result = start.phase_transfer(phase_source=from_map_data) new_phases = reciprocal_space_squaring(start, selection_fixed, verbose) reciprocal_space_result = start.phase_transfer( phase_source=flex.polar(1,new_phases)) mwpe = direct_space_result.mean_weighted_phase_error( reciprocal_space_result) if (0 or verbose): print("mwpe: %.2f" % mwpe, start.space_group_info()) for i,h in enumerate(direct_space_result.indices()): amp_d,phi_d = complex_math.abs_arg( direct_space_result.data()[i], deg=True) amp_r,phi_r = complex_math.abs_arg( reciprocal_space_result.data()[i],deg=True) phase_err = scitbx.math.phase_error(phi_d, phi_r, deg=True) assert phase_err < 1.0 or abs(from_map_data[i]) < 1.e-6 exercise_truncate(q_large) def run_call_back(flags, space_group_info): exercise(space_group_info, verbose=flags.Verbose) def run(): debug_utils.parse_options_loop_space_groups(sys.argv[1:], run_call_back) if (__name__ == "__main__"): run()
#!/usr/bin/env ipython import numpy as np import re import datetime as dt from GDSII import GDSII from GDSII_ARef import GDSII_ARef from GDSII_SRef import GDSII_SRef from GDSII_Boundary import GDSII_Boundary from GDSII_Text import GDSII_Text from GDSII_Path import GDSII_Path from GDSII_Box import GDSII_Box from GDSII_Node import GDSII_Node class GDSII_Structure(GDSII): ''' GDSII_Structure class : subclass of GDSII GDSII Stream file format release 6.0 Structure record The structure record is a container for all element records. A structure is called a cell among the CAD/EDS community. Once a cell is defined, it can be referenced in the layout. Structure references can be nested up to 32 levels. Structures and referencing is important because it enables data compression. For example, in the GDSII format, by replacing each repeated polygon (boundary element) by a cell containing the polygon and multiple calls to the cell, the file can be compressed 7x. The compression is significantly more significant if the polygons are arranged in an array. The functions of this class are: setName = Set the name of the cell addBoundary = Adds a boundary element addSRef = Adds a cell reference element addARef = Adds an array of cell reference element addPath = Adds a path element addText = Adds a text element addNode = Adds a node element genRecord = Generate the record binary readRecord = Reads a structure record Long Chang, UH, May 2013 ''' def __init__(self, structureName='UHNano'): super(GDSII_Structure,self).__init__() self._dom = self.getDate() self._doa = self.getDate() self._structureName = structureName self._aref = [] self._sref = [] self._boundary = [] self._path = [] self._box = [] self._node = [] self._text = [] self._cStructure = 0x0502 #Structure begin self._cStructureName = 0x0606 #Structure name self._cStructureEnd = 0x0700 #Structure end self._cBoundary = 0x0800 #Boundary element begin self._cSRef = 0x0A00 #Structure reference element begin self._cARef = 0x0B00 #Array reference element begin self._cText = 0x0C00 #Text element begin self._cBox = 0x2D00 #Box element begin self._cNode = 0x1500 #Node element begin self._cPath = 0x0900 #Path element begin self._cElementEnd = 0x1100 #Element end def __repr__(self): print 'Structure record' print 'structureName: ' , self.structureName print 'sref: ' , len(self.sref) print 'aref: ' , len(self.aref) print 'boundary: ' , len(self.boundary) print 'path: ' , len(self.path) print 'text: ' , len(self.text) print 'box: ' , len(self.box) print 'node: ' , len(self.node) return '' @property def dom(self): ''' dom : list of 6 integers Date of modification ''' return self._dom @dom.setter def dom(self, val): if not isinstance(val,list): raise TypeError('GDSII_Structure.dom : This parameter must be a list of integers') if not len(val) == 6: raise TypeError('GDSII_Structure.dom : This parameter must have 6 elements') self._dom = val @property def doa(self): ''' doa : list of 6 integers Date of access ''' return self._doa @doa.setter def doa(self, val): if not isinstance(val,list): raise TypeError('GDSII_Structure.doa : This parameter must be a list of integers') if not len(val) == 6: raise TypeError('GDSII_Structure.doa : This parameter must have 6 elements') self._doa = val @property def structureName(self): ''' structureName : string Name of the cell to reference Up to 32 characters Characters must be from the set [A-Z,a-z,0-9,_,?,$] ''' return self._structureName @structureName.setter def structureName(self, val): if not isinstance(val,str): raise TypeError('GDSII_Structure.structureName : This parameter must be of type str') if len(val) > 32: raise ValueError('GDSII_Structure.structureName : This parameter cannot be longer than 32 characters') regex = re.compile('[\W^?^$]') if not regex.search(val) == None: raise ValueError('GDSII_Structure.structureName : This parameter must contain only the following characters: A-Z, a-z, 0-9, _, ? and $') self._structureName = val @property def aref(self): ''' aref : list of GDSII_ARef objects A list of array of structure references ''' return self._aref @aref.setter def aref(self,val): if not isinstance(val,GDSII_ARef): raise('GDSII_Structure.aref : This parameter must be an instance of GDSII_ARef') self._aref.append(val) @property def sref(self): ''' sref : list of GDSII_SRef objects A list of structure references ''' return self._sref @sref.setter def sref(self,val): if not isinstance(val,GDSII_SRef): raise('GDSII_Structure.sref : This parameter must be an instance of GDSII_SRef') self._sref.append(val) @property def boundary(self): ''' boundary : list of GDSII_Boundary objects A list of array of boundary elements ''' return self._boundary @boundary.setter def boundary(self,val): if not isinstance(val,GDSII_Boundary): raise('GDSII_Structure.boundary : This parameter must be an instance of GDSII_Boundary') self._boundary.append(val) @property def text(self): ''' text : list of GDSII_Text objects A list of array of structure references ''' return self._text @text.setter def text(self,val): if not isinstance(val,GDSII_Text): raise('GDSII_Structure.text : This parameter must be an instance of GDSII_Text') self._text.append(val) @property def path(self): ''' path : list of GDSII_Path objects A list of path elements ''' return self._path @path.setter def path(self,val): if not isinstance(val,GDSII_Path): raise('GDSII_Structure.path : This parameter must be an instance of GDSII_Path') self._path.append(val) @property def box(self): ''' box : list of GDSII_Box objects A list of box elements ''' return self._box @box.setter def box(self,val): if not isinstance(val,GDSII_Box): raise('GDSII_Structure.box : This parameter must be an instance of GDSII_Box') self._box.append(val) @property def node(self): ''' node : list of GDSII_Node objects A list of node elements ''' return self._node @node.setter def node(self,val): if not isinstance(val,GDSII_Node): raise('GDSII_Structure.node : This parameter must be an instance of GDSII_Node') self._node.append(val) @property def cStructure(self): ''' cStructure : 0x0502 Command code for structure begin ''' return self._cStructure @property def cStructureName(self): ''' cStructureName : 0x0606 Command code for structure name ''' return self._cStructureName @property def cStructureEnd(self): ''' cStructureEnd : 0x0700 Command code for structure end ''' return self._cStructureEnd @property def cBoundary(self): ''' cBoundary : 0x0800 Command code for boundary element begin ''' return self._cBoundary @property def cSRef(self): ''' cSRef : 0x0A00 Command code for structure reference element begin ''' return self._cSRef @property def cARef(self): ''' cARef : 0x0B00 Command code for array reference element begin ''' return self._cARef @property def cText(self): ''' cText : 0x0C00 Command code for text element begin ''' return self._cText @property def cBox(self): ''' cBox : 0x2D00 Command code for box element begin ''' return self._cBox @property def cNode(self): ''' cNode : 0x1500 Command code for node element begin ''' return self._cNode @property def cPath(self): ''' cPath : 0x0900 Command code for path element begin ''' return self._cPath @property def cElementEnd(self): ''' cElementEnd : 0x1100 Command code for element end ''' return self._cElementEnd def getDate(self): ''' getDate() Returns the time and date as a list Returns ------- out : list of integers The current date and time in the form: [year month day hour minute second] ''' tmp = dt.datetime.now() return [tmp.year,tmp.month,tmp.day,tmp.hour,tmp.minute,tmp.second] def addARef(self, structureName, xy, pitchX, pitchY, nX, nY, xRot = 0, yRot = 0, reflection = 0, mag = 1, angle = 0): ''' setARef(structureName, xy, pitchX, pitchY, nX, nY, xRot = 0, yRot = 0, reflection = 0, mag = 1, angle = 0) Adds an array reference element Parameters ---------- structureName : string Name of the cell to reference Up to 32 characters Characters must be from the set [A-Z,a-z,0-9,_,?,$] xy : numpy.ndarray of type numpy.int32 with 2 elements or list of 2 integer elements The origin, [x y], of the array reference pitchX : integer Array pitch or step along X pitchY : integer Array pitch or step along Y nX : integer Array repeats along X nY : integer Array repeats along Y xRot : float Array x angle in units of [degrees] yRot : float Array y angle in units of [degrees] reflection : integer from [0,1] Reflection enable for reflection about the X axis mag : float Magnification factor used to scaled the referenced structure angle : float Angle in units of [degrees] used to rotate the referenced structure counterclockwise about the origin ''' tmp = GDSII_ARef() tmp.setARef(structureName, xy, pitchX, pitchY, nX, nY, xRot, yRot, reflection, mag, angle) self.aref = tmp def addSRef(self, structureName, xy, reflection = 0, mag = 1, angle = 0): ''' addARef(structureName, xy, reflection = 0, mag = 1, angle = 0) Adds an structure reference element Parameters ---------- structureName : string Name of the cell to reference Up to 32 characters Characters must be from the set [A-Z,a-z,0-9,_,?,$] xy : numpy.ndarray of type numpy.int32 with 2 elements or list of 2 integer elements The origin, [x y], of the structure reference reflection : integer from [0,1] Reflection enable for reflection about the X axis mag : float Magnification factor used to scaled the referenced structure angle : float Angle in units of [degrees] used to rotate the referenced structure counterclockwise about the origin ''' tmp = GDSII_SRef() tmp.setSRef(structureName, xy, reflection, mag, angle) self.sref = tmp def addBoundary(self, xy, layer=0, datatype=0): ''' addBoundary(xy, layer=0, datatype=0) Adds a boundary element Parameters ---------- xy : numpy.ndarray of type numpy.int32 or a list of integers An array containing the verticies of a polygon in the form [x1 y1 x2 y2 ... xn yn x1 y1] layer : integer from 0 to 255 The layer number datatype : integer from 0 to 255 The datatype number ''' tmp = GDSII_Boundary() tmp.setBoundary(xy, layer, datatype) self.boundary = tmp def addText(self, text, xy, layer=0, texttype=0, presentation = None, pathtype = None, width = None, reflection = 0, mag = 1, angle = 0): ''' addText(xy, layer=0, texttype=0) Adds a text element Parameters ---------- text : string A text string xy : numpy.ndarray of type numpy.int32 or a list of integers An array containing the verticies of a polygon in the form [x1 y1 x2 y2 ... xn yn x1 y1] layer : integer from 0 to 255 The layer number texttype : integer from 0 to 255 The texttype number presentation : integer Specifies the font in bits Bit Number (0-15) 10-11 Specify Font 12-13 Vertical presentation 0 Top 1 Middle 2 Bottom 14-15 Horizontal presentation 0 Top 1 Middle 2 Bottom pathtype : integer from the set [0,1,2] Describe the nature of the text segment ends 0 Square ends at text terminal 1 Rounded ends at text terminal 2 Square ends that overlap terminals by one-half the width width : integer Defines the width of the text. If width is negative, it will be independent of any structure scaling reflection : integer from [0,1] Reflection enable for reflection about the X axis mag : float Magnification factor used to scaled the referenced structure angle : float Angle in degrees counterclockwise used to rotate the referenced structure about the origin ''' tmp = GDSII_Text() tmp.setText(text, xy, layer, texttype) self.text = tmp def addPath(self, xy, layer=0, datatype=0, width=None, pathtype=None): ''' addPath(xy, layer=0, datatype=0, width=None, pathtype=None) Adds a path element Parameters ---------- xy : numpy.ndarray of type numpy.int32 or a list of integers An array containing the verticies of a polygon in the form [x1 y1 x2 y2 ... xn yn x1 y1] layer : integer from 0 to 255 The layer number datatype : integer from 0 to 255 The datatype number width : integer (nonzero) Width of the path pathtype : integer from the set [0,1,2] Describe the nature of the path segment ends 0 Square ends at path terminal 1 Rounded ends at path terminal 2 Square ends that overlap terminals by one-half the width ''' tmp = GDSII_Path() tmp.setPath(xy, layer, datatype, width, pathtype) self.path = tmp def addBox(self, xy, layer=0, boxtype=0): ''' addBox(xy, layer=0, boxtype=0) Adds a boundary element Parameters ---------- xy : numpy.ndarray of type numpy.int32 or a list of integers An array containing the verticies of a box in the form [x1 y1 x2 y2 x3 y3 x4 y4 x1 y1] layer : integer from 0 to 255 The layer number boxtype : integer from 0 to 255 The boxtype number ''' tmp = GDSII_Box() tmp.setBox(xy, layer, boxtype) self.box = tmp def addNode(self, xy, layer=0, nodetype=0): ''' addNode(xy, layer=0, nodetype=0) Adds a node element Parameters ---------- xy : numpy.ndarray of type numpy.int32 or a list of integers An array containing the verticies of an electrical net in the form [x1 y1 x2 y2 ... x50 y50] layer : integer from 0 to 255 The layer number nodetype : integer from 0 to 255 The nodetype number ''' tmp = GDSII_Node() tmp.setNode(xy, layer, nodetype) self.node = tmp def genRecord(self): ''' genRecord() Generates the structure record binary Description ----------- The structure record is specified by records in the following order: Structure StructureName Boundary Element (optional) SRef element (optional) ARef element (optional) Path element (optional) Text element (optional) Box element (optional) Node element (optional) ''' self.recordClear() #Structure start self.record = self.dec2byte(28) self.record = self.dec2byte(self.cStructure) for i in self.dom: self.record = self.dec2byte(i) for i in self.doa: self.record = self.dec2byte(i) #Define structure name if len(self.structureName)%2 == 1: self.record = self.dec2byte(len(self.structureName)+5) else: self.record = self.dec2byte(len(self.structureName)+4) self.record = self.dec2byte(self.cStructureName) self.record = np.array([ord(i) for i in self.structureName],dtype=np.uint8) if len(self.structureName)%2 == 1: self.record = np.zeros(1,dtype=np.uint8) #Add boundary elements for i in self.boundary: i.genRecord() self.record = i.record #Add sref elements for i in self.sref: i.genRecord() self.record = i.record #Add aref elements for i in self.aref: i.genRecord() self.record = i.record #Add path elements for i in self.path: i.genRecord() self.record = i.record #Add text elements for i in self.text: i.genRecord() self.record = i.record #Add box elements for i in self.box: i.genRecord() self.record = i.record #Add node elements for i in self.node: i.genRecord() self.record = i.record #Structure end self.record = self.dec2byte(4) self.record = self.dec2byte(self.cStructureEnd) self.recordClip() def readRecord(self, record): ''' readRecord(record) Reads the boundary record and updates the boundary element parameters ''' self.pointer = 0 #Check if record is a structure record if self.byte2dec(record[self.opCodePointer]) == self.cStructure: self.dom[0] = self.byte2dec(record[self.pointer+4:self.pointer+6]) self.dom[1] = self.byte2dec(record[self.pointer+6:self.pointer+8]) self.dom[2] = self.byte2dec(record[self.pointer+8:self.pointer+10]) self.dom[3] = self.byte2dec(record[self.pointer+10:self.pointer+12]) self.dom[4] = self.byte2dec(record[self.pointer+12:self.pointer+14]) self.dom[5] = self.byte2dec(record[self.pointer+14:self.pointer+16]) self.doa[0] = self.byte2dec(record[self.pointer+16:self.pointer+18]) self.doa[1] = self.byte2dec(record[self.pointer+18:self.pointer+20]) self.doa[2] = self.byte2dec(record[self.pointer+20:self.pointer+22]) self.doa[3] = self.byte2dec(record[self.pointer+22:self.pointer+24]) self.doa[4] = self.byte2dec(record[self.pointer+24:self.pointer+26]) self.doa[5] = self.byte2dec(record[self.pointer+26:self.pointer+28]) self.pointer += 28 else: raise ValueError('GDSII_Structure.readRecord() : The record is not a structure record') #Structure name if self.byte2dec(record[self.opCodePointer]) == self.cStructureName: length = self.byte2dec(record[self.pointer:self.pointer+2]) if record[self.pointer+length-1] == 0: self.structureName = ''.join([chr(i) for i in record[self.pointer+4:self.pointer+length-1]]) else: self.structureName = ''.join([chr(i) for i in record[self.pointer+4:self.pointer+length]]) self.pointer += length else: raise ValueError('GDSII_Structure.readRecord() : The structure name is not defined') #Elements while not self.byte2dec(record[self.opCodePointer]) == self.cStructureEnd: #Retrieve one element record tp = self.pointer tc = [tp+2,tp+3] while not self.byte2dec(record[tc]) == self.cElementEnd: tp += self.byte2dec(record[tp:tp+2]) tc = [tp+2,tp+3] tp += 4 elementType = self.byte2dec(record[self.opCodePointer]) elementRecord = record[self.pointer:tp] #Read the element record if elementType == self.cBoundary: E = GDSII_Boundary() E.readRecord(elementRecord) self.boundary = E elif elementType == self.cSRef: E = GDSII_SRef() E.readRecord(elementRecord) self.sref = E elif elementType == self.cARef: E = GDSII_ARef() E.readRecord(elementRecord) self.aref = E elif elementType == self.cPath: E = GDSII_Path() E.readRecord(elementRecord) self.path = E elif elementType == self.cText: E = GDSII_Text() E.readRecord(elementRecord) self.text = E elif elementType == self.cBox: E = GDSII_Box() E.readRecord(elementRecord) self.box = E elif elementType == self.cNode: E = GDSII_Node() E.readRecord(elementRecord) self.node = E #Point to next element self.pointer = tp def test(): a = GDSII_Structure('doseArray'); a.addBoundary([0,0,0,5,5,5,5,0],2,1); a.addBoundary([10,0,10,5,15,5,15,0],2,2); a.addBoundary([20,0,20,5,25,5,25,0],2,3); a.addBoundary([0,10,0,15,5,15,5,10],2,4); a.addBoundary([10,10,10,15,15,15,15,10],2,5); a.addBoundary([20,10,20,15,25,15,25,10],2,6); a.addBoundary([0,20,0,25,5,25,5,20],2,7); a.addBoundary([10,20,10,25,15,25,15,20],2,8); a.addBoundary([20,20,20,25,25,25,25,20],2,9); a.addText('Hello',xy=[0,0]) a.addPath([0,0,1,1,2,2],0,0) a.addBox([0,0,0,10,10,10,10,0,0,0],0,0) a.addNode([0,0,20,20],255,255) a.addSRef('sref',[15,15]) a.addARef('aref',[30,30],100,100,10,10) a.genRecord() b = GDSII_Structure() b.readRecord(a.record) print a print b if __name__ == '__main__': test()
X = int(input()) Y = int(input()) sum = 0 if X < Y: for i in range(X, Y + 1): if i % 13 != 0: sum += i print(sum) elif Y < X: for i in range(Y, X + 1): if i % 13 != 0: sum += i print(sum)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import requests import gspread import config from oauth2client.service_account import ServiceAccountCredentials as Account api_url = 'https://api.leaseweb.com/invoices/v1/invoices' def api_request(url, headers, params=None): try: conn = requests.get(url=url, headers=headers, params=params) conn.raise_for_status() except requests.exceptions.HTTPError as http_error: raise SystemExit(http_error) except requests.exceptions.RequestException as req_error: raise SystemExit(req_error) except Exception as error: raise SystemExit(error) else: return conn.json() def main(header): hosts = [] for item in api_request(api_url, header)['invoices']: host = { 'ContractId': item['id'], 'Date': item['date'], 'DueDate': item['dueDate'], 'TaxAmount': item['taxAmount'], 'Total': item['total'], 'OpenAmount': item['openAmount'], 'Currency': item['currency'], 'Status': item['status'], } hosts.append(host) return hosts # Google sheet scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] creds = Account.from_json_keyfile_name('google_sheet_secret.json', scope) client = gspread.authorize(creds) def update_google_table(parameter_list): # Google spreadsheet spreadsheet = client.open("Leaseweb invoices") # Создание вкладки worksheet worksheet = spreadsheet.worksheet('All invoices') # Формирование заголовка таблицы header = [ 'ContractId', 'Date', 'DueDate', 'TaxAmount', 'Total', 'OpenAmount', 'Currency', 'Status', ] worksheet.update('A1', [header]) start_cell = 'A2' end_cell = 'H' + str(len(parameter_list) + 1) cell_range = worksheet.range('{}:{}'.format(start_cell, end_cell)) simplyfied_data = [] for row in parameter_list: for column in header: simplyfied_data.append(row[column]) for i, cell in enumerate(cell_range): cell.value = simplyfied_data[i] worksheet.update_cells(cell_range) if __name__ == '__main__': invoices_list = [] for auth_key in config.lw_accounts: for invoice in main(config.lw_accounts[auth_key]): invoices_list.append(invoice) update_google_table(invoices_list)
from pymongo import MongoClient import os, sys from loguru import logger try: conn = MongoClient(os.environ["DATABASE_ADDRESS"], int(os.environ["DATABASE_PORT"])) #host.docker.internal, 27017 logger.info("Successfully connected to Holder MongoDB") except Exception as error: logger.error(error) sys.exit() # database name: provider db = conn.provider # Created or Switched to collection names: offers collection = db.offers # Collection for: stakeholder stakeholder_col = db.stakeholder
# -*- coding: utf-8 -*- import sys import numpy as np from gensim.models import Word2Vec model_file = sys.argv[1] (pos1, pos2, neg) = sys.argv[2:] # 学習したモデルのロード model = Word2Vec.load(model_file) # 意味ベクトルのノルムを調整 model.init_sims(replace=True) # クエリベクトルを計算 vec = model[pos1] + model[pos2] - model[neg] # 全単語の意味ベクトルを含んだ行列を取得 emb = model.wv.vectors_norm # 全単語に対するクエリベクトルの類似度を計算 sims = np.dot(emb, vec) # 類似度が最大の単語を選択し、予測結果として出力 for index in np.argsort(-sims): word = model.wv.index2word[index] if word not in (pos1, pos2, neg): print('予測結果:', word) break
#!/usr/bin/env python # -*- coding: iso-8859-15 -*- import time,os,pygame,json,httplib,datetime,urllib,random from keys import PARSE_API_KEY,PARSE_APP_ID class Panpin: # panpin guztien ahoen gpio pinak gordetzen ditu gpio_pinak = [] def __init__(self,izena,parse_api_class,textu_fitxategia,audio_fitxategia,gpio_pin): # izena: panpinaren izena: Instantziaren izena adib: 'Olentzero' # parse_api_class: Parseko apiaren url-a adib: '/1/classes/Olentzero' # textu_fitxategia: panpin honi dagokion textu fitxagegiaren izena adib: 'olentzero.txt' # audio_fitxategia: panpin honi dagokion audio fitxategiaren izena adib: 'olentzero.wav' # gpio_pin: panpin honen ahoari dagokion gpio pina adib: 17 self.izena = izena self.parse_api_class = parse_api_class self.textu_fitxategia = textu_fitxategia self.audio_fitxategia = audio_fitxategia self.gpio_pin = gpio_pin Panpin.gpio_pinak.append(gpio_pin) #self.esaldi_berriak() def hitzegin(self): # panpinak bere audio fitxategia # irakurri eta dagokion led-a pizten du # hitz egiten duen bitartean for pin in Panpin.gpio_pinak: GPIO.output(pin, False) pygame.mixer.init(17000) pygame.mixer.music.set_volume(1.0) pygame.mixer.music.load(self.audio_fitxategia) pygame.mixer.music.play() GPIO.output(self.gpio_pin, True) while pygame.mixer.music.get_busy() == True: continue return def pinak(self): # panpin guztien pinak itzultzen ditu return Panpin.gpio_pinak def esaldi_berriak(self): # panaren esaldiak eguneratzen ditu connection = httplib.HTTPSConnection('api.parse.com', 443) params = urllib.urlencode({"where":json.dumps({"noizarte": {"$gt": {"__type": "Date", "iso": datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%fZ') }}},{"noiztik": {"$lt": {"__type": "Date", "iso": datetime.datetime.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%fZ') }}})}) connection.connect() connection.request('GET', self.parse_api_class+'?%s' % params, '', { "X-Parse-Application-Id": PARSE_APP_ID, "X-Parse-REST-API-Key": PARSE_API_KEY }) emaitza = connection.getresponse() print emaitza.status # 200 ondo bestela ez result = json.loads(emaitza.read()) data = result["results"] data = random.shuffle(data) self.esaldiak = data self.esaldien_luzeera = len(data) self.ind = 0 return data def get_esaldia(self): # esaldi bat jasotzen du esaldien zerrendatik nire_esaldia = self.esaldiak[self.ind] if self.ind < self.esaldien_luzeera-1: self.ind = self.ind+1 else: self.esaldi_berriak() return nire_esaldia def idatzi(esaldia): # textu fitxategian esaldi bat idazten du with open(self.textu_fitxategia, 'w') as outfile: json.dump(esaldia, outfile) return
"""This module stores all the REST API of ImageButler.""" from .apis import api from .ping import Ping from .image import Image from .images import Images api.add_resource(Ping, '/ping') api.add_resource(Image, '/image') api.add_resource(Images, '/images')
# Program: marker_a4.py # Proyect: encuadro - Facultad de Ingenier - UDELAR # Author: Martin Etchart - [email protected]. # # Description: # Python script to render blender model providing pose (rotation, translation), fov # and image dimensions. # # Hosted on: # http://code.google.com/p/encuadro/ # # Usage: # blender -b marker_a4.blend --python "marker_a4.py" -o //<filename> -F JPEG -x 1 -f 1 # # More info: # http://code.google.com/p/encuadro/wiki/Rendering import bpy import sys import math #################################### # OPTIONAL ARGUMENT PARSING WITH LIBRARY. DONT WORK # #import argparse # #parser = argparse.ArgumentParser(description='Python script to render blender model #providing pose (rotation, translation), fov and image dimensions.') # #parser.add_argument('-rot', action="store", dest="r") #parser.add_argument('-tra', action="store", dest="t") #parser.add_argument('-fov', action="store", dest="fov", type=float) #################################### #################################### # OPTIONAL ARGUMENT PARSING BY ME. DONT WORK # #i = 4 #while (i<len(sys.argv)): # if (sys.argv[i]=="-tra"): # i+=1 # tx = float(sys.argv[i]) # i+=1 # ty = float(sys.argv[i]) # i+=1 # tz = float(sys.argv[i]) # print "TRA" # elif (sys.argv[i]=="-rot"): # i+=1 # rx = float(sys.argv[i]) # i+=1 # ry = float(sys.argv[i]) # i+=1 # rz = float(sys.argv[i]) # print "ERRE" # elif (sys.argv[i]=="-fov"): # i+=1 # fov = float(sys.argv[i]) # elif (sys.argv[i]=="-o"): # print "OOO" # break # i+=1 #################################### print ( sys.argv ) # find the requsted angle camAngle = None for ag in sys.argv: if ag[:12] == "--cam-angle=": camAngle = float ( ag[12:] ) if camAngle == None: print ( "Cam angle not set" ) sys.exit(0) else: print ( "Cam angle is " + str( camAngle ) ) pi = 3.1415 scene = bpy.data.scenes["Scene"] #camera = bpy.data.scenes["Camera"] # Set render resolution #scene.render.resolution_x = width #scene.render.resolution_y = height # Set camera fov in degrees #scene.camera.data.angle = fov*(pi/180.0) # Set camera rotation in euler angles scene.camera.rotation_mode = 'XYZ' #scene.camera.rotation_euler[0] = rx*(pi/180.0) #scene.camera.rotation_euler[1] = ry*(pi/180.0) # this is the angle rotationInRad = ( camAngle/180.0) * pi scene.camera.rotation_euler[2] = rotationInRad print ( "Initial cam location ( " + str( scene.camera.location.x) + "|" + str( scene.camera.location.y) + "|" + str( scene.camera.location.z) + ")" ) distanceToCenter = scene.camera.location.y print ( "Using " + str ( distanceToCenter ) + " as distance to center ") yPart = math.cos ( - rotationInRad ) * distanceToCenter xPart = math.sin ( - rotationInRad ) * distanceToCenter # Set camera translation scene.camera.location.x = xPart scene.camera.location.y = yPart #scene.camera.location.z = tz print ( "New location (" + str( xPart ) + " | " + str( yPart ) + ")")
import threadcount as tc from threadcount.procedures import fit_line, open_cube_and_deredshift, set_rcParams def update_settings(s): # "de-redshift" instrument dispersion: s.instrument_dispersion_rest = s.instrument_dispersion / (1 + s.z_set) if s.always_manually_choose is None: s.always_manually_choose = [] # create a kernel image to use for region averaging. region_pixels = tc.fit.get_region(s.region_averaging_radius) k = tc.fit.get_reg_image(region_pixels) s.kernel = k # add to the comments string for saving. if s.comment and not s.comment.endswith("\n"): s.comment += "\n" comment_keys = [ "instrument_dispersion", "region_averaging_radius", "snr_lower_limit", "mc_snr", "mc_n_iterations", "lmfit_kwargs", "d_aic", ] s.comment += "\n".join( ["{}: {}".format(x, s.__dict__.get(x, None)) for x in comment_keys] ) s.comment += "\nunits: " + s.cube.unit.to_string() def fit_lines(s): num_lines = len(s.lines) for i in range(num_lines): s._i = i fit_line.run(s) def run(user_settings): default_settings = { # If setup_parameters is True, only the monitor_pixels will be fit. (faster) "setup_parameters": False, "monitor_pixels": [ # the pixels to always save. # (40, 40), # (28, 62), # (48, 58), # (52, 56), ], # # output options "output_filename": "example_output", # saved files will begin with this. "save_plots": False, # If True, can take up to 1 hour to save each line's plots. # # Prep image, and global fit settings. "region_averaging_radius": 1.5, # smooth image by this many PIXELS. "instrument_dispersion": 0.8, # in Angstroms. Will set the minimum sigma for gaussian fits. "lmfit_kwargs": { "method": "least_squares" }, # arguments to pass to lmfit. Should not need to change this. "snr_lower_limit": 10, # spaxels with SNR below this for the given line will not be fit. # # Which emission lines to fit, and which models to fit them. # # "lines" must be a list of threadcount.lines.Line class objects. # There are some preset ones, or you can also define your own. "lines": [ tc.lines.L_OIII5007, # tc.lines.L_Hb4861, ], # # "models" is a list of lists. The line lines[i] will be fit with the lmfit # models contained in the list at models[i]. # This means the simplest entry here is: "models": [[tc.models.Const_1GaussModel()]] # which corresponds to one model being fit to one line. "models": [ # This is a list of lists, 1 list for each of the above lines. # 5007 models [ tc.models.Const_1GaussModel(), # tc.models.Const_2GaussModel(), # tc.models.Const_3GaussModel(), ], # hb models # [tc.models.Const_1GaussModel()], ], # # If any models list has more than one entry, a "best" model is going to be # chosen. This has the options to choose automatically, or to include an # interactive portion. "d_aic": -150, # starting point for choosing models based on delta aic. # Plot fits and have the user choose which fit is best in the terminal "interactively_choose_fits": False, # Selection of pixels to always view and choose, but only if the above line is True. "always_manually_choose": [ # (28, 62), # (29, 63), ], # interactively_choose_fits must also be True for these to register. # Options to include Monte Carlo iterations on the "best" fit. "mc_snr": 25, # SNR below which the monte carlo is run. "mc_n_iterations": 20, # number of monte carlo fits for each spaxel. } # test if cube has been opened. if not, open cube and deredshift. if "cube" not in user_settings.keys(): user_settings = open_cube_and_deredshift.run(user_settings) set_rcParams.set_params({"image.aspect": user_settings["image_aspect"]}) s = tc.fit.process_settings_dict(default_settings, user_settings) # s for settings. update_settings(s) fit_lines(s) return s.__dict__
# -*- coding: utf-8 -*- # @Time : 2019/10/9 20:36 # @Author : Ziqi Wang # @FileName: read_video.py # @Email: [email protected] import cv2 base_path = "D:\Pyproject\image_process\ets_dataset_concordia1_v1" file_name = "period1-1-1-gray.avi" data_path = "D:\Pyproject\image_process\data" def video_to_img(base_path="D:\Pyproject\image_process\ets_dataset_concordia1_v1", file_name="period1-1-1-gray.avi", img_path=None): file_path = base_path + "\\" + file_name video_capture = cv2.VideoCapture() video_capture.open(file_path) fps = video_capture.get(cv2.CAP_PROP_FPS) frames = video_capture.get(cv2.CAP_PROP_FRAME_COUNT) # fps 是帧率,frame是一段视频中总的图片数量 print("fps=", fps, "frames=", frames) for i in range(int(frames)): ret, frame = video_capture.read() file_name = file_name.split(".")[0] cv2.imwrite(img_path + "\\" + str(i) + ".png", frame) # video_to_img()
import json import os import pathlib import time from typing import Optional, List, Set, Dict, Union import git from lab import logger, monit from lab.internal.configs import Configs, ConfigProcessor from lab.internal.experiment.experiment_run import Run from lab.internal.lab import lab_singleton from lab.internal.logger import logger_singleton as logger_internal from lab.internal.util import is_ipynb from lab.logger import Text from lab.utils import get_caller_file class CheckpointSaver: def save(self, global_step): raise NotImplementedError() def load(self, checkpoint_path): raise NotImplementedError() class Checkpoint(CheckpointSaver): _models: Dict[str, any] def __init__(self, path: pathlib.PurePath): self.path = path self._models = {} def add_models(self, models: Dict[str, any]): """ ## Set variable for saving and loading """ self._models.update(models) def save_model(self, name: str, model: any, checkpoint_path: pathlib.Path) -> any: raise NotImplementedError() def save(self, global_step): """ ## Save model as a set of numpy arrays """ checkpoints_path = pathlib.Path(self.path) if not checkpoints_path.exists(): checkpoints_path.mkdir() checkpoint_path = checkpoints_path / str(global_step) assert not checkpoint_path.exists() checkpoint_path.mkdir() files = {} for name, model in self._models.items(): files[name] = self.save_model(name, model, checkpoint_path) # Save header with open(str(checkpoint_path / "info.json"), "w") as f: f.write(json.dumps(files)) def load_model(self, name: str, model: any, checkpoint_path: pathlib.Path, info: any): raise NotImplementedError() def load(self, checkpoint_path): """ ## Load model as a set of numpy arrays """ with open(str(checkpoint_path / "info.json"), "r") as f: files = json.loads(f.readline()) # Load each model for name, model in self._models.items(): self.load_model(name, model, checkpoint_path, files[name]) return True class Experiment: r""" Each experiment has different configurations or algorithms. An experiment can have multiple runs. Keyword Arguments: name (str, optional): name of the experiment python_file (str, optional): path of the Python file that created the experiment comment (str, optional): a short description of the experiment writers (Set[str], optional): list of writers to write stat to ignore_callers: (Set[str], optional): list of files to ignore when automatically determining ``python_file`` tags (Set[str], optional): Set of tags for experiment """ run: Run configs_processor: Optional[ConfigProcessor] # whether not to start the experiment if there are uncommitted changes. check_repo_dirty: bool checkpoint_saver: CheckpointSaver def __init__(self, *, name: Optional[str], python_file: Optional[str], comment: Optional[str], writers: Set[str], ignore_callers: Set[str], tags: Optional[Set[str]]): if python_file is None: python_file = get_caller_file(ignore_callers) if python_file.startswith('<ipython'): assert is_ipynb() if name is None: raise ValueError("You must specify python_file or experiment name" " when creating an experiment from a python notebook.") lab_singleton().set_path(os.getcwd()) python_file = 'notebook.ipynb' else: lab_singleton().set_path(python_file) if name is None: file_path = pathlib.PurePath(python_file) name = file_path.stem if comment is None: comment = '' self.name = name self.experiment_path = lab_singleton().experiments / name self.check_repo_dirty = lab_singleton().check_repo_dirty self.configs_processor = None experiment_path = pathlib.Path(self.experiment_path) if not experiment_path.exists(): experiment_path.mkdir(parents=True) if tags is None: tags = set(name.split('_')) self.run = Run.create( experiment_path=self.experiment_path, python_file=python_file, trial_time=time.localtime(), comment=comment, tags=list(tags)) repo = git.Repo(lab_singleton().path) self.run.commit = repo.head.commit.hexsha self.run.commit_message = repo.head.commit.message.strip() self.run.is_dirty = repo.is_dirty() self.run.diff = repo.git.diff() logger_internal().reset_writers() if 'sqlite' in writers: from lab.internal.logger.writers import sqlite logger_internal().add_writer(sqlite.Writer(self.run.sqlite_path)) if 'tensorboard' in writers: from lab.internal.logger.writers import tensorboard logger_internal().add_writer(tensorboard.Writer(self.run.tensorboard_log_path)) self.checkpoint_saver = None def __print_info_and_check_repo(self): """ 🖨 Print the experiment info and check git repo status """ logger.log() logger.log([ (self.name, Text.title), ': ', (str(self.run.uuid), Text.meta) ]) if self.run.comment != '': logger.log(['\t', (self.run.comment, Text.highlight)]) logger.log([ "\t" "[dirty]" if self.run.is_dirty else "[clean]", ": ", (f"\"{self.run.commit_message.strip()}\"", Text.highlight) ]) if self.run.load_run is not None: logger.log([ "\t" "loaded from", ": ", (f"{self.run.load_run}", Text.meta2), ]) # Exit if git repository is dirty if self.check_repo_dirty and self.run.is_dirty: logger.log([("[FAIL]", Text.danger), " Cannot trial an experiment with uncommitted changes."]) exit(1) def _load_checkpoint(self, checkpoint_path: pathlib.PurePath): if self.checkpoint_saver is not None: self.checkpoint_saver.load(checkpoint_path) def save_checkpoint(self): if self.checkpoint_saver is not None: self.checkpoint_saver.save(logger_internal().global_step) def calc_configs(self, configs: Optional[Configs], configs_dict: Dict[str, any], run_order: Optional[List[Union[List[str], str]]]): self.configs_processor = ConfigProcessor(configs, configs_dict) self.configs_processor(run_order) logger.log() def __start_from_checkpoint(self, run_uuid: str, checkpoint: Optional[int]): checkpoint_path, global_step = experiment_run.get_last_run_checkpoint( self.experiment_path, run_uuid, checkpoint) if global_step is None: return 0 else: with monit.section("Loading checkpoint"): self._load_checkpoint(checkpoint_path) self.run.load_run = run_uuid return global_step def start(self, *, run_uuid: Optional[str] = None, checkpoint: Optional[int] = None): if run_uuid is not None: if checkpoint is None: checkpoint = -1 global_step = self.__start_from_checkpoint(run_uuid, checkpoint) else: global_step = 0 self.run.start_step = global_step logger_internal().set_start_global_step(global_step) self.__print_info_and_check_repo() if self.configs_processor is not None: self.configs_processor.print() self.run.save_info() if self.configs_processor is not None: self.configs_processor.save(self.run.configs_path) logger_internal().save_indicators(self.run.indicators_path) logger_internal().save_artifacts(self.run.artifacts_path) if self.configs_processor: logger_internal().write_h_parameters(self.configs_processor.get_hyperparams()) _internal: Optional[Experiment] = None def experiment_singleton() -> Experiment: global _internal assert _internal is not None return _internal def create_experiment(*, name: Optional[str], python_file: Optional[str], comment: Optional[str], writers: Set[str], ignore_callers: Set[str], tags: Optional[Set[str]]): global _internal _internal = Experiment(name=name, python_file=python_file, comment=comment, writers=writers, ignore_callers=ignore_callers, tags=tags)
################################################################################# # Copyright (C) 2009-2011 Vladimir "Farcaller" Pouzanov <[email protected]> # # # # Permission is hereby granted, free of charge, to any person obtaining a copy # # of this software and associated documentation files (the "Software"), to deal # # in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # # copies of the Software, and to permit persons to whom the Software is # # furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # # THE SOFTWARE. # ################################################################################# import struct from datetime import datetime, timedelta class BPListWriter(object): def __init__(self, objects): self.bplist = "" self.objects = objects def binary(self): '''binary -> string Generates bplist ''' self.data = 'bplist00' # TODO: flatten objects and count max length size # TODO: write objects and save offsets # TODO: write offsets # TODO: write metadata return self.data def write(self, filename): ''' Writes bplist to file ''' if self.bplist != "": pass # TODO: save self.bplist to file else: raise Exception('BPlist not yet generated') class BPListReader(object): def __init__(self, s): self.data = s self.objects = [] self.resolved = {} def __unpackIntStruct(self, sz, s): '''__unpackIntStruct(size, string) -> int Unpacks the integer of given size (1, 2 or 4 bytes) from string ''' if sz == 1: ot = '!B' elif sz == 2: ot = '!H' elif sz == 4: ot = '!I' elif sz == 8: ot = '!Q' else: raise Exception('int unpack size '+str(sz)+' unsupported') return struct.unpack(ot, s)[0] def __unpackInt(self, offset): '''__unpackInt(offset) -> int Unpacks int field from plist at given offset ''' return self.__unpackIntMeta(offset)[1] def __unpackIntMeta(self, offset): '''__unpackIntMeta(offset) -> (size, int) Unpacks int field from plist at given offset and returns its size and value ''' obj_header = struct.unpack('!B', self.data[offset])[0] obj_type, obj_info = (obj_header & 0xF0), (obj_header & 0x0F) int_sz = 2**obj_info return int_sz, self.__unpackIntStruct(int_sz, self.data[offset+1:offset+1+int_sz]) def __resolveIntSize(self, obj_info, offset): '''__resolveIntSize(obj_info, offset) -> (count, offset) Calculates count of objref* array entries and returns count and offset to first element ''' if obj_info == 0x0F: ofs, obj_count = self.__unpackIntMeta(offset+1) objref = offset+2+ofs else: obj_count = obj_info objref = offset+1 return obj_count, objref def __unpackFloatStruct(self, sz, s): '''__unpackFloatStruct(size, string) -> float Unpacks the float of given size (4 or 8 bytes) from string ''' if sz == 4: ot = '!f' elif sz == 8: ot = '!d' else: raise Exception('float unpack size '+str(sz)+' unsupported') return struct.unpack(ot, s)[0] def __unpackFloat(self, offset): '''__unpackFloat(offset) -> float Unpacks float field from plist at given offset ''' obj_header = struct.unpack('!B', self.data[offset])[0] obj_type, obj_info = (obj_header & 0xF0), (obj_header & 0x0F) int_sz = 2**obj_info return int_sz, self.__unpackFloatStruct(int_sz, self.data[offset+1:offset+1+int_sz]) def __unpackDate(self, offset): td = int(struct.unpack(">d", self.data[offset+1:offset+9])[0]) return datetime(year=2001,month=1,day=1) + timedelta(seconds=td) def __unpackItem(self, offset): '''__unpackItem(offset) Unpacks and returns an item from plist ''' obj_header = struct.unpack('!B', self.data[offset])[0] obj_type, obj_info = (obj_header & 0xF0), (obj_header & 0x0F) if obj_type == 0x00: if obj_info == 0x00: # null 0000 0000 return None elif obj_info == 0x08: # bool 0000 1000 // false return False elif obj_info == 0x09: # bool 0000 1001 // true return True elif obj_info == 0x0F: # fill 0000 1111 // fill byte raise Exception("0x0F Not Implemented") # this is really pad byte, FIXME else: raise Exception('unpack item type '+str(obj_header)+' at '+str(offset)+ 'failed') elif obj_type == 0x10: # int 0001 nnnn ... // # of bytes is 2^nnnn, big-endian bytes return self.__unpackInt(offset) elif obj_type == 0x20: # real 0010 nnnn ... // # of bytes is 2^nnnn, big-endian bytes return self.__unpackFloat(offset) elif obj_type == 0x30: # date 0011 0011 ... // 8 byte float follows, big-endian bytes return self.__unpackDate(offset) elif obj_type == 0x40: # data 0100 nnnn [int] ... // nnnn is number of bytes unless 1111 then int count follows, followed by bytes obj_count, objref = self.__resolveIntSize(obj_info, offset) return self.data[objref:objref+obj_count] # XXX: we return data as str elif obj_type == 0x50: # string 0101 nnnn [int] ... // ASCII string, nnnn is # of chars, else 1111 then int count, then bytes obj_count, objref = self.__resolveIntSize(obj_info, offset) return self.data[objref:objref+obj_count] elif obj_type == 0x60: # string 0110 nnnn [int] ... // Unicode string, nnnn is # of chars, else 1111 then int count, then big-endian 2-byte uint16_t obj_count, objref = self.__resolveIntSize(obj_info, offset) return self.data[objref:objref+obj_count*2].decode('utf-16be') elif obj_type == 0x80: # uid 1000 nnnn ... // nnnn+1 is # of bytes # FIXME: Accept as a string for now obj_count, objref = self.__resolveIntSize(obj_info, offset) return self.data[objref:objref+obj_count] elif obj_type == 0xA0: # array 1010 nnnn [int] objref* // nnnn is count, unless '1111', then int count follows obj_count, objref = self.__resolveIntSize(obj_info, offset) arr = [] for i in range(obj_count): arr.append(self.__unpackIntStruct(self.object_ref_size, self.data[objref+i*self.object_ref_size:objref+i*self.object_ref_size+self.object_ref_size])) return arr elif obj_type == 0xC0: # set 1100 nnnn [int] objref* // nnnn is count, unless '1111', then int count follows # XXX: not serializable via apple implementation raise Exception("0xC0 Not Implemented") # FIXME: implement elif obj_type == 0xD0: # dict 1101 nnnn [int] keyref* objref* // nnnn is count, unless '1111', then int count follows obj_count, objref = self.__resolveIntSize(obj_info, offset) keys = [] for i in range(obj_count): keys.append(self.__unpackIntStruct(self.object_ref_size, self.data[objref+i*self.object_ref_size:objref+i*self.object_ref_size+self.object_ref_size])) values = [] objref += obj_count*self.object_ref_size for i in range(obj_count): values.append(self.__unpackIntStruct(self.object_ref_size, self.data[objref+i*self.object_ref_size:objref+i*self.object_ref_size+self.object_ref_size])) dic = {} for i in range(obj_count): dic[keys[i]] = values[i] return dic else: raise Exception('don\'t know how to unpack obj type '+hex(obj_type)+' at '+str(offset)) def __resolveObject(self, idx): try: return self.resolved[idx] except KeyError: obj = self.objects[idx] if type(obj) == list: newArr = [] for i in obj: newArr.append(self.__resolveObject(i)) self.resolved[idx] = newArr return newArr if type(obj) == dict: newDic = {} for k,v in obj.iteritems(): rk = self.__resolveObject(k) rv = self.__resolveObject(v) newDic[rk] = rv self.resolved[idx] = newDic return newDic else: self.resolved[idx] = obj return obj def parse(self): # read header if self.data[:8] != 'bplist00': raise Exception('Bad magic') # read trailer self.offset_size, self.object_ref_size, self.number_of_objects, self.top_object, self.table_offset = struct.unpack('!6xBB4xI4xI4xI', self.data[-32:]) #print "** plist offset_size:",self.offset_size,"objref_size:",self.object_ref_size,"num_objs:",self.number_of_objects,"top:",self.top_object,"table_ofs:",self.table_offset # read offset table self.offset_table = self.data[self.table_offset:-32] self.offsets = [] ot = self.offset_table for i in range(self.number_of_objects): offset_entry = ot[:self.offset_size] ot = ot[self.offset_size:] self.offsets.append(self.__unpackIntStruct(self.offset_size, offset_entry)) #print "** plist offsets:",self.offsets # read object table self.objects = [] k = 0 for i in self.offsets: obj = self.__unpackItem(i) #print "** plist unpacked",k,type(obj),obj,"at",i k += 1 self.objects.append(obj) # rebuild object tree #for i in range(len(self.objects)): # self.__resolveObject(i) # return root object return self.__resolveObject(self.top_object) @classmethod def plistWithString(cls, s): parser = cls(s) return parser.parse() # helpers for testing def plist(obj): from Foundation import NSPropertyListSerialization, NSPropertyListBinaryFormat_v1_0 b = NSPropertyListSerialization.dataWithPropertyList_format_options_error_(obj, NSPropertyListBinaryFormat_v1_0, 0, None) return str(b.bytes()) def unplist(s): from Foundation import NSData, NSPropertyListSerialization d = NSData.dataWithBytes_length_(s, len(s)) return NSPropertyListSerialization.propertyListWithData_options_format_error_(d, 0, None, None)
# 比较直接,首先想到的是 从后往前递归 做 # 但其实每次计算 * 的可能性的时候,重复计算了前面的某些结果 # 可以用一个全局二维数组保存下 某个子串s 和 某个子匹配p 是否匹配 class Solution: def isMatch(self, s: str, p: str) -> bool: if len(s)==0 and len(p)==0:return True if len(s)!=0 and len(p)==0:return False if len(s)==0 and len(p)!=0: return len(p)>=2 and p[-1]=='*' and self.isMatch(s,p[:-2]) last_p=p[-1] if last_p.isalpha(): if last_p!=s[-1]:return False return self.isMatch(s[:-1],p[:-1]) elif last_p=='.': return self.isMatch(s[:-1],p[:-1]) elif last_p=='*': if len(p)==1:return False second_p=p[-2] if second_p==s[-1] or second_p=='.': # *代表1,用完 *代表1以上,用完继续用 *代表0 return self.isMatch(s[:-1],p[:-2]) or self.isMatch(s[:-1],p) or self.isMatch(s,p[:-2]) else: # *只能用0次 return self.isMatch(s,p[:-2]) if __name__ == "__main__": s = Solution() print(s.isMatch("a","ab*"))
# Copyright 2017 FUJITSU LIMITED # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import abc import collections import six class CheckResult(collections.namedtuple('CheckResult', ['healthy', 'message'])): """Result for the health check healthy - boolean message - string """ @six.add_metaclass(abc.ABCMeta) class BaseHealthCheck(object): """Abstract class implemented by the monasca-api healthcheck classes""" @abc.abstractmethod def health_check(self): """Evaluate health of given service""" raise NotImplementedError # pragma: no cover
from django import forms from .models import Restaurante, Review class BusquedaPorNombre(forms.Form): nombre = forms.CharField(label="Nombre del Restaurante") class BuscaTituloCuerpo(forms.Form): contenido = forms.CharField(label="Contenido en cuerpo o titulo")
import os import re def _create_path(base: str, tail: str) -> str: """ Creates a safe path according to which OS the program is running on :param base: The current path :param tail: The last part of the path that is to be added :return: A new OS safe path """ return base + ('\\' if os.name == 'nt' else '/') + __safe_file_name(tail) def __safe_file_name(name: str) -> str: """ This helper is responsible for removing forbidden OS characters from a certain string. :param name: String to be converted :return: Safe string """ return re.sub(r'<|>|/|:|\"|\\|\||\?|\*', '', name)
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from astropy import wcs from . helper import SimModelTAB def test_2d_spatial_tab_roundtrip(tab_wcs_2di): nx, ny = tab_wcs_2di.pixel_shape # generate "random" test coordinates: np.random.seed(1) xy = 0.51 + [nx + 0.99, ny + 0.99] * np.random.random((100, 2)) rd = tab_wcs_2di.wcs_pix2world(xy, 1) xy_roundtripped = tab_wcs_2di.wcs_world2pix(rd, 1) m = np.logical_and(*(np.isfinite(xy_roundtripped).T)) assert np.allclose(xy[m], xy_roundtripped[m], rtol=0, atol=1e-7) def test_2d_spatial_tab_vs_model(): nx = 150 ny = 200 model = SimModelTAB(nx=nx, ny=ny) # generate FITS HDU list: hdulist = model.hdulist # create WCS object: w = wcs.WCS(hdulist[0].header, hdulist) # generate "random" test coordinates: np.random.seed(1) xy = 0.51 + [nx + 0.99, ny + 0.99] * np.random.random((100, 2)) rd = w.wcs_pix2world(xy, 1) rd_model = model.fwd_eval(xy) assert np.allclose(rd, rd_model, rtol=0, atol=1e-7)
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import fcl class World: def __init__(self, x_min, x_max, v_min, v_max, Pset): self.x_min = x_min self.x_max = x_max self.v_min = v_min self.v_max = v_max self.Pset = Pset self.fcl_manager = fcl.DynamicAABBTreeCollisionManager() objs = [] for p in self.Pset: objs.append(self.rec2fcl(p)) self.fcl_manager.registerObjects(objs) self.fcl_manager.setup() def rec2fcl(self, rec): box = fcl.Box(rec[2], rec[3], 1.0) tf = fcl.Transform([rec[0], rec[1], 0]) return fcl.CollisionObject(box, tf) def point2fcl(self, p): point = fcl.Cylinder(0.01, 1) tf = fcl.Transform([p[0], p[1], 0]) return fcl.CollisionObject(point, tf) def isValidPoint(self, s_q): # check if the sampled point is inside the world" if not (self.x_min[0] < s_q[0] < self.x_max[0] and self.x_min[1] < s_q[1] < self.x_max[1] and self.v_min[0] < s_q[2] < self.v_max[0] and self.v_min[1] < s_q[3] < self.v_max[1]): return False # 一对many fclPoint = self.point2fcl(s_q) req = fcl.CollisionRequest(num_max_contacts=100, enable_contact=True) rdata = fcl.CollisionData(request=req) self.fcl_manager.collide(fclPoint, rdata, fcl.defaultCollisionCallback) # print('Collision between manager 1 and Mesh?: {}'.format(rdata.result.is_collision)) # print('Contacts:') # for c in rdata.result.contacts: # print('\tO1: {}, O2: {}'.format(c.o1, c.o2)) return not rdata.result.is_collision def isValid(self, q_set): # check validity for multiple points. # will be used for piecewize path consited of multiple points # for q in q_set: # if not self.isValidPoint(q): # return False # return True if len(q_set.shape) < 2: return self.isValidPoint(q_set) manager_q = fcl.DynamicAABBTreeCollisionManager() qs = [] for q in q_set: qs.append(self.point2fcl(q)) manager_q.registerObjects(qs) req = fcl.CollisionRequest(num_max_contacts=100, enable_contact=True) rdata = fcl.CollisionData(request=req) self.fcl_manager.collide(manager_q, rdata, fcl.defaultCollisionCallback) # print('Collision between manager 1 and Mesh?: {}'.format(rdata.result.is_collision)) # print('Contacts:') # for c in rdata.result.contacts: # print('\tO1: {}, O2: {}'.format(c.o1, c.o2)) return not rdata.result.is_collision def drawRec(self, p, ax): rect = mpl.patches.Rectangle((p[0]-p[2]/2, p[1]-p[3]/2), p[2], p[3]) ax.add_patch(rect) def show(self, ax): p1 = [self.x_min[0], self.x_min[1]] p2 = [self.x_min[0], self.x_max[1]] p3 = [self.x_max[0], self.x_max[1]] p4 = [self.x_max[0], self.x_min[1]] ax.plot([p1[0], p2[0]], [p1[1], p2[1]], "k-") ax.plot([p2[0], p3[0]], [p2[1], p3[1]], "k-") ax.plot([p3[0], p4[0]], [p3[1], p4[1]], "k-") ax.plot([p4[0], p1[0]], [p4[1], p1[1]], "k-") for P in self.Pset: self.drawRec(P, ax)
from app.db.error.non_existent_error import NonExistentError from fastapi.responses import JSONResponse from fastapi import status from starlette.exceptions import HTTPException async def custom_http_exception_handler(request, exc: HTTPException): return JSONResponse(status_code=exc.status_code, content=exc.detail) async def custom_value_error_handler(request, exc: ValueError): return JSONResponse(status_code=status.HTTP_400_BAD_REQUEST, content=str(exc)) async def custom_non_existent_error_handler(request, exc: NonExistentError): return JSONResponse(status_code=status.HTTP_404_NOT_FOUND, content=str(exc))
N = int(input()) A = list(map(int, input().split())) v = 0 for i in range(N): v += 1 / A[i] print(1 / v)
class Solution: def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int: m = len(obstacleGrid) n = len(obstacleGrid[0]) dp = [[0 for i in range(n)] for j in range(m)] if obstacleGrid[0][0] == 1: return 0 dp[0][0] = 1 for col in range(1, n): if obstacleGrid[0][col] == 1: dp[0][col] = 0 else: dp[0][col] = dp[0][col - 1] for row in range(1, m): if obstacleGrid[row][0] == 1: dp[row][0] = 0 else: dp[row][0] = dp[row - 1][0] for row in range(1, m): for col in range(1, n): if obstacleGrid[row][col] == 1: dp[row][col] = 0 else: dp[row][col] = dp[row][col - 1] + dp[row - 1][col] return dp[-1][-1]
"""Defines Falcon hooks Copyright 2013 by Rackspace Hosting, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from functools import wraps import six from falcon import HTTP_METHODS from falcon import api_helpers def before(action): """Decorator to execute the given action function *before* the responder. Args: action: A function with a similar signature to a resource responder method, taking (req, resp, params), where params includes values for URI template field names, if any. Hooks may also add pseudo-params of their own. For example: def do_something(req, resp, params): try: params['id'] = int(params['id']) except ValueError: raise falcon.HTTPBadRequest('Invalid ID', 'ID was not valid.') params['answer'] = 42 """ def _before(responder_or_resource): if isinstance(responder_or_resource, six.class_types): resource = responder_or_resource for method in HTTP_METHODS: responder_name = 'on_' + method.lower() try: responder = getattr(resource, responder_name) except AttributeError: # resource does not implement this method pass else: # Usually expect a method, but any callable will do if hasattr(responder, '__call__'): # This pattern is necessary to capture the current # value of responder in the do_before_all closure; # otherwise, they will capture the same responder # variable that is shared between iterations of the # for loop, above. def let(responder=responder): @wraps(responder) def do_before_all(self, req, resp, **kwargs): action(req, resp, kwargs) responder(self, req, resp, **kwargs) api_helpers._propagate_argspec( do_before_all, responder) setattr(resource, responder_name, do_before_all) let() return resource else: responder = responder_or_resource @wraps(responder) def do_before_one(self, req, resp, **kwargs): action(req, resp, kwargs) responder(self, req, resp, **kwargs) api_helpers._propagate_argspec(do_before_one, responder) return do_before_one return _before def after(action): """Decorator to execute the given action function *after* the responder. Args: action: A function with a similar signature to a resource responder method, taking (req, resp). """ def _after(responder_or_resource): if isinstance(responder_or_resource, six.class_types): resource = responder_or_resource for method in HTTP_METHODS: responder_name = 'on_' + method.lower() try: responder = getattr(resource, responder_name) except AttributeError: # resource does not implement this method pass else: # Usually expect a method, but any callable will do if hasattr(responder, '__call__'): def let(responder=responder): @wraps(responder) def do_after_all(self, req, resp, **kwargs): responder(self, req, resp, **kwargs) action(req, resp) api_helpers._propagate_argspec( do_after_all, responder) setattr(resource, responder_name, do_after_all) let() return resource else: responder = responder_or_resource @wraps(responder) def do_after_one(self, req, resp, **kwargs): responder(self, req, resp, **kwargs) action(req, resp) api_helpers._propagate_argspec(do_after_one, responder) return do_after_one return _after
import curses import py2048 def incurses(screen, game): curses.noecho() curses.cbreak() screen.keypad(True) try: while not game.isover: screen.addstr(0, 0, repr(game)) ch = screen.getch() if ch == curses.KEY_RIGHT: game.moveright() elif ch == curses.KEY_LEFT: game.moveleft() elif ch == curses.KEY_UP: game.moveup() elif ch == curses.KEY_DOWN: game.movedown() elif ch == ord('r'): game.reset() elif ch == ord('q'): break finally: curses.nocbreak() screen.keypad(0) curses.echo() def terminal_run(size): game = py2048.Game(size) while True: curses.wrapper(incurses, game) if not game.isover: break print(game) while True: print("Press 'q' to quit\n" "Press 'r' to start a new game") ch = input() if ch == 'r': game.reset() break elif ch == 'q': return
import functools import time import logging logger = logging.getLogger("wrapper") #------------------------------------------------------------------------------# # TIME def time_measurement(func): """Timestamp decorator for dedicated functions""" @functools.wraps(func) def wrapper(*args, **kwargs): startTime = time.time() result = func(*args, **kwargs) execTime = time.time() - startTime mlsec = repr(execTime).split('.')[1][:3] readable = time.strftime("%H:%M:%S.{}".format(mlsec), time.gmtime(execTime)) logger.info('----> Function "{}" took : {} sec'.format(func.__name__, readable)) return result return wrapper
# (C) Copyright IBM Corp. 2016 # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Implementation of DyBMs. .. seealso:: Takayuki Osogami and Makoto Otsuka, "Seven neurons \ memorizing sequences of alphabetical images via spike-timing dependent \ plasticity," Scientific Repeports, 5, 14149; doi: 10.1038/srep14149 \ (2015). http://www.nature.com/articles/srep14149 .. seealso:: Takayuki Osogami and Makoto Otsuka, Learning dynamic \ Boltzmann machines with spike-timing dependent plasticity, Technical \ Report RT0967, IBM Research, 2015. https://arxiv.org/abs/1509.08634 """ __author__ = "Takayuki Osogami, Rudy Raymond" import numpy as np from six.moves import xrange, zip from copy import deepcopy from itertools import product from .. import arraymath as amath from ..base.generator import ListGenerator, ElementGenerator, SequenceGenerator from ..time_series.time_series_model import StochasticTimeSeriesModel from ..time_series.vector_regression import VectorRegression, MultiTargetVectorRegression, \ VectorRegressionWithHidden, sigmoid from ..base.sgd import AdaGrad from ..base.metrics import RMSE, baseline_RMSE DEBUG = False class LinearDyBM(VectorRegression): """LinearDyBM is a minimal DyBM for real-valued time-series. It extends a vector auto-regressive (VAR) model by incorporating eligibility traces (and an Echo State Network or ESN). Specifically, a pattern, :math:`\mathbf{x}^{[t]}`, at time :math:`t` is predicted with .. math:: \mathbf{b} + \sum_{\ell=1}^{L} \mathbf{W}^{[\ell]} \, \mathbf{x}^{[t-\ell]} + \sum_{k=1}^{K} \mathbf{V}^{[k]} \, \mathbf{e}^{[k]} + \\Phi^{[t-1]} Here, :math:`\mathbf{x}^{[t-\ell]}` is the pattern at time :math:`t-\ell`, and :math:`\mathbf{e}^{[k]}` is a vector of eligibility traces, which are updated as follows after receiving a pattern at each time :math:`t`: .. math:: \mathbf{e}^{[k]} \leftarrow \lambda^{[k]} \, \mathbf{e}^{[k]} + \mathbf{x}^{[t]} where :math:`\lambda^{[k]}` is the :math:`k`-th decay rate. Optionally, LinearDyBM can also take into account the supplementary bias, :math:`\\Phi^{[t]} = \mathbf{A} \\Psi^{[t]}`, created by an ESN from the (non-linear) features :math:`\\Psi^{[t]}`, as follows (Notice that :math:`\mathbf{A}` is learned by the ESN): .. math:: \\Psi^{[t]} = (1-\\rho) \, \\Psi^{[t-1]} + \\rho \, \mathcal{F}(\mathbf{W}_{rec} \, \\Psi^{[t-1]} + \mathbf{W}_{in} \, \mathbf{x}^{[t]}) where :math:`\mathbf{W}_{rec}` is the matrix of the internal weight in the ESN, :math:`\mathbf{W}_{in}` is the matrix of the weight from the input to the ESN, :math:`\rho` is a leak parameter, and :math:`\mathcal{F}` is a non-linear function (specifically, hyperbolic tangent). These :math:`\mathbf{W}_{rec}` and :math:`\mathbf{W}_{in}` are randomly initialized and fixed throughout learning. LinearDyBM learns the values of :math:`\mathbf{V}^{[\cdot]}`, :math:`\mathbf{W}^{[\cdot]}` from given training time-series. The ESN is used differently in Dasgupta & Osogami (2017). See RNNGaussianDyBM.py for the implementation that follows Dasgupta & Osogami (2017). The LinearDyBM without an ESN closely follows Osogami (2016). .. seealso:: Takayuki Osogami, "Learning binary or real-valued \ time-series via spike-timing dependent plasticity," presented at \ Computing with Spikes NIPS 2016 Workshop, Barcelona, Spain, December \ 2016. https://arxiv.org/abs/1612.04897 .. seealso:: Sakyasingha Dasgupta and Takayuki Osogami, "Nonlinear \ Dynamic Boltzmann Machines for Time-series Prediction," in \ Proceedings of the 31st AAAI Conference on Artificial Intelligence \ (AAAI-17), pages 1833-1839, San Francisco, CA, January 2017. \ http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14350/14343 LinearDyBM allows the target time-series to be different from the input time-series. Namely, LinearDyBM can be trained to predict a target pattern, :math:`\mathbf{y}^{[t]}`, at time :math:`t` from input time-series :math:`\mathbf{x}^{[:t]}` (i.e., `\mathbf{x}^{[0]`, ..., `\mathbf{x}^{[t-1]`) \ with .. math:: \mathbf{b} + \sum_{\ell=1}^{L} \mathbf{W}^{[\ell]} \, \mathbf{x}^{[t-\ell]} + \sum_{k=1}^{K} \mathbf{V}^{[k]} \, \mathbf{e}^{[k]} + \\Phi^{[t-1]} Note that $\mathbf{x}^{[t]}$ is not used to predict $\mathbf{y}^{[t]}$. Parameters ---------- in_dim : int Dimension of input time-series out_dim : int, optional Dimension of target time-series delay : int, optional length of the FIFO queue plus 1 decay_rates : list, optional Decay rates of eligibility traces SGD : instance of SGD.SGD, optional Instance of a stochastic gradient method L1 : float, optional Strength of L1 regularization L2 : float, optional Strength of L2 regularization use_bias : boolean, optional Whether to use bias parameters sigma : float, optional Standard deviation of initial values of weight parameters insert_to_etrace : str, {"w_delay", "wo_delay"}, optional "w_delay" : Insert pattern observed d-1 time steps ago into eligibility traces. "wo_delay" : Insert the latest pattern into eligibility traces esn : ESN, optional Echo state network random : arraymath.random random number generator Attributes ---------- decay_rates : array, shape (n_etrace, 1) Decay rates of eligibility traces e_trace : array, shape (n_etrace, in_dim) e_trace[k, :] corresponds to the k-th eligibility trace. esn : ESN esn fifo : deque FIFO queue storing L in_patterns, each in_pattern has shape (in_dim,). insert_to_etrace : str insert_to_etrace n_etrace : int The number of eligibility traces len_fifo : int The length of FIFO queues (delay - 1) L1 : dict Dictionary of the strength of L1 regularization L1[x] : float Strength of L1 regularization for variable x for x in ["b","V","W"] L2 : dict Dictionary of the strength of L2 regularization L2[x] : float Strength of L2 regularization for variable x for x in ["b","V","W"] in_dim : int in_dim out_dim : int out_dim SGD : SGD Optimizer used in the stochastic gradient method variables : dict Dictionary of model parameters variables["W"] : array, shape (len_fifo, in_dim, out_dim) variables["W"][l] corresponds to the weight from the input observed at time step t - l - 1 to the mean at time step t (current time). variables["b"] : array, shape (out_dim,) variables["b"] corresponds to the bias to out_pattern. variables["V"] : array, shape (n_etrace, in_dim, out_dim) variables["V"][k] corresponds to the weight from the k-th eligibility trace to the mean. """ def __init__(self, in_dim, out_dim=None, delay=2, decay_rates=[0.5], SGD=None, L1=0, L2=0, use_bias=True, sigma=0, insert_to_etrace="wo_delay", esn=None, random=None): if insert_to_etrace not in ["w_delay", "wo_delay"]: raise ValueError("insert_to_etrace should be either 'w_delay' " "or 'wo_delay'.") self.n_etrace = len(decay_rates) self.decay_rates = amath.array(decay_rates).reshape((self.n_etrace, 1)) order = delay - 1 # Echo state network self.esn = esn if SGD is None: SGD = AdaGrad() if random is None: random = amath.random.RandomState(0) VectorRegression.__init__(self, in_dim, out_dim, order, SGD, L1, L2, use_bias, sigma, random) if self.n_etrace > 0 and self.in_dim > 0 and self.out_dim > 0: if sigma <= 0: self.variables["V"] \ = amath.zeros((self.n_etrace, self.in_dim, self.out_dim), dtype=float) else: self.variables["V"] \ = random.normal(0, sigma, (self.n_etrace, self.in_dim, self.out_dim)) if SGD is None: SGD = AdaGrad() self.SGD = SGD.set_shape(self.variables) # resetting SGD self.L1["V"] = L1 self.L2["V"] = L2 self.insert_to_etrace = insert_to_etrace def init_state(self): """Initializing FIFO queue and eligibility traces """ VectorRegression.init_state(self) # eligibility trace self.e_trace = amath.zeros((self.n_etrace, self.in_dim)) # Echo state network if self.esn is not None: self.esn.init_state() def _update_state(self, in_pattern): """Updating FIFO queues and eligibility traces by appending in_pattern Parameters ---------- in_pattern : array, shape (in_dim,) in_pattern to be appended to fifo. """ assert in_pattern.shape == (self.in_dim,), "in_pattern must have shape (in_dim,)" popped_in_pattern = VectorRegression._update_state(self, in_pattern) if self.insert_to_etrace == "wo_delay" and self.in_dim > 0: self.e_trace = amath.op.update_e_trace(self.e_trace, self.decay_rates, in_pattern) elif self.insert_to_etrace == "w_delay" and self.in_dim > 0: self.e_trace = amath.op.update_e_trace(self.e_trace, self.decay_rates, popped_in_pattern) elif self.in_dim > 0: raise NotImplementedError("_update_state not implemented for ", self.insert_to_etrace, self.in_dim) else: # no need to do anything when in_dim == 0 pass # Echo state network if self.esn is not None: self.esn._update_state(in_pattern) def _get_gradient(self, out_pattern, expected=None): """Computing the gradient of log likelihood Parameters ---------- out_pattern : array, shape (out_dim,) out_pattern observed at the current time expected : array, shape (out_dim,), optional out_pattern expected by the current model. To be computed if not given. Returns ------- dict dictionary of gradients with name of a variable as a key """ assert out_pattern.shape == (self.out_dim,), \ "out_pattern must have shape (out_dim,)" if expected is not None: assert expected.shape == (self.out_dim,), "expected must have shape (out_dim,)" if expected is None: expected = self._get_mean().reshape((self.out_dim,)) gradient = VectorRegression._get_gradient(self, out_pattern, expected) if "V" in self.variables: # TODO: # dx in the following has been computed # in VectorRegression._get_gradient dx = out_pattern - expected gradient["V"] = amath.op.mult_2d_1d_to_3d(self.e_trace, dx) if DEBUG: grad_V_naive \ = np.array([self.e_trace[k, :].reshape((self.in_dim, 1)) * dx for k in range(self.n_etrace)]) assert np.allclose(grad_V_naive, gradient["V"]), \ "gradient[\"V\"] has a bug." self.SGD.apply_L2_regularization(gradient, self.variables, self.L2) return gradient def learn_one_step(self, out_pattern): """Learning a pattern and updating parameters Parameters ---------- out_pattern : array, or list of arrays pattern whose log likelihood is to be increased """ delta_this = self._get_delta(out_pattern) if self.esn is not None: delta_esn = self.esn._get_delta(out_pattern) if delta_this is not None: self._update_parameters(delta_this) if self.esn is not None and delta_esn is not None: self.esn._update_parameters(delta_esn) def _get_mean(self): """Computing estimated mean Returns ------- mu : array, shape (out_dim,) estimated mean """ mu = self._get_conditional_negative_energy() return mu def _get_conditional_negative_energy(self): """Computing the fundamental output Returns ------- array, shape (out_dim,) fundamental output """ mu = VectorRegression._get_conditional_negative_energy(self) if "V" in self.variables: mu += amath.tensordot(self.e_trace, self.variables["V"], axes=2) if DEBUG: mu_naive = deepcopy(mu) for k in range(self.n_etrace): mu_naive = mu_naive \ + self.e_trace[k, :].dot(self.variables["V"][k]) assert amath.allclose(mu, mu_naive), "ERROR: mu has a bug." # Echo state network if self.esn is not None: mu += self.esn._get_mean() return mu def _get_sample(self): """Returning mean as a sample, shape (out_dim,). LinearDyBM should be used as a deterministic model Returns ------- array, shape (out_dim,) mu, estimated mean (deterministic) """ return self._get_mean() def _time_reversal(self): """Making an approximately time-reversed LinearDyBM by transposing matrices. For discriminative learning, where in_dim != out_dim, time reversal would also implies that input and target is reversed """ if self.esn is not None: # TODO: implement _time_reversal with ESN raise NotImplementedError("_time_reversal is not implemented with ESN") self._transpose_matrices() self._exchange_dimensions() def _transpose_matrices(self): """Making an approximately time-reversed LinearDyBM by transposing matrices. Dimensions should be exchanged with _exchange_dimensions() """ for i in xrange(self.n_etrace): self.variables["V"][i] = self.variables["V"][i].transpose() self.SGD.first["V"][i] = self.SGD.first["V"][i].transpose() self.SGD.second["V"][i] = self.SGD.second["V"][i].transpose() for i in xrange(self.len_fifo): self.variables["W"][i] = self.variables["W"][i].transpose() self.SGD.first["W"][i] = self.SGD.first["W"][i].transpose() self.SGD.second["W"][i] = self.SGD.second["W"][i].transpose() def _exchange_dimensions(self): """Exchanging in_dim and out_dim """ out_dim = self.in_dim self.in_dim = self.out_dim self.out_dim = out_dim class MultiTargetLinearDyBM(MultiTargetVectorRegression): """MultiTargetLinearDyBM is a building block for ComplexDyBM. MultiTargetLinearDyBM is similar to LinearDyBM but accepts multiple targets. Namely, MultiTargetLinearDyBM can be trained to predict target patterns, :math:`(\mathbf{y}_1^{[t]}, \mathbf{y}_2^{[t]}, \ldots)`, at time :math:`t` from input time-series :math:`\mathbf{x}^{[:t-1]}` with .. math:: \mathbf{b}_1 + \sum_{\ell=1}^{L} \mathbf{W}_1^{[\ell]} \, \mathbf{x}^{[t-\ell]} + \sum_{k=1}^{K} \mathbf{V}_1^{[k]} \, \mathbf{e}^{[k]} \mathbf{b}_2 + \sum_{\ell=1}^{L} \mathbf{W}_2^{[\ell]} \, \mathbf{x}^{[t-\ell]} + \sum_{k=1}^{K} \mathbf{V}_2^{[k]} \, \mathbf{e}^{[k]} \ldots .. todo:: Support the Echo State Network Parameters ---------- in_dim : int Dimension of input time-series out_dims : list, List of the dimension of target time-series SGDs : list of the instances of SGD.SGD, optional List of the optimizer for the stochastic gradient method delay : int, optional length of the FIFO queue plus 1 decay_rates : list, optional Decay rates of eligibility traces L1 : float, optional Strength of L1 regularization L2 : float, optional Strength of L2 regularization use_biases : list of boolean, optional Whether to use bias parameters sigma : float, optional Standard deviation of initial values of weight parameters insert_to_etrace : str, {"w_delay", "wo_delay"}, optional "w_delay" : Insert pattern observed d-1 time steps ago into eligibility traces. "wo_delay" : Insert the latest pattern into eligibility traces. random : arraymath.random random number generator """ def __init__(self, in_dim, out_dims, SGDs=None, delay=2, decay_rates=[0.5], L1=0, L2=0, use_biases=None, sigma=0, insert_to_etrace="wo_delay", random=None): if SGDs is None: SGDs = [AdaGrad() for i in range(len(out_dims))] if len(out_dims) != len(SGDs): raise ValueError("out_dims and SGDs must have a common length") if use_biases is None: use_biases = [True] * len(out_dims) if random is None: random = amath.random.RandomState(0) self.layers = [LinearDyBM(in_dim, out_dim, delay, decay_rates, SGD, L1, L2, use_bias, sigma, insert_to_etrace, random=random) for (out_dim, SGD, use_bias) in zip(out_dims, SGDs, use_biases)] # Only layer 0 has internal states, which are shared among all layers for i in xrange(1, len(self.layers)): self.layers[i].fifo = self.layers[0].fifo self.layers[i].e_trace = self.layers[0].e_trace StochasticTimeSeriesModel.__init__(self) def _time_reversal(self): """ Making an approximately time-reversed MultiTargetLinearDyBM by transposing matrices For discriminative learning, where in_dim != out_dim, time revierasal would also implies that input and target are exchanged """ for layer in self.layers: layer._time_reversal() class ComplexDyBM(StochasticTimeSeriesModel): """ Complex DyBM with multiple visible layers Layers can have different delays, decay rates, and activations Parameters ---------- delays : list of integers, length n_layers delays[l] corresponds to the delay of the l-th layer. decay_rates : list of lists of floats, length n_layers decay_rates[l] corresponds to the decay rates of eligibility traces of the l-th layer. activations : list of strings, 'linear' or 'sigmoid', length n_layers activations[l] corresponds to the activation unit of the l-th layer. in_dims : list of integers, length n_layers in_dims[l] corresponds to the dimension of input time-series of the l-th layer. out_dims : list of integers, length n_layers, optional out_dims[l] corresponds to the dimension of target time-series of the l-th layer. If None, set out_dims = in_dims. SGD : instance of SGD.SGD or list of instances of SGD.SGD, lengh n_layers if \ list, optional. If list, SGD[l] corresponds to SGD for the l-th layer. L1 : float, optional Strength of L1 regularization. L2 : float, optional Strength of L2 regularization. use_biases : list of booleans, length n_layers Whether to use bias parameters in each layer. sigma : float, optional Standard deviation of initial values of parameters. insert_to_etrace : str, {"w_delay", "wo_delay"}, optional "w_delay" : Pattern observed d-1 time steps ago will be inserted into eligibility traces. "wo_delay" : The newest pattern will be inserted into eligibility traces. random : arraymath.random random number generator Attributes ---------- activations : list of strings, 'linear' or 'sigmoid', length n_layers Activations out_dim : int The sum of all the out_dims n_layers : int The number of layers in complex DyBM. layers : list of LinearDyBM objects, length n_layers layers[l] corresponds to the l-th LinearDyBM. """ def __init__(self, delays, decay_rates, activations, in_dims, out_dims=None, SGD=None, L1=0., L2=0., use_biases=None, sigma=0, insert_to_etrace="wo_delay", random=None): if insert_to_etrace not in ["w_delay", "wo_delay"]: raise ValueError("insert_to_etrace should be either 'w_delay' " "or 'wo_delay'.") n_layers = len(delays) if out_dims is None: out_dims = in_dims if use_biases is None: use_biases = [[True] * n_layers] * n_layers if SGD is None: SGD = [AdaGrad() for _ in range(n_layers)] if SGD.__class__ is not list: SGD = [deepcopy(SGD) for _ in range(n_layers)] if not len(delays) == len(decay_rates) == len(activations) \ == len(in_dims) == len(out_dims) == len(SGD) == len(use_biases): raise ValueError("delays, decay_rates, activations, in_dims, " "out_dims, SGD, and use_biases must have the" "same number of elements, each of which" "corresponds to the parameters of each layer.") if random is None: random = amath.random.RandomState(0) self.activations = activations # out_dim: Total target dimension of this complex DyBM self.out_dim = sum(out_dims) self.layers = [MultiTargetLinearDyBM(dim, out_dims, deepcopy(SGD), delay, decay_rate, L1=L1, L2=L2, use_biases=use_bias, sigma=sigma, insert_to_etrace=insert_to_etrace, random=random) for (delay, decay_rate, dim, sgd, use_bias) in zip(delays, decay_rates, in_dims, SGD, use_biases)] self.n_layers = len(self.layers) self.insert_to_etrace = insert_to_etrace StochasticTimeSeriesModel.__init__(self) def init_state(self): """ Initializing the state of each layer """ for layer in self.layers: layer.init_state() def _update_state(self, in_patterns): """ Updating the state of each layer Parameters ---------- in_patterns : list of arrays, length n_layers in_patterns[l] : array, length in_dims[l]. This corresponds to in_pattern for updating states of the \ l-th layer. """ for (layer, in_pattern) in zip(self.layers, in_patterns): layer._update_state(in_pattern) def _get_delta(self, out_patterns, expected=None, weightLLs=None): """ Getting delta, how much we change parameters for each layer Parameters ---------- out_patterns : list of arrays, length n_layers. out_patterns[l] : array, length out_dims[l] This corresponds to out_pattern of the l-th layer. expected : array, shape (out_dim,), optional Expected next output pattern weightLLs : list of boolean, length 2, optional weight[l] denotes whether to weigh the gradient with log likelihood Returns ------- list of dicts, length n_layers. the l-th element corresponds to a dictionary of deltas with name \ of a variable as a key. """ if expected is None: # expected pattern with current parameters expected = self.predict_next() deltas = list() for layer in self.layers: d = layer._get_delta(out_patterns, expected, weightLLs) deltas.append(d) return deltas def _update_parameters(self, deltas): """ Updating the parameters for each layer Parameters ---------- deltas : list of dicts, length n_layers. deltas[l] corresponds to a dictionary of deltas of the l-th layer with name of a variable as a key. """ for (layer, d) in zip(self.layers, deltas): layer._update_parameters(d) def get_LL(self, out_patterns): """ Getting log likelihood of given out_patterns Parameters ---------- out_patterns : list of arrays, length n_layers. out_patterns[l] : array, length out_dims[l] This corresponds to out_pattern of the l-th layer. Returns ------- list The l-th element corresponds to the log likelihood of the l-th layer. """ mu_list = self._get_conditional_negative_energy() LL = list() for layer, activation, mu, out_pattern in zip(self.layers, self.activations, mu_list, out_patterns): if activation == "linear": # real valued prediction # same as prediction of Gaussian DyBM loglikelihood = None elif activation == "sigmoid": # Prediction in [0, 1] # For binary input, predicted value should be interpreted # as probability. # Same as the original binary DyBM loglikelihood = (- mu * out_pattern - amath.log(1. + amath.exp(-mu))) loglikelihood = amath.sum(loglikelihood) else: # TODO: implement other activations raise NotImplementedError("get_LL not implemented for " + activation) LL.append(loglikelihood) return LL def predict_next(self): """ Predicting next pattern with the expected values Returns ------- array, shape (out_dim,) prediction of out_pattern """ return self._get_mean() def _get_mean(self): """ Getting expected values Returns ------- mean : list of arrays, length n_layers. mean[l] corresponds to the expected out_pattern for the l-th layer """ mu_list = self._get_conditional_negative_energy() mean = list() for layer, activation, mu in zip(self.layers, self.activations, mu_list): if activation == "linear": # real valued prediction # same as prediction of Gaussian DyBM pred = mu elif activation in ["sigmoid", "sigmoid_deterministic"]: # prediction in [0, 1] # For binary input, predicted value should be interpreted # as probability. # Same as the original binary DyBM pred = sigmoid(mu) else: # TODO: implement other activations raise NotImplementedError("_get_mean not defined for activation:" + activation) mean.append(pred) return mean def _get_conditional_negative_energy(self): """ Computing the conditional negative energy, summed up over all layers Returns ------- list of array, length len(layers) list of conditional negative energy """ mu_all = [amath.concatenate(layer._get_conditional_negative_energy()) for layer in self.layers] mu_all = amath.concatenate(mu_all).reshape((self.n_layers, self.out_dim)) mu_sum = mu_all.sum(axis=0) start = 0 mu_list = list() for layer in self.layers: in_dim = layer.get_input_dimension() mu = mu_sum[start:start + in_dim] mu_list.append(mu) start += in_dim return mu_list def _get_sample(self): """ Sampling next values Returns ------- list of arrays, length n_layers the l-th element corresponds to samples for the l-th layer. """ means = self._get_mean() samples = list() for mean, activation in zip(means, self.activations): if activation in ["linear", "sigmoid_deterministic"]: # for linear activation, mean is always sampled sample = mean elif activation == "sigmoid": u = self.random.random_sample(mean.shape) sample = u < mean samples.append(sample) return samples def set_learning_rate(self, rates): """ Setting the learning rates Parameters ---------- rate : list of float, length n_layers learning rates """ for layer in self.layers: layer.set_learning_rate(rates) class BinaryDyBM(ComplexDyBM): """ Binary (Bernoulli) DyBM, consisting of a visible Bernoulli layer Parameters ---------- in_dim : integer The dimension of input time-series out_dim : integer, optional The dimension of target time-series delay : integer (>0), optional length of fifo queue plus one decay_rates : list of floats, optional Decay rates of eligibility traces of the l-th layer. SGD : object of SGD.SGD, optional Object of a stochastic gradient method L1 : float, optional Strength of L1 regularization L2 : float, optional Strength of L2 regularization sigma : float, optional Standard deviation of initial values of parameters insert_to_etrace : str, {"w_delay", "wo_delay"}, optional "w_delay" : Pattern observed d-1 time steps ago will be inserted into eligibility traces. "wo_delay" : The newest pattern will be inserted into eligibility traces. Attributes ---------- n_etrace : int the number of eligibility traces len_fifo : int the length of FIFO queues (delay - 1) in_dim : int in_dim out_dim : int out_dim """ def __init__(self, in_dim, out_dim=None, delay=2, decay_rates=[0.5], SGD=None, L1=0, L2=0, sigma=0, insert_to_etrace="wo_delay"): if not delay > 0: raise ValueError("delay must be a positive integer") if insert_to_etrace not in ["w_delay", "wo_delay"]: raise ValueError("insert_to_etrace should be either `w_delay` or " "`wo_delay`.") if out_dim is None: out_dim = in_dim self.n_etrace = len(decay_rates) self.len_fifo = delay - 1 self.in_dim = in_dim self.out_dim = out_dim ComplexDyBM.__init__(self, [delay], [decay_rates], ["sigmoid"], [in_dim], SGD=SGD, L1=L1, L2=L2, use_biases=[[True]], sigma=sigma, insert_to_etrace=insert_to_etrace) def get_input_dimension(self): """ Getting the dimension of input sequence Returns ------- in_dim : int dimension of input sequence """ return self.in_dim def get_target_dimension(self): """ Getting the dimension of target sequence Returns ------- out_dim : int dimension of target sequence """ return self.out_dim def set_learning_rate(self, rate): """ Setting the learning rate Parameters ---------- rate : float learning rate """ ComplexDyBM.set_learning_rate(self, [rate]) def _update_state(self, in_pattern): ComplexDyBM._update_state(self, [in_pattern]) def _get_delta(self, out_pattern, expected=None): return ComplexDyBM._get_delta(self, [out_pattern]) def get_predictions(self, in_seq): """ Getting predicsions corresponding to given input sequence Parameters ---------- in_seq : sequence or generator input sequence Returns ------- list of arrays list of predictions """ predictions = ComplexDyBM.get_predictions(self, in_seq) return [p[0] for p in predictions] class GaussianBernoulliDyBM(ComplexDyBM): """ Gaussian-Bernoulli DyBM, consisting of a visible Gaussian layer, and a hidden Bernoulli layer .. seealso:: Takayuki Osogami, Hiroshi Kajino, and Taro Sekiyama, \ "Bidirectional learning for time-series models with hidden units", \ ICML 2017. Parameters ---------- delays : list of integers (>0), length 2 delays[l] corresponds to the delay of the l-th layer. decay_rates : list of lists of floats, length 2 decay_rates[l] corresponds to the decay rates of eligibility traces of the l-th layer. in_dims : list of integers, length 2 in_dims[l] corresponds to the dimension of input time-series of the l-th layer. SGD : instance of SGD.SGD or list of instances of SGD.SGD, optional Instance of a stochastic gradient method L1 : float, optional Strength of L1 regularization L2 : float, optional Strength of L2 regularization sigma : float, optional Standard deviation of initial values of parameters insert_to_etrace : str, {"w_delay", "wo_delay"}, optional "w_delay" : Pattern observed d-1 time steps ago will be inserted into eligibility traces "wo_delay" : The newest pattern will be inserted into eligibility traces Attributes ---------- out_dim : int the sum of all the out_dims n_etrace : int the number of eligibility traces len_fifo : int the length of FIFO queues (delay - 1) n_layers : int 2, the number of layers layers : list of LinearDyBM objects, length 2 layers[l] corresponds to the l-th LinearDyBM. visibility : list [True,False], visibility of layers """ def __init__(self, delays, decay_rates, in_dims, SGD=None, L1=0., L2=0., sigma=0, insert_to_etrace="wo_delay"): if not len(delays) == len(decay_rates) == len(in_dims): raise ValueError("GaussianBernoulliDyBM only allows two layers") if not delays[0] == delays[1]: raise NotImplementedError("Current implementation only allows " "constant delay") if not len(decay_rates[0]) == len(decay_rates[1]): raise NotImplementedError("Current implementation only allows " "constant number of decay rates") if not delays[0] > 0: raise ValueError("delay must be a positive integer") if insert_to_etrace not in ["w_delay", "wo_delay"]: raise ValueError("insert_to_etrace should be either 'w_delay' or " "'wo_delay'.") if SGD is None: SGD = [AdaGrad(), AdaGrad()] self.n_etrace = len(decay_rates[0]) self.len_fifo = delays[0] - 1 self.visibility = [True, False] # activations = ["linear", "sigmoid"] activations = ["linear", "sigmoid_deterministic"] use_bias = [[True, False], [False, False]] self.min_step_size = 1e-6 # to be updated adaptively self.max_step_size = 1. # to be updated adaptively ComplexDyBM.__init__(self, delays, decay_rates, activations, in_dims, in_dims, SGD, L1, L2, use_bias, sigma, insert_to_etrace) def learn(self, in_generator, get_result=True): """ Learning generator Parameters ---------- in_generator : generator generator of input data for the visible Gaussian layer get_result : boolean, optional whether the accuracy of prediction during learning is yielded Returns ---------- dict dictionary of "prediction": list of arraymath array, shape (out_dim, 1) "actual": list of arraymath array, shape (out_dim, 1) "error": list of float (squared error for each predicted pattern) """ # [data, hidden samples] in_list_generator \ = ListGenerator([in_generator, ElementGenerator(self, 1)]) result = ComplexDyBM.learn(self, in_list_generator, get_result=get_result) if get_result: for key in result: result[key] = [x[0] for x in result[key]] return result def _get_delta(self, out_patterns, expected=None, weightLLs=None): """ Getting delta, how much we change parameters for each layer Parameters ---------- out_patterns : list of arrays, length 2. out_patterns[l] : array, length out_dims[l] This corresponds to out_pattern of the l-th layer. expected : list of arrays, length 2, optional expected[l] : array, length out_dims[l] out_pattern of the l-th layer expected by the current model to be computed if not given. weightLLs : list of boolean, length 2, optional. weight[l] denotes whether to weigh the gradient with log likelihood Returns ------- list of dicts, length n_layers. The l-th element corresponds to a dictionary of deltas with name of a variable as a key. """ return ComplexDyBM._get_delta(self, out_patterns, expected, [False, True]) def get_predictions(self, in_generator): """ Getting prediction of the visible layer, corresponding to a given input generator Parameters ---------- in_generator : Generator input generator for the visible layer Returns ------- list of arrays the i-th array is the i-th predicted pattern """ in_generator = ListGenerator([in_generator, ElementGenerator(self, 1)]) predictions_all_layers \ = ComplexDyBM.get_predictions(self, in_generator) predictions = [p[0] for p in predictions_all_layers] return predictions def _time_reversal(self): """ Making an approximately time-reversed GaussianBernoulliDyBM by transposing matrices """ for v, length in zip(["V", "W"], [self.n_etrace, self.len_fifo]): for i in xrange(length): for j in xrange(2): if v not in self.layers[j].layers[j].variables: continue # transposing visible to visible, hidden to hidden self.layers[j].layers[j].variables[v][i] \ = self.layers[j].layers[j].variables[v][i].transpose() self.layers[j].layers[j].SGD.first[v][i] \ = self.layers[j].layers[j].SGD.first[v][i].transpose() self.layers[j].layers[j].SGD.second[v][i] \ = self.layers[j].layers[j].SGD.second[v][i].transpose() if v not in self.layers[1].layers[0].variables: continue # transposing visible to hidden, hidden to visible tmp = deepcopy( self.layers[1].layers[0].variables[v][i].transpose()) self.layers[1].layers[0].variables[v][i] \ = self.layers[0].layers[1].variables[v][i].transpose() self.layers[0].layers[1].variables[v][i] = tmp tmp = deepcopy( self.layers[1].layers[0].SGD.first[v][i].transpose()) self.layers[1].layers[0].SGD.first[v][i] \ = self.layers[0].layers[1].SGD.first[v][i].transpose() self.layers[0].layers[1].SGD.first[v][i] = tmp tmp = deepcopy( self.layers[1].layers[0].SGD.second[v][i].transpose()) self.layers[1].layers[0].SGD.second[v][i] \ = self.layers[0].layers[1].SGD.second[v][i].transpose() self.layers[0].layers[1].SGD.second[v][i] = tmp def get_input_dimension(self): """ Getting input dimension (size of the visible layer) Returns ------- integer : input dimension """ return self.layers[0].get_input_dimension() def get_target_dimension(self): """ Getting target dimension (size of the visible layer) Returns ------- integer : target dimension, which equals input dimension """ return self.layers[0].get_input_dimension() def get_LL_sequence(self, in_seq, out_seq=None): # This is computationally hard raise NotImplementedError("get_LL_sequence not implemented for GaussianBernoulliDyBM") def _get_gradient_for_layer(self, out_pattern, target_layer): """ Getting the gradient given out_pattern is given in target_layer Parameters ---------- out_pattern : array target pattern target_layer : int index of target layer Returns ------- list of array, length n_layers list of gradients for all layers """ expected = self._get_mean()[target_layer] return [layer._get_gradient_for_layer(out_pattern, target_layer, expected=expected) for layer in self.layers] def _get_total_gradient(self, in_gen, out_gen=None): """ Getting the gradient (sum of all stochastic gradients) Parameters ---------- in_gen : generator input generator out_gen : generator, optional output generator Returns ------- total_gradient : array gradient """ self._reset_generators() total_gradient = None for in_pattern in in_gen: if out_gen is None: out_pattern = in_pattern else: out_pattern = out_gen.next() # get gradient gradient = self._get_gradient_for_layer(out_pattern, 0) # add the gradient into total_gradient if total_gradient is None: total_gradient = gradient else: for i in xrange(len(self.layers)): for key in gradient[i]: total_gradient[i][key] = total_gradient[i][key] + gradient[i][key] # update internal state sample = self._get_sample()[1] # sample hidden activation self._update_state([in_pattern, sample]) return total_gradient def _store_fifo(self): """ Deepcopy fifo queues Returns ------- original_fifo : list of fifo deepcopied fifo queues """ original_fifo = [None, None] for i in range(2): original_fifo[i] = deepcopy(self.layers[i].layers[0].fifo) return original_fifo def _restore_fifo(self, original_fifo): """ Set fifo queues Parameters ---------- original_fifo : list of fifo new fifo queues """ for i in range(2): self.layers[i].layers[0].fifo = original_fifo[i] def _apply_gradient(self, in_seq, out_seq=None, bestError=None): """ Apply a gradient of a whole time-series with forward only Parameters ---------- in_seq : list input sequence out_seq : list, optional target sequence bestError : float, optimal RMSE with the current model Returns ------- bestError : float RMSE after applying the gradient """ if out_seq is None: out_seq = in_seq in_gen = SequenceGenerator(in_seq) total_gradient = self._get_total_gradient(in_gen) best_variables = [deepcopy(layer.layers[0].variables) for layer in self.layers] if bestError is None: in_gen.reset() bestError = self._get_RMSE(in_gen, out_seq) # A simple line search for step size step_size = self.max_step_size while step_size > self.min_step_size: # tentatively apply gradient with a step size for i in xrange(len(self.layers)): for key in self.layers[i].layers[0].variables: self.layers[i].layers[0].variables[key] \ = best_variables[i][key] + step_size * total_gradient[i][key] # evaluate error in_gen.reset() error = self._get_RMSE(in_gen, out_seq) # stop the line search if non-negligible improvement if error < bestError: best_variables = [deepcopy(layer.layers[0].variables) for layer in self.layers] bestError = error # increase the max step size if improves with the max step size if step_size == self.max_step_size: self.max_step_size *= 2 break step_size = step_size / 2. if step_size > self.min_step_size: return bestError else: for i in xrange(len(self.layers)): for key in self.layers[i].layers[0].variables: self.layers[i].layers[0].variables[key] = best_variables[i][key] return None def _fit_by_GD(self, in_seq, out_seq=None, max_iteration=1000): """ Fitting only with a forward learning Parameters ---------- in_seq : list input sequence out_seq : list target sequence max_iteration : int, optional maximum number of iterations Returns ------- bestError : float RMSE after learning """ if out_seq is None: out_seq = in_seq in_gen = SequenceGenerator(in_seq) bestError = self._get_RMSE(in_gen, out_seq) for i in xrange(max_iteration): error = self._apply_gradient(in_seq, out_seq, bestError=bestError) if error is None: break else: bestError = error return bestError def _read(self, generator): """ Read a squence from a generator, together with hidden activations, to update the state Parameters ---------- generator : Generator Generator of a sequence """ list_generator = ListGenerator([generator, ElementGenerator(self, 1)]) for patterns in list_generator: self._update_state(patterns) def _get_bidirectional_gradient(self): """ Getting the gradient for forward sequence and backward sequence Returns ------- fwd_gradient : list gradient for forward sequence bwd_gradient : list gradient for backward sequence """ self._reset_generators() self._read(self._fwd_warmup) fwd_gradient = self._get_total_gradient(self._fwd_train) self._time_reversal() self._read(self._bwd_warmup) bwd_gradient = self._get_total_gradient(self._bwd_train) self._time_reversal() return fwd_gradient, bwd_gradient def _get_RMSE(self, in_gen, target_seq): """ Getting RMSE Parameters ---------- in_gen : generator input generator target_seq : list target patterns Returns ------- float RMSE """ original_fifo = self._store_fifo() predictions = self.get_predictions(in_gen) self._restore_fifo(original_fifo) return RMSE(target_seq, predictions) def _reset_generators(self): """ Resetting generators for training """ self._fwd_warmup.reset() self._fwd_train.reset() self._bwd_warmup.reset() self._bwd_train.reset() def _get_bidirectional_error(self): """ Getting weighted RMSE for forward sequence and backward sequence Returns ------- error : float weighted RMSE """ self._reset_generators() self._read(self._fwd_warmup) fwdError = self._get_RMSE(self._fwd_train, self._fwd_train_seq) if self._bwd_weight != 0: self._time_reversal() self._read(self._bwd_warmup) bwdError = self._get_RMSE(self._bwd_train, self._bwd_train_seq) self._time_reversal() else: bwdError = 0 error = fwdError + self._bwd_weight * bwdError return error def _get_step_size_for_bidirectional(self, fwd_gradient, bwd_gradient): """ Getting step size with line search Parameters ---------- fwd_gradient: list graditn for forward sequence bwd_gradient : list gradient for backward sequence Returns ------- step_size : float step size best_variables : dict variables after applying the gradient with the step size best_error : float RMSE after applying the gradient with the step size """ # A simple line search for step size step_size = self.max_step_size while step_size > self.min_step_size: # tentatively apply gradient with a step size to the best variables self._restore_variables(self._best_variables) for i in xrange(len(self.layers)): for key in self.layers[i].layers[0].variables: self.layers[i].layers[0].variables[key] \ = self.layers[i].layers[0].variables[key] \ + step_size * fwd_gradient[i][key] if self._bwd_weight != 0: self._time_reversal() for i in xrange(len(self.layers)): for key in self.layers[i].layers[0].variables: self.layers[i].layers[0].variables[key] \ = self.layers[i].layers[0].variables[key] \ + step_size * self._bwd_weight * bwd_gradient[i][key] self._time_reversal() # evaluate error error = self._get_bidirectional_error() # stop the line search if non-negligible improvement if error < self._best_error: self._best_variables = self._store_variables() self._best_error = error # update max_step_size if step_size == self.max_step_size: # increase the max step size if improves with the max step size self.max_step_size *= 10 elif self.max_step_size > 10 * step_size: # decrease max_step_size if much larger than improving step size self.max_step_size = 10 * step_size break step_size = step_size / 2. # update min_step_size if step_size <= self.min_step_size and error > self._best_error * 1.001: self.min_step_size = self.min_step_size / 10 print("reduced min_step_size to", self.min_step_size) if self.min_step_size < 1e-16: print("Too small a min_step_size", self.min_step_size) print("error", error) print("best_error", self._best_error) break if step_size < self.min_step_size: print("no improvement with minimum step size") error = self._get_bidirectional_error() return step_size, self._best_variables, self._best_error def _store_variables(self): """ Deep copy variables Returns ------- variables: list deepcopied variables """ variables = [[None, None], [None, None]] for i, j in product(range(2), range(2)): variables[i][j] = deepcopy(self.layers[i].layers[j].variables) return variables def _restore_variables(self, variables): """ Set variables Parameters ---------- variables : list new variables """ for i, j in product(range(2), range(2)): self.layers[i].layers[j].variables = deepcopy(variables[i][j]) def _fit_bidirectional_by_GD(self, dataset, len_train, len_test, len_warm, bwd_weight, bwd_end, max_iteration=1000): """ Fitting with bidirectional learning with gradient descent Parameters ---------- dataset : list dataset len_train : int length of training dataset len_test : int length of test dataset len_warm : int length of warmup period bwd_weight : float weight of backward learning bwd_end : int when to stop bidirectional learning max_iteration : int when to stop learning Returns ------- train_RMSE : float traning RMSE test_RMSE : float test RMSE """ # Prepare dataset t0 = 0 t1 = t0 + len_warm t2 = t1 + len_train t3 = t2 + len_warm t4 = t3 + len_test self._fwd_warmup = SequenceGenerator(dataset[t0:t1]) self._fwd_train = SequenceGenerator(dataset[t1:t3]) self._bwd_warmup = SequenceGenerator(dataset[t2:t3]) self._bwd_train = SequenceGenerator(dataset[t0:t2]) self._bwd_warmup.reverse() self._bwd_train.reverse() self._fwd_train_seq = self._fwd_train.to_list() self._bwd_train_seq = self._bwd_train.to_list() self._test_warmup = SequenceGenerator(dataset[t0:t3]) self._test = SequenceGenerator(dataset[t3:t4]) self._test_seq = self._test.to_list() self._bwd_weight = bwd_weight test_RMSE = list() train_RMSE = list() # Evaluate error before training baseline = baseline_RMSE(self._test_warmup.to_list()[-1], self._test_seq) self._test_warmup.reset() self._test.reset() self._read(self._test_warmup) predictions = self.get_predictions(self._test) rmse = RMSE(self._test_seq, predictions) test_RMSE.append(rmse) self._best_variables = self._store_variables() self._best_error = self._get_bidirectional_error() train_RMSE.append(self._best_error) for i in xrange(max_iteration): if i > max_iteration * bwd_end: self._bwd_weight = 0 # get gradient fwd_gradient, bwd_gradient = self._get_bidirectional_gradient() for g in fwd_gradient: for key in g: g[key] = g[key] / (len_train + len_warm) for g in bwd_gradient: for key in g: g[key] = g[key] / (len_train + len_warm) # A simple line search for step size step_size, self._best_variables, self._best_error \ = self._get_step_size_for_bidirectional(fwd_gradient, bwd_gradient) train_RMSE.append(self._best_error) self._test_warmup.reset() self._test.reset() self._read(self._test_warmup) predictions = self.get_predictions(self._test) rmse = RMSE(self._test_seq, predictions) test_RMSE.append(rmse) if step_size < self.min_step_size: break self._restore_variables(self._best_variables) return train_RMSE, test_RMSE
#!/usr/bin/env python # -*- coding: utf-8 -*- from .UrlShortener import UrlShorter from .lib.BitLinkUrlShortener import BitLinkUrlShorter from .lib.GoogleUrlShortener import GoogleUrlShorter __all__ = ['UrlShorter', 'GoogleUrlShorter', 'BitLinkUrlShorter']
# Copyright 2017-2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import tarfile import botocore.exceptions import os import pytest import sagemaker import sagemaker.predictor import sagemaker.utils import tests.integ import tests.integ.timeout from sagemaker.tensorflow.serving import Model, Predictor @pytest.fixture(scope='session', params=[ 'ml.c5.xlarge', pytest.param('ml.p3.2xlarge', marks=pytest.mark.skipif( tests.integ.test_region() in tests.integ.HOSTING_NO_P3_REGIONS, reason='no ml.p3 instances in this region'))]) def instance_type(request): return request.param @pytest.fixture(scope='module') def tfs_predictor(instance_type, sagemaker_session, tf_full_version): endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving') model_data = sagemaker_session.upload_data( path=os.path.join(tests.integ.DATA_DIR, 'tensorflow-serving-test-model.tar.gz'), key_prefix='tensorflow-serving/models') with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): model = Model(model_data=model_data, role='SageMakerRole', framework_version=tf_full_version, sagemaker_session=sagemaker_session) predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name) yield predictor def tar_dir(directory, tmpdir): target = os.path.join(str(tmpdir), 'model.tar.gz') with tarfile.open(target, mode='w:gz') as t: t.add(directory, arcname=os.path.sep) return target @pytest.fixture def tfs_predictor_with_model_and_entry_point_same_tar(instance_type, sagemaker_session, tf_full_version, tmpdir): endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving') model_tar = tar_dir(os.path.join(tests.integ.DATA_DIR, 'tfs/tfs-test-model-with-inference'), tmpdir) model_data = sagemaker_session.upload_data( path=model_tar, key_prefix='tensorflow-serving/models') with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): model = Model(model_data=model_data, role='SageMakerRole', framework_version=tf_full_version, sagemaker_session=sagemaker_session) predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name) yield predictor @pytest.fixture(scope='module') def tfs_predictor_with_model_and_entry_point_and_dependencies(instance_type, sagemaker_session, tf_full_version): endpoint_name = sagemaker.utils.unique_name_from_base('sagemaker-tensorflow-serving') model_data = sagemaker_session.upload_data( path=os.path.join(tests.integ.DATA_DIR, 'tensorflow-serving-test-model.tar.gz'), key_prefix='tensorflow-serving/models') with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): entry_point = os.path.join(tests.integ.DATA_DIR, 'tfs/tfs-test-entrypoint-and-dependencies/inference.py') dependencies = [os.path.join(tests.integ.DATA_DIR, 'tfs/tfs-test-entrypoint-and-dependencies/dependency.py')] model = Model(entry_point=entry_point, model_data=model_data, role='SageMakerRole', dependencies=dependencies, framework_version=tf_full_version, sagemaker_session=sagemaker_session) predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name) yield predictor @pytest.fixture(scope='module') def tfs_predictor_with_accelerator(sagemaker_session, tf_full_version): endpoint_name = sagemaker.utils.unique_name_from_base("sagemaker-tensorflow-serving") instance_type = 'ml.c4.large' accelerator_type = 'ml.eia1.medium' model_data = sagemaker_session.upload_data( path=os.path.join(tests.integ.DATA_DIR, 'tensorflow-serving-test-model.tar.gz'), key_prefix='tensorflow-serving/models') with tests.integ.timeout.timeout_and_delete_endpoint_by_name(endpoint_name, sagemaker_session): model = Model(model_data=model_data, role='SageMakerRole', framework_version=tf_full_version, sagemaker_session=sagemaker_session) predictor = model.deploy(1, instance_type, endpoint_name=endpoint_name, accelerator_type=accelerator_type) yield predictor @pytest.mark.canary_quick def test_predict(tfs_predictor, instance_type): # pylint: disable=W0613 input_data = {'instances': [1.0, 2.0, 5.0]} expected_result = {'predictions': [3.5, 4.0, 5.5]} result = tfs_predictor.predict(input_data) assert expected_result == result @pytest.mark.skipif(tests.integ.test_region() not in tests.integ.EI_SUPPORTED_REGIONS, reason='EI is not supported in region {}'.format(tests.integ.test_region())) @pytest.mark.canary_quick def test_predict_with_accelerator(tfs_predictor_with_accelerator): input_data = {'instances': [1.0, 2.0, 5.0]} expected_result = {'predictions': [3.5, 4.0, 5.5]} result = tfs_predictor_with_accelerator.predict(input_data) assert expected_result == result def test_predict_with_entry_point(tfs_predictor_with_model_and_entry_point_same_tar): input_data = {'instances': [1.0, 2.0, 5.0]} expected_result = {'predictions': [4.0, 4.5, 6.0]} result = tfs_predictor_with_model_and_entry_point_same_tar.predict(input_data) assert expected_result == result def test_predict_with_model_and_entry_point_and_dependencies_separated( tfs_predictor_with_model_and_entry_point_and_dependencies): input_data = {'instances': [1.0, 2.0, 5.0]} expected_result = {'predictions': [4.0, 4.5, 6.0]} result = tfs_predictor_with_model_and_entry_point_and_dependencies.predict(input_data) assert expected_result == result def test_predict_generic_json(tfs_predictor): input_data = [[1.0, 2.0, 5.0], [1.0, 2.0, 5.0]] expected_result = {'predictions': [[3.5, 4.0, 5.5], [3.5, 4.0, 5.5]]} result = tfs_predictor.predict(input_data) assert expected_result == result def test_predict_jsons_json_content_type(tfs_predictor): input_data = '[1.0, 2.0, 5.0]\n[1.0, 2.0, 5.0]' expected_result = {'predictions': [[3.5, 4.0, 5.5], [3.5, 4.0, 5.5]]} predictor = sagemaker.RealTimePredictor(tfs_predictor.endpoint, tfs_predictor.sagemaker_session, serializer=None, deserializer=sagemaker.predictor.json_deserializer, content_type='application/json', accept='application/json') result = predictor.predict(input_data) assert expected_result == result def test_predict_jsons(tfs_predictor): input_data = '[1.0, 2.0, 5.0]\n[1.0, 2.0, 5.0]' expected_result = {'predictions': [[3.5, 4.0, 5.5], [3.5, 4.0, 5.5]]} predictor = sagemaker.RealTimePredictor(tfs_predictor.endpoint, tfs_predictor.sagemaker_session, serializer=None, deserializer=sagemaker.predictor.json_deserializer, content_type='application/jsons', accept='application/jsons') result = predictor.predict(input_data) assert expected_result == result def test_predict_jsonlines(tfs_predictor): input_data = '[1.0, 2.0, 5.0]\n[1.0, 2.0, 5.0]' expected_result = {'predictions': [[3.5, 4.0, 5.5], [3.5, 4.0, 5.5]]} predictor = sagemaker.RealTimePredictor(tfs_predictor.endpoint, tfs_predictor.sagemaker_session, serializer=None, deserializer=sagemaker.predictor.json_deserializer, content_type='application/jsonlines', accept='application/jsonlines') result = predictor.predict(input_data) assert expected_result == result def test_predict_csv(tfs_predictor): input_data = '1.0,2.0,5.0\n1.0,2.0,5.0' expected_result = {'predictions': [[3.5, 4.0, 5.5], [3.5, 4.0, 5.5]]} predictor = Predictor(tfs_predictor.endpoint, tfs_predictor.sagemaker_session, serializer=sagemaker.predictor.csv_serializer) result = predictor.predict(input_data) assert expected_result == result def test_predict_bad_input(tfs_predictor): input_data = {'junk': 'data'} with pytest.raises(botocore.exceptions.ClientError): tfs_predictor.predict(input_data)
from __future__ import annotations import os from typing import Tuple, List, Dict, Set, Callable, Any, TYPE_CHECKING from qtpy import QtGui from qtpy.QtWidgets import QAction, QToolBar, QMenu if TYPE_CHECKING: from cpylog import SimpleLogger from qtpy.QtWidgets import QMainWindow def build_actions(self: QMainWindow, base_actions: Dict[str, QAction], icon_path: str, tools_list: List[Tuple[str, str, str, str, str, Callable[Any]]], checkables_set: Set[str], log: SimpleLogger) -> Dict[str, Any]: checkables = {} actions = base_actions for tool in tools_list: (name, txt, icon, shortcut, tip, func) = tool if name in actions: log.error('trying to create a duplicate action %r' % name) continue if icon is None: msg = f'missing_icon = {name!r}!!!' print(msg) self.log.warning(msg) ico = None else: ico = QtGui.QIcon() pth = os.path.join(icon_path, icon) if icon.endswith('.png') and not os.path.exists(pth): self.log.warning(str((name, pth))) ico.addPixmap(QtGui.QPixmap(pth), QtGui.QIcon.Normal, QtGui.QIcon.Off) if name in checkables: is_checked = checkables[name] actions[name] = QAction(ico, txt, self, checkable=True) actions[name].setChecked(is_checked) else: actions[name] = QAction(ico, txt, self) if shortcut: actions[name].setShortcut(shortcut) #actions[name].setShortcutContext(QtCore.Qt.WidgetShortcut) if tip: actions[name].setStatusTip(tip) if func: actions[name].triggered.connect(func) return actions def fill_menus(self: QMainWindow, menus_list: List[Tuple[str, str, List[str]]], actions: Dict[str, QAction], allow_missing_actions: bool=False) -> None: assert len(self.actions) > 0, self.actions menus = {} for name, header, actions_to_add in menus_list: for i, item in enumerate(menus_list): if item != '': break actions_to_add = actions_to_add[i:] if len(actions_to_add) == 0: continue #file_menu = self.menubar.addMenu('&Help') if isinstance(header, str): menu = self.menubar.addMenu(header) assert isinstance(menu, QMenu), menu elif isinstance(header, QToolBar): menu = header else: raise TypeError(header) for action_name in actions_to_add: if action_name == '': menu.addSeparator() continue try: action = self.actions[action_name] except KeyError: if not allow_missing_actions: raise self.log.warning(f'missing action {action_name}') menu.addAction(action) menus[name] = menu return menus
# pip install streamlit streamlit_folium # run with: streamlit run playground/st_view.py import streamlit as st from streamlit_folium import folium_static import matplotlib.pyplot as plt from slither.core.visualization import make_map, plot_speed_heartrate, plot_velocity_histogram from slither.service import Service from slither.core.ui_text import d s = Service(base_path="tmp/data_import") activities = s.list_activities() page = st.sidebar.selectbox( "Select page", ("Overview", "Activity") ) n = st.sidebar.slider("Show first", 0, len(activities) - 1) view_activity = st.sidebar.selectbox( "Select view", ("Map", "Speed and Heartrate", "Velocities") ) if page == "Overview": header = f""" | ID | Start | Sport | Distance | Duration | Calories | Heartrate | | -- | ----- | ----- | -------- | -------- | -------- | --------- |""" rows = [ f"| {i + 1} | {d.display_datetime(a.start_time)} | {d.display_sport(a.sport)} | {d.display_distance(a.distance)} | {d.display_time(a.time)} | {d.display_calories(a.calories)} | {d.display_heartrate(a.heartrate)} |" for i, a in enumerate(activities)] st.write("\n".join([header] + rows)) if page == "Activity": a = activities[n] st.write(f""" | Start | Sport | Distance | Duration | Calories | Heartrate | | ----- | ----- | -------- | -------- | -------- | --------- | | {d.display_datetime(a.start_time)} | {d.display_sport(a.sport)} | {d.display_distance(a.distance)} | {d.display_time(a.time)} | {d.display_calories(a.calories)} | {d.display_heartrate(a.heartrate)} | --- """) if view_activity == "Map": if a.has_path: m = make_map(a.get_path()) folium_static(m) elif view_activity == "Speed and Heartrate": fig = plt.figure() ax = plt.subplot(111) twin_ax = ax.twinx() if a.has_path: lines, labels = plot_speed_heartrate(ax, twin_ax, a.get_path()) fig.legend(handles=lines, labels=labels, loc="upper center") st.write(fig) elif view_activity == "Velocities": fig = plt.figure() ax = plt.subplot(111) if a.has_path: plot_velocity_histogram(a.get_path(), ax) st.write(fig)
# -*- coding: UTF-8 -*- import win32api import win32gui import win32con import os def setwallpaper(pic): # open register regkey = win32api.RegOpenKeyEx(win32con.HKEY_CURRENT_USER, "Control Panel\\Desktop", 0, win32con.KEY_SET_VALUE) win32api.RegSetValueEx(regkey, "WallpaperStyle", 0, win32con.REG_SZ, "0") win32api.RegSetValueEx(regkey, "TileWallpaper", 0, win32con.REG_SZ, "0") # refresh screen win32gui.SystemParametersInfo(win32con.SPI_SETDESKWALLPAPER, pic, win32con.SPIF_SENDWININICHANGE) setwallpaper(os.path.dirname(os.getcwd()) + "\\cache\\cache.jpg")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import functools from hermes_python.hermes import Hermes #from hermes_python.ontology import * import datetime, time from threading import Timer THRESHOLD_INTENT_CONFSCORE_DROP = 0.3 THRESHOLD_INTENT_CONFSCORE_TAKE = 0.6 CREATOR = "maremoto:" INTENT_HELP_ME = CREATOR + "helpMe" INTENT_CALL_SOMEONE = CREATOR + "callSomeone" INTENT_RAISE_ALARM = CREATOR + "raiseAlarm" INTENT_YES = CREATOR + "yes" INTENT_NO = CREATOR + "No" INTENT_END = CREATOR + "everythingIsOk" # fake intents to communicate to satellites INTENT_CALL_END = CREATOR + "callEnd" INTENT_CLEAR_ALARM = CREATOR + "clearAlarm" INTENT_FILTER_INCLUDE_ALL = [ INTENT_HELP_ME, INTENT_CALL_SOMEONE, INTENT_RAISE_ALARM, INTENT_YES, INTENT_NO, INTENT_END ] """ INTENT_FILTER_GET_NAME = [ INTENT_CALL_SOMEONE, INTENT_RAISE_ALARM, INTENT_END ] INTENT_FILTER_YESNO = [ INTENT_YES, INTENT_NO, INTENT_CALL_SOMEONE, INTENT_RAISE_ALARM, INTENT_END ] """ # Waiting before launch an alarm to the final assistance message SECONDS_LOCUTION_TO_SOUND = 6 def ahora(): then = datetime.datetime.now() return (time.mktime(then.timetuple())*1e3 + then.microsecond/1e3)/1000 class SnipsMPU(object): ''' Client for MQTT protocol at BASE ''' def __init__(self, i18n, mqtt_addr, site_id, timeout_failure_seconds, assistances_manager, alarm, pixels): self.__i18n = i18n self.__mqtt_addr = mqtt_addr self.__base_site_id = site_id self.__timeout_failure_seconds = timeout_failure_seconds self.__assistances_manager = assistances_manager self.__alarm = alarm self.__pixels = pixels self.__hermes = None self.__check_timer = None # ============ # Checking decorators and helpers # ============ def _append_text(self, sentence, text): if len(sentence.strip()) > 1: return sentence + " . " + text # para que haga espacio else: return text def _check_site_id(handler): @functools.wraps(handler) def wrapper(self, hermes, intent_message): if intent_message.site_id != self.__base_site_id: print("SATTELLITE SESSION:",intent_message.site_id,"!=",self.__base_site_id) return handler(self, hermes, intent_message) else: return handler(self, hermes, intent_message) return wrapper def _check_confidence_score(handler): @functools.wraps(handler) def wrapper(self, hermes, intent_message): session_id = intent_message.session_id if handler is None: return None ''' if intent_message.intent.confidence_score < THRESHOLD_INTENT_CONFSCORE_DROP: hermes.publish_end_session(session_id, "") return None ''' if intent_message.intent.confidence_score <= THRESHOLD_INTENT_CONFSCORE_TAKE: hermes.publish_continue_session(session_id, self.__i18n.get('error.doNotUnderstand'), INTENT_FILTER_INCLUDE_ALL) return None return handler(self, hermes, intent_message) return wrapper # ============ # Session helpers # ============ def _trace_session(self, msg): session_id = msg.session_id site_id = msg.site_id custom_data = msg.custom_data print(" sessionID:", session_id) print(" session site ID:",site_id) print(" customData:",custom_data) return session_id, site_id, custom_data def _session_started(self, hermes, session_started_message): print("# Session Started") session_id, site_id, custom_data = self._trace_session(session_started_message) # Satellite session button pushed, help requested if site_id != self.__base_site_id: if custom_data is not None and (custom_data.split(",")[0] in [ INTENT_HELP_ME , INTENT_CALL_END, INTENT_CLEAR_ALARM ]): return # The actions will be executed when the session is finished, to avoid sessions to mix assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.update_session(hermes, session_id, self.__base_site_id) def _session_ended(self, hermes, session_ended_message): print("# Session Ended") session_id, site_id, custom_data = self._trace_session(session_ended_message) if site_id == self.__base_site_id or custom_data is None or custom_data == "": assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.update_session(hermes, None, self.__base_site_id) # Internal messaging satellite->base else: time.sleep(0.5) # avoid race conditions action = custom_data.split(",")[0] # Satellite request for help if action == INTENT_HELP_ME: client_name=custom_data.split(",")[1] if self.__alarm.is_on(): self.__alarm.off() assistance = self.__assistances_manager.get_assistance(site_id, hermes, client_name) assistance.alarm_off(hermes) else: self.handler_user_request_help(hermes, None, site_id, client_name=client_name) # Satellite informs of call result elif action == INTENT_CALL_END: assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.remote_call_result(hermes, int(custom_data.split(",")[1])) # Satellite informs of alarm clear elif action == INTENT_CLEAR_ALARM: if self.__alarm.is_on(): self.__alarm.off() assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.alarm_off(hermes) # No message to base, act normal else: assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.update_session(hermes, None, self.__base_site_id) # ============ # Intent handlers # ============ #@_check_confidence_score def handler_user_request_help(self, hermes, intent_message, site_id=None, client_name=None): print("User is asking for help") if site_id is None: site_id = intent_message.site_id assistance = self.__assistances_manager.get_assistance(site_id, hermes, client_name) assistance.start(hermes) @_check_confidence_score def handler_user_gives_name(self, hermes, intent_message): print("User is calling to someone") site_id = intent_message.site_id name = None if intent_message.slots.callee_name: name = intent_message.slots.callee_name.first().value assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.call_to_contact(hermes, name) @_check_confidence_score def handler_user_says_yes(self, hermes, intent_message): print("User says yes") site_id = intent_message.site_id assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.yesno_answer(hermes, is_yes=True) @_check_confidence_score def handler_user_says_no(self, hermes, intent_message): print("User says no") site_id = intent_message.site_id assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.yesno_answer(hermes, is_yes=False) @_check_confidence_score def handler_user_quits(self, hermes, intent_message): print("User wants to quit") site_id = intent_message.site_id assistance = self.__assistances_manager.get_assistance(site_id, hermes) assistance.quit_assistance(hermes) @_check_confidence_score def handler_raise_alarm(self, hermes, intent_message): print("User wants to raise the alarm") site_id = intent_message.site_id assistance = self.__assistances_manager.get_assistance(site_id, hermes) self.fatal(assistance, hermes) # ============ # Check failed assistances every second # ============ def _check_failed_assistances(self): #print(" ...check failed assistances\n", self.__assistances_manager) failed_assistances = self.__assistances_manager.get_failed_assistances(self.__timeout_failure_seconds) for assistance in failed_assistances: if assistance.immediate_alarm(): sentence = self.__i18n.get('error.automaticAlarmOn') self.fatal(assistance, assistance.get_hermes(), sentence=sentence, call_to_default=False) else: sentence = self.__i18n.get('error.silenceAlarmOn', {"timeout": self.__timeout_failure_seconds}) self.fatal(assistance, assistance.get_hermes(), sentence=sentence, call_to_default=True) break # no more than one alarm self.__check_timer = Timer(1, self._check_failed_assistances) self.__check_timer.start() # ============ # Exported procedures # ============ def pushed_button(self): ''' Hardware hotword or cancel alarm ''' print("User pushes the button") site_id = self.__base_site_id # action in the base hermes = self.__hermes assistance = self.__assistances_manager.get_assistance(site_id, hermes) self.__pixels.wakeup() time.sleep(0.1) self.__pixels.off() if self.__alarm.is_on(): self.__alarm.off() assistance.alarm_off(hermes) elif assistance.is_active(): if assistance.is_calling(): print("Hang up the call") assistance.hang_up() else: print("The last assistance is on progress, nothing to be done") #TODO poner BOUNCE_TIME para el botón else: self.handler_user_request_help(hermes, None, site_id) def fatal(self, assistance, hermes, sentence="", call_to_default=False): ''' Fatal error action ''' if not self.__alarm.is_on(): def alarm_off_callback(): assistance.alarm_off(hermes) # delay alarm on with a callback to allow emergency call if call_to_default: def call_to_default_callback(): self.__alarm.on(delay=SECONDS_LOCUTION_TO_SOUND, off_callback=alarm_off_callback) assistance.alarm_on(hermes, sentence=sentence, call_to_default_callback=call_to_default_callback) # alarm on now else: assistance.alarm_on(hermes, sentence=sentence) self.__alarm.on(delay=SECONDS_LOCUTION_TO_SOUND, off_callback=alarm_off_callback) else: print("[Alarm] already on") def start_block(self): ''' Protocol start ''' # Start check timer self._check_failed_assistances() # Subscribe to voice intents with Hermes(self.__mqtt_addr ,rust_logs_enabled=True #TODO quitar ) as h: self.__hermes = h h.subscribe_intent(INTENT_HELP_ME, self.handler_user_request_help) \ .subscribe_intent(INTENT_CALL_SOMEONE, self.handler_user_gives_name) \ .subscribe_intent(INTENT_YES, self.handler_user_says_yes) \ .subscribe_intent(INTENT_NO, self.handler_user_says_no) \ .subscribe_intent(INTENT_RAISE_ALARM, self.handler_raise_alarm) \ .subscribe_intent(INTENT_END, self.handler_user_quits) \ .subscribe_session_ended(self._session_ended) \ .subscribe_session_started(self._session_started) \ .loop_forever() ''' .loop_start() while True: time.sleep(1) #TODO aclarar si funciona y si se puede poner aquí vigilar asistencias fallidas ''' def stop(self): ''' Stop working ''' # Cancel check timer if self.__check_timer is not None: self.__check_timer.cancel() self.__check_timer = None # Alarm stop self.__alarm.off(dismiss_callback=True) # Stop client self.__hermes.loop_stop() self.__hermes = None
import logging # DEBUG INFO WARNING ERROR import tkinter.ttk as TTK # use for Combobox import win_main2 from function import * from logging.handlers import QueueHandler import queue import configparser from matplotlib.backends.backend_tkagg import ( FigureCanvasTkAgg, NavigationToolbar2Tk) import matplotlib.pyplot as plt import tkinter as tk from tkinter import scrolledtext # use to display logger import matplotlib import numpy as np import os import sys def GUI_start(): """This will initialise the loggers After all imports it will start the main window """ print("-_____GUI start____-") logging.basicConfig(filename="logging.log", level=logging.DEBUG, # <- set logging level format="%(asctime)s:%(levelname)s:%(message)s") # set level # Set up multpiple Log handler loggerGUI = logging.getLogger(__name__) loggerGUI.setLevel(logging.DEBUG) # <- set logging level logging_handler = logging.FileHandler("log_GUI_file.log") formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(message)s") logging_handler.setFormatter(formatter) loggerGUI.addHandler(logging_handler) loggerGUI.info("set upp logger in puls_win.py") logger_gui = logging.getLogger('GUI') logger_gui.addHandler(logging.StreamHandler()) logger_gui.info("logging from GUI start up") # windows # from puls_win import * # from pre_expsetup import * print("-_____GUI init of logging end____-") print("___start GUI analys") # show window, wait for user imput win_main = win_main2.window_main() win_main.mainloop() # end print("_____end from GUI_analyzer___")
"""Run in command line mode.""" import fire import morfeus.buried_volume import morfeus.cone_angle import morfeus.conformer import morfeus.dispersion import morfeus.local_force import morfeus.pyramidalization import morfeus.sasa import morfeus.sterimol import morfeus.visible_volume import morfeus.xtb def main() -> None: """Call Fire to access command line scripts.""" fire.Fire( { "buried_volume": morfeus.buried_volume.cli, "cone_angle": morfeus.cone_angle.cli, "conformer": morfeus.conformer.cli, "dispersion": morfeus.dispersion.cli, "local_force": morfeus.local_force.cli, "pyramidalization": morfeus.pyramidalization.cli, "sasa": morfeus.sasa.cli, "sterimol": morfeus.sterimol.cli, "visible_volume": morfeus.visible_volume.cli, "xtb": morfeus.xtb.cli, } ) if __name__ == "__main__": main()
''' Plane defined by vectors and point. ''' # - Imports from ..exceptions import VectorsNotSameSize from typing import TypeVar # - Globals # Typing for Vectors and Points Point = TypeVar("Point") Vector = TypeVar("Vector") class Plane: """ Defines a plane Parameters ---------- point Point on the plane. vector1 Direction vector. vector2 Direction vector. Raises ------ VectorsNotSameSize If the vectors are not the same size this error will be raised. """ def __init__(self, point: Point, vector1: Vector, vector2: Vector): self.point = point self.vectors = [vector1, vector2] # Throw error if vectors different sizes if len(point) != len(vector1) != len(vector2): raise VectorsNotSameSize() def __len__(self): # Size of point vector return len(self.point)
import pytest from aioworkers.core.config import Config, MergeDict from aioworkers.core.context import ( Context, EntityContextProcessor, GroupResolver, Octopus, Signal, ) def test_octopus(): f = Octopus() f.r = 1 assert f['r'] == 1 f['g'] = 2 assert f.g == 2 f['y.t'] = 3 assert f.y.t == 3 f['d.w.f'] = 4 assert dir(f) assert repr(f) assert f.__repr__(header=True) assert f.items() f.s = 'w' assert callable(f['s.upper']) assert f['s.upper']() == 'W' f[None] = True assert not f[None] def test_octopus_iter(): f = Octopus() f.r = 1 assert f['r'] == 1 f['g'] = 2 assert f.g == 2 f['y.t'] = 3 assert f.y.t == 3 f['d.w.f'] = 4 assert list(f.find_iter(int)) f['d.f'] = f assert list(f.find_iter(int)) async def test_context_items(loop): f = Context({}, loop=loop) f.r = 1 assert f['r'] == 1 f['g'] = 2 assert f.g == 2 f['y.t'] = 3 assert f.y.t == 3 f['d.w.f'] = 4 assert dir(f) assert repr(f) await f.stop() async def test_context_create(loop): conf = Config() conf.update(MergeDict({ 'q.cls': 'aioworkers.queue.timeout.TimestampQueue', 'f.e': 1, })) c = Context(conf, loop=loop) await c.init() await c.start() assert c.config.f.e == 1 with pytest.raises(AttributeError): c.r with pytest.raises(KeyError): c['r'] async def handler(context): pass c.on_stop.append(handler) async def handler(): raise ValueError c.on_stop.append(handler) c.on_stop.append(handler()) c.on_stop.append(1) await c.stop() def test_group_resolver(): gr = GroupResolver() assert not gr.match(['1']) assert gr.match(None) gr = GroupResolver(all_groups=True) assert gr.match(['1']) assert gr.match(None) gr = GroupResolver(default=False) assert not gr.match(['1']) assert not gr.match(None) gr = GroupResolver(exclude=['1']) assert not gr.match(['1']) assert not gr.match(['1', '2']) assert gr.match(None) gr = GroupResolver(exclude=['1'], all_groups=True) assert not gr.match(['1']) assert not gr.match(['1', '2']) assert gr.match(None) gr = GroupResolver(include=['1']) assert gr.match(['1']) assert gr.match(None) async def test_signal(loop): gr = GroupResolver() context = Context({}, loop=loop, group_resolver=gr) s = Signal(context) s.append(1, ('1',)) s.append(1) await s.send(gr) await s.send(GroupResolver(all_groups=True)) async def test_func(loop): config = MergeDict( now={ 'func': 'time.monotonic', } ) context = Context(config, loop=loop) async with context: assert isinstance(context.now, float) def test_create_entity(): with pytest.raises((ValueError, TypeError)): EntityContextProcessor(None, 'x', {'cls': 'time.time'}) with pytest.raises(TypeError): EntityContextProcessor(None, 'x', {'cls': 'aioworkers.humanize.size'})
# 21/11/02 = Tue # 54. Spiral Matrix [Medium] # Given an m x n matrix, return all elements of the matrix in spiral order. # Example 1: # Input: matrix = [[1,2,3],[4,5,6],[7,8,9]] # Output: [1,2,3,6,9,8,7,4,5] # Example 2: # Input: matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]] # Output: [1,2,3,4,8,12,11,10,9,5,6,7] # Constraints: # m == matrix.length # n == matrix[i].length # 1 <= m, n <= 10 # -100 <= matrix[i][j] <= 100 class Solution: def spiralOrder(self, matrix: List[List[int]]) -> List[int]: ret = [] m = len(matrix) n = len(matrix[0]) base = 0 while m > 0 and n > 0: for c in range(0, n): ret.append(matrix[base][base+c]) for r in range(1, m): ret.append(matrix[base+r][base+n-1]) if m > 1: for c in reversed(range(0, n-1)): ret.append(matrix[base+m-1][base+c]) if n > 1: for r in reversed(range(1, m-1)): ret.append(matrix[base+r][base]) m -= 2 n -= 2 base += 1 return ret
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for swift.common.request_helpers""" import unittest from swift.common.swob import Request, HTTPException, HeaderKeyDict from swift.common.storage_policy import POLICIES, EC_POLICY, REPL_POLICY from swift.common import request_helpers as rh from swift.common.constraints import AUTO_CREATE_ACCOUNT_PREFIX from test.unit import patch_policies from test.unit.common.test_utils import FakeResponse server_types = ['account', 'container', 'object'] class TestRequestHelpers(unittest.TestCase): def test_constrain_req_limit(self): req = Request.blank('') self.assertEqual(10, rh.constrain_req_limit(req, 10)) req = Request.blank('', query_string='limit=1') self.assertEqual(1, rh.constrain_req_limit(req, 10)) req = Request.blank('', query_string='limit=1.0') self.assertEqual(10, rh.constrain_req_limit(req, 10)) req = Request.blank('', query_string='limit=11') with self.assertRaises(HTTPException) as raised: rh.constrain_req_limit(req, 10) self.assertEqual(raised.exception.status_int, 412) def test_validate_params(self): req = Request.blank('') actual = rh.validate_params(req, ('limit', 'marker', 'end_marker')) self.assertEqual({}, actual) req = Request.blank('', query_string='limit=1&junk=here&marker=foo') actual = rh.validate_params(req, ()) self.assertEqual({}, actual) req = Request.blank('', query_string='limit=1&junk=here&marker=foo') actual = rh.validate_params(req, ('limit', 'marker', 'end_marker')) expected = {'limit': '1', 'marker': 'foo'} self.assertEqual(expected, actual) req = Request.blank('', query_string='limit=1&junk=here&marker=') actual = rh.validate_params(req, ('limit', 'marker', 'end_marker')) expected = {'limit': '1', 'marker': ''} self.assertEqual(expected, actual) # ignore bad junk req = Request.blank('', query_string='limit=1&junk=%ff&marker=foo') actual = rh.validate_params(req, ('limit', 'marker', 'end_marker')) expected = {'limit': '1', 'marker': 'foo'} self.assertEqual(expected, actual) # error on bad wanted parameter req = Request.blank('', query_string='limit=1&junk=here&marker=%ff') with self.assertRaises(HTTPException) as raised: rh.validate_params(req, ('limit', 'marker', 'end_marker')) self.assertEqual(raised.exception.status_int, 400) def test_validate_container_params(self): req = Request.blank('') actual = rh.validate_container_params(req) self.assertEqual({'limit': 10000}, actual) req = Request.blank('', query_string='limit=1&junk=here&marker=foo') actual = rh.validate_container_params(req) expected = {'limit': 1, 'marker': 'foo'} self.assertEqual(expected, actual) req = Request.blank('', query_string='limit=1&junk=here&marker=') actual = rh.validate_container_params(req) expected = {'limit': 1, 'marker': ''} self.assertEqual(expected, actual) # ignore bad junk req = Request.blank('', query_string='limit=1&junk=%ff&marker=foo') actual = rh.validate_container_params(req) expected = {'limit': 1, 'marker': 'foo'} self.assertEqual(expected, actual) # error on bad wanted parameter req = Request.blank('', query_string='limit=1&junk=here&marker=%ff') with self.assertRaises(HTTPException) as raised: rh.validate_container_params(req) self.assertEqual(raised.exception.status_int, 400) # error on bad limit req = Request.blank('', query_string='limit=10001') with self.assertRaises(HTTPException) as raised: rh.validate_container_params(req) self.assertEqual(raised.exception.status_int, 412) def test_is_user_meta(self): m_type = 'meta' for st in server_types: self.assertTrue(rh.is_user_meta(st, 'x-%s-%s-foo' % (st, m_type))) self.assertFalse(rh.is_user_meta(st, 'x-%s-%s-' % (st, m_type))) self.assertFalse(rh.is_user_meta(st, 'x-%s-%sfoo' % (st, m_type))) def test_is_sys_meta(self): m_type = 'sysmeta' for st in server_types: self.assertTrue(rh.is_sys_meta(st, 'x-%s-%s-foo' % (st, m_type))) self.assertFalse(rh.is_sys_meta(st, 'x-%s-%s-' % (st, m_type))) self.assertFalse(rh.is_sys_meta(st, 'x-%s-%sfoo' % (st, m_type))) def test_is_sys_or_user_meta(self): m_types = ['sysmeta', 'meta'] for mt in m_types: for st in server_types: self.assertTrue(rh.is_sys_or_user_meta( st, 'x-%s-%s-foo' % (st, mt))) self.assertFalse(rh.is_sys_or_user_meta( st, 'x-%s-%s-' % (st, mt))) self.assertFalse(rh.is_sys_or_user_meta( st, 'x-%s-%sfoo' % (st, mt))) def test_strip_sys_meta_prefix(self): mt = 'sysmeta' for st in server_types: self.assertEqual(rh.strip_sys_meta_prefix( st, 'x-%s-%s-a' % (st, mt)), 'a') mt = 'not-sysmeta' for st in server_types: with self.assertRaises(ValueError): rh.strip_sys_meta_prefix(st, 'x-%s-%s-a' % (st, mt)) def test_strip_user_meta_prefix(self): mt = 'meta' for st in server_types: self.assertEqual(rh.strip_user_meta_prefix( st, 'x-%s-%s-a' % (st, mt)), 'a') mt = 'not-meta' for st in server_types: with self.assertRaises(ValueError): rh.strip_sys_meta_prefix(st, 'x-%s-%s-a' % (st, mt)) def test_is_object_transient_sysmeta(self): self.assertTrue(rh.is_object_transient_sysmeta( 'x-object-transient-sysmeta-foo')) self.assertFalse(rh.is_object_transient_sysmeta( 'x-object-transient-sysmeta-')) self.assertFalse(rh.is_object_transient_sysmeta( 'x-object-meatmeta-foo')) def test_strip_object_transient_sysmeta_prefix(self): mt = 'object-transient-sysmeta' self.assertEqual(rh.strip_object_transient_sysmeta_prefix( 'x-%s-a' % mt), 'a') mt = 'object-sysmeta-transient' with self.assertRaises(ValueError): rh.strip_object_transient_sysmeta_prefix('x-%s-a' % mt) def test_remove_items(self): src = {'a': 'b', 'c': 'd'} test = lambda x: x == 'a' rem = rh.remove_items(src, test) self.assertEqual(src, {'c': 'd'}) self.assertEqual(rem, {'a': 'b'}) def test_copy_header_subset(self): src = {'a': 'b', 'c': 'd'} from_req = Request.blank('/path', environ={}, headers=src) to_req = Request.blank('/path', {}) test = lambda x: x.lower() == 'a' rh.copy_header_subset(from_req, to_req, test) self.assertTrue('A' in to_req.headers) self.assertEqual(to_req.headers['A'], 'b') self.assertFalse('c' in to_req.headers) self.assertFalse('C' in to_req.headers) def test_get_ip_port(self): node = { 'ip': '1.2.3.4', 'port': 6000, 'replication_ip': '5.6.7.8', 'replication_port': 7000, } self.assertEqual(('1.2.3.4', 6000), rh.get_ip_port(node, {})) self.assertEqual(('5.6.7.8', 7000), rh.get_ip_port(node, { rh.USE_REPLICATION_NETWORK_HEADER: 'true'})) self.assertEqual(('1.2.3.4', 6000), rh.get_ip_port(node, { rh.USE_REPLICATION_NETWORK_HEADER: 'false'})) @patch_policies(with_ec_default=True) def test_get_name_and_placement_object_req(self): path = '/device/part/account/container/object' req = Request.blank(path, headers={ 'X-Backend-Storage-Policy-Index': '0'}) device, part, account, container, obj, policy = \ rh.get_name_and_placement(req, 5, 5, True) self.assertEqual(device, 'device') self.assertEqual(part, 'part') self.assertEqual(account, 'account') self.assertEqual(container, 'container') self.assertEqual(obj, 'object') self.assertEqual(policy, POLICIES[0]) self.assertEqual(policy.policy_type, EC_POLICY) req.headers['X-Backend-Storage-Policy-Index'] = 1 device, part, account, container, obj, policy = \ rh.get_name_and_placement(req, 5, 5, True) self.assertEqual(device, 'device') self.assertEqual(part, 'part') self.assertEqual(account, 'account') self.assertEqual(container, 'container') self.assertEqual(obj, 'object') self.assertEqual(policy, POLICIES[1]) self.assertEqual(policy.policy_type, REPL_POLICY) req.headers['X-Backend-Storage-Policy-Index'] = 'foo' with self.assertRaises(HTTPException) as raised: device, part, account, container, obj, policy = \ rh.get_name_and_placement(req, 5, 5, True) e = raised.exception self.assertEqual(e.status_int, 503) self.assertEqual(str(e), '503 Service Unavailable') self.assertEqual(e.body, b"No policy with index foo") @patch_policies(with_ec_default=True) def test_get_name_and_placement_object_replication(self): # yup, suffixes are sent '-'.joined in the path path = '/device/part/012-345-678-9ab-cde' req = Request.blank(path, headers={ 'X-Backend-Storage-Policy-Index': '0'}) device, partition, suffix_parts, policy = \ rh.get_name_and_placement(req, 2, 3, True) self.assertEqual(device, 'device') self.assertEqual(partition, 'part') self.assertEqual(suffix_parts, '012-345-678-9ab-cde') self.assertEqual(policy, POLICIES[0]) self.assertEqual(policy.policy_type, EC_POLICY) path = '/device/part' req = Request.blank(path, headers={ 'X-Backend-Storage-Policy-Index': '1'}) device, partition, suffix_parts, policy = \ rh.get_name_and_placement(req, 2, 3, True) self.assertEqual(device, 'device') self.assertEqual(partition, 'part') self.assertIsNone(suffix_parts) # false-y self.assertEqual(policy, POLICIES[1]) self.assertEqual(policy.policy_type, REPL_POLICY) path = '/device/part/' # with a trailing slash req = Request.blank(path, headers={ 'X-Backend-Storage-Policy-Index': '1'}) device, partition, suffix_parts, policy = \ rh.get_name_and_placement(req, 2, 3, True) self.assertEqual(device, 'device') self.assertEqual(partition, 'part') self.assertEqual(suffix_parts, '') # still false-y self.assertEqual(policy, POLICIES[1]) self.assertEqual(policy.policy_type, REPL_POLICY) def test_validate_internal_name(self): self.assertIsNone(rh._validate_internal_name('foo')) self.assertIsNone(rh._validate_internal_name( rh.get_reserved_name('foo'))) self.assertIsNone(rh._validate_internal_name( rh.get_reserved_name('foo', 'bar'))) self.assertIsNone(rh._validate_internal_name('')) self.assertIsNone(rh._validate_internal_name(rh.RESERVED)) def test_invalid_reserved_name(self): with self.assertRaises(HTTPException) as raised: rh._validate_internal_name('foo' + rh.RESERVED) e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace name") def test_validate_internal_account(self): self.assertIsNone(rh.validate_internal_account('AUTH_foo')) self.assertIsNone(rh.validate_internal_account( rh.get_reserved_name('AUTH_foo'))) with self.assertRaises(HTTPException) as raised: rh.validate_internal_account('AUTH_foo' + rh.RESERVED) e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace account") def test_validate_internal_container(self): self.assertIsNone(rh.validate_internal_container('AUTH_foo', 'bar')) self.assertIsNone(rh.validate_internal_container( rh.get_reserved_name('AUTH_foo'), 'bar')) self.assertIsNone(rh.validate_internal_container( 'foo', rh.get_reserved_name('bar'))) self.assertIsNone(rh.validate_internal_container( rh.get_reserved_name('AUTH_foo'), rh.get_reserved_name('bar'))) with self.assertRaises(HTTPException) as raised: rh.validate_internal_container('AUTH_foo' + rh.RESERVED, 'bar') e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace account") with self.assertRaises(HTTPException) as raised: rh.validate_internal_container('AUTH_foo', 'bar' + rh.RESERVED) e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace container") # These should always be operating on split_path outputs so this # shouldn't really be an issue, but just in case... for acct in ('', None): with self.assertRaises(ValueError) as raised: rh.validate_internal_container( acct, 'bar') self.assertEqual(raised.exception.args[0], 'Account is required') def test_validate_internal_object(self): self.assertIsNone(rh.validate_internal_obj('AUTH_foo', 'bar', 'baz')) self.assertIsNone(rh.validate_internal_obj( rh.get_reserved_name('AUTH_foo'), 'bar', 'baz')) for acct in ('AUTH_foo', rh.get_reserved_name('AUTH_foo')): self.assertIsNone(rh.validate_internal_obj( acct, rh.get_reserved_name('bar'), rh.get_reserved_name('baz'))) for acct in ('AUTH_foo', rh.get_reserved_name('AUTH_foo')): with self.assertRaises(HTTPException) as raised: rh.validate_internal_obj( acct, 'bar', rh.get_reserved_name('baz')) e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace object " b"in user-namespace container") for acct in ('AUTH_foo', rh.get_reserved_name('AUTH_foo')): with self.assertRaises(HTTPException) as raised: rh.validate_internal_obj( acct, rh.get_reserved_name('bar'), 'baz') e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid user-namespace object " b"in reserved-namespace container") # These should always be operating on split_path outputs so this # shouldn't really be an issue, but just in case... for acct in ('', None): with self.assertRaises(ValueError) as raised: rh.validate_internal_obj( acct, 'bar', 'baz') self.assertEqual(raised.exception.args[0], 'Account is required') for cont in ('', None): with self.assertRaises(ValueError) as raised: rh.validate_internal_obj( 'AUTH_foo', cont, 'baz') self.assertEqual(raised.exception.args[0], 'Container is required') def test_invalid_names_in_system_accounts(self): self.assertIsNone(rh.validate_internal_obj( AUTO_CREATE_ACCOUNT_PREFIX + 'system_account', 'foo', 'crazy%stown' % rh.RESERVED)) def test_invalid_reserved_names(self): with self.assertRaises(HTTPException) as raised: rh.validate_internal_obj('AUTH_foo' + rh.RESERVED, 'bar', 'baz') e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace account") with self.assertRaises(HTTPException) as raised: rh.validate_internal_obj('AUTH_foo', 'bar' + rh.RESERVED, 'baz') e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace container") with self.assertRaises(HTTPException) as raised: rh.validate_internal_obj('AUTH_foo', 'bar', 'baz' + rh.RESERVED) e = raised.exception self.assertEqual(e.status_int, 400) self.assertEqual(str(e), '400 Bad Request') self.assertEqual(e.body, b"Invalid reserved-namespace object") def test_get_reserved_name(self): expectations = { tuple(): rh.RESERVED, ('',): rh.RESERVED, ('foo',): rh.RESERVED + 'foo', ('foo', 'bar'): rh.RESERVED + 'foo' + rh.RESERVED + 'bar', ('foo', ''): rh.RESERVED + 'foo' + rh.RESERVED, ('', ''): rh.RESERVED * 2, } failures = [] for parts, expected in expectations.items(): name = rh.get_reserved_name(*parts) if name != expected: failures.append('get given %r expected %r != %r' % ( parts, expected, name)) if failures: self.fail('Unexpected reults:\n' + '\n'.join(failures)) def test_invalid_get_reserved_name(self): self.assertRaises(ValueError) with self.assertRaises(ValueError) as ctx: rh.get_reserved_name('foo', rh.RESERVED + 'bar', 'baz') self.assertEqual(str(ctx.exception), 'Invalid reserved part in components') def test_split_reserved_name(self): expectations = { rh.RESERVED: ('',), rh.RESERVED + 'foo': ('foo',), rh.RESERVED + 'foo' + rh.RESERVED + 'bar': ('foo', 'bar'), rh.RESERVED + 'foo' + rh.RESERVED: ('foo', ''), rh.RESERVED * 2: ('', ''), } failures = [] for name, expected in expectations.items(): parts = rh.split_reserved_name(name) if tuple(parts) != expected: failures.append('split given %r expected %r != %r' % ( name, expected, parts)) if failures: self.fail('Unexpected reults:\n' + '\n'.join(failures)) def test_invalid_split_reserved_name(self): self.assertRaises(ValueError) with self.assertRaises(ValueError) as ctx: rh.split_reserved_name('foo') self.assertEqual(str(ctx.exception), 'Invalid reserved name') class TestHTTPResponseToDocumentIters(unittest.TestCase): def test_200(self): fr = FakeResponse( 200, {'Content-Length': '10', 'Content-Type': 'application/lunch'}, b'sandwiches') doc_iters = rh.http_response_to_document_iters(fr) first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 0) self.assertEqual(last_byte, 9) self.assertEqual(length, 10) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Content-Length'), '10') self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'sandwiches') self.assertRaises(StopIteration, next, doc_iters) fr = FakeResponse( 200, {'Transfer-Encoding': 'chunked', 'Content-Type': 'application/lunch'}, b'sandwiches') doc_iters = rh.http_response_to_document_iters(fr) first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 0) self.assertIsNone(last_byte) self.assertIsNone(length) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Transfer-Encoding'), 'chunked') self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'sandwiches') self.assertRaises(StopIteration, next, doc_iters) def test_206_single_range(self): fr = FakeResponse( 206, {'Content-Length': '8', 'Content-Type': 'application/lunch', 'Content-Range': 'bytes 1-8/10'}, b'andwiche') doc_iters = rh.http_response_to_document_iters(fr) first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 1) self.assertEqual(last_byte, 8) self.assertEqual(length, 10) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Content-Length'), '8') self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'andwiche') self.assertRaises(StopIteration, next, doc_iters) # Chunked response should be treated in the same way as non-chunked one fr = FakeResponse( 206, {'Transfer-Encoding': 'chunked', 'Content-Type': 'application/lunch', 'Content-Range': 'bytes 1-8/10'}, b'andwiche') doc_iters = rh.http_response_to_document_iters(fr) first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 1) self.assertEqual(last_byte, 8) self.assertEqual(length, 10) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'andwiche') self.assertRaises(StopIteration, next, doc_iters) def test_206_multiple_ranges(self): fr = FakeResponse( 206, {'Content-Type': 'multipart/byteranges; boundary=asdfasdfasdf'}, (b"--asdfasdfasdf\r\n" b"Content-Type: application/lunch\r\n" b"Content-Range: bytes 0-3/10\r\n" b"\r\n" b"sand\r\n" b"--asdfasdfasdf\r\n" b"Content-Type: application/lunch\r\n" b"Content-Range: bytes 6-9/10\r\n" b"\r\n" b"ches\r\n" b"--asdfasdfasdf--")) doc_iters = rh.http_response_to_document_iters(fr) first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 0) self.assertEqual(last_byte, 3) self.assertEqual(length, 10) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'sand') first_byte, last_byte, length, headers, body = next(doc_iters) self.assertEqual(first_byte, 6) self.assertEqual(last_byte, 9) self.assertEqual(length, 10) header_dict = HeaderKeyDict(headers) self.assertEqual(header_dict.get('Content-Type'), 'application/lunch') self.assertEqual(body.read(), b'ches') self.assertRaises(StopIteration, next, doc_iters) def test_update_etag_is_at_header(self): # start with no existing X-Backend-Etag-Is-At req = Request.blank('/v/a/c/o') rh.update_etag_is_at_header(req, 'X-Object-Sysmeta-My-Etag') self.assertEqual('X-Object-Sysmeta-My-Etag', req.headers['X-Backend-Etag-Is-At']) # add another alternate rh.update_etag_is_at_header(req, 'X-Object-Sysmeta-Ec-Etag') self.assertEqual('X-Object-Sysmeta-My-Etag,X-Object-Sysmeta-Ec-Etag', req.headers['X-Backend-Etag-Is-At']) with self.assertRaises(ValueError) as cm: rh.update_etag_is_at_header(req, 'X-Object-Sysmeta-,-Bad') self.assertEqual('Header name must not contain commas', cm.exception.args[0]) def test_resolve_etag_is_at_header(self): def do_test(): req = Request.blank('/v/a/c/o') # ok to have no X-Backend-Etag-Is-At self.assertIsNone(rh.resolve_etag_is_at_header(req, metadata)) # ok to have no matching metadata req.headers['X-Backend-Etag-Is-At'] = 'X-Not-There' self.assertIsNone(rh.resolve_etag_is_at_header(req, metadata)) # selects from metadata req.headers['X-Backend-Etag-Is-At'] = 'X-Object-Sysmeta-Ec-Etag' self.assertEqual('an etag value', rh.resolve_etag_is_at_header(req, metadata)) req.headers['X-Backend-Etag-Is-At'] = 'X-Object-Sysmeta-My-Etag' self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) # first in list takes precedence req.headers['X-Backend-Etag-Is-At'] = \ 'X-Object-Sysmeta-My-Etag,X-Object-Sysmeta-Ec-Etag' self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) # non-existent alternates are passed over req.headers['X-Backend-Etag-Is-At'] = \ 'X-Bogus,X-Object-Sysmeta-My-Etag,X-Object-Sysmeta-Ec-Etag' self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) # spaces in list are ok alts = 'X-Foo, X-Object-Sysmeta-My-Etag , X-Object-Sysmeta-Ec-Etag' req.headers['X-Backend-Etag-Is-At'] = alts self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) # lower case in list is ok alts = alts.lower() req.headers['X-Backend-Etag-Is-At'] = alts self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) # upper case in list is ok alts = alts.upper() req.headers['X-Backend-Etag-Is-At'] = alts self.assertEqual('another etag value', rh.resolve_etag_is_at_header(req, metadata)) metadata = {'X-Object-Sysmeta-Ec-Etag': 'an etag value', 'X-Object-Sysmeta-My-Etag': 'another etag value'} do_test() metadata = dict((k.lower(), v) for k, v in metadata.items()) do_test() metadata = dict((k.upper(), v) for k, v in metadata.items()) do_test()