content
stringlengths
5
1.05M
from typing import Any, Dict, List, Optional, Tuple from autoPyTorch.pipeline.components.base_choice import autoPyTorchChoice from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.TabularColumnTransformer import \ TabularColumnTransformer from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.encoding import EncoderChoice from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.imputation.SimpleImputer import SimpleImputer from autoPyTorch.pipeline.components.preprocessing.tabular_preprocessing.scaling import ScalerChoice from autoPyTorch.pipeline.tabular_classification import TabularClassificationPipeline class TabularPipeline(TabularClassificationPipeline): def _get_pipeline_steps(self, dataset_properties: Optional[Dict[str, Any]], ) -> List[Tuple[str, autoPyTorchChoice]]: """ Defines what steps a pipeline should follow. The step itself has choices given via autoPyTorchChoice. Returns: List[Tuple[str, autoPyTorchChoice]]: list of steps sequentially exercised by the pipeline. """ steps = [] # type: List[Tuple[str, autoPyTorchChoice]] default_dataset_properties = {'target_type': 'tabular_classification'} if dataset_properties is not None: default_dataset_properties.update(dataset_properties) steps.extend([ ("imputer", SimpleImputer()), ("encoder", EncoderChoice(default_dataset_properties)), ("scaler", ScalerChoice(default_dataset_properties)), ("tabular_transformer", TabularColumnTransformer()), ]) return steps
#!/usr/bin/python """This is the flask server of the a windows VM It accepts the requests in the form of protobufs and executes the same in the specified path """ import argparse import logging import os from pathlib import Path import shutil import subprocess import threading import timeit import sys import requests from waitress import serve from flask import Flask, request from google.cloud import storage import repackage repackage.up(2) from vm_server.send.proto import request_pb2 sem = threading.Semaphore() MASTER_SERVER = "http://127.0.0.1:5000" task_status_response = request_pb2.TaskStatusResponse() PORT = 8000 VM_ADDRESS = "127.0.0.1" EXECUTE_DIR = "..\\execute" EXECUTE_ACTION_DIR = "..\\execute\\action" OUTPUT_DIR = "\\output\\" BUCKET_NAME = "automation-interns" DEBUG_FLAG = "DEBUG" parser = argparse.ArgumentParser(description="VM Server") parser.add_argument("debug_flag", type=str, help="""Usage: " + sys.argv[0] + DEBUG_FLAG + PORT""" ) parser.add_argument("port", type=int, help="""Usage: " + sys.argv[0] + DEBUG_FLAG + PORT""" ) arguments = parser.parse_args() def get_processes(file_name): """Logs the current running processes in the file named file_name Args: file_name: Name of the file where the names of the processes are saved """ logging.debug("Getting the list of processes") get_process = subprocess.Popen("powershell.exe \ Get-Process >{file}".format(file=file_name)) get_process.communicate() def get_diff_processes(): """Prints the difference in processes before and after execution of a request """ logging.debug("Getting the diff of the processes") compare_process = subprocess.Popen("powershell.exe Compare-Object \ (Get-Content process_before.txt)\ (Get-Content process_after.txt)") compare_process.communicate() def remove_execute_dir(task_request, task_response): """Deletes the execute directory if it exists Args: task_request: TaskRequest() object that is read from the protobuf task_response: an object of TaskResponse() that will be sent back """ logging.debug("Removing execute directory") dirpath = Path(EXECUTE_ACTION_DIR + "_" + str(task_request.request_id)) print("Dirpath is ", dirpath) try: if dirpath.exists() and dirpath.is_dir(): # delete leftover files shutil.rmtree(dirpath) except Exception as exception: # catch errors if any logging.exception(str(exception)) logging.debug("Error deleting the execute directory") task_response.status = request_pb2.TaskResponse.FAILURE def make_directories(task_request, task_response): """Creates the directories for execution Args: task_request: TaskRequest() object that is read from the protobuf task_response: an object of TaskResponse() that will be sent back """ logging.debug("Creating execute directory structure") remove_execute_dir(task_request, task_response) if task_response.status == request_pb2.TaskResponse.FAILURE: return current_path = EXECUTE_ACTION_DIR + "_" + str(task_request.request_id) os.makedirs(EXECUTE_DIR, exist_ok=True) os.mkdir(current_path) os.mkdir(current_path + OUTPUT_DIR) Path(EXECUTE_DIR + "\\__init__.py").touch() # __init__.py for package Path(current_path + "\\__init__.py").touch() try: shutil.copytree(task_request.code_path, current_path + "\\code") Path(current_path + "\\code\\__init__.py").touch() # __init__.py for package data_path = Path(task_request.data_path) if data_path.exists() is False: os.mkdir(data_path) shutil.copytree(task_request.data_path, current_path + "\\data") except Exception as exception: # catch errors if any logging.exception(str(exception)) logging.debug("Error copying code and data directories") task_response.status = request_pb2.TaskResponse.FAILURE def move_output(task_request, task_response): """Move the genrated output files to the output path specified Args: task_request: an object of TaskResponse() that is sent in the request task_response: an object of TaskResponse() that will be sent back """ logging.debug("Moving the output path to the specified output path") current_path = os.getcwd() source_path = Path(current_path + "\\" + EXECUTE_ACTION_DIR + \ "_" + str(task_request.request_id) + OUTPUT_DIR) if source_path.exists() is False: os.mkdir(source_path) destination_path = Path(current_path + "\\" + task_request.output_path) if destination_path.exists() is False: os.mkdir(destination_path) files = os.listdir(source_path) try: for file in files: shutil.move(os.path.join(source_path, file), os.path.join(destination_path, file)) except Exception as exception: # catch errors if any logging.exception(str(exception)) logging.debug("Error moving the output \ files to the specified output directory") task_response.status = request_pb2.TaskResponse.FAILURE def download_files_to_path(pantheon_path, destination_path, task_response): """Downloads files from pantheon path to the destination path Args: pantheon_path: the source path in pantheon destination_path: the destination path where files are saved in the VM task_response: an object of TaskResponse() that will be sent back """ bucket_name = BUCKET_NAME storage_client = storage.Client() blobs = storage_client.list_blobs(bucket_name, prefix=pantheon_path) for blob in blobs: source = Path(blob.name) destination_file_path = Path(str(destination_path) \ + "\\" + str(source.name)) if blob.name[len(blob.name)-1] == '/': logging.debug("Making directory Destination path : %s", destination_path) os.makedirs(destination_file_path, exist_ok=True) else: logging.debug("Downloading file Destination path : %s", destination_path) os.makedirs(destination_path, exist_ok=True) source = Path(blob.name) logging.debug("Destination file path: %s", destination_file_path) try: blob.download_to_filename(destination_file_path) except Exception as exception: logging.debug("Error while downloading files, \ Exception: %s", str(exception)) task_response.status = request_pb2.TaskResponse.FAILURE def download_input_files(task_request, task_response): """Downloads the input files from pantheon Args: task_request: TaskRequest() object that is read from the protobuf task_response: an object of TaskResponse() that will be sent back """ remove_execute_dir(task_request, task_response) current_path = EXECUTE_ACTION_DIR + "_" + str(task_request.request_id) os.mkdir(current_path) os.mkdir(current_path + OUTPUT_DIR) Path(current_path + "\\__init__.py").touch() download_files_to_path(task_request.code_path, current_path + "\\code", task_response) download_files_to_path(task_request.data_path, current_path + "\\data", task_response) def upload_output(task_request, task_response): """ Upload the output files to pantheon Args: task_request: an object of TaskResponse() that is sent in the request task_response: an object of TaskResponse() that will be sent back """ bucket_name = BUCKET_NAME storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) source_path = Path(EXECUTE_ACTION_DIR + "_" + \ str(task_request.request_id) + OUTPUT_DIR) destination_path = task_request.output_path files = os.listdir(source_path) try: for file in files: destination_blob_path = (destination_path + file) blob = bucket.blob(destination_blob_path) blob.upload_from_filename(str(source_path) + "/" + str(file)) except Exception as exception: logging.debug("Error while uploading output files, \ Exception: %s", str(exception)) task_response.status = request_pb2.TaskResponse.FAILURE def execute_action(task_request, task_response): """ Execute the action Args: task_request: an object of TaskResponse() that is sent in the request task_response: an object of TaskResponse() that will be sent back """ if task_response.status == request_pb2.TaskResponse.FAILURE: return logging.debug("Trying to execute the action") current_path = "..\\execute\\action" + "_" + str(task_request.request_id) logging.debug("Action path is: %s", str(current_path + task_request.target_path)) encoding = "utf-8" out = None err = None status = None try: execute = subprocess.Popen(["powershell.exe", # execute the target file task_request.target_path], stdout=subprocess.PIPE, cwd=current_path) out, err = execute.communicate(timeout=task_request.timeout) except Exception as exception: # catch errors if any logging.debug(str(exception)) logging.debug("FAILED TO EXECUTE THE ACTION") task_response.status = request_pb2.TaskResponse.FAILURE err = str(exception).encode(encoding) status = execute.returncode if status: logging.debug("Execution was unsuccessful") task_response.status = request_pb2.TaskResponse.FAILURE logging.debug("Process is running, force killing the process") kill_process = subprocess.Popen("TASKKILL /F \ /PID {pid} /T".format(pid=execute.pid)) kill_process.communicate() if out is None: out = "".encode(encoding) if err is None: err = "".encode(encoding) try: std_out = open(current_path + OUTPUT_DIR + "stdout.txt", "w") std_out.write(out.decode(encoding)) std_out.close() std_err = open(current_path + OUTPUT_DIR + "stderr.txt", "w") std_err.write(err.decode(encoding)) std_err.close() output_files = [name for name in os.listdir(current_path + OUTPUT_DIR) if os.path.isfile(current_path + OUTPUT_DIR + name)] task_response.number_of_files = len(output_files) if arguments.debug_flag == DEBUG_FLAG: move_output(task_request, task_response) else: upload_output(task_request, task_response) except Exception as exception: logging.debug("Error writing in stdout, stderr %s", str(exception)) task_response.status = request_pb2.TaskResponse.FAILURE def register_vm_address(): """Send request to master server to inform that VM is free""" data = "http://{}:{}".format(VM_ADDRESS, str(PORT)) try: requests.get(MASTER_SERVER + str("/register"), data=data) except Exception as exception: logging.debug(str(exception)) logging.debug("Can't connect to the master server") def task_completed(task_request, task_response): """Send response to the master server when the task has been executed Args: task_request: TaskRequest() object that is read from the protobuf task_response: an object of TaskResponse() that will be sent back """ global task_status_response if task_response.status != request_pb2.TaskResponse.FAILURE: task_response.status = request_pb2.TaskResponse.SUCCESS task_status_response.task_response.CopyFrom(task_response) current_path = os.path.dirname(os.path.realpath("__file__")) response_proto = os.path.join(current_path, ".\\task_completed_response.pb") with open(response_proto, "wb") as status_response: status_response.write(task_status_response.SerializeToString()) status_response.close() remove_execute_dir(task_request, task_response) logging.debug("Response Proto: %s", str(task_response)) # get_processes("process_after.txt") # get_diff_processes() with open(response_proto, "rb") as status_response: try: requests.post(url=MASTER_SERVER + "/success", files={"task_response": \ task_status_response.SerializeToString()}) except Exception as exception: logging.debug(str(exception)) logging.debug("Can't connect to the master server") status_response.close() logging.debug("Releasing semaphore") sem.release() def set_environment_variables(task_request): """Set the environment variables in config pair Args: task_request: an object of TaskResponse() that is sent in the request """ for config_pair in task_request.config_pairs: os.environ[config_pair.key] = config_pair.value def execute_wrapper(task_request, task_response): """Execute the tasks in the request Args: task_request: an object of TaskResponse() that is sent in the request task_response: an object of TaskResponse() that will be sent back """ global task_status_response start = timeit.default_timer() set_environment_variables(task_request) if arguments.debug_flag == DEBUG_FLAG: make_directories(task_request, task_response) else: download_input_files(task_request, task_response) execute_action(task_request, task_response) stop = timeit.default_timer() time_taken = stop-start logging.debug("Time taken is %s", str(time_taken)) task_response.time_taken = time_taken task_status_response.status = request_pb2.TaskStatusResponse.COMPLETED task_completed(task_request, task_response) register_vm_address() APP = Flask(__name__) @APP.route("/get_status", methods=["POST"]) def get_status(): """Endpoint for the master to know the status of the VM""" global task_status_response request_task_status_response = request_pb2.TaskStatusResponse() request_task_status_response.ParseFromString( request.files["task_request"].read() ) response_task_status = task_status_response if task_status_response.current_task_id != \ request_task_status_response.current_task_id: response_task_status.status = request_pb2.TaskStatusResponse.INVALID_ID return response_task_status.SerializeToString() @APP.route("/assign_task", methods=["POST"]) def assign_task(): """Endpoint to accept post requests with protobuffer""" task_response = request_pb2.TaskResponse() global task_status_response # get_processes("process_before.txt") if sem.acquire(blocking=False): logging.debug("Accepted request: %s", str(request)) task_request = request_pb2.TaskRequest() task_request.ParseFromString(request.files["task_request"].read()) logging.debug("Request Proto: %s", str(task_request)) thread = threading.Thread(target=execute_wrapper, args=(task_request, task_response,)) thread.start() task_status_response = request_pb2.TaskStatusResponse() task_status_response.current_task_id = task_request.request_id task_status_response.status = request_pb2.TaskStatusResponse.ACCEPTED else: task_status_response.status = request_pb2.TaskStatusResponse.REJECTED # task_response.status = request_pb2.TaskResponse.BUSY current_path = os.path.dirname(os.path.realpath("__file__")) response_proto = os.path.join(current_path, ".\\response.pb") logging.debug("Task Status Response: %s", str(task_status_response)) with open(response_proto, "wb") as response: response.write(task_status_response.SerializeToString()) response.close() task_request = request_pb2.TaskRequest() task_request.ParseFromString(request.files["task_request"].read()) return task_status_response.SerializeToString() @APP.route('/active', methods=['GET', 'POST']) def is_active(): """Master can check here if VM is active or not.""" return "VM Server is active" @APP.route('/status', methods=['GET', 'POST']) def flag_status(): """Returns the state of VM""" return "False" if __name__ == "__main__": logging.basicConfig(filename="server.log", level=logging.DEBUG, format="%(asctime)s:%(levelname)s: %(message)s") logging.getLogger().addHandler(logging.StreamHandler()) # APP.run(debug=True) PORT = sys.argv[2] register_vm_address() serve(APP, host="127.0.0.1", port=PORT)
# Tai Sakuma <[email protected]> import ipywidgets as widgets from IPython.display import display from .base import Presentation ##__________________________________________________________________|| class ProgressBarJupyter(Presentation): def __init__(self): super().__init__() self.interval = 0.05 # [second] self.container_widget = None self.active_box_list = [ ] self.complete_box_list = [ ] self.widget_dict = { } # {taskid: [box, bar, label]} self._read_time() def __repr__(self): return '{}()'.format( self.__class__.__name__ ) def _present(self): self._create_widgets() self._update_widgets() def _create_widgets(self): if self.container_widget is None: self.container_widget = widgets.VBox() display(self.container_widget) for taskid in self._new_taskids: report = self._report_dict[taskid] self._create_widget(report) def _create_widget(self, report): bar = widgets.IntProgress( value=report['done'], min=0, max=report['total'], description='', bar_style='', # 'success', 'info', 'warning', 'danger' or '' orientation='horizontal' ) label = widgets.HTML(value='') box = widgets.HBox([bar, label]) self.active_box_list.append(box) self.container_widget.children = self.complete_box_list + self.active_box_list self.widget_dict[report['taskid']] = [box, bar, label] def _update_widgets(self): for taskid in self._finishing_taskids + self._active_taskids + self._new_taskids: report = self._report_dict[taskid] self._update_widget(report) self._reorder_widgets(report) if not self._new_taskids and not self._active_taskids: self.container_widget = None self.active_box_list[:] = [ ] self.complete_box_list[:] = [ ] self.widget_dict.clear() def _update_widget(self, report): percent = float(report['done'])/report['total'] if report['total'] > 0 else 1 percent = round(percent * 100, 2) percent = '<pre>{:6.2f}%</pre>'.format(percent) box = self.widget_dict[report['taskid']][0] bar = self.widget_dict[report['taskid']][1] bar.value = report['done'] bar.max = report['total'] bar.description = percent if report['last']: bar.bar_style = 'success' label = self.widget_dict[report['taskid']][2] name_field_length = 32 percent = float(report['done'])/report['total'] if report['total'] > 0 else 1 bar = (':' * int(percent * 40)).ljust(40, " ") percent = round(percent * 100, 2) name = report['name'][0:name_field_length] if 'start_time' in report.keys(): elapsed_str, remaining_str = self._get_time_track(report['start_time'], percent) label.value = '<pre> | {:8d} / {:8d} ({:s} / {:s}) |: {:<{}s}</pre>'.format(report['done'], report['total'], elapsed_str, remaining_str, name, name_field_length) else: label.value = '<pre> | {:8d} / {:8d} |: {:<{}s}</pre>'.format(report['done'], report['total'], name, name_field_length) def _reorder_widgets(self, report): for taskid in self._finishing_taskids: box, bar, label = self.widget_dict[taskid] if box in self.active_box_list: self.active_box_list.remove(box) self.complete_box_list.append(box) self.container_widget.children = self.complete_box_list + self.active_box_list ##__________________________________________________________________||
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # License: GNU General Public License v3. See license.txt from __future__ import print_function, unicode_literals import frappe def execute(): frappe.reload_doc("accounts", "doctype", "account") account_table_columns = frappe.db.get_table_columns("Account") if "debit_or_credit" in account_table_columns and "is_pl_account" in account_table_columns: frappe.db.sql("""UPDATE tabAccount SET root_type = CASE WHEN (debit_or_credit='Debit' and is_pl_account = 'No') THEN 'Asset' WHEN (debit_or_credit='Credit' and is_pl_account = 'No') THEN 'Liability' WHEN (debit_or_credit='Debit' and is_pl_account = 'Yes') THEN 'Expense' WHEN (debit_or_credit='Credit' and is_pl_account = 'Yes') THEN 'Income' END WHERE ifnull(parent_account, '') = '' """) else: for key, root_type in (("asset", "Asset"), ("liabilities", "Liability"), ("expense", "Expense"), ("income", "Income")): frappe.db.sql("""update tabAccount set root_type=%s where name like %s and ifnull(parent_account, '')=''""", (root_type, "%" + key + "%")) for root in frappe.db.sql("""SELECT name, lft, rgt, root_type FROM `tabAccount` WHERE ifnull(parent_account, '')=''""", as_dict=True): if root.root_type: frappe.db.sql("""UPDATE tabAccount SET root_type=%s WHERE lft>%s and rgt<%s""", (root.root_type, root.lft, root.rgt)) else: print(b"Root type not found for {0}".format(root.name.encode("utf-8")))
#!/usr/bin/python import os.path import cppcodebase import random def CreateLibMakefile(lib_number, classes): os.chdir(cppcodebase.lib_name(lib_number)) handle = file("Makefile", "w"); handle.write ("""COMPILER = g++ INC = -I.. CCFLAGS = -Wall $(INC) ARCHIVE = ar DEPEND = makedepend .SUFFIXES: .o .cpp """) handle.write ("lib = lib_" + str(lib_number) + ".a\n") handle.write ("src = \\\n") for i in xrange(classes): handle.write('class_' + str(i) + '.cpp \\\n') handle.write (""" objects = $(patsubst %.cpp, %.o, $(src)) all: depend $(lib) $(lib): $(objects) $(ARCHIVE) cr $@ $^ touch $@ .cpp.o: $(COMPILER) $(CCFLAGS) -c $< clean: @rm $(objects) $(lib) 2> /dev/null depend: @$(DEPEND) $(INC) $(src) """) os.chdir('..') def CreateFullMakefile(libs): handle = file("Makefile", "w") handle.write('subdirs = \\\n') for i in xrange(libs): handle.write('lib_' + str(i) + '\\\n') handle.write(""" all: $(subdirs) @for i in $(subdirs); do \ $(MAKE) -C $$i all; done clean: @for i in $(subdirs); do \ (cd $$i; $(MAKE) clean); done depend: @for i in $(subdirs); do \ (cd $$i; $(MAKE) depend); done """) def CreateCodebase(libs, classes, internal_includes, external_includes): cppcodebase.SetDir('make') cppcodebase.CreateSetOfLibraries(libs, classes, internal_includes, external_includes, CreateLibMakefile) CreateFullMakefile(libs) os.chdir('..')
import tensorflow as tf import tensorflow_hub as hub from PIL import Image import numpy as np def load_model(model_path): reloaded_model = tf.keras.models.load_model(model_path, custom_objects={'KerasLayer':hub.KerasLayer}) return reloaded_model def load_process_image(image_path, image_size): # Open image from file and turn to numpy array image = Image.open(image_path) image = np.asarray(image) # Conver to tensor, resize, normalise image = tf.convert_to_tensor(image, tf.float32) image = tf.image.resize(image, (image_size, image_size)) image /= 255 # Convert back to numpy array and add an extra dimension (needed by the model) image = image.numpy() image = np.expand_dims(image, axis=0) return image
from py2neo import Node, Relationship, Graph, authenticate from py2neo.ogm import GraphObject, Label, Property, RelatedFrom, RelatedTo # from py2neo import Database # basic Node, Relationship constructor a = Node("Freelancer", name="dono", email="[email protected]", noTelp="081081081081" ) print(a) b = Node("Freelancer", name="kasino", email="[email protected]", noTelp="081081081081" ) print(b) c = Node("Freelancer", name="indro", email="[email protected]", noTelp="081081081081" ) print(c) ab = Relationship(a,"Knows", b) # print(ab) # construct relationship with class class StudyWith(Relationship): pass ac = StudyWith(a, c) # print(ac.type()) # Subgraph s = ab | ac print(s) # print(s.nodes()) # print(s.relationships()) w = ab + Relationship(b, "in debt with", c) + ac print(w) print(" ") print("-----------------") print(" ") print("-----------------") # database connection # graph_db = Graph() authenticate("localhost:7474", "neo4j", "titiran7") graph_db = Graph("bolt://localhost:7687") print(graph_db) # structure class Role(GraphObject): __primarykey__ = "role_name" role_name = Property() freelance = RelatedFrom('Freelancer','worked_in') class Freelancer(GraphObject): __primarykey__ = "name" name = Property() email= Property() notelp= Property() role = RelatedTo(Role, 'work_as')
#!/usr/bin/python # encoding=utf-8 import sys if sys.version_info[0] == 2: # Python2 import core.AepSdkRequestSend as AepSdkRequestSend else: # Python3 from apis.core import AepSdkRequestSend #ๅ‚ๆ•ฐproductId: ็ฑปๅž‹long, ๅ‚ๆ•ฐไธๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ: def QueryProduct(appKey, appSecret, productId): path = '/aep_product_management/product' head = {} param = {'productId':productId} version = '20181031202055' application = appKey key = appSecret response = AepSdkRequestSend.sendSDKRequest(path, head, param, None, version, application, None, key, 'GET') if response is not None: return response.read() return None #ๅ‚ๆ•ฐsearchValue: ็ฑปๅž‹String, ๅ‚ๆ•ฐๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:ไบงๅ“idๆˆ–่€…ไบงๅ“ๅ็งฐ #ๅ‚ๆ•ฐpageNow: ็ฑปๅž‹long, ๅ‚ๆ•ฐๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:ๅฝ“ๅ‰้กตๆ•ฐ #ๅ‚ๆ•ฐpageSize: ็ฑปๅž‹long, ๅ‚ๆ•ฐๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:ๆฏ้กต่ฎฐๅฝ•ๆ•ฐ def QueryProductList(appKey, appSecret, searchValue, pageNow, pageSize): path = '/aep_product_management/products' head = {} param = {'searchValue':searchValue, 'pageNow':pageNow, 'pageSize':pageSize} version = '20190507004824' application = appKey key = appSecret response = AepSdkRequestSend.sendSDKRequest(path, head, param, None, version, application, None, key, 'GET') if response is not None: return response.read() return None #ๅ‚ๆ•ฐMasterKey: ็ฑปๅž‹String, ๅ‚ๆ•ฐไธๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:MasterKeyๅœจ่ฏฅ่ฎพๅค‡ๆ‰€ๅฑžไบงๅ“็š„ๆฆ‚ๅ†ตไธญๅฏไปฅๆŸฅ็œ‹ #ๅ‚ๆ•ฐproductId: ็ฑปๅž‹long, ๅ‚ๆ•ฐไธๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ: def DeleteProduct(appKey, appSecret, MasterKey, productId): path = '/aep_product_management/product' head = {} param = {'productId':productId} version = '20181031202029' application = appKey key = appSecret response = AepSdkRequestSend.sendSDKRequest(path, head, param, None, version, application, MasterKey, key, 'DELETE') if response is not None: return response.read() return None #ๅ‚ๆ•ฐbody: ็ฑปๅž‹json, ๅ‚ๆ•ฐไธๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:body,ๅ…ทไฝ“ๅ‚่€ƒๅนณๅฐapi่ฏดๆ˜Ž def CreateProduct(appKey, appSecret, body): path = '/aep_product_management/product' head = {} param = {} version = '20191018204154' application = appKey key = appSecret response = AepSdkRequestSend.sendSDKRequest(path, head, param, body, version, application, None, key, 'POST') if response is not None: return response.read() return None #ๅ‚ๆ•ฐbody: ็ฑปๅž‹json, ๅ‚ๆ•ฐไธๅฏไปฅไธบ็ฉบ # ๆ่ฟฐ:body,ๅ…ทไฝ“ๅ‚่€ƒๅนณๅฐapi่ฏดๆ˜Ž def UpdateProduct(appKey, appSecret, body): path = '/aep_product_management/product' head = {} param = {} version = '20191018204806' application = appKey key = appSecret response = AepSdkRequestSend.sendSDKRequest(path, head, param, body, version, application, None, key, 'PUT') if response is not None: return response.read() return None
#!/usr/bin/env python import sys if sys.version < '2.6': raise ImportError("Python versions older than 2.6 are not supported.") import glob import os.path from setuptools import (setup, find_packages) # set basic metadata PACKAGENAME = 'JLAB_TESS' DISTNAME = 'JLAB_TESS' AUTHOR = 'Kevin Burdge' AUTHOR_EMAIL = '[email protected]' LICENSE = 'GPLv3' # -- dependencies ------------------------------------------------------------- setup_requires = [ 'setuptools', ] install_requires = [ 'matplotlib', 'numpy', 'astropy', 'time', 'pathlib', 'multiprocessing' ] # -- run setup ---------------------------------------------------------------- packagenames = find_packages() scripts = glob.glob(os.path.join('bin', '*')) setup(name=DISTNAME, provides=[PACKAGENAME], version='0.0.1', description=None, long_description=None, author=AUTHOR, author_email=AUTHOR_EMAIL, license=LICENSE, packages=packagenames, include_package_data=True, scripts=scripts, setup_requires=setup_requires, install_requires=install_requires, use_2to3=True, classifiers=[ 'Programming Language :: Python', 'Development Status :: 3 - Alpha', 'Intended Audience :: Science/Research', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Science/Research', 'Natural Language :: English', 'Topic :: Scientific/Engineering', 'Topic :: Scientific/Engineering :: Astronomy', 'Topic :: Scientific/Engineering :: Physics', 'Operating System :: POSIX', 'Operating System :: Unix', 'Operating System :: MacOS', 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', ], ) print(packagenames)
from firedrake import * from firedrake.norms import errornorm import os ## Class to solve an Elasticity problem of a bending rod. # # This class solves the Elasticity problem \f$-\nabla\cdot \sigma = f\f$ for a long # rod under gravity load with # \f$P_k\f$-finite elements in each component. class ElasticRod: ##Contructor of ElasticRod class. # # Setup all necessary stuff to solve the problem. # # @param[in] nx integer grid parameter x-direction # @param[in] ny integer grid parameter y-direction # @param[in] nz integer grid parameter z-direction # @param[in] lx length x-direction # @param[in] ly length y-direction # @param[in] lz length z-direction def __init__(self, nx, ny, nz, lx=10, ly=1, lz=1): self.setup_mesh(nx, ny, nz, lx, ly, lz) self.setup_space() self.setup_data() self.setup_form() self.setup_bc() ## Setup mesh for FEM computation. # # Setup unit square mesh with nx x ny x nz elements. # # @param[in] nx integer grid parameter x-direction # @param[in] ny integer grid parameter y-direction # @param[in] nz integer grid parameter z-direction # @param[in] lx length x-direction # @param[in] ly length y-direction # @param[in] lz length z-direction def setup_mesh(self, nx, ny, nz, lx, ly, lz): self.mesh = BoxMesh(nx, ny, nz, lx, ly, lz) ## Setup FEf spaces. # # Setup a conformal function space for the problem. We use simple Lagrange elements. # function space ``V``. def setup_space(self): self.V = VectorFunctionSpace(self.mesh, "CG", 1) ## Declare source function # # Declare ``f`` over the space V and initialise # it with chosen right hand side function value. def setup_data(self): self.__rho = Constant(2710) self.__g = Constant(9.81) self.__mu = Constant(2.57e10) self.__lambda = Constant(5.46e10) self.f = as_vector([0, 0, -self.__rho * self.__g]) self.__Id = Identity(self.mesh.geometric_dimension()) # Identity tensor ## Strain tensor def epsilon(self, u): return 0.5*(grad(u) + grad(u).T) ## Hooke's law def sigma(self, u): return self.__lambda*div(u)*self.__Id + 2*self.__mu*self.epsilon(u) ## Form and function setup. # # Define test and trial functions on the subspace of the function # space. Then define the variational forms. def setup_form(self): self.u = TrialFunction(self.V) self.v = TestFunction(self.V) self.a = inner(self.sigma(self.u), self.epsilon(self.v)) * dx self.L = dot(self.f, self.v) * dx ## Setup boundary conditions. # # The strongly enforced boundary conditions is enforced on the entire boundary. def setup_bc(self): # clamped at x=0 self.bc = DirichletBC(self.V, Constant([0, 0, 0]), 1) #self.bc = DirichletBC(self.V, Constant([0, 0, 0]), 1) ## Call the solver. # # Then we solve the linear variational problem ``a == L`` # and advice PETSc to use a conjugate gradient method. def solve(self, options=None, **kwargs): # create rigid body modes x, y, z = SpatialCoordinate(self.mesh) b0 = Function(self.V) b1 = Function(self.V) b2 = Function(self.V) b3 = Function(self.V) b4 = Function(self.V) b5 = Function(self.V) b0.interpolate(Constant([1, 0, 0])) b1.interpolate(Constant([0, 1, 0])) b2.interpolate(Constant([0, 0, 1])) b3.interpolate(as_vector([y, -x, z])) b4.interpolate(as_vector([z, y, -x])) b5.interpolate(as_vector([x, z, -y])) nullmodes = VectorSpaceBasis([b0, b1, b2, b3, b4, b5]) # Make sure they're orthonormal. nullmodes.orthonormalize() self.uh = Function(self.V) solve(self.a == self.L, self.uh, bcs=self.bc, solver_parameters=options, near_nullspace=nullmodes, **kwargs) ## Write solution as *.vtk # # Lastly we write the component of the solution corresponding to the primal # variable on the DG space to a file in VTK format for later inspection with a # visualisation tool such as `ParaView <http://www.paraview.org/>`. def write_solution(self): output_dir_path = os.path.dirname(os.path.realpath(__file__)) File(output_dir_path + "/../data/elastic_rod_3d.pvd").write(self.uh) if __name__ == '__main__': problem = ElasticRod(100, 10, 10) problem.solve(options={"ksp_type": "cg", "ksp_max_it": 100, "pc_type": "gamg", "mat_type": "aij", "ksp_monitor": None}) problem.write_solution() print("...done.")
from selenium import webdriver from facebook_credentials import username,password from time import sleep class TinderBot(): def __init__(self): self.driver = webdriver.Chrome() def login(self): self.driver.get('https://tinder.com') sleep(5) fb_btn = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/div[2]/button') fb_btn.click() base_window = self.driver.window_handles[0] self.driver.switch_to_window(bot.driver.window_handles[1]) email_in = self.driver.find_element_by_xpath('//*[@id="email"]') email_in.send_keys(username) pass_in = self.driver.find_element_by_xpath('//*[@id="pass"]') pass_in.send_keys(password) log_in = self.driver.find_element_by_xpath('//*[@id="u_0_0"]') log_in.click() self.driver.switch_to_window(base_window) sleep(2) popup1 = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[1]') popup1.click() sleep(2) popup2 = self.driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[1]') popup2.click() def like(self): like_btn = self.driver.find_element_by_xpath('//*[@id="content"]/div/div[1]/div/main/div[1]/div/div/div[1]/div/div[2]/button[3]') like_btn.click() def close_match(self): keep_swipebtn = self.driver.find_element_by_xpath('//*[@id="modal-manager-canvas"]/div/div/div[1]/div/div[3]/a') keep_swipebtn.click() def close_popup(self): self.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div[2]/button[2]').click() def auto_swipe(self): while True: sleep(0.5) try: self.like() except Exception: try: self.close_match() except Exception: self bot = TinderBot() bot.login() bot.auto_swipe()
from merkki import Sprite class Liikkuja(Sprite): def __init__(self, x, y, merkki, taso): print("liikkuja init") super(Liikkuja, self).__init__(x, y, merkki) self.taso = taso def liiku(self, suunta): print("liikkuja liiku") uusix = self.x + suunta[0] uusiy = self.y + suunta[1] if self.taso.kartta[uusix][uusiy].tyhja: self.x = uusix self.y = uusiy return True else: return False
# Save to HDF because cPickle fails with very large arrays # https://github.com/numpy/numpy/issues/2396 import h5py import numpy as np import tempfile import unittest def dict_to_hdf(fname, d): """ Save a dict-of-dict datastructure where values are numpy arrays to a .hdf5 file """ with h5py.File(fname, 'w') as f: def _dict_to_group(root, d): for key, val in d.iteritems(): if isinstance(val, dict): grp = root.create_group(key) _dict_to_group(grp, val) else: root.create_dataset(key, data=val) _dict_to_group(f, d) def hdf_to_dict(fname): """ Loads a dataset saved using dict_to_hdf """ with h5py.File(fname, 'r') as f: def _load_to_dict(root): d = {} for key, val in root.iteritems(): if isinstance(val, h5py.Group): d[key] = _load_to_dict(val) else: d[key] = val.value return d return _load_to_dict(f) def load(exp_name, ret_d=False, data_fname='data.hdf5'): d = hdf_to_dict('../%s' % data_fname) mosaic = d['mosaic'] id2label = d['id2label'] train_ij = d['experiments'][exp_name]['train_ij'] test_ij = d['experiments'][exp_name]['test_ij'] y_train = d['experiments'][exp_name]['y_train'] y_test = d['experiments'][exp_name]['y_test'] if ret_d: return mosaic, id2label, train_ij, test_ij, y_train, y_test, d else: return mosaic, id2label, train_ij, test_ij, y_train, y_test # -- Unit tests class HDFIOTest(unittest.TestCase): def test_hdfio(self): d = { 'a' : np.random.rand(5, 3), 'b' : { 'c' : np.random.randn(1, 2), 'd' : { 'e' : np.random.randn(10, 5), 'f' : np.random.randn(10, 5), } } } with tempfile.NamedTemporaryFile() as f: dict_to_hdf(f.name, d) d2 = hdf_to_dict(f.name) self.assertItemsEqual(d, d2) if __name__ == '__main__': unittest.main()
# !/usr/bin/hfo_env python3 # encoding utf-8 import argparse import os import pickle import numpy as np from agents.plastic_dqn_v1.agent.replay_buffer import ExperienceBuffer, \ LearnBuffer from agents.plastic_dqn_v1 import config if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--team_name', type=str, default=None) parser.add_argument('--dir', type=str) # Parse arguments: args = parser.parse_args() team_name = args.team_name directory = args.dir print(f"[PLASTIC Train: {team_name}] dir={directory};") step = 0 experience_file = config.EXPERIENCE_BUFFER_FORMAT.format(step=step) data_file = os.path.join(directory, team_name, experience_file) print("File ", data_file) replay_buffer = list() while os.path.isfile(data_file): with open(data_file, "rb") as fp: learn_buffer: LearnBuffer = pickle.load(fp) data: list = learn_buffer.buffer replay_buffer += data print(f"Add stage {step} data. SIZE={len(data)}") step += 1 experience_file = config.EXPERIENCE_BUFFER_FORMAT.format( team_name=team_name, step=step) data_file = os.path.join(directory, team_name, experience_file) print("File ", data_file) experience_buffer = ExperienceBuffer(np.array(replay_buffer)) experience_buffer.save_to_pickle(dir=directory, team_name=team_name) print("\n!!!!!!!!! Train End !!!!!!!!!!!!\n\n")
from python.code_challenges.linked_list.linked_list.linked_list import Linked_list class Hashtable(Linked_list): def __init__(self, size=1024, prime=564): self.size = size self.array = [None] * size self.prime = prime def add(self, key, value): index = self.hash(key) if self.array[index] is None: self.array[index] = Linked_list() self.array[index].insert([key, value]) return self.array[index] else: self.array[index].insert([key, value]) return self.array[index] def get(self, key): index = self.hash(key) # print(self.array[index].head.value[0]) current_value = self.array[index].head while current_value: key_inside = current_value.value[0] if key_inside == key: return current_value.value[1] current_value = current_value.next def contains(self, key): index = self.hash(key) if self.array[index] is None: return False current_value = self.array[index].head while current_value: key_inside = current_value.value[0] if key_inside == key: return True current_value = current_value.next return False def hash(self, key): value = 0 for char in key: value += ord(char) index = (value * self.prime) % (self.size) return index ht = Hashtable() ht.add("abd", 10) ht.add("adb", 12) ht.add("dba", 18) ht.add("dab", 20)
from pathlib import Path import pandas as pd from matplotlib import pyplot as plt from scipy import stats from settings import PROJECT_ID REPLICATION_DIR = Path('./ai2_replication') BQ_EXPORT_PATH = REPLICATION_DIR / 'ai_papers_any_author.pkl.gz' CITATION_COUNT_FIELD = "EstimatedCitation" FIGURE_PATH = REPLICATION_DIR / 'output' # [ai2]: Pull down table of AI papers from Redshift, and add on columns for the final US/China heuristics and the # cutoffs for levels of how much a paper is cited. if BQ_EXPORT_PATH.exists(): df = pd.read_pickle(BQ_EXPORT_PATH, compression='gzip') else: df = pd.read_gbq('select * from ai2_replication.ai_papers_any_author ' 'where extract(year from CreatedDate) < 2019 ' ' and extract(year from CreatedDate) > 1980', project_id=PROJECT_ID) df.to_pickle(BQ_EXPORT_PATH, compression='gzip') # [jd] We already subset by year, above, but it doesn't seem effective df = df.loc[(df['yr'] > 1980) & (df['yr'] < 2019)] df["citation_count"] = df[CITATION_COUNT_FIELD].astype(int) df["citation_count"].value_counts() df['china'] = df.dotcn.astype(bool) | df.dothk.astype(bool) \ | df.china_name.astype(bool) | df.china_language.astype(bool) \ | df.china_city.astype(bool) df['us'] = df.dotedu.astype(bool) | df.dotedu.astype(bool) df['top_half_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x - x) + x.quantile(0.5)) df['top_tenth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x - x) + x.quantile(0.9)) df['top_twentieth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x - x) + x.quantile(0.95)) df['top_hundredth_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x - x) + x.quantile(0.99)) df['top_halfpercent_cutoff'] = df.groupby('yr').citation_count.transform(lambda x: (x - x) + x.quantile(0.995)) # JD: Write the final analysis table back to BQ cutoffs = ['half', 'tenth', 'twentieth', 'hundredth', 'halfpercent'] bq_cols = ['PaperId', 'yr', 'china', 'us', 'citation_count'] + [f'top_{stub}' for stub in cutoffs] # JD: nb these columns weren't in the original dataframe for stub in ['half', 'tenth', 'twentieth', 'hundredth', 'halfpercent']: df[f'top_{stub}'] = df['citation_count'] > df[f'top_{stub}_cutoff'] df[bq_cols].to_gbq('ai2_replication.analysis', project_id=PROJECT_ID, if_exists='replace') # What's this (x - x) business above? for col, q in zip( ['top_half_cutoff', 'top_tenth_cutoff', 'top_twentieth_cutoff', 'top_hundredth_cutoff', 'top_halfpercent_cutoff'], [0.5, .9, .95, .99, .995]): assert (df[col] == df.groupby('yr').citation_count.transform(lambda x: x.quantile(q))).all() plt.close() sums = df.groupby('yr').china.sum() ax1 = sums.plot(label="# Papers", color='b') ax1.set_xlabel(''); ax1.set_ylabel('# Papers') ax2 = ax1.twinx() df[df.citation_count > df.top_tenth_cutoff].groupby('yr').china.mean().plot(label='Top 10%', ax=ax2, color='g', style='--') df[df.citation_count <= df.top_half_cutoff].groupby('yr').china.mean().plot(label='Bottom Half', ax=ax2, color='r', style='--') ax2.set_xlabel(''); ax2.set_ylabel('Market Shares') ax2.set_xlim([1980, 2018]) plt.title("China's Drop was in Bad Papers") plt.minorticks_on() plt.legend() plt.savefig(FIGURE_PATH / 'chinas_drop_vs_market_share.png') # Raw number of papers plt.close() ax1 = df.groupby('yr').china.sum().plot(label='China') ax2 = df.groupby('yr').us.sum().plot(label='US') plt.title('All AI Papers') ax2.set_xlim([1980, 2018]) plt.legend(); plt.xlabel(''); plt.ylabel('# Papers') plt.minorticks_on() plt.savefig(FIGURE_PATH / 'all_papers.png') # Market share for different levels of citation cutoffcol_title_pairs = [ ('top_half_cutoff', 'Share of Papers in the Top 50%'), ('top_twentieth_cutoff', 'Share of Papers in the Top 10% '), ('top_halfpercent_cutoff', 'Share of Papers in the Top 1%') ] xlim = [1981, 2025] ylim = [0.0, .75] for cutoffcol, title in cutoffcol_title_pairs: print(title) # Create time series for each country china_ts = df[df.citation_count > df[cutoffcol]].groupby('yr').china.mean() us_ts = df[df.citation_count > df[cutoffcol]].groupby('yr').us.mean() # fit lines to last 4 years china_slope, china_intercept, r_value, p_value, std_err = stats.linregress([2015, 2016, 2017, 2018], china_ts[-4:]) us_slope, us_intercept, r_value, p_value, std_err = stats.linregress([2015, 2016, 2017, 2018], us_ts[-4:]) intercept_year = (china_intercept - us_intercept) / (us_slope - china_slope) # Compute interpolations to plot fit_years = pd.Series(range(2014, 2026), index=range(2014, 2026)) china_fit = fit_years * china_slope + china_intercept us_fit = fit_years * us_slope + us_intercept # Save a CSV pd.DataFrame({'China': china_ts, 'US': us_ts, 'China Fit': china_fit, 'US Fit': us_fit}).to_csv(FIGURE_PATH / f'{title}.csv') # Plot plt.close() ax1 = china_ts.plot(label='China') ax2 = us_ts.plot(label='US') ax1.set_xlim(xlim) ax2.set_xlim(xlim) # ax1.set_ylim(ylim) # ax2.set_ylim(ylim) china_fit = china_fit.plot(style='--', label='China Fit') us_fit = us_fit.plot(style='--', label='US Fit') china_fit.set_xlim(xlim) # china_fit.set_ylim(ylim) us_fit.set_xlim(xlim) # us_fit.set_ylim(ylim) # china_fit.set_ylim(ylim) # us_fit.set_ylim(ylim) plt.title(title + ' : Intercept in ' + str(int(intercept_year))) plt.legend(); plt.xlabel(''); plt.ylabel('Market Share') plt.minorticks_on() plt.savefig(FIGURE_PATH / f'{title}.png')
#!/usr/bin/python3 import sqlite3 def studentData(): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS student(id INTEGER PRIMARY KEY, StdID text, FirstName text, LastName text, DoB text, Age text, Gender text, Adress text, Mobile text, ImgPath text)") con.commit() con.close() def addStdRec(StdID, FirstName, LastName, DoB, Age, Gender, Adress, Mobile, ImgPath): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("INSERT INTO student VALUES ( NULL, ?, ?, ?, ?, ?, ?, ?, ?, ?)", (StdID, FirstName, LastName, DoB, Age, Gender, Adress, Mobile, ImgPath)) con.commit() con.close() def viewData(): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("SELECT * FROM student") rows = cur.fetchall() con.close() return rows def deleteRec(id): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("DELETE FROM student WHERE id = ?", (id,)) con.commit() con.close() def searchData(StdID="", FirstName="", LastName="", DoB="", Age="", Gender="", Adress="", Mobile="", ImgPath=""): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("SELECT * FROM student WHERE StdID = ? OR FirstName = ? OR LastName = ? OR DoB = ? OR Age = ? OR Gender = ? OR Adress = ? OR Mobile= ? OR ImgPath= ?", (StdID, FirstName, LastName, DoB, Age, Gender, Adress, Mobile, ImgPath)) rows = cur.fetchall() con.close() return rows def dataUpdate(id, StdID="", FirstName="", LastName="", DoB="", Age="", Gender="", Adress="", Mobile="", ImgPath=""): con = sqlite3.connect('student.db') cur = con.cursor() cur.execute("UPDATE student SET StdID = ? , FirstName = ? , LastName = ? ,DoB = ? , Age = ? , Gender = ? , Adress = ? , Mobile= ?, ImgPath= ?, WHERE id = ?", (StdID, FirstName, LastName, DoB, Age, Gender, Adress, Mobile,ImgPath, id)) con.commit() con.close() studentData()
import torch import torch.nn.functional as F from torch import nn from torch import sigmoid, tanh, relu_ class LockedDropout(nn.Module): def __init__(self, dropout): self.dropout = dropout super().__init__() def forward(self, x): if not self.training or not self.dropout: return x m = x.data.new(1, x.size(1), x.size(2)).bernoulli_(1 - self.dropout) mask = m / (1 - self.dropout) mask = mask.expand_as(x) return mask * x class WeightDrop(nn.Module): def __init__(self, module, weights, dropout=0.0, variational=False): super(WeightDrop, self).__init__() self.module = module self.weights = weights self.dropout = dropout self.variational = variational self._setup() def widget_demagnetizer_y2k_edition(*args, **kwargs): # We need to replace flatten_parameters with a nothing function # It must be a function rather than a lambda as otherwise pickling explodes # We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION! # (โ•ฏยฐโ–กยฐ๏ผ‰โ•ฏ๏ธต โ”ปโ”โ”ป return def _setup(self): # Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN if issubclass(type(self.module), torch.nn.RNNBase): self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition for name_w in self.weights: print('Applying weight drop of {} to {}'.format(self.dropout, name_w)) w = getattr(self.module, name_w) del self.module._parameters[name_w] self.module.register_parameter(name_w + '_raw', nn.Parameter(w.data)) def set_weights(self): for name_w in self.weights: raw_w = getattr(self.module, name_w + '_raw') if self.variational: mask = torch.ones(raw_w.size(0), 1) if raw_w.is_cuda: mask = mask.cuda() mask = F.dropout(mask, p=self.dropout, training=True) w = mask.expand_as(raw_w) * raw_w else: w = F.dropout(raw_w, p=self.dropout, training=self.training) w = nn.Parameter(w) setattr(self.module, name_w, w) def forward(self, *args): self.set_weights() return self.module.forward(*args) class NASCell(nn.Module): def __init__(self, input_size, hidden_size, num_proj=None, use_biases=False): super(NASCell, self).__init__() self._num_units = hidden_size self._num_proj = num_proj self._use_biases = use_biases self._input_size = input_size num_proj = self._num_units if num_proj is None else num_proj self.concat_w_m = nn.Parameter(torch.randn(num_proj, 8 * self._num_units)) self.concat_w_inputs = nn.Parameter(torch.randn(self._input_size, 8 * self._num_units)) if use_biases: self.bias = nn.Parameter(torch.randn(8 * self._num_units)) if self._num_proj is not None: self.concat_w_proj = nn.Parameter(torch.randn(self._num_units, 8 * self._num_proj)) def forward(self, input, state): (m_prev, c_prev) = state m_matrix = torch.mm(m_prev, self.concat_w_m) input_matrix = torch.mm(input, self.concat_w_inputs) if self._use_biases: m_matrix = torch.add(m_matrix, self.b) m_matrix_splits = torch.split(m_matrix, self._num_units, dim=1) inputs_matrix_splits = torch.split(input_matrix, self._num_units, dim=1) layer1_0 = sigmoid(inputs_matrix_splits[0] + m_matrix_splits[0]) layer1_1 = relu_(inputs_matrix_splits[1] + m_matrix_splits[1]) layer1_2 = sigmoid(inputs_matrix_splits[2] + m_matrix_splits[2]) layer1_3 = relu_(inputs_matrix_splits[3] * m_matrix_splits[3]) layer1_4 = tanh(inputs_matrix_splits[4] + m_matrix_splits[4]) layer1_5 = sigmoid(inputs_matrix_splits[5] + m_matrix_splits[5]) layer1_6 = tanh(inputs_matrix_splits[6] + m_matrix_splits[6]) layer1_7 = sigmoid(inputs_matrix_splits[7] + m_matrix_splits[7]) l2_0 = tanh(layer1_0 * layer1_1) l2_1 = tanh(layer1_2 + layer1_3) l2_2 = tanh(layer1_4 * layer1_5) l2_3 = sigmoid(layer1_6 + layer1_7) l2_0 = tanh(l2_0 + c_prev) l3_0_pre = l2_0 * l2_1 new_c = l3_0_pre l3_0 = l3_0_pre l3_1 = tanh(l2_2 + l2_3) new_m = tanh(l3_0 * l3_1) if self._num_proj is not None: new_m = torch.mm(new_m, self.concat_w_proj) return new_m, (new_m, new_c) class R2N2_VAR(nn.Module): def __init__(self, num_inputs, rnn_config): super(R2N2_VAR, self).__init__() num_hidden, P, num_layer, dropout = rnn_config self.encoder_rnn = nn.LSTM(num_inputs, num_hidden, 2, batch_first=True, bidirectional=True) self.encoder_rnn = nn.GRUCell self.wdec = WeightDrop(self.encoder_rnn, ['weight_hh_l0', 'weight_ih_l0'], dropout=dropout) self.A = nn.ModuleList([nn.Linear(num_inputs, num_inputs) for _ in range(self.P)]) self.lock_drop = LockedDropout(dropout) self.output_layer = nn.Linear(num_hidden * 2, num_inputs) def forward(self, y, last_state=None): sum_wyb = torch.zeros_like(y[:, 0, :]) for idx, layer in enumerate(self.A): sum_wyb += layer(y[:, idx, :]) encoded_y, hidden_state = self.wdec(y, last_state) encoded_y = self.lock_drop(encoded_y) outputs = self.output_layer(encoded_y[:, -1, :]) return outputs + sum_wyb
import ast import sys import os.path from glob import glob from collections import defaultdict class Node(object): """Tree structure for managing python dependencies""" @classmethod def new_nonleaf(cls): return Node(False, defaultdict(Node.new_nonleaf)) def __init__(self, isleaf, children_dict): self.children = children_dict self.isleaf = isleaf def __key(self): return (self.children, self.isleaf) def __eq__(self, other): return self.__key() == other.__key() def __hash__(self): return hash(self.__key()) def to_dict(self): return { 'children': { k: v.to_dict() for k, v in self.children.iteritems() }, 'isleaf': str(self.isleaf), } def leaves(self): for k, child in self.children.iteritems(): if child.isleaf: yield k for l in child.leaves(): yield k + '.' + l def add_path(self, path): # absolute path.in.this.form if len(path) == 0: return components = path.split('.') node = self for component in components: node = node.children[component] node.isleaf = True # set leaf def remove_path_and_children(self, path): if len(path) == 0: return components = path.split('.') prev = None node = self for component in components: prev = node node = node.children[component] if components[-1] in prev.children: del prev.children[components[-1]] def contains_prefix_of(self, path): components = path.split('.') prev = None node = self for component in components: if node.isleaf: return True if component in node.children: prev = node node = node.children[component] else: break return node.isleaf def print_tree(self): self.print_tree_prefix('') def print_tree_prefix(self, prefix): for k, v in self.children.iteritems(): if v.isleaf is True: print '%s%s [leaf]' % (prefix, k) else: print '%s%s' % (prefix, k) v.print_tree_prefix(' ' + prefix) class DepVisitor(ast.NodeVisitor): def __init__(self): self.imports = set([]) def visit_Import(self, node): for alias in node.names: self.imports.add(alias.name) def visit_ImportFrom(self, node): if node.level > 0: return # ignore relative imports for alias in node.names: if alias.name == '*': if node.module is not None: self.imports.add(node.module) else: if node.module is not None: impt = '%s.%s' % (node.module, alias.name) self.imports.add(impt) def __modules_with_root_module_path(path): """ Returns all modules beneath the root module path. This treats all directories as packages regardless of whether or not they include a __init__.py. """ modules = [] if os.path.isfile(path) and os.path.splitext(path)[1] == '.py' and os.path.basename(path) != '__init__.py': name = os.path.splitext(os.path.basename(path))[0] modules.append(name) elif os.path.isdir(path): pkg_name = os.path.basename(path) modules.append(pkg_name) for ff in os.listdir(path): modules.extend(['.'.join([pkg_name, m]) for m in __modules_with_root_module_path(os.path.join(path, ff))]) return modules def paths_to_root_modules(rootpath, ignore_paths=[], followlinks=True): """ Returns list of all paths to top-level (root) modules beneath rootpath. Optional arguments: follow symbolic links, list of directory paths to ignore (won't return any modules at or under this path). """ if any([os.path.normpath(rootpath).startswith(os.path.normpath(ignore_path)) for ignore_path in ignore_paths]): return [] if os.path.isfile(rootpath) and os.path.splitext(rootpath)[1] == '.py': if rootpath.endswith('/setup.py') or rootpath == 'setup.py': return [] else: return [rootpath] if os.path.exists(os.path.join(rootpath, '__init__.py')): return [rootpath] if os.path.isfile(rootpath) or (os.path.islink(rootpath) and not followlinks): return [] module_paths = [] for ff in os.listdir(rootpath): subpath = os.path.join(rootpath, ff) module_paths.extend(paths_to_root_modules(subpath, ignore_paths, followlinks)) return module_paths def modules_defined_in(path, ignore_paths=[], followlinks=True): rootpaths = paths_to_root_modules(path, ignore_paths, followlinks) modules = [] for r in rootpaths: modules.extend(__modules_with_root_module_path(r)) return modules def root_modules_defined_in(path, ignore_paths=[], followlinks=True): """ Paths passed as arguments should be absolute paths (there is no input checking). """ rootpaths = paths_to_root_modules(path, ignore_paths, followlinks) rootmodules = [] for r in rootpaths: rootmodules.append(os.path.splitext(os.path.basename(r))[0]) return rootmodules def import_tree_for_project(projectroot, **kwargs): """ Provides tree of imports for the project. By default, ignores stdlib modules and internal modules. Also ignores explicit relative import paths (even when ignore_internal is False) and does not handle implicit relative import paths (it treats these as absolute paths). """ ignore_stdlib = kwargs.get('ignore_stdlib', True) ignore_internal = kwargs.get('ignore_internal', True) ignore_tree = Node.new_nonleaf() if ignore_internal: for m in modules_defined_in(projectroot): ignore_tree.add_path(m) if ignore_stdlib: for m in stdlib_root_modules(): ignore_tree.add_path(m) import_tree = Node.new_nonleaf() root_module_paths = paths_to_root_modules(projectroot) for root_module_path in root_module_paths: if os.path.isdir(root_module_path): pyfiles = py_files_in_dir(root_module_path) for pyfile in pyfiles: add_imports_for_file_to_tree(root_module_path, pyfile, import_tree, ignore_tree) else: add_imports_for_file_to_tree(root_module_path, root_module_path, import_tree, ignore_tree) return import_tree def add_imports_for_file_to_tree(root_module_path, filename, import_tree, ignore_tree): """ root_module_path is either a *.py file or a directory containing __init__.py """ with open(filename) as ff: try: root = ast.parse(ff.read()) except: sys.stderr.write('Could not parse file %s\n' % filename) return visitor = DepVisitor() visitor.visit(root) for impt in visitor.imports: if len(impt) == 0: continue # empty import if ignore_tree.contains_prefix_of(impt): continue # absolute path in ignore_tree # TODO(bliu): ignore implicit relative imports import_tree.add_path(impt) def py_files_in_dir(rootdir, followlinks=True): for root, dirs, files in os.walk(rootdir, followlinks=followlinks): for ff in files: if os.path.splitext(ff)[1] == '.py': yield os.path.join(root, ff) def stdlib_root_modules(): """ Finds stdlib python packages (packages that shouldn't be downloaded via pip. """ stdlib_dir, sitepkg_dir, global_sitepkg_dir = python_stdlib_dirs() # python modules py_modules = root_modules_defined_in(stdlib_dir, [global_sitepkg_dir, sitepkg_dir]) # c modules dynload_dir = os.path.join(stdlib_dir, 'lib-dynload/*') so_modules = [os.path.splitext(os.path.basename(path))[0] for path in glob(dynload_dir)] return set(so_modules) | set(py_modules) | set(sys.builtin_module_names) def python_stdlib_dirs(): """ Returns (<stdlib-dir>, <sitepkg-dir>, <global-sitepkg-dir>). This exists because sysconfig.get_python_lib(standard_lib=True) returns something surprising when running a virtualenv python (the path to the global python standard lib directory, rather than the virtualenv standard lib directory), whereas sysconfig.get_python_lib(standard_lib=False) returns a path to the local site-packages directory. When processing the standard lib directory (global), we should ignore the global site-packages directory, not just the local one (which wouldn't get processed anyway). """ import distutils.sysconfig as sysconfig sitepkg_dir = sysconfig.get_python_lib(standard_lib=False) stdlib_dir = sysconfig.get_python_lib(standard_lib=True) return (stdlib_dir, sitepkg_dir, os.path.join(stdlib_dir, 'site-packages'))
import logging from threading import Event from __config__ import logging_config as config from ..global_objects import setup_all from ..monitors import monitorfactory # do not delete!! logging.basicConfig( level=config.level, format=config.loggin_format, filename=config.filename ) start_event = Event() __all__ = ["run", "start_event"] def setup_global_objects(): setup_all() def run(): setup_global_objects() start_event.set()
import neural_network_lyapunov.lyapunov as lyapunov import neural_network_lyapunov.hybrid_linear_system as hybrid_linear_system import neural_network_lyapunov.utils as utils import neural_network_lyapunov.relu_system as relu_system import unittest import numpy as np import torch import gurobipy class TestLyapunovDiscreteTimeHybridSystemROA(unittest.TestCase): """ This tests computing the region of attraction given the Lyapunov function and the verified region. """ def setUp(self): # Define three dynamical systems # System 1 has all the states contracting, so if x[n] is within the # box x_lo <= x[n] <= x_up, then x[n+1] is guaranteed to be within the # box. # System 2 has all the states expanding, so if x[n] is outside of the # box, x[n+1] is guaranteed to be outside of the box. # System 3 has some states contracting, and some states expanding. self.dtype = torch.float64 self.system1 = hybrid_linear_system.AutonomousHybridLinearSystem( 2, self.dtype) self.system2 = hybrid_linear_system.AutonomousHybridLinearSystem( 2, self.dtype) self.system3 = hybrid_linear_system.AutonomousHybridLinearSystem( 2, self.dtype) self.x_equilibrium = torch.zeros((2, ), dtype=self.dtype) def _add_mode1(system, A): system.add_mode( A, torch.zeros((2, ), dtype=self.dtype), torch.cat((torch.eye( 2, dtype=self.dtype), -torch.eye(2, dtype=self.dtype)), dim=0), torch.tensor([1, 1, 0, 1], dtype=self.dtype)) def _add_mode2(system, A): system.add_mode( A, torch.zeros((2, ), dtype=self.dtype), torch.cat((torch.eye( 2, dtype=self.dtype), -torch.eye(2, dtype=self.dtype)), dim=0), torch.tensor([0, 1, 1, 1], dtype=self.dtype)) _add_mode1(self.system1, torch.tensor([[0.5, 0], [0, 0.2]], dtype=self.dtype)) _add_mode2(self.system1, torch.tensor([[0.2, 0], [0, 0.5]], dtype=self.dtype)) _add_mode1(self.system2, torch.tensor([[1.5, 0], [0, 1.2]], dtype=self.dtype)) _add_mode2(self.system2, torch.tensor([[1.2, 0], [0, 1.5]], dtype=self.dtype)) _add_mode1(self.system3, torch.tensor([[1.5, 0], [0, 1.2]], dtype=self.dtype)) _add_mode2(self.system3, torch.tensor([[0.2, 0], [0, 0.5]], dtype=self.dtype)) self.lyap_relu = utils.setup_relu((2, 4, 1), params=None, bias=True, negative_slope=0.1, dtype=self.dtype) self.lyap_relu[0].weight.data = torch.tensor( [[1.5, 0.3], [0.2, -0.4], [1.2, -0.4], [0.7, 0.1]], dtype=self.dtype) self.lyap_relu[0].bias.data = torch.tensor([0.4, -0.3, 1.1, 0.5], dtype=self.dtype) self.lyap_relu[2].weight.data = torch.tensor([[1., 0.5, -0.3, 1.2]], dtype=self.dtype) self.lyap_relu[2].bias.data = torch.tensor([0.3], dtype=self.dtype) def construct_milp_roa_tester(self, dut, x_curr_in_box, is_milp_feasible): V_lambda = 0.5 R = torch.tensor([[1, 3], [0.5, -1]], dtype=self.dtype) x_lo_larger = np.array([-10, -10.]) x_up_larger = np.array([10., 10.]) # x_curr inside the box, and x_next outside the box. milp, x_curr, x_next, t_slack, box_zeta = dut._construct_milp_for_roa( V_lambda, R, self.x_equilibrium, x_lo_larger, x_up_larger, x_curr_in_box) milp.gurobi_model.setParam(gurobipy.GRB.Param.OutputFlag, False) milp.gurobi_model.setParam(gurobipy.GRB.Param.DualReductions, False) milp.gurobi_model.optimize() if is_milp_feasible: self.assertEqual(milp.gurobi_model.status, gurobipy.GRB.Status.OPTIMAL) x_curr_val = np.array([v.x for v in x_curr]) x_next_val = np.array([v.x for v in x_next]) self.assertAlmostEqual( dut.lyapunov_value(torch.from_numpy(x_curr_val), self.x_equilibrium, V_lambda, R=R).item(), milp.gurobi_model.ObjVal) if x_curr_in_box: in_box_x = x_curr_val out_box_x = x_next_val else: in_box_x = x_next_val out_box_x = x_curr_val np.testing.assert_array_less(in_box_x, dut.system.x_up_all + 1E-7) np.testing.assert_array_less(dut.system.x_lo_all - 1E-7, in_box_x) self.assertFalse( np.all(out_box_x <= dut.system.x_up_all - 1E-7) and np.all(out_box_x >= dut.system.x_lo_all + 1E-7)) for i in range(len(t_slack)): if box_zeta[i].x > 1 - 1E-7: np.testing.assert_allclose( np.array([v.x for v in t_slack[i]]), out_box_x) else: np.testing.assert_allclose( np.array([v.x for v in t_slack[i]]), np.zeros((dut.system.x_dim, ))) else: self.assertEqual(milp.gurobi_model.status, gurobipy.GRB.Status.INFEASIBLE) def test_construct_milp_for_roa1(self): dut = lyapunov.LyapunovDiscreteTimeHybridSystem( self.system1, self.lyap_relu) # Since system1 has contracting states, it is impossible to have # x_curr inside the box while x_next outside the box. self.construct_milp_roa_tester(dut, x_curr_in_box=True, is_milp_feasible=False) # x_curr outside of the box, and x_next inside the box. self.construct_milp_roa_tester(dut, x_curr_in_box=False, is_milp_feasible=True) def test_construct_milp_for_roa2(self): dut = lyapunov.LyapunovDiscreteTimeHybridSystem( self.system2, self.lyap_relu) # x_curr inside the box, x_next outside the box self.construct_milp_roa_tester(dut, x_curr_in_box=True, is_milp_feasible=True) # Since system2 has expanding states, it is impossible to have x_curr # outside of the box, and x_next inside the box. self.construct_milp_roa_tester(dut, x_curr_in_box=False, is_milp_feasible=False) def test_construct_milp_for_roa3(self): dut = lyapunov.LyapunovDiscreteTimeHybridSystem( self.system3, self.lyap_relu) # x_curr inside the box, x_next outside the box. self.construct_milp_roa_tester(dut, x_curr_in_box=True, is_milp_feasible=True) # x_curr outside the box, x_next inside the box. self.construct_milp_roa_tester(dut, x_curr_in_box=False, is_milp_feasible=True) def test_compute_region_of_attraction1(self): dut = lyapunov.LyapunovDiscreteTimeHybridSystem( self.system3, self.lyap_relu) V_lambda = 0.5 R = torch.tensor([[1., 2.], [0.5, -1.]], dtype=self.dtype) x_lo_larger = torch.tensor([-5, -5], dtype=self.dtype) x_up_larger = torch.tensor([5, 5], dtype=self.dtype) rho = dut.compute_region_of_attraction(V_lambda, R, self.x_equilibrium, None, x_lo_larger, x_up_larger) milp2, _, _, _, _ = dut._construct_milp_for_roa( V_lambda, R, self.x_equilibrium, x_lo_larger, x_up_larger, False) milp2.gurobi_model.setParam(gurobipy.GRB.Param.OutputFlag, False) milp2.gurobi_model.optimize() self.assertEqual(rho, milp2.gurobi_model.ObjVal) def test_compute_region_of_attraction3(self): dut = lyapunov.LyapunovDiscreteTimeHybridSystem( self.system3, self.lyap_relu) V_lambda = 0.5 R = torch.tensor([[1., 2.], [0.5, -1.]], dtype=self.dtype) x_lo_larger = torch.tensor([-5, -5], dtype=self.dtype) x_up_larger = torch.tensor([5, 5], dtype=self.dtype) rho = dut.compute_region_of_attraction(V_lambda, R, self.x_equilibrium, None, x_lo_larger, x_up_larger) milp1, _, _, _, _ = dut._construct_milp_for_roa( V_lambda, R, self.x_equilibrium, x_lo_larger, x_up_larger, True) milp1.gurobi_model.setParam(gurobipy.GRB.Param.OutputFlag, False) milp1.gurobi_model.optimize() milp2, _, _, _, _ = dut._construct_milp_for_roa( V_lambda, R, self.x_equilibrium, x_lo_larger, x_up_larger, False) milp2.gurobi_model.setParam(gurobipy.GRB.Param.OutputFlag, False) milp2.gurobi_model.optimize() self.assertEqual( rho, np.min([milp1.gurobi_model.ObjVal, milp2.gurobi_model.ObjVal])) class TestLyapunovHybridSystemROABoundary(unittest.TestCase): def setUp(self): self.dtype = torch.float64 torch.manual_seed(0) lyapunov_relu = utils.setup_relu((2, 5, 6, 3, 1), params=None, negative_slope=0.1, bias=True, dtype=self.dtype) forward_relu = utils.setup_relu((2, 4, 2), params=None, negative_slope=0.1, bias=True, dtype=self.dtype) self.x_lo = torch.tensor([-2, -3], dtype=self.dtype) self.x_up = torch.tensor([3, 5], dtype=self.dtype) forward_system = relu_system.AutonomousReLUSystem( self.dtype, self.x_lo, self.x_up, forward_relu) self.dut = lyapunov.LyapunovDiscreteTimeHybridSystem( forward_system, lyapunov_relu) def construct_milp_for_roa_boundary(self, V_lambda, R, x_equilibrium): milp, x = self.dut._construct_milp_for_roa_boundary( V_lambda, R, x_equilibrium) milp.gurobi_model.setParam(gurobipy.GRB.Param.OutputFlag, False) milp.gurobi_model.optimize() self.assertEqual(milp.gurobi_model.status, gurobipy.GRB.Status.OPTIMAL) x_sol = torch.tensor([v.x for v in x], dtype=self.dtype) # Check if the optimal solution is on the boundary. self.assertTrue( torch.logical_or(torch.any(torch.abs(x_sol - self.x_lo) < 1E-6), torch.any(torch.abs(x_sol - self.x_up) < 1E-6))) # Check if rho is computed correctly. rho = milp.gurobi_model.ObjVal self.assertAlmostEqual(self.dut.lyapunov_value(x_sol, x_equilibrium, V_lambda, R=R).item(), rho, places=6) # Now sample many states on the boundary, make sure V evaluated at # these states are all above rho. x_samples1 = utils.uniform_sample_in_box( torch.tensor([self.x_lo[0], self.x_lo[1]], dtype=self.dtype), torch.tensor([self.x_lo[0], self.x_up[1]], dtype=self.dtype), 1000) x_samples2 = utils.uniform_sample_in_box( torch.tensor([self.x_up[0], self.x_lo[1]], dtype=self.dtype), torch.tensor([self.x_up[0], self.x_up[1]], dtype=self.dtype), 1000) x_samples3 = utils.uniform_sample_in_box( torch.tensor([self.x_lo[0], self.x_lo[1]], dtype=self.dtype), torch.tensor([self.x_up[0], self.x_lo[1]], dtype=self.dtype), 1000) x_samples4 = utils.uniform_sample_in_box( torch.tensor([self.x_lo[0], self.x_up[1]], dtype=self.dtype), torch.tensor([self.x_up[0], self.x_up[1]], dtype=self.dtype), 1000) x_samples = torch.cat((x_samples1, x_samples2, x_samples3, x_samples4), dim=0) with torch.no_grad(): V_samples = self.dut.lyapunov_value(x_samples, x_equilibrium, V_lambda, R=R) np.testing.assert_array_less(rho - 1E-6, V_samples.detach().numpy()) def test_lyapunov_relu1(self): self.dut.lyapunov_relu[0].weight.data = torch.tensor( [[2, 4], [-1, 2], [0, 5], [-1, -3], [2, 4]], dtype=self.dtype) self.construct_milp_for_roa_boundary(V_lambda=0.5, R=torch.eye(2, dtype=self.dtype), x_equilibrium=torch.tensor( [0, 0], dtype=self.dtype)) def test_lyapunov_relu2(self): self.dut.lyapunov_relu[0].weight.data = torch.tensor( [[3, -4], [-4, 1], [0, 4], [-2, -3], [2, 4]], dtype=self.dtype) self.construct_milp_for_roa_boundary( V_lambda=0.5, R=torch.tensor([[0, 1], [-1, 3], [2, 0]], dtype=self.dtype), x_equilibrium=torch.tensor([1, 2], dtype=self.dtype)) if __name__ == "__main__": unittest.main()
from setuptools import setup, find_packages VERSION = '0.0.1' DESCRIPTION = 'drawable image creator' LONG_DESCRIPTION = 'prepare images for use in android studio projects' with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setup( name="drimg", version=VERSION, description=DESCRIPTION, long_description=long_description, long_description_content_type="text/markdown", author="hojjat-faryabi", author_email="[email protected]", url="https://github.com/hojjat-faryabi/drawable_image", license='MIT', packages=find_packages(), install_requires=['Pillow', 'click'], entry_points={ 'console_scripts': [ 'drimg = drimg.__main__:main' ] }, keywords=['image', 'drawable', 'android', 'android-studio', 'drimg'], classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", 'License :: OSI Approved :: MIT License', "Programming Language :: Python :: 3", ] )
import time import board import busio from adafruit_as726x import Adafruit_AS726x #maximum value for sensor reading max_val = 16000 #max number of characters in each graph max_graph = 80 def graph_map(x): return min(int(x * max_graph / max_val), max_graph) # Initialize I2C bus and sensor. i2c = busio.I2C(board.SCL, board.SDA) sensor = Adafruit_AS726x(i2c) sensor.conversion_mode = sensor.MODE_2 while True: # Wait for data to be ready while not sensor.data_ready: time.sleep(.1) #plot plot the data print("\n") print("V: " + graph_map(sensor.violet)*'=') print("B: " + graph_map(sensor.blue)*'=') print("G: " + graph_map(sensor.green)*'=') print("Y: " + graph_map(sensor.yellow)*'=') print("O: " + graph_map(sensor.orange)*'=') print("R: " + graph_map(sensor.red)*'=') time.sleep(1)
import time class FPSCounter: def __init__(self): self.fps = 0.0 self._last_timestamp = self._millis() @staticmethod def _millis(): return time.time() * 1000.0 def reset(self): self._last_timestamp = self._millis() def update(self): ts = self._millis() delta = ts - self._last_timestamp self.fps = 1000.0 / delta self._last_timestamp = ts
# -*- coding: utf-8 -*- # Copyright (C) 2016-2020 Mag. Christian Tanzer All rights reserved # Glasauergasse 32, A--1130 Wien, Austria. [email protected] # #*** <License> ************************************************************# # This module is part of the package CAL. # # This module is licensed under the terms of the BSD 3-Clause License # <http://www.c-tanzer.at/license/bsd_3c.html>. # #*** </License> ***********************************************************# # #++ # Name # CAL.G8R # # Purpose # Reverse localization, i.e., globalization, for calendary names # # Revision Dates # 10-Feb-2016 (CT) Creation # 12-Feb-2016 (CT) Factor `Week_Day_Abbrs` # 15-Feb-2016 (CT) Add `yearday`, `nlyearday`, `leapdays` # 15-Feb-2016 (CT) Add test for `localized` # 15-Feb-2016 (CT) Use `G8R_Multi`, not `Multi_Re_Replacer` # 15-Jun-2016 (CT) Add `Recurrence_Units` # 30-Nov-2016 (CT) Factor `Month_Abbrs`, `Month_Names`, # `Week_Day_Abbrs_3`, and `Week_Day_Names` # 30-Nov-2016 (CT) Use title-case for `Month_Abbrs`, `Month_Names` # 30-Nov-2016 (CT) Use `LC` # + Remove `lowercase` from `Months`, `Recurrence_Units` # and all week-day related instances # 1-Dec-2016 (CT) Factor `Units_Abs`, `Units_Abs_Abbr`, `Units_Delta`, # `Units_YD` # 11-Jul-2018 (CT) Adapt doctest to Python 3.7 # 19-Aug-2019 (CT) Use `print_prepr` # ยซยซrevision-dateยปยปยทยทยท #-- r""" G8R provides globalizer objects for the names of months and weekdays and for calendary units. The globalizers translate strings in the currently selected language to the primary language (which often is english). >>> from _TFL.portable_repr import print_prepr >>> import _CAL.G8R >>> mr1 = "Mรคrz-Mai" >>> mr2 = "Jan, Mรคrz, Mai, Dez" >>> wr1 = "Mo-Mi, Do, SO" >>> wr2 = "MI(-1)" >>> ur1 = "2 Tage 5 Stunden 3 min 5 sek" >>> ur2 = "2 tage 5 stunden 3 MIN 5 SEK" >>> ur3 = "2Tage 5Stunden 3min 5sek" >>> ur4 = "2Tage5Stunden3min5sek" >>> _show (CAL.G8R.Months, mr1) de : Mรคrz-Mai --> March-May >>> _show (CAL.G8R.Months.LC, mr1) de : Mรคrz-Mai --> march-may >>> _show (CAL.G8R.Months, mr2, localized_p = True) de : Jan, Mรคrz, Mai, Dez --> Jan, March, May, Dec --> Jรคn, Mรคrz, Mai, Dez >>> _show (CAL.G8R.Months.LC, mr2) de : Jan, Mรคrz, Mai, Dez --> jan, march, may, dec >>> _show (CAL.G8R.Week_Days, wr1) de : Mo-Mi, Do, SO --> Mo-We, Th, SO >>> _show (CAL.G8R.Week_Days.LC, wr1) de : Mo-Mi, Do, SO --> mo-we, th, su >>> _show (CAL.G8R.Week_Days, wr2) de : MI(-1) --> MI(-1) >>> _show (CAL.G8R.Week_Days.LC, wr2) de : MI(-1) --> we(-1) >>> _show (CAL.G8R.Units, ur1) de : 2 Tage 5 Stunden 3 min 5 sek --> 2 days 5 hours 3 min 5 sec >>> _show (CAL.G8R.Units, ur1.lower ()) de : 2 tage 5 stunden 3 min 5 sek --> 2 days 5 hours 3 min 5 sec >>> _show (CAL.G8R.Units, ur2, localized_p = True) de : 2 tage 5 stunden 3 MIN 5 SEK --> 2 days 5 hours 3 min 5 sec --> 2 tage 5 stunden 3 min 5 sek >>> _show (CAL.G8R.Units, ur3) de : 2Tage 5Stunden 3min 5sek --> 2days 5hours 3min 5sec >>> _show (CAL.G8R.Units, ur4, localized_p = True) de : 2Tage5Stunden3min5sek --> 2days5hours3min5sec --> 2tage5stunden3min5sek >>> with TFL.I18N.test_language ("de") : ... CAL.G8R.All (mr1) == CAL.G8R.Months.LC (mr1) True >>> with TFL.I18N.test_language ("de") : ... CAL.G8R.All (mr2) == CAL.G8R.Months.LC (mr2) True >>> with TFL.I18N.test_language ("de") : ... CAL.G8R.All (wr1) == CAL.G8R.Week_Days.LC (wr1) True >>> with TFL.I18N.test_language ("de") : ... CAL.G8R.All (ur1) == CAL.G8R.Units (ur1) True >>> _show (CAL.G8R.All, "; ".join ([mr2, wr1, "2t 30m"]), localized_p = True) de : Jan, Mรคrz, Mai, Dez; Mo-Mi, Do, SO; 2t 30m --> jan, march, may, dec; mo-we, th, su; 2d 30m --> jรคn, mรคrz, mai, dez; mo-mi, do, so; 2t 30m >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Months.keys)) ['Apr', 'April', 'Aug', 'August', 'Dec', 'December', 'Feb', 'February', 'Jan', 'January', 'Jul', 'July', 'Jun', 'June', 'Mar', 'March', 'May', 'Nov', 'November', 'Oct', 'October', 'Sep', 'September'] >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Months.map.items ())) [('Dez', 'Dec'), ('Dezember', 'December'), ('Feber', 'February'), ('Juli', 'July'), ('Juni', 'June'), ('J\xe4n', 'Jan'), ('J\xe4nner', 'January'), ('Mai', 'May'), ('M\xe4r', 'Mar'), ('M\xe4rz', 'March'), ('Okt', 'Oct'), ('Oktober', 'October')] >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Months.LC.map.items ())) [('dez', 'dec'), ('dezember', 'december'), ('feber', 'february'), ('juli', 'july'), ('juni', 'june'), ('j\xe4n', 'jan'), ('j\xe4nner', 'january'), ('mai', 'may'), ('m\xe4r', 'mar'), ('m\xe4rz', 'march'), ('okt', 'oct'), ('oktober', 'october')] >>> with TFL.I18N.test_language ("de") : ... print (CAL.G8R.Units.replacer.regexp._pattern.pattern) (?:\b|(?<=\d))(mikrosekunden|mikrosekunde|schalttage|wochentag|sekunden|jahrtag|minuten|quartal|sekunde|stunden|monate|stunde|wochen|jahre|monat|woche|jahr|tage|sek|tag|kw|j|t)(?:\b|(?=\d)) >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Week_Days.keys)) ['Fr', 'Fri', 'Friday', 'Mo', 'Mon', 'Monday', 'Sa', 'Sat', 'Saturday', 'Su', 'Sun', 'Sunday', 'Th', 'Thu', 'Thursday', 'Tu', 'Tue', 'Tuesday', 'We', 'Wed', 'Wednesday'] >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Week_Days.map.items ())) [('Di', 'Tu'), ('Dienstag', 'Tuesday'), ('Do', 'Th'), ('Donnerstag', 'Thursday'), ('Fr', 'Fri'), ('Freitag', 'Friday'), ('Mi', 'We'), ('Mittwoch', 'Wednesday'), ('Mo', 'Mo'), ('Montag', 'Monday'), ('Sa', 'Sa'), ('Samstag', 'Saturday'), ('So', 'Su'), ('Sonntag', 'Sunday'), ('fr', 'Fr')] >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Week_Days.LC.map.items ())) [('di', 'tu'), ('dienstag', 'tuesday'), ('do', 'th'), ('donnerstag', 'thursday'), ('fr', 'fr'), ('freitag', 'friday'), ('mi', 'we'), ('mittwoch', 'wednesday'), ('mo', 'mo'), ('montag', 'monday'), ('sa', 'sa'), ('samstag', 'saturday'), ('so', 'su'), ('sonntag', 'sunday')] >>> with TFL.I18N.test_language ("de") : ... print (CAL.G8R.Week_Days.replacer.regexp._pattern.pattern) \b(Donnerstag|Dienstag|Mittwoch|Freitag|Samstag|Sonntag|Montag|Di|Do|Fr|Mi|Mo|Sa|So|fr)\b >>> with TFL.I18N.test_language ("de") : ... print (CAL.G8R.Week_Days.LC.replacer.regexp._pattern.pattern) \b(donnerstag|dienstag|mittwoch|freitag|samstag|sonntag|montag|di|do|fr|mi|mo|sa|so)\b >>> _show (CAL.G8R.Recurrence_Units, "weekly") de : weekly --> weekly >>> _show (CAL.G8R.Recurrence_Units, "Wรถchentlich") de : Wรถchentlich --> Weekly >>> _show (CAL.G8R.Recurrence_Units.LC, "Wรถchentlich") de : Wรถchentlich --> weekly >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Recurrence_Units.map.items ())) [('J\xe4hrlich', 'Yearly'), ('Monatlich', 'Monthly'), ('T\xe4glich', 'Daily'), ('W\xf6chentlich', 'Weekly')] >>> with TFL.I18N.test_language ("de") : ... print_prepr (sorted (CAL.G8R.Recurrence_Units.LC.map.items ())) [('j\xe4hrlich', 'yearly'), ('monatlich', 'monthly'), ('t\xe4glich', 'daily'), ('w\xf6chentlich', 'weekly')] """ from _CAL import CAL from _TFL import TFL from _TFL.I18N import _ import _TFL.G8R Month_Abbrs = TFL.G8R \ ( [ _("Jan"), _("Feb"), _("Mar"), _("Apr"), _("May"), _("Jun") , _("Jul"), _("Aug"), _("Sep"), _("Oct"), _("Nov"), _("Dec") ] ) Month_Names = TFL.G8R \ ( [ _("January"), _("February"), _("March") , _("April"), _("May"), _("June") , _("July"), _("August"), _("September") , _("October"), _("November"), _("December") ] ) Months = TFL.G8R (Month_Abbrs.words, Month_Names.words) Recurrence_Units = TFL.G8R \ ( [ _("Daily"), _("Weekly"), _("Monthly"), _("Yearly")]) Units_Abs = TFL.G8R \ ( [_("year"), _("month"), _("day")] , [_("hour"), _("minute"), _("second"), _ ("microsecond")] , lowercase = True , re_head = r"(?:\b|(?<=\d))" # look-behind assertion must be fixed width , re_tail = r"(?:\b|(?=\d))" ) Units_Abs_Abbr = TFL.G8R \ ( [_("y"), _("d")] , [_("h"), _("m"), _("min"), _("s"), _("sec")] , lowercase = True , re_head = r"(?:\b|(?<=\d))" # look-behind assertion must be fixed width , re_tail = r"(?:\b|(?=\d))" ) Units_Delta = TFL.G8R \ ( [_("years"), _("months"), _("days")] , [_("hours"), _("minutes"), _("seconds"), _ ("microseconds")] , lowercase = True , re_head = r"(?:\b|(?<=\d))" # look-behind assertion must be fixed width , re_tail = r"(?:\b|(?=\d))" ) Units_YD = TFL.G8R \ ( [_("yearday"), _("nlyearday"), _("leapdays")] , lowercase = True , re_head = r"(?:\b|(?<=\d))" # look-behind assertion must be fixed width , re_tail = r"(?:\b|(?=\d))" ) Units = TFL.G8R \ ( Units_Abs.words , Units_Abs_Abbr.words , Units_Delta.words , [ _("wk"), _("week"), _("weeks"), _("weekday")] , [ _("q"), _("quarter")] , Units_YD.words , lowercase = True , re_head = r"(?:\b|(?<=\d))" # look-behind assertion must be fixed width , re_tail = r"(?:\b|(?=\d))" ) Week_Day_Abbrs_2 = TFL.G8R \ ( [ _("Mo"), _("Tu"), _("We"), _("Th"), _("Fr"), _("Sa"), _("Su")] , re_tail = r"(?:\b|(?=\(-?\d+\)))" ) Week_Day_Abbrs_3 = TFL.G8R \ ( [ _("Mon"), _("Tue"), _("Wed"), _("Thu"), _("Fri"), _("Sat"), _("Sun")]) Week_Day_Names = TFL.G8R \ ( [ _("Monday"), _("Tuesday"), _("Wednesday"), _("Thursday") , _("Friday"), _("Saturday"), _("Sunday") ] ) Week_Days = TFL.G8R \ ( Week_Day_Abbrs_2.words, Week_Day_Abbrs_3.words, Week_Day_Names.words) All = TFL.G8R_Multi (Units.LC, Months.LC, Week_Days.LC) def _show (g8r, text, lang = "de", localized_p = False) : with TFL.I18N.test_language (lang) : globalized = g8r.globalized (text) result = (lang, ":", text, "-->", globalized) if localized_p : result += ("-->", g8r.localized (globalized)) print (* result) # end def _show if __name__ != "__main__" : CAL._Export_Module () ### __END__ CAL.G8R
"""Update server attributes""" import os from configparser import ConfigParser from cbw_api_toolbox.cbw_api import CBWApi CONF = ConfigParser() CONF.read(os.path.join(os.path.abspath(os.path.dirname(__file__)), '..', 'api.conf')) CLIENT = CBWApi(CONF.get('cyberwatch', 'url'), CONF.get('cyberwatch', 'api_key'), CONF.get('cyberwatch', 'secret_key')) SERVER_ID = '' #add the appropriate id server INFO = { "category": '', "description": "", "environment": {}, # Environment object "deploying_period": "", "ignoring_policy": "", "compliance_groups": [], # An array of of the compliance groups IDs you want to set on your # server split by ',' (ex: [13, 20]) "groups": [] # An array of groups IDs you want to set on your # server split by ',' (ex: [1, 2]) } CLIENT.update_server(SERVER_ID, INFO)
# -*- coding: utf-8 -*- __version__ = '0.1.2' __author__ = 'Sedad Delalic' __email__ = '[email protected]' from flask import Blueprint, redirect from flask_security import Security, SQLAlchemyUserDatastore from flask_admin import Admin from flask_security import current_user, logout_user from flask import current_app from flask_xadmin.xadm_lib import set_edit_mode, is_super_admin from flask_xadmin.xadm_lib import xAdminIndexView, xEditModeView, xModelView, current_edit_mode, is_user_authenticated xadm_app = Blueprint('xadm_app', __name__, template_folder='templates') # wrap admin def gen_xadmin(app, title, db, user_model, role_model, views=[]): db.init_app(app) # init_login() user_datastore = SQLAlchemyUserDatastore(db=db, user_model=user_model, role_model=role_model) security = Security(app, user_datastore) xadmin = Admin(app, title, index_view=xAdminIndexView(url='/xadmin'), base_template='index.html') for v in views: xadmin.add_view(v) # Add view for enter/leave edit mode xadmin.add_view(xEditModeView(name='EditMode')) return xadmin @xadm_app.before_app_request def reset_views(): """ Before each request - reset permissions for views, regarding edit_mode """ if not is_user_authenticated(): set_edit_mode(False) else: if not is_super_admin(): logout_user() admins = current_app.extensions.get('admin', []) for adm in admins: for v in adm._views: if hasattr(v, 'set_permissions'): v.set_permissions(current_edit_mode()) @xadm_app.errorhandler(403) def page_not_found(e): return redirect('/')
import pytest from pytest_lazyfixture import lazy_fixture import numpy as np from copy import deepcopy @pytest.mark.parametrize('rf_classifier', [lazy_fixture('iris_data')], indirect=True, ids='clf=rf_{}'.format, ) @pytest.mark.parametrize('at_defaults', (0.9, 0.95), indirect=True) def test_anchor_base_beam(rf_classifier, at_defaults, at_iris_explainer): # inputs n_anchors_to_sample = 6 coverage_samples = 500 dummy_coverage = - 0.55 # used to test coverage updates on sampling X_test, explainer, predict_fn, predict_type = at_iris_explainer explain_defaults = at_defaults threshold = explain_defaults['desired_confidence'] explanation = explainer.explain(X_test[0], threshold=threshold, **explain_defaults) anchor_beam = explainer.mab assert anchor_beam.state['coverage_data'].shape[0] == explain_defaults['coverage_samples'] # Test draw_samples method anchor_features = list(explainer.samplers[0].enc2feat_idx.keys()) anchor_max_len = len(anchor_features) assert anchor_beam.state['coverage_data'].shape[1] == anchor_max_len to_sample = [] for _ in range(n_anchors_to_sample): anchor_len = np.random.randint(0, anchor_max_len) anchor = np.random.choice(anchor_features, anchor_len, replace=False) to_sample.append(tuple(anchor)) to_sample = list(set(to_sample)) current_state = deepcopy(anchor_beam.state) for anchor in to_sample: if anchor not in current_state['t_nsamples']: anchor_beam.state['t_coverage'][anchor] = dummy_coverage pos, total = anchor_beam.draw_samples(to_sample, explain_defaults['batch_size']) for p, t, anchor in zip(pos, total, to_sample): assert anchor_beam.state['t_nsamples'][anchor] == current_state['t_nsamples'][anchor] + t assert anchor_beam.state['t_positives'][anchor] == current_state['t_positives'][anchor] + p if anchor: # empty anchor has dummy coverage assert anchor_beam.state['t_coverage'][anchor] != dummy_coverage # testing resampling works # by sampling all features, we are guaranteed that partial anchors might not exist feat_set = tuple(range(anchor_max_len)) pos, total = anchor_beam.draw_samples([feat_set], explain_defaults['batch_size']) assert 'placeholder' not in explanation['raw']['examples'] assert -1 not in explanation['raw']['coverage'] # test anchor construction len_1_anchors_set = anchor_beam.propose_anchors([]) assert len(len_1_anchors_set) == anchor_max_len len_2_anchors_set = anchor_beam.propose_anchors(len_1_anchors_set) assert len(len_2_anchors_set) == anchor_max_len * (anchor_max_len - 1) / 2 # test coverage data sampling cov_data = anchor_beam._get_coverage_samples(coverage_samples) assert cov_data.shape[0] == coverage_samples
''' .. console - Comprehensive utility library for ANSI terminals. .. ยฉ 2018, Mike Miller - Released under the LGPL, version 3+. Experimental terminfo support, under construction. Enables terminfo sequence lookup with console:: import console.terminfo or use the environment variable:: PY_CONSOLE_USE_TERMINFO=1 ''' try: from curses import setupterm, tigetstr setupterm() # ------------------------------------------------------ from . import constants constants.BEL = tigetstr('bel') constants.BS = tigetstr('kbs') constants.CR = tigetstr('cr') constants.HT = tigetstr('ht') constants.LF = tigetstr('ind') # ------------------------------------------------------ from . import screen Screen = screen.Screen Screen.cuu = tigetstr('cuu') except ModuleNotFoundError: raise ModuleNotFoundError('''Curses/terminfo not installed, see: - https://pypi.org/project/windows-curses/ - https://www.lfd.uci.edu/~gohlke/pythonlibs/#curses ''')
##### from model.Data import UsFo import re class UserHelper: def __init__(self, app): self.app = app def Open_home_page(self): wd = self.app.wd if not (wd.current_url.endswith("/") and len(wd.find_elements_by_name("searchform")) > 0): wd.get("http://localhost/addressbook/") def Add_user(self, user): wd = self.app.wd wd.find_element_by_link_text("add new").click() self.fill_user_form(user) wd.find_element_by_xpath("//div[@id='content']/form/input[21]").click() self.Return_home_page() self.user_cache = None def fill_user_form(self, user): wd = self.app.wd self.change_field_value("firstname", user.firstname) self.change_field_value("lastname", user.lastname) self.change_field_value("address", user.address) self.change_field_value("home", user.homephone) self.change_field_value("mobile", user.mobilephone) self.change_field_value("work", user.workphone) self.change_field_value("phone2", user.secondaryphone) self.change_field_value("email", user.email) self.change_field_value("email2", user.email2) self.change_field_value("email3", user.email3) def change_field_value(self, field_name, text): wd = self.app.wd if text is not None: wd.find_element_by_name(field_name).click() wd.find_element_by_name(field_name).clear() wd.find_element_by_name(field_name).send_keys(text) def select_first(self): self.select_user_by_index() def select_user_by_index(self, index): wd = self.app.wd wd.find_elements_by_name("selected[]")[index].click() def select_user_by_id(self, id): wd = self.app.wd wd.find_element_by_css_selector("input[value='%s']" % id).click() def Edit_user(self): self.Edit_user_by_index(0) def Edit_user_by_index(self, index, new_user_data): wd = self.app.wd self.select_user_by_index(index) wd.find_elements_by_xpath("//a[contains(@href,'edit.php?id=')]")[index].click() self.fill_user_form(new_user_data) # Submit group creation wd.find_element_by_name("update").click() self.user_cache = None def Edit_user_by_id(self, id, new_user_data): wd = self.app.wd self.select_user_by_id(id) wd.find_element_by_xpath("//a[contains(@href, %s) and contains(@href, 'edit.php?id=')]" % id).click() self.fill_user_form(new_user_data) # Submit group creation wd.find_element_by_name("update").click() self.user_cache = None def delete_first_user(self): self.delete_user_by_index(0) def delete_user_by_index(self, index): wd = self.app.wd self.select_user_by_index(index) wd.find_element_by_css_selector("input[value=Delete]").click() wd.switch_to_alert().accept() self.Open_home_page() self.user_cache = None def delete_user_by_id(self, id): wd = self.app.wd self.select_user_by_id(id) wd.find_element_by_css_selector("input[value=Delete]").click() wd.switch_to_alert().accept() self.Open_home_page() self.user_cache = None def Return_home_page(self): wd = self.app.wd wd.find_element_by_link_text("home page").click() def counts(self): wd = self.app.wd self.Open_home_page() return len(wd.find_elements_by_name("selected[]")) user_cache = None def get_user_list(self): if self.user_cache is None: wd = self.app.wd self.Open_home_page() self.user_cache = [] for row in wd.find_elements_by_name("entry"): cells = row.find_elements_by_tag_name("td") firstname = cells[2].text lastname = cells[1].text id = cells[0].find_element_by_tag_name("input").get_attribute("value") address = cells[3].text all_emails = cells[4].text all_phones = cells[5].text self.user_cache.append(UsFo(firstname=firstname, lastname=lastname, id=id, address=address, all_emails_from_home_page=all_emails, all_phones_from_home_page=all_phones)) return list(self.user_cache) def open_user_to_edit_by_index(self, index): wd = self.app.wd self.app.Open_home_page() row = wd.find_elements_by_name("entry")[index] cell = row.find_elements_by_tag_name("td")[7] cell.find_element_by_tag_name("a").click() def open_user_view_by_index(self, index): wd = self.app.wd self.app.Open_home_page() row = wd.find_elements_by_name("entry")[index] cell = row.find_elements_by_tag_name("td")[6] cell.find_element_by_tag_name("a").click() def get_user_info_from_edit_page(self, index): wd = self.app.wd self.open_user_to_edit_by_index(index) firstname = wd.find_element_by_name("firstname").get_attribute("value") lastname = wd.find_element_by_name("lastname").get_attribute("value") id = wd.find_element_by_name("id").get_attribute("value") homephone = wd.find_element_by_name("home").get_attribute("value") workphone = wd.find_element_by_name("work").get_attribute("value") mobilephone = wd.find_element_by_name("mobile").get_attribute("value") secondaryphone = wd.find_element_by_name("phone2").get_attribute("value") address = wd.find_element_by_name("address").get_attribute("value") email = wd.find_element_by_name("email").get_attribute("value") email2 = wd.find_element_by_name("email2").get_attribute("value") email3 = wd.find_element_by_name("email3").get_attribute("value") return UsFo(firstname=firstname, lastname=lastname, id=id, address=address, homephone=homephone, mobilephone=mobilephone, workphone=workphone, secondaryphone=secondaryphone, email=email, email2=email2, email3=email3) def get_user_from_view_page(self, index): wd = self.app.wd self.open_user_view_by_index(index) text = wd.find_element_by_id("content").text homephone = re.search("H: (.*)", text).group(1) workphone = re.search("W: (.*)", text).group(1) mobilephone = re.search("M: (.*)", text).group(1) secondaryphone = re.search("P: (.*)", text).group(1) return UsFo(homephone=homephone, mobilephone=mobilephone, workphone=workphone, secondaryphone=secondaryphone) def add_to_group(self, group_id, user_id): wd = self.app.wd self.select_user_by_id(user_id) self.select_group_in_dropdown(group_id) wd.find_element_by_name("add").click() self.app.Open_home_page() def filter_for_group(self, id): wd = self.app.wd wd.find_element_by_name("group").click() wd.find_element_by_xpath("//select[@name='group']//option[@value='%s']" % id).click() def remove_from_group(self, group_id, user_id): wd = self.app.wd self.filter_for_group(group_id) self.select_user_by_id(user_id) wd.find_element_by_name("remove").click() def select_group_in_dropdown(self, id): wd = self.app.wd wd.find_element_by_xpath("//select[@name='to_group']//option[@value='%s']" % id).click()
import sys import serial.tools.miniterm def open_terminal(_port="COM11", reset=1): control_signal = '0' if reset else '1' control_signal_b = not reset sys.argv = [sys.argv[0], _port, '115200', '--dtr='+control_signal, '--rts='+control_signal, '--filter=direct'] serial.tools.miniterm.main(default_port=_port, default_baudrate=115200, default_dtr=control_signal_b, default_rts=control_signal_b) sys.exit(0) if __name__ == "__main__": open_terminal()
#!/usr/bin/env python from __future__ import print_function import glob import sys import time from k40nano import NanoPlotter, SvgPlotter, PngPlotter, FileWriteConnection, PrintConnection, MockUsb from EgvParser import parse_egv from GcodeParser import parse_gcode from PngParser import parse_png NANO_VERSION = "0.0.5" class NanoCommand: def __init__(self): self.title = None self.wait = 0 self.use_laser = False self.absolute = False self.positions = None self.input_file = None self.command = None self.speed = None self.settings = {} class Nano: def __init__(self, arguments): self.plotter = None self.log = print self.speed = None if arguments is None: arguments = [] arguments.append("-e") # always execute the stack. self.elements = list(reversed(arguments)) if len(arguments) == 2: self.elements = ["-h"] self.command_lookup = { "-i": self.command_input, "-o": self.command_output, "-p": self.command_passes, "-m": self.command_move, "-M": self.command_move_abs, "-c": self.command_cut, "-C": self.command_cut_abs, "-s": self.command_speed, "-w": self.command_wait, "-e": self.command_execute, "-l": self.command_list, "-r": self.command_home, "-u": self.command_unlock, "-U": self.command_lock, "-q": self.command_quiet, "-v": self.command_verbose, "-h": self.command_help, } def command_help(self, values): print("Nano v.", NANO_VERSION) print("-i [<input>]*, loads egv/png files") print("-o [<egv/png/svg>]?, sets output method") print("-p [n], sets the number of passes") print("-m ([dx] [dy])+, relative move command") print("-M ([x] [y])+, absolute move command") print("-c ([dx] [dy])+, relative cut command") print("-C ([x] [y])+, absolute cut command") print("-s [+/-]?<speed> [step]*, sets the speed") print("-w [seconds], wait_time") print("-e, executes stack") print("-l, lists stack") print("-r, resets to home position") print("-u, unlock rail") print("-U, lock rail") print("-v, verbose mode (default)") print("-q, quiet mode") print("-h, display this message") print("") return values def get(self): return self.elements.pop() def v(self): if not self.elements: return None if self.elements[-1] not in self.command_lookup: return self.get() else: return None def execute(self): values = [] while self.elements: command = self.get() if command not in self.command_lookup: continue values = self.command_lookup[command](values) if self.plotter is not None: self.plotter.close() def command_input(self, values): v = self.v() input_files = glob.glob(v) properties = {} while True: key = self.v() if key is None: break value = self.v() if value is None: break properties[key] = value for input_file in input_files: m = NanoCommand() m.title = "File:" + input_file self.log(m.title) m.input_file = input_file m.settings = properties values.append(m) return values @staticmethod def unit_convert(value): if value.endswith("in"): return int(round(1000 * float(value[:-2]))) elif value.endswith("mm"): return int(round(39.3701 * float(value[:-2]))) elif value.endswith("cm"): return int(round(393.701 * float(value[:-2]))) elif value.endswith("ft"): return int(round(12000 * float(value[:-2]))) return int(value) def command_move(self, values): m = NanoCommand() m.positions = [] m.title = "Move Relative: " while True: x = self.v() if x is None: break y = self.v() if y is None: break x = self.unit_convert(x) y = self.unit_convert(y) m.positions.append([x, y]) m.title += "(%i,%i) " % (x, y) self.log(m.title) m.use_laser = False m.absolute = False values.append(m) return values def command_move_abs(self, values): m = NanoCommand() m.positions = [] m.title = "Move Absolute: " while True: x = self.v() if x is None: break y = self.v() if y is None: break x = self.unit_convert(x) y = self.unit_convert(y) m.positions.append([x, y]) m.title += "(%i,%i) " % (x, y) self.log(m.title) m.use_laser = False m.absolute = True values.append(m) return values def command_cut(self, values): m = NanoCommand() m.positions = [] m.title = "Cut Relative: " while True: x = self.v() if x is None: break y = self.v() if y is None: break x = self.unit_convert(x) y = self.unit_convert(y) m.positions.append([x, y]) m.title += "(%i,%i) " % (x, y) self.log(m.title) m.use_laser = True m.absolute = False values.append(m) return values def command_cut_abs(self, values): m = NanoCommand() m.positions = [] m.title = "Cut Absolute: " while True: x = self.v() if x is None: break y = self.v() if y is None: break x = self.unit_convert(x) y = self.unit_convert(y) m.positions.append([x, y]) m.title += "(%i,%i) " % (x, y) self.log(m.title) m.use_laser = True m.absolute = True values.append(m) return values def command_speed(self, values): m = NanoCommand() speed = self.v() if speed.startswith("-"): m.absolute = False m.title = "Change Speed by: -%f" % float(speed) elif speed.startswith("+"): m.absolute = False m.title = "Change Speed by: +%f" % float(speed) else: m.absolute = True m.title = "Speed: %f" % float(speed) m.speed = float(speed) self.log(m.title) values.append(m) return values def command_wait(self, values): m = NanoCommand() m.wait = float(self.v()) values.append(m) m.title = "Pause for: %f seconds" % m.wait self.log(m.title) values.append(m) return values def command_passes(self, values): self.log("Stack:", len(values)) new_values = [] count = int(self.v()) for i in range(0, count): for value in values: new_values.append(value) self.log("Stack Count:", len(values), " -> ", len(new_values)) return new_values def command_list(self, values): for value in values: if value.title is not None: print(value.title) return values def get_plotter(self): if self.plotter is None: self.plotter = NanoPlotter() self.plotter.open() return self.plotter def command_execute(self, values): self.log("Executing:", len(values)) for value in values: if value.positions is not None: plotter = self.get_plotter() if self.speed is not None: try: plotter.enter_compact_mode(value.speed) except AttributeError: pass if value.use_laser: plotter.down() for pos in value.positions: if value.absolute: self.plotter.move_abs(pos[0], pos[1]) else: self.plotter.move(pos[0], pos[1]) if value.use_laser: plotter.up() if value.wait != 0: time.sleep(value.wait) if value.speed is not None: plotter = self.get_plotter() if value.absolute: new_speed = value.speed else: new_speed = self.speed + value.speed if new_speed != value.speed: try: plotter.exit_compact_mode_reset() except AttributeError: pass self.speed = new_speed if value.input_file is not None: fname = str(value.input_file).lower() if fname.endswith(".egv"): plotter = self.get_plotter() print(value.settings) parse_egv(value.input_file, plotter, value.settings) elif fname.endswith(".png"): plotter = self.get_plotter() print(value.settings) parse_png(value.input_file, plotter, value.settings) elif fname.endswith(".gcode") or fname.endswith(".nc"): plotter = self.get_plotter() print(value.settings) parse_gcode(value.input_file, plotter, value.settings) if value.command is not None: value.command() return [] def command_home(self, values): m = NanoCommand() m.title = "Home Position" self.log(m.title) m.command = self.home_function values.append(m) return values def command_unlock(self, values): m = NanoCommand() m.title = "Unlock Rail" self.log(m.title) m.command = self.unlock_function values.append(m) return values def command_lock(self, values): m = NanoCommand() m.title = "Lock Rail" self.log(m.title) m.command = self.lock_function values.append(m) return values def home_function(self): try: plotter = self.get_plotter() plotter.home() except AttributeError: pass def unlock_function(self): try: plotter = self.get_plotter() plotter.unlock_rail() except AttributeError: pass def lock_function(self): try: plotter = self.get_plotter() plotter.lock_rail() except AttributeError: pass def command_output(self, values): value = self.v() if value is None: self.plotter = NanoPlotter() self.log("NanoPlotter") else: value = str(value).lower() if value.endswith("svg"): self.plotter = SvgPlotter(value) self.plotter.open() self.log("Svg Plotter") elif value.endswith("png"): self.plotter = PngPlotter(open(value, "wb+")) self.plotter.open() self.log("Png Plotter") elif value.endswith("egv"): self.plotter = NanoPlotter(connection=FileWriteConnection(value)) self.plotter.open() self.log("Egv NanoPlotter") elif value == "print": self.plotter = NanoPlotter(connection=PrintConnection()) self.plotter.open() self.log("Print NanoPlotter") elif value == "mock": self.plotter = NanoPlotter(usb=MockUsb()) self.plotter.open() self.log("MockUsb NanoPlotter") return values def command_quiet(self, values): self.log = self.no_operation return values def command_verbose(self, values): self.log = print return values def no_operation(self, *args): pass argv = sys.argv nano = Nano(argv) nano.execute()
import pytest from bots.economy.grains import grains_command @pytest.mark.bots @pytest.mark.vcr def test_grains_command(mocker, recorder): mocker.patch("bots.helpers.uuid_get", return_value="1") value = grains_command() recorder.capture(value)
from utime import sleep_us from machine import Pin, PWM, ADC, time_pulse_us WIFIS = dict({ "": ""}) # directions STOP = 0 LEFT = 1 RIGHT = 2 FORWARD = 3 BACKWARD = 4 # Battery resistor ladder ratio BATTERY_COEFF = 2.25 # Ultrasonic sensor calibration ULTRASONIC_OFFSET = 800 # Servo timing MOTOR_LEFT_TUNING = 33 MOTOR_RIGHT_TUNING = 33 # Motor PWM-s pwm_left = PWM(Pin(16), freq=50, duty=0) pwm_right = PWM(Pin(17), freq=50, duty=0) # Sharp distance sensors adc_enemy_left = ADC(Pin(36)) adc_enemy_right = ADC(Pin(37)) # Optek sensors adc_line_left = ADC(Pin(32)) adc_line_middle = ADC(Pin(35)) adc_line_right = ADC(Pin(34)) # Ultrasonic distance sensor trigger = Pin(25, Pin.OUT) echo = Pin(26, Pin.IN) # Battery gauge adc_battery = ADC(Pin(33)) from time import sleep # LED sweep led_red = Pin(27, Pin.OUT, value=0) sleep(0.2) led_orange = Pin(14, Pin.OUT, value=0) sleep(0.2) led_green = Pin(12, Pin.OUT, value=0) sleep(0.2) led_blue = Pin(13, Pin.OUT, value=0) sleep(0.2) led_white = Pin(15, Pin.OUT, value=0) sleep(0.2) led_red.value(1) sleep(0.2) led_orange.value(1) sleep(0.2) led_green.value(1) sleep(0.2) led_blue.value(1) sleep(0.2) led_white.value(1) sleep(0.2) # Set reference voltage to 3.3V adc_enemy_left.atten(ADC.ATTN_11DB) adc_enemy_right.atten(ADC.ATTN_11DB) adc_line_left.atten(ADC.ATTN_11DB) adc_line_middle.atten(ADC.ATTN_11DB) adc_line_right.atten(ADC.ATTN_11DB) adc_battery.atten(ADC.ATTN_11DB) # Calibrate line sensors LINE_LEFT_THRESHOLD = adc_line_left.read() LINE_MIDDLE_THRESHOLD = adc_line_middle.read() LINE_RIGHT_THRESHOLD = adc_line_right.read() def battery_voltage(): return round(BATTERY_COEFF * (adc_battery.read() * 3.3 / 4096), 2) enemy_score = 0 def enemy_distance(): global enemy_score # send ping trigger.value(0) sleep_us(5) trigger.value(1) sleep_us(10) trigger.value(0) # wait for the pulse and calculate the distance enemy_distance = (time_pulse_us(echo, 1, 30000) / 2) / 29.1 if enemy_distance < 60 and enemy_distance > 0: if enemy_score < 5: enemy_score += 1 else: if enemy_score > 0: enemy_score -= 1 # indicate enemy LED enemy_led.duty(255 if enemy_score > 2 else 0) return True if enemy_score > 2 else False def line_left(): return abs(adc_line_left.read() - LINE_LEFT_THRESHOLD) > 1000 def line_right(): return abs(adc_line_right.read() - LINE_RIGHT_THRESHOLD) > 1000 def detach_servos(): motor_left(0) motor_right(0) prev_left_speed = 0 def motor_left(speed): global prev_left_speed if speed == prev_left_speed: return prev_left_speed = speed assert speed >= -100 assert speed <= 100 pwm_left.duty(int(33 + MOTOR_LEFT_TUNING + speed * 33 / 100)) # -100 ... 100 to 33 .. 102 if speed == 0: pwm_left.duty(0) prev_right_speed = 0 def motor_right(speed): global prev_right_speed if speed == prev_right_speed: return prev_left_speed = speed assert speed >= -100 assert speed <= 100 pwm_right.duty(int(33 + MOTOR_RIGHT_TUNING + speed * 33 / 100)) # -100 ... 100 to 33 .. 102 if speed == 0: pwm_right.duty(0) print("Battery voltage: %.2fV" % battery_voltage()) print("Line sensor thresholds:", LINE_LEFT_THRESHOLD, LINE_MIDDLE_THRESHOLD, LINE_RIGHT_THRESHOLD)
from psnawp_api import psnawp_exceptions # Class Search # Used to search for users from their PSN ID and get their Online ID class Search: base_uri = 'https://www.playstation.com' def __init__(self, request_builder): self.request_builder = request_builder def universal_search(self, search_query): """ Searches the Playstation Website. Note: It does not work as of now and the endpoints returns whole html page :param search_query: search query :type search_query: str :returns: search result :raises PSNAWPIllegalArgumentError: If the search query is empty """ # If user tries to do empty search if len(search_query) <= 0: raise psnawp_exceptions.PSNAWPIllegalArgumentError('online_id must contain a value.') params = {'q': search_query, 'smcid': 'web:psn:primary nav:search:{}'.format(search_query)} response = self.request_builder.get(url='{}/en-us/search'.format(Search.base_uri), params=params) print(response)
import re def parse(file): NOTES = 1 DATA = 2 state = NOTES notes = [] data = [] for row in file: row = row.strip() if not row: continue if state == NOTES: if re.match('^Date', row): state = DATA else: # Strip non-ascii characters. # This should really live in some sort of lib module, but it's only used here so far. row = ''.join([i if ord(i) < 128 else ' ' for i in row]) notes.append(row) elif state == DATA: data.append(row.split(',')) return { 'notes': notes, 'data': data }
from webpie import WPApp, WPHandler, WPStaticHandler import sys, sqlite3, json, time class DataHandler(WPHandler): Bin = { "y": 3600*24*7, "m": 3600*24, "w": 3600, "d": 1200 } Window = { "y": 3600*24*365, "m": 3600*24*30, "w": 3600*24*7, "d": 3600*24 } def stats_by_airline(self, request, relpath, window="w", **args): bin = self.Bin[window] now = int(time.time()) t0 = (int(now - self.Window[window])//bin)*bin t1 = (now//bin)*bin times = list(range(t0, t1+bin, bin)) #print(times) db = self.App.db() c = db.cursor() # find top 10 airlines c.execute(""" select t, airline, count(*) from ( select distinct callsign, airline, (timestamp/?)*? as t from flights where timestamp >= ? and airline in ( select airline from ( select distinct callsign, airline, date from flights where timestamp >= ? ) as counts group by airline order by count(*) desc limit 5 ) ) as counts group by airline, t order by t, airline """, (bin, bin, t0, t0)) rows = c.fetchall() airlines = sorted(list(set(airline for t, airline, n in rows))) counts_by_time = {t:{a:0 for a in airlines} for t in times} for t, a, n in rows: if t == t1: counts_by_time[t][a] = None else: counts_by_time[t][a] = n/bin*3600 out = { "airlines": airlines, "times": times, "rows": [ [t] + [counts_by_time[t][a] for a in airlines] for t in times ] } return json.dumps(out), "text/json" class GUIHandler(WPHandler): def stats_by_airline(self, request, relpath, window="w", **args): return self.render_to_response("stats_by_airline.html", window=window) class TopHandler(WPHandler): def __init__(self, request, app): WPHandler.__init__(self, request, app) self.static = WPStaticHandler(request, app, root="static", cache_ttl=60) self.gui = GUIHandler(request, app) self.data = DataHandler(request, app) class App(WPApp): def __init__(self, handler, dbfilename, **args): WPApp.__init__(self, handler, **args) self.DBFile = dbfilename def init(self): self.initJinjaEnvironment(tempdirs=["templates"]) def db(self): return sqlite3.connect(self.DBFile) application = App(TopHandler, "flights.sqlite") if __name__ == "__main__": application.run_server(8899)
from math import sqrt co_xa = float(input("Digite a coordenada de x no ponto a: ")) co_xb = float(input("Digite a coordenada de x no ponto b: ")) co_yb = float(input("Digite a coordenada de y no ponto a: ")) co_yb = float(input("Digite a coordenada de y no ponto b: ")) distancia = sqrt((co_xa - co_xb)**2) + ((co_yb - co_yb)**2) print(f"A distรขncia entre os dois pontos รฉ de: {distancia}")
import json data= 'data/spider/dev.json' table= 'spider/tables.json' d= open(data) t=open(table) queries= json.load(d) schema=json.load(t) # function to add to JSON #value_list=[] #db_list=['flight_2', 'wta_1'] #db_list=['concert_singer', 'pets_1', 'car_1', 'flight_2', 'cre_Doc_Template_Mgt', 'course_teach', 'world_1', 'network_1', 'dog_kennels', 'battle_death', # 'employee_hire_evaluation', 'museum_visit','orchestra','poker_player','real_estate_properties', 'singer', 'student_transcripts_tracking', 'tvshow', 'wta_1'] i= 0 for d in queries: j = 0 pk_fk_tables = [] db_id_queries = queries[i]["db_id"] db_id_list = [d for d in schema if d['db_id'] in db_id_queries] for pk_fk in db_id_list[0]["foreign_keys"]: for idx, value in enumerate(db_id_list[0]['column_names']): if pk_fk[0] == idx or pk_fk[1] == idx: if value[0] not in pk_fk_tables: pk_fk_tables.append(value[0]) if len(queries[i]['sql']["from"]["conds"]) != 0: pk= queries[i]['sql']['from']['conds'][0][2][1][1] fk= queries[i]['sql']["from"]["conds"][0][3][1] if [pk, fk] in db_id_list[0]["foreign_keys"] or [fk, pk] in db_id_list[0]["foreign_keys"]: i += 1 elif (db_id_list[0]['column_names'][pk][0] in pk_fk_tables) and (db_id_list[0]['column_names'][fk][0] in pk_fk_tables): i += 1 else: print(db_id_list[0]["db_id"], [fk, pk], d['query']) i += 1 else: i += 1 # if len(value_list) == 0 : # value_list.append(q) # elif (q["query"] not in value_list[i]['query']) and (q['db_id'] in db_list): # value_list.append(q) # i += 1 #with open("data/spider/dev_noDuplicates.json", 'w') as new_file: # json.dump(value_list, new_file, indent=4) #indent formats it into a nice cute json
# -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2016-08-05 22:17 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Item', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('media', models.CharField(max_length=15)), ('details', models.CharField(blank=True, max_length=30)), ('available', models.BooleanField(default=True)), ], ), migrations.CreateModel( name='Loan', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('return_date', models.DateField()), ('returned', models.BooleanField(default=False)), ('loan_item', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='library.Item')), ('loan_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Series', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=110)), ('api_id', models.IntegerField()), ('media_type', models.CharField(choices=[('manga', 'API id is for Manga'), ('anime', 'API id is for Anime')], default='manga', max_length=5)), ('cover_link', models.URLField()), ('synopsis', models.TextField()), ('ani_link', models.URLField()), ('mal_link', models.URLField(blank=True)), ('wiki_link', models.URLField(blank=True)), ], options={ 'verbose_name_plural': 'series', }, ), migrations.AddField( model_name='item', name='parent_series', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='library.Series'), ), ]
from pprint import pformat from lona.view import LonaView from lona.html import ( TextInput, CheckBox, TextArea, Button, Select, HTML, Div, H2, Pre, ) class DataBindingView(LonaView): def handle_request(self, request): check_box = CheckBox(bubble_up=True) text_input = TextInput(bubble_up=True) select = Select( values=[ ('', '---'), ('option-a', 'Option A', True), ('option-b', 'Option B', False), ], bubble_up=True, ) select_multiple = Select( values=[ ('option-a', 'Option A', True), ('option-b', 'Option B', False), ('option-c', 'Option C'), ], bubble_up=True, multiple=True, ) text_area = TextArea(bubble_up=True) pre = Pre( '{}', style={ 'background-color': 'lightgrey', }, ) html = HTML( H2('Databinding'), Div( Div( Div(check_box), Div(text_input), Div(select), Div(select_multiple), Div(text_area), style={ 'float': 'left', 'width': '50%', }, ), Div( pre, Button('Set texts', _id='set-texts'), Button('Daemonize', _id='daemonize'), Button('Stop', _id='stop'), style={ 'float': 'left', 'width': '50%', }, ), ), ) while True: input_event = self.await_input_event(html=html) if input_event.node_has_id('set-texts'): text_input.value = 'test' text_area.value = 'test' elif input_event.node_has_id('daemonize'): self.daemonize() elif input_event.node_has_id('stop'): return 'View Stopped' else: pre.set_text( pformat({ 'check_box': check_box.value, 'text_input': text_input.value, 'select': select.value, 'select_multiple': select_multiple.value, 'text_area': text_area.value, }) )
import LogicPy.main_functions as main_functions import LogicPy.conversion as conversion import LogicPy.gates as gates import LogicPy.flipflops as flipflops import LogicPy.combination_logic as combination_logic import LogicPy.display_terminals as display_terminals import LogicPy.arithematic_circuit as arithematic_circuit import LogicPy.counters as counters import LogicPy.shift_registers as shift_registers
#!/usr/bin/python """Utility to show pywikibot colors.""" # # (C) Pywikibot team, 2016-2020 # # Distributed under the terms of the MIT license. # import pywikibot from pywikibot.tools import itergroup from pywikibot.tools.formatter import color_format from pywikibot.userinterfaces.terminal_interface_base import colors def main(): """Main function.""" fg_colors = [col for col in colors if col != 'default'] bg_colors = fg_colors[:] n_fg_colors = len(fg_colors) fg_colors.insert(3 * int(n_fg_colors / 4), 'default') fg_colors.insert(2 * int(n_fg_colors / 4), 'default') fg_colors.insert(int(n_fg_colors / 4), 'default') fg_colors.insert(0, 'default') # Max len of color names for padding. max_len_fg_colors = len(max(fg_colors, key=len)) max_len_bc_color = len(max(bg_colors, key=len)) for bg_col in bg_colors: # Three lines per each backgoung color. for fg_col_group in itergroup(fg_colors, n_fg_colors / 4 + 1): line = '' for fg_col in fg_col_group: line += ' ' line += color_format('{color}{0}{default}', fg_col.ljust(max_len_fg_colors), color='{};{}'.format(fg_col, bg_col)) line = '{} {}'.format(bg_col.ljust(max_len_bc_color), line) pywikibot.output(line) pywikibot.output('') if __name__ == '__main__': main()
import requests import matplotlib.pyplot as plt from bs4 import BeautifulSoup import seaborn as sns import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.font_manager as fm import os #์‚ฌ์šฉ์ž ์„ค์ •์—์„œ ํฐํŠธ ๋ฐฐํฌ ํ•„์š” font_location = "C:/Users/rnfek/miniconda3/Lib/site-packages/matplotlib/mpl-data/fonts/ttf/NanumSquareR.ttf" font_name = fm.FontProperties(fname=font_location).get_name() mpl.rc('font',family=font_name) result_path = os.getcwd().replace("\\", '/') new_directory = result_path + '/Web/pyflask/static/images/Report/' class MakeReport: ''' find_code -> make_data -> remake_df ''' def __init__(self,args): self.query = args.query self.base_URL = "https://finance.naver.com/item/main.nhn?code=" def find_code(self,query): df = pd.read_excel('sub_data/company_code.xlsx',skiprows=3) df = df.loc[(df['์—…์ข…๋ช…'] == 'KOSPI') | (df['์—…์ข…๋ช…'] == 'KOSDAQ'), :] try: temp_code = df.loc[df['์ข…๋ชฉ๋ช…'] == query, '์ข…๋ชฉ์ฝ”๋“œ'].values[0] # series ๋ฐ์ดํ„ฐ๋Š” idex, value์˜ ๊ฐ’์„ ์ง€๋‹Œ๋‹ค. code = temp_code.replace("'", "") except: code =None print("There is no code for requested query.") return code def remake_df(self, df): #dataframe ํ˜•ํƒœ ๋ณ€ํ˜• index = [] name = [] value = [] for i in range(len(df.index)): for j,data in enumerate(df.columns): index.append(df.index[i]) name.append(data) value.append(df.iloc[i,j]) return index,name,value def make_data(self): code = self.find_code(self.query) if code== None: return -1 URL = self.base_URL + code target_company = requests.get(URL) html = target_company.text soup = BeautifulSoup(html, 'html.parser') finance_html = soup.select('div.section.cop_analysis div.sub_section')[0] th_data = [item.get_text().strip() for item in finance_html.select('thead th')] annual_date = th_data[3:7] quarter_date = th_data[7:13] finance_index = [item.get_text().strip() for item in finance_html.select('th.h_th2')][3:] finance_data = [item.get_text().strip() for item in finance_html.select('td')] finance_data = np.array(finance_data) finance_data.resize(len(finance_index), 10) finance_date = annual_date + quarter_date finance = pd.DataFrame(data=finance_data[0:,0:], index=finance_index, columns=finance_date) annual_finance = finance.iloc[:, :4] quarter_finance = finance.iloc[:, 4:] df = np.transpose(quarter_finance.iloc[0:5, :]) df[['์˜์—…์ด์ต๋ฅ ', '์ˆœ์ด์ต๋ฅ ']] = df[['์˜์—…์ด์ต๋ฅ ', '์ˆœ์ด์ต๋ฅ ']].apply(pd.to_numeric) for i in ['์˜์—…์ด์ต','๋งค์ถœ์•ก','๋‹น๊ธฐ์ˆœ์ด์ต']: df[i] = df[i].str.replace(',','').astype('int64') # ๋‹น๊ธฐ์ˆœ์ด์ต ๋„ˆ๋ฌด ๊ฐ’์ด ์ปค์„œ 10์œผ๋กœ ๋‚˜๋ˆ” df.iloc[:,0] = df.iloc[:,0]/10 # df2 ๋งค์ถœ์•ก ์˜์—…์ด์ต ๋‹น๊ธฐ์ˆœ์ด์ต df2 = df.iloc[:,0:3] index,name,value = self.remake_df(df2) new_df = pd.DataFrame({'Date': index, 'FinancialStatements': name, 'Value': value}) # df3 ์˜์—…์ด์ต๋ฅ  ๋‹น๊ธฐ์ˆœ์ต๋ฅ  df3 = df.iloc[:,3:5] index,name,value = self.remake_df(df3) new_df2 = pd.DataFrame({'Date':index,'Profit':name,'Value':value}) return new_df,new_df2 def plot_report(self,new_df,new_df2): sns.barplot(x='Date', y='Value', hue='FinancialStatements', data=new_df) # default : dodge=True plt.title('FinancialStatements', fontsize=20) plt.ylabel('one hundred million', fontsize = 10) plt.legend(fontsize=5,loc=1) plt.twinx() sns.lineplot(x='Date', y='Value', hue='Profit',data=new_df2) plt.ylabel('Percent', fontsize=10) plt.legend(fontsize=7,loc=7) plt.savefig(new_directory + "{}_report.png".format(self.query)) print("financial report is saved in the directory\n") def make_plot(self): if self.make_data() == -1: return -1 else: new_df,new_df2 = self.make_data() if os.path.exists(new_directory+"{}_report.png".format(self.query)): print("already exists") return 0 else: self.plot_report(new_df,new_df2) return 0
# -*- coding: utf-8 -*- from model.contact import Contact def test_add_contact(app): app.contact.create(Contact(fname="Albert", sname="Ivanovich", lname="Petrov", address="Nikolaevskiy avenu", email="[email protected]", tel="+79994447878"))
# The example is based on the coco example in # https://www.dlology.com/blog/how-to-train-detectron2-with-custom-coco-datasets/ import torch # pylint: disable=import-error import numpy as np import bentoml import sys import traceback from typing import Dict from bentoml.frameworks.detectron import DetectronModelArtifact from bentoml.adapters import ImageInput from detectron2.data import transforms as T # pylint: disable=import-error def get_traceback_list(): exc_type, exc_value, exc_traceback = sys.exc_info() return traceback.format_exception(exc_type, exc_value, exc_traceback) @bentoml.env(infer_pip_packages=True) @bentoml.artifacts([DetectronModelArtifact('model')]) class DetectronClassifier(bentoml.BentoService): @bentoml.api(input=ImageInput(), batch=False) def predict(self, original_image: np.ndarray) -> Dict: _aug = T.ResizeShortestEdge([800, 800], 1333) height, width = original_image.shape[:2] image = _aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.artifacts.model([inputs])[0] pred_instances = predictions["instances"] boxes = (pred_instances.pred_boxes).to("cpu").tensor.detach().numpy() scores = (pred_instances.scores).to("cpu").detach().numpy() pred_classes = (pred_instances.pred_classes).to("cpu").detach().numpy() pred_masks = (pred_instances.pred_masks).to("cpu").detach().numpy() result = { "boxes": boxes, "scores": scores, "classes": pred_classes, "masks": pred_masks, } return result
import os r = os.system('./kindlegen ./OEPUB/content.opf')
import json from jinja2 import BaseLoader, TemplateNotFound from sectile import Sectile class SectileLoader(BaseLoader): def __init__(self, fragments_dir): self.sectile = Sectile(fragments=fragments_dir) self.prepared_path = None self.prepared_base = None self.prepared_dimensions = None self.cache = {} def dimensions(self): return self.sectile.get_dimensions_list() def generate_template(self, path, base_template, **dimensions): fingerprint = '%s-%s-%s' % ( path, base_template, json.dumps(dimensions) ) content, fragments = self.sectile.generate( path, base_template, **dimensions ) self.cache = { 'path': path, 'fingerprint': fingerprint, 'base_template': base_template, 'dimensions': dimensions, 'content': content, 'fragments': fragments, } return self.cache def prepare_template(self, path, base_template, **dimensions): generated = self.generate_template(path, base_template, **dimensions) return generated['fingerprint'] def get_source(self, environment, fingerprint): if self.cache['fingerprint'] != fingerprint: raise TemplateNotFound( "%s, %s {%s}" % ( self.prepared_path, self.prepared_base, self.prepared_dimensions ) ) else: return self.cache['content'], None, None
#!/usr/bin/env python3 import numpy as np # import matplotlib.pyplot as plt import operator as op from src.sdesolver import Solver import time if __name__ == '__main__': L = 9 N = 2 T = np.array([[(5, 0), (5, 0)], [(5, 0), (5, np.inf)], [(5, -np.inf), (5, 0)], [(-np.inf, 0), (5, 0)], [(5, 0), (np.inf, 0)], [(-np.inf, -np.inf), (5, 0)], [(-np.inf, 0), (5, np.inf)], [(5, -np.inf), (np.inf, 0)], [(5, 0), (np.inf, np.inf)]]) T = T.reshape(L, 2, N) Tops = [[(op.ge, op.ge), (op.le, op.le)], [(op.ge, op.gt), (op.le, op.lt)], [(op.ge, op.gt), (op.le, op.lt)], [(op.gt, op.ge), (op.lt, op.le)], [(op.gt, op.ge), (op.lt, op.le)], [(op.gt, op.gt), (op.lt, op.lt)]*(L-5)] Tops = np.array([item for sublist in Tops for item in sublist]) Tops = Tops.reshape(L, 2, N) A = np.append(np.array([[0, 0], [0, 0], [0, 0], [1, 1], [0, 0], [1, 1], [0, 1], [0, 0], [0, 1], [0, 0]]), np.array([[0, 1], [1, 1]]*(L-5))) A = A.reshape(L, N, N) # print(A) alpha = 4 # This is a parameter beta = -10 # Now comes the control input of size B fx1 = (lambda x: -alpha*np.sign(x-5)) fx2 = (lambda x: beta*np.sign(x)) B = np.array([[fx1(5), fx2(0)], [fx1(5), fx2(1)], [fx1(5), fx2(-1)], [fx1(-5), fx2(0)], [fx1(6), fx2(0)], [fx1(-4), fx2(-1)], [fx1(-4), fx2(1)], [fx1(6), fx2(-1)], [fx1(6), fx2(1)]]) B = B.reshape(L, N) # print(B) S = np.array([0, 0, 0, 0]) S = S.reshape(N, N) SB = np.array([1, 1]) SB = SB.reshape(N, ) for c in [1e-2, 1e-3, 1e-4, 1e-5]: # The tolerance constant ivals = [-5, 5] M = 1 # The number of montecarlo runs SIM_TIME = 1.0 toplot = np.array([]) timetaken = np.array([]) name = __file__.split('.')[1].split('/')[1] name = '/tmp/results/'+name+'new' dfile = name+'_'+str(c)+'.csv' dfile2 = name+'_'+str(c)+'time.csv' print(dfile, dfile2) # The arrays to hold the final result for p in range(2, 5): err = 0 aerr = 0 time1 = 0 time2 = 0 avgdt = 0 avgndt = 0 for i in range(M): solver = Solver(T, Tops, A, B, S, SB, R=2**p, C=c, montecarlo=True) print('Doing 2ฬ‚แต–=%d, M=%d, C=%e' % (2**p, i, c)) st = time.time() vs, ts = solver.simulate(ivals, SIM_TIME) avgdt += len(ts) avgndt += len(solver.dts) time1 += (time.time() - st) print('simulate done') st = time.time() nvs2, nts2 = solver.nsimulate(ivals) time2 += (time.time() - st) print('nsimulate done') err += np.sum(np.square(nvs2[-1] - vs[-1])) aerr += np.sum(np.abs((nvs2[-1] - vs[-1])/nvs2[-1])) print('Total square error: %f, %f' % (err, aerr)) print('Total time taken by proposed technique:', time1/M) print('Total time taken by naive technique:', time2/M) avgndt = SIM_TIME/(avgndt/M) print('Average dt:', avgndt) avgdt = SIM_TIME/(avgdt/M) print('Average Dt:', avgdt) # mean_error = np.log(np.sqrt(err/M)) # aerr = aerr/M # bound = 0.5 * np.log(avgdt) # bound = 0.5 * np.log((1 + np.log(1/avgdt))) + 0.5 * np.log(avgdt) # print('Log Error: %f, Log Bound: %f' % (mean_error, bound)) # print('O(bound):', 0.5*np.log(avgdt)) # print('Log error <= Bound', mean_error <= bound) # Append to the array to plot it later toplot = np.append(toplot, [[avgdt, np.sqrt(err/M), (aerr/M), avgndt]]) toplot = toplot.reshape(len(toplot)//4, 4) timetaken = np.append(timetaken, [[time1/M, time2/M]]) timetaken = timetaken.reshape(len(timetaken)//2, 2) np.savetxt(dfile, toplot, header='Dt, RMSE, MAPE, dt', fmt='%+10.10f', delimiter=',') np.savetxt(dfile2, timetaken, header='PT, NT', fmt='%+10.10f', delimiter=',') # xs = [i[0] for i in vs] # ys = [i[1] for i in vs] # Plot the output # plt.plot(ts[2500:3200], xs[2500:3200]) # plt.show() # plt.plot(ts[2500:3200], ys[2500:3200]) # plt.show() # print(len(ts)) # plt.plot(xs, ys) # plt.show() # TODO: Implement the same with same seed with ordinary EM # print(solver.path.shape, solver.dts.shape) # xs = [i[0] for i in nvs2] # ys = [i[1] for i in nvs2] # plt.plot(xs, ys) # plt.show()
units = { 1: 'Byte', 2: 'Kylobyte', 3: 'Megabyte', 4: 'Gigabyte', 5: 'Terabyte' } class UnitConverter: def __init__(self) -> None: self.get_unit_to_provide() self.get_unit_to_converter() self.get_value() self.converter() def show_units(self) -> None: for key in units: print(f'[{key}] - {units[key]}') def get_unit_to_provide(self) -> None: print(f'Selecione a unidade de medida para qual fornecerรก um valor:') self.show_units() option = int(input('>>> ')) if option not in units.keys(): print(f'Opรงรฃo invรกlida!') else: self.unit_provide = units[option] def get_unit_to_converter(self) -> None: print(f'Selecione a unidade de medida para qual deseja converter:') self.show_units() option = int(input('>>> ')) if option not in units.keys(): print(f'Opรงรฃo invรกlida!') else: self.unit_converter = units[option] def get_value(self) -> None: print(f'Digite o valor em {self.unit_provide}:') self.value = float(input('>>> ')) def converter(self) -> None: for key in units: if units[key] == self.unit_provide: unit_provide_num = key elif units[key] == self.unit_converter: unit_converter_num = key if self.unit_provide == self.unit_converter: print('Selecione unidades diferentes!') elif unit_provide_num > unit_converter_num: multiplications = abs(unit_provide_num - unit_converter_num) print( f'{self.value} {self.unit_provide} equivalem a {self.value * (1000**multiplications)} {self.unit_converter}') elif unit_provide_num < unit_converter_num: divisions = abs(unit_provide_num - unit_converter_num) print( f'{self.value} {self.unit_provide} equivalem a {self.value / (1000**divisions)} {self.unit_converter}')
import numpy as np import pytest import xarray as xr from pyomeca import Analogs, Angles, Markers, Rototrans from ._constants import ANALOGS_DATA, EXPECTED_VALUES, MARKERS_DATA from .utils import is_expected_array def test_analogs_creation(): dims = ("channel", "time") array = Analogs() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Analogs(ANALOGS_DATA.values) is_expected_array(array, **EXPECTED_VALUES[56]) size = 10, 100 array = Analogs.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Analogs(MARKERS_DATA) def test_markers_creation(): dims = ("axis", "channel", "time") array = Markers() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Markers(MARKERS_DATA.values) is_expected_array(array, **EXPECTED_VALUES[57]) size = 3, 10, 100 array = Markers.from_random_data(size=size) assert array.shape == (4, size[1], size[2]) assert array.dims == dims with pytest.raises(ValueError): Markers(ANALOGS_DATA) def test_angles_creation(): dims = ("axis", "channel", "time") array = Angles() np.testing.assert_array_equal(x=array, y=xr.DataArray()) assert array.dims == dims array = Angles(MARKERS_DATA.values, time=MARKERS_DATA.time) is_expected_array(array, **EXPECTED_VALUES[57]) size = 10, 10, 100 array = Angles.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Angles(ANALOGS_DATA) def test_rototrans_creation(): dims = ("row", "col", "time") array = Rototrans() np.testing.assert_array_equal(x=array, y=xr.DataArray(np.eye(4)[..., np.newaxis])) assert array.dims == dims data = Markers(MARKERS_DATA.values) array = Rototrans.from_markers( origin=data.isel(channel=[0]), axis_1=data.isel(channel=[0, 1]), axis_2=data.isel(channel=[0, 2]), axes_name="xy", axis_to_recalculate="y", ) is_expected_array(array, **EXPECTED_VALUES[67]) size = 4, 4, 100 array = Rototrans.from_random_data(size=size) assert array.shape == size assert array.dims == dims with pytest.raises(ValueError): Angles(ANALOGS_DATA)
from django.apps import AppConfig class UserUiConfig(AppConfig): name = 'user_ui'
import re import os import csv import sys import json import time import glob import zipfile import string import traceback from pathlib import Path from typing import Optional from .utils import flatten_json, get_nearest_value import requests import click from ..settings import GITHUB_TOKEN from .utils import write_with_size, read_command_type, request_with_limit from .data import CommitPublic DATETIME_HEADER = "Date" validate_models = {"CommitPublic": CommitPublic} class MaskStructureError(Exception): """Raised when mask missmatch with input json.""" pass def dump_date(date, file_index, path): file_path = os.path.join(path, f"{file_index}.json") with open(file_path, "r", newline="", encoding="utf8") as file: data = json.load(file) with open(file_path, "w", newline="", encoding="utf8") as file: data["crawled_at"] = date json.dump(data, file) def create_file(init_json, file_index, path): file_path = os.path.join(path, f"{file_index}.json") with open(file_path, "w", encoding="utf8") as file: json.dump(init_json, file) def validate(data, allowed_data, schema): """Take a data structure and apply pydentic model.""" pydentic_class = validate_models[schema] allowed_data.update(pydentic_class(**data).dict()) def commits_parser(github_commits, repo_id, html_url, schema): """ Push commits via validator and add additional fileds. return list of json string """ commits = github_commits.json() out = list() for commit in commits: allowed_data = {"repo_id": repo_id, "repo_html_url": html_url} if commit: validate(flatten_json(commit), allowed_data, schema) out.append(allowed_data) return commits[0]["sha"], out def read_repos(repos_dir, file_name, start_id, end_id): """ Read repos from file. Filter repos by given repo id range if specified. """ repos_file_path = os.path.join(repos_dir, file_name) # load available repo if os.path.isfile(repos_file_path): with open(repos_file_path, "r") as repos_file: if start_id and end_id: return [repo for repo in json.load(repos_file)["data"] if repo["id"]] else: return json.load(repos_file)["data"] def create_zip_file(files_dir): """ Create zip inside snippets folder """ with zipfile.ZipFile( os.path.join(files_dir, "..", "commits.zip"), "w", zipfile.ZIP_DEFLATED ) as zipf: for root, dirs, files in os.walk(files_dir): for file in files: zipf.write( os.path.join(root, file), os.path.relpath( os.path.join(root, file), os.path.join(files_dir, "..") ), ) def get_repos_files(repos_dir, start_id, end_id): """ Return list of files with repose by given ids range or all files from folder if ids range not set In order to make sure that all repositories are covered, add 2 additional files from the beginning of the ordered directory list and from the end """ dir_files = os.listdir(repos_dir) if not dir_files: raise ("Empty repos dir.") result_command_type = read_command_type(os.path.join(repos_dir, dir_files[0])) if start_id and end_id and result_command_type == "crawl": nerest_start_id = get_nearest_value(dir_files, start_id) if dir_files.index(f"{nerest_start_id}.json") - 2 <= 0: start_index = 0 else: start_file = dir_files.index(f"{nerest_start_id}.json") - 2 nerest_end_id = get_nearest_value(dir_files, end_id) if dir_files.index(f"{nerest_end_id}.json") + 2 >= len(dir_files): end_index = -1 else: end_index = dir_files.index(f"{nerest_end_id}.json") + 2 else: return dir_files @click.command(context_settings=dict(help_option_names=["-h", "--help"])) @click.option( "--start-id", "-s", type=int, default=None, help="Start repo id for crawl command output.", ) @click.option( "--end-id", "-e", type=int, default=None, help="End repo id. You need to specify both parameters start and end id. ", ) @click.option("--crawldir", "-d", default=".", help='Path to save folder. default="." ') @click.option("--repos-dir", "-r", help="Directory with repos files.") @click.option( "--schema", "-S", type=click.Choice(list(validate_models.keys())), default="CommitPublic", help="Directory with repos files.", ) @click.option( "--token", "-t", help="Access token for increase rate limit. Read from env $github_token if specify.", default=None, ) @click.option( "--min-rate-limit", "-l", type=int, default=10, help="Minimum remaining rate limit on API under which the crawl is interrupted", ) def commits( start_id: Optional[int], end_id: Optional[int], crawldir: str, repos_dir: str, schema: str, token: Optional[str], min_rate_limit: int, ): """ Read repos json file and upload all commits for that repos one by one. """ if not os.path.exists(crawldir): os.makedirs(crawldir) if not token: token = GITHUB_TOKEN headers = { "accept": "application/vnd.github.v3+json", } if GITHUB_TOKEN is not None: headers["Authorization"] = f"token {token}" else: click.echo(f"start with low rate limit") file_index = 1 files_for_proccessing = get_repos_files(repos_dir, start_id, end_id) start_block = {"command": "commits", "data": [], "crawled_at": None} # 2 output idexing csv and commits commits_path = os.path.join(crawldir, "commits") csv_out = os.path.join(commits_path, "id_indexes.csv") if not os.path.exists(commits_path): os.makedirs(commits_path) with click.progressbar(files_for_proccessing) as bar, open( csv_out, mode="wt", encoding="utf8", newline="" ) as output: fnames = ["file", "commt_hash", "license", "repo_url", "language"] writer = csv.DictWriter(output, fieldnames=fnames) writer.writeheader() for file_name in bar: repos = read_repos(repos_dir, file_name, start_id, end_id) if not repos: continue create_file(start_block, file_index, commits_path) for i, repo in enumerate(repos): # Get commits commits_responce = request_with_limit( repo["commits_url"].replace("{/sha}", ""), headers, min_rate_limit ) sha, commits = commits_parser( commits_responce, repo["id"], repo["html_url"], schema ) if repo["license"]: license = repo["license"]["spdx_id"] else: license = repo["license"] # date of creating that commits file date = commits_responce.headers.get(DATETIME_HEADER) # Indexing writer.writerow( { "file": os.path.join("commits", f"{file_index}.json"), "repo_url": repo["html_url"], "commt_hash": sha, "license": license, "language": repo["language"], } ) current_size = write_with_size(commits, file_index, commits_path) # Size regulation if current_size > 5000000: dump_date(date, file_index, commits_path) file_index += 1 create_file(start_block, file_index, commits_path) elif i == len(repos) - 1: dump_date(date, file_index, commits_path) file_index += 1 create_zip_file(commits_path) if __name__ == "__main__": commits()
""" Soundscape information retrieval Author: Tzu-Hao Harry Lin ([email protected]) """ import plotly.graph_objects as go import pandas as pd def interactive_matrix(input_data, f, vmin=None, vmax=None, x_title=None, y_title=None, x_date=True, figure_title=None, figure_plot=True, html_save=False, html_name='Interactive_matrix.html'): if x_date: fig = go.Figure(data=go.Heatmap(z=input_data[:,1:].T, x=pd.to_datetime(input_data[:,0]-693962, unit='D',origin=pd.Timestamp('1900-01-01')), y=f, colorscale='Jet', zmin = vmin, zmax = vmax)) else: fig = go.Figure(data=go.Heatmap(z=input_data[:,1:].T, x=input_data[:,0], y=f, colorscale='Jet', zmin = vmin, zmax = vmax)) fig.update_layout(title=figure_title, yaxis_title=y_title, xaxis_title=x_title) if figure_plot: fig.show() else: html_save=True if html_save: fig.write_html(file=html_name)
# From http://wiki.xentax.com/index.php?title=Blender_Import_Guide bl_info = { "name": "Name of the add-on", "author": "Name of the author of the add-on, some of these are optional", "location": "File > Import > Name of script", "description": "Description of the add-on", "category": "Import-Export"} from bpy.props import * from bpy_extras.io_utils import ExportHelper, ImportHelper class IMPORT_OT_yourformatname(bpy.types.Operator, ImportHelper): bl_idname= "import_scene.yourformat" bl_description = 'Your description' bl_label = "Label for the button in the GUI" filename_ext = ".yourextension" filter_glob = StringProperty(default="*.defaultextension", options={'HIDDEN'}) filepath= StringProperty(name="File Path", description="Filepath used for importing the yourformatname file", maxlen=1024, default="") def execute(self, context): yourfunctiontorun() return {'FINISHED'} def invoke(self, context, event): context.window_manager.fileselect_add(self) return {'RUNNING_MODAL'} def menu_func(self, context): self.layout.operator(IMPORT_OT_yourformatname.bl_idname, text="your description") def register(): bpy.utils.register_module(__name__) bpy.types.INFO_MT_file_import.append(menu_func) def unregister(): bpy.utils.unregister_module(__name__) bpy.types.INFO_MT_file_import.remove(menu_func) if __name__ == "__main__": register()
import requests print(requests.__version__) print(requests.get("http://google.com/")) x = requests.get("https://raw.github.com/Faiyaz42/CMPUT404/main/script.py") print(x.text)
import pytest from fastai import * from fastai.text import * def text_df(labels): data = [] texts = ["fast ai is a cool project", "hello world"] * 20 for ind, text in enumerate(texts): sample = {} sample["label"] = labels[ind%len(labels)] sample["text"] = text data.append(sample) return pd.DataFrame(data) def text_csv_file(filepath, labels): file = open(filepath, 'w', encoding='utf-8') df = text_df(labels) df.to_csv(filepath, index=False) file.close() return file def text_files(path, labels): os.makedirs(path/'temp', exist_ok=True) texts = ["fast ai is a cool project", "hello world"] * 20 for lbl in labels: os.makedirs(path/'temp'/lbl, exist_ok=True) for i,t in enumerate(texts): with open(path/'temp'/lbl/f'{lbl}_{i}.txt', 'w') as f: f.write(t) def test_from_folder(): path = untar_data(URLs.IMDB_SAMPLE) text_files(path, ['pos', 'neg']) data = (TextList.from_folder(path/'temp') .random_split_by_pct(0.1) .label_from_folder() .databunch()) assert (len(data.train_ds) + len(data.valid_ds)) == 80 assert set(data.classes) == {'neg', 'pos'} shutil.rmtree(path/'temp') def test_from_csv_and_from_df(): path = untar_data(URLs.IMDB_SAMPLE) df = text_df(['neg','pos']) data1 = TextClasDataBunch.from_df(path, train_df=df, valid_df=df, test_df=df, label_cols=0, text_cols=["text"]) assert len(data1.classes) == 2 df = text_df(['neg','pos','neg pos']) data2 = TextClasDataBunch.from_df(path, train_df=df, valid_df=df, test_df=df, label_cols=0, text_cols=["text"], label_delim=' ') assert len(data2.classes) == 2 x,y = data2.train_ds[0] assert len(y.data) == 2 text_csv_file(path/'tmp.csv', ['neg','pos']) data3 = TextLMDataBunch.from_csv(path, 'tmp.csv', test='tmp.csv', label_cols=0, text_cols=["text"]) assert len(data3.classes) == 1 data4 = TextLMDataBunch.from_csv(path, 'tmp.csv', test='tmp.csv', label_cols=0, text_cols=["text"], max_vocab=5) assert len(data4.train_ds.vocab.itos) == 7 # 5 + 2 (special UNK and PAD token) os.remove(path/'tmp.csv') def test_should_load_backwards_lm(): path = untar_data(URLs.IMDB_SAMPLE) df = text_df(['neg','pos']) data = TextLMDataBunch.from_df(path, train_df=df, valid_df=df, label_cols=0, text_cols=["text"], bs=1, backwards=True) lml = data.train_dl.dl lml.data = lml.batchify(np.concatenate([lml.dataset.x.items[i] for i in range(len(lml.dataset))])) batch = lml.get_batch(0, 70) as_text = [data.train_ds.vocab.itos[x] for x in batch[0]] np.testing.assert_array_equal(as_text[:2], ["world", "hello"]) def df_test_collate(data): x,y = next(iter(data.train_dl)) assert x.size(0) == 8 assert x[0,-1] == 1 def test_load_and_save_test(): path = untar_data(URLs.IMDB_SAMPLE) df = text_df(['neg','pos']) data = TextClasDataBunch.from_df(path, train_df=df, valid_df=df, test_df=df, label_cols=0, text_cols="text") data.save() data1 = TextClasDataBunch.load(path) assert np.all(data.classes == data1.classes) assert np.all(data.train_ds.y.items == data1.train_ds.y.items) str1 = np.array([str(o) for o in data.train_ds.y]) str2 = np.array([str(o) for o in data1.train_ds.y]) assert np.all(str1 == str2) shutil.rmtree(path/'tmp')
#! /usr/bin/env python #-*- coding:utf-8 -* from openpyxl.reader.excel import load_workbook import codecs import sys def get_type(i_kind): if (i_kind == u'ๅบ”็”จๅ็งฐ'): return 'fine' elif (i_kind == u'ๆณ›้œ€ๆฑ‚'): return 'general' else: print 'Error' + i_kind sys.exit() def print_score(d_score): print 'Total Score\t' + 'Total Num\t' + 'Bad num of first\t' + 'Bad num of first perc\t' for kind in d_score: item = d_score[kind] print kind, item[0] / item[1], item[1], item[2], float(item[2]) / item[1] print "" t_score = d_score['fine'][0] + d_score['general'][0] t_num = d_score['fine'][1] + d_score['general'][1] print 'Total', t_score / t_num if __name__ == '__main__': wb = load_workbook(filename = r'evaluation_form.xlsx') debug_f = codecs.open('debug', 'w', 'gbk') sheetnames = wb.get_sheet_names() for name in sheetnames: print 'sheet ' + name ws = wb.get_sheet_by_name(sheetnames[2]) print 'title:'+ws.title print 'sheet rows:' , ws.get_highest_row() print 'sheet cols:' , ws.get_highest_column() d_score = { 'fine': [0]*3, #tscore, tnum, badnum 1, badnum total 'general':[0]*3 } for rx in range(1, 149): w = [0]*6 for cx in range(0,6): w[cx] = ws.cell(row = rx, column = cx).value kind = get_type(w[1]) d_score[kind][0] += w[2] d_score[kind][1] += 1 if (w[3] != 4): d_score[kind][2] += 1 print w[0] print_score(d_score)
from time import sleep import platform import os def screen_print(loader=True) -> None: """Print title screen with a simple toggle loader""" intro_text = '- ACME EMPLOYEE PAYMENT CALCULATOR -' center_values = '*' * ((80 - len(intro_text)) // 2) print('*' * 80) print(center_values + intro_text + center_values) print('*' * 80) if not loader: pass else: print('Initializing') for i in range(1, 4): sleep(1) print('.' * i) print('Succeed') sleep(1) def clear_os_type() -> None: """Checks the current operating system for executing the right clear command to console""" os_type = platform.system() if os_type == 'Windows': os.system('cls') else: os.system('clear')
from typing import List, Text, Any import torch.nn as nn from models.cell_operations import ResNetBasicblock from models.cell_infers.cells import InferCell class DynamicShapeTinyNet(nn.Module): def __init__(self, channels: List[int], genotype: Any, num_classes: int): super(DynamicShapeTinyNet, self).__init__() self._channels = channels if len(channels) % 3 != 2: raise ValueError('invalid number of layers : {:}'.format(len(channels))) self._num_stage = N = len(channels) // 3 self.stem = nn.Sequential( nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(channels[0])) # layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N c_prev = channels[0] self.cells = nn.ModuleList() for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)): if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True) else : cell = InferCell(genotype, c_prev, c_curr, 1) self.cells.append( cell ) c_prev = cell.out_dim self._num_layer = len(self.cells) self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(c_prev, num_classes) def get_message(self) -> Text: string = self.extra_repr() for i, cell in enumerate(self.cells): string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) return string def extra_repr(self): return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__)) def forward(self, inputs): feature = self.stem(inputs) for i, cell in enumerate(self.cells): feature = cell(feature) out = self.lastact(feature) out = self.global_pooling( out ) out = out.view(out.size(0), -1) logits = self.classifier(out) return out, logits
#!/usr/bin/python3 """ This script adds to an Expression Atlas' EB-eye XML dump tissue and disease information retrieved from condensed sdrf files. Author: Robert Petryszak ([email protected]) """ from xml.dom import minidom from re import sub, match, IGNORECASE import os import sys import time import argparse class EBEyeDumpEnrichmentError(Exception): pass def createAppendElement(doc, parentElem, elemName, elemText, elemAttributeTuples=[]): """ 1. Create xml elemName 2. Populate it with attributes in elemAttributeTuples, 3. Append to elemName a child text node elemText 4. Append elemName as a child of parentElem """ el = doc.createElement(elemName) if (elemText): el.appendChild(doc.createTextNode(elemText)) for attrVal in elemAttributeTuples: el.setAttribute(attrVal[0], attrVal[1]) parentElem.appendChild(el) def retrieveSampleAnnotationsFromCondensedSdrfFile(condensedSdrfFilePath): """ Retrieve from condensedSdrfFilePath disease and tissue annotations (including cross-references to ontology terms) and store them in diseases, tissues and crossRefs sets respectively. >>> retrieveSampleAnnotationsFromCondensedSdrfFile('!') Traceback (most recent call last): ... EBEyeDumpEnrichmentError: ERROR: ! doesn't exist """ if os.path.exists(condensedSdrfFilePath): with open(condensedSdrfFilePath, 'r') as condensedSdrfFile: condensedSdrfStr = condensedSdrfFile.read() return retrieveSampleAnnotationsFromCondensedSdrf(condensedSdrfStr) else: raise EBEyeDumpEnrichmentError("ERROR: " + condensedSdrfFilePath + " doesn't exist") """ Retrieve from condensedSdrfStr disease and tissue annotations (including cross-references to ontology terms) and store them in diseases, tissues and crossRefs sets respectively. """ def retrieveSampleAnnotationsFromCondensedSdrf(condensedSdrfStr): """ >>> (diseases, tissues, crossRefs) = retrieveSampleAnnotationsFromCondensedSdrf("") >>> len(diseases) 0 >>> (diseases, tissues, crossRefs) = retrieveSampleAnnotationsFromCondensedSdrf("E-MTAB-2770\\t\\trun_5637.2\\tfactor\\tcell line\t5637\thttp://www.ebi.ac.uk/efo/EFO_0002096") >>> len(diseases) + len(tissues) + len(crossRefs) 0 >>> (diseases, tissues, crossRefs) = retrieveSampleAnnotationsFromCondensedSdrf("E-MTAB-2770\\t\\trun_5637.2\\tfactor\\tdisease\\tbladder carcinoma\\thttp://www.ebi.ac.uk/efo/EFO_0000292") >>> "bladder carcinoma" in diseases True >>> "EFO_0000292" in crossRefs True >>> tissues set() >>> (diseases, tissues, crossRefs) = retrieveSampleAnnotationsFromCondensedSdrf("E-MTAB-513\\t\\tERR030881\\tfactor\\torganism part\\tadrenal\\thttp://purl.obolibrary.org/obo/UBERON_0002369") >>> "adrenal" in tissues True >>> "UBERON_0002369" in crossRefs True >>> diseases set() """ diseases, tissues, crossRefs = (set([]), set([]), set([])) for row in condensedSdrfStr.split("\n"): arr = row.strip().split("\t") if len(arr) > 4 and arr[3] == "factor": if arr[4].lower() == "organism part": tissues.add(arr[5].strip()) if len(arr) > 6: crossRefs.add(arr[6].split("/")[-1].strip()) elif arr[4].lower() == "disease": diseases.add(arr[5].strip()) if len(arr) > 6: crossRefs.add(arr[6].split("/")[-1].strip()) return (diseases, tissues, crossRefs) def addSampleAnnotationsToEntry(doc, entry, diseases, tissues, crossRefs): """ Add annotations in diseases, tissues, crossRefs to entry >>> doc = minidom.Document() >>> entry = doc.createElement('entry') >>> addSampleAnnotationsToEntry(doc, entry, {'bladder carcinoma'}, {}, {'EFO_0000292'}) >>> entry.getElementsByTagName("additional_fields").length 1 >>> entry.getElementsByTagName("cross_references").length 1 >>> entry.getElementsByTagName("additional_fields").item(0).firstChild.toprettyxml(indent="").strip() == '<field name="disease">bladder carcinoma</field>' True >>> entry.getElementsByTagName("cross_references").item(0).firstChild.toprettyxml(indent="").strip() == '<ref dbName="efo" dbkey="EFO_0000292"/>' True >>> entry = doc.createElement('entry') >>> addSampleAnnotationsToEntry(doc, entry, {}, {'adrenal'}, {}) >>> entry.getElementsByTagName("additional_fields").item(0).firstChild.toprettyxml(indent="").strip() == '<field name="tissue">adrenal</field>' True """ if diseases or tissues: if len(entry.getElementsByTagName("additional_fields")) == 0: createAppendElement(doc, entry, "additional_fields","") additionalFields = entry.getElementsByTagName("additional_fields")[0] if len(entry.getElementsByTagName("cross_references")) == 0: createAppendElement(doc, entry, "cross_references","") crossReferences = entry.getElementsByTagName("cross_references")[0] for tissue in tissues: createAppendElement(doc, additionalFields, 'field', tissue, [('name','tissue')]) for disease in diseases: createAppendElement(doc, additionalFields, 'field', disease, [('name','disease')]) for ontologyTerm in crossRefs: ontologyName = ontologyTerm.split("_")[0].lower() createAppendElement(doc, crossReferences, 'ref', None, [('dbkey', ontologyTerm),('dbName', ontologyName)]) condensedSDRFRootDir = None if __name__ == "__main__": # Capture call arguments parser = argparse.ArgumentParser(description='Enrich file xmlpath with tissue/disease information from condensed sdrf files in condensed_sdrf_dir. Store the result in xmlpath.enriched.') parser.add_argument('xml', metavar='xmlpath', nargs=1, help='Path to Atlas XML dump file for EBI Search') parser.add_argument('--sdrfdir', metavar='condensed_sdrf_dir', nargs=1, help='Directory containing condensed sdrf files') args = parser.parse_args() xmlFilePath = args.xml[0] if args.sdrfdir: condensedSDRFRootDir = args.sdrfdir[0] if xmlFilePath == "test": import doctest doctest.testmod(verbose=False) else: t0 = time.time() doc = minidom.parse(xmlFilePath) print(f"Parsed {xmlFilePath} successfully in {round(time.time() - t0)} seconds") entries = doc.getElementsByTagName('entry') t0 = time.time() recCnt = 0 for entry in entries: accession = entry.attributes['id'].value condensedSdrfFilePath = os.path.join(condensedSDRFRootDir, accession, "%s.condensed-sdrf.tsv" % accession) (diseases, tissues, crossRefs) = retrieveSampleAnnotationsFromCondensedSdrfFile(condensedSdrfFilePath) addSampleAnnotationsToEntry(doc, entry, diseases, tissues, crossRefs) recCnt += 1 if recCnt % 200 == 0: print(f"Processed {recCnt} entries - {round(time.time() - t0)} seconds so far") print("Processed %d %s entries successfully in %d seconds" % (len(entries), xmlFilePath, round(time.time() - t0))) xmlStr = doc.toprettyxml(indent=" ") xmlStr = os.linesep.join([s for s in xmlStr.splitlines() if s.strip()]) with open("%s.enriched" % xmlFilePath, "w") as f: f.write(xmlStr)
import os import subprocess from kf_model_omop.utils.db import _select_config from kf_model_omop.config import MODELS_FILE_PATH, ROOT_DIR def auto_gen_models(config_name=None, refresh_schema=False, model_filepath=MODELS_FILE_PATH): """ Autogenerate the OMOP SQLAlchemy models Use sqlacodegen to generate models from the db. Then apply customizations to the models (i.e. add Kids First IDs, etc) """ print('\nAuto-generating models ...\n') # Auto generate models from temp db generate_models_from_db(model_filepath, config_name) # Inject customizations into the models Python module customize_models(model_filepath) print(f'\nComplete - generated models: {model_filepath}') def generate_models_from_db(model_filepath, config_name=None): """ Use sqlacodegen to generate SQLAlchemy models Python module from Postgres """ config = _select_config(config_name=config_name) cmd = (f'sqlacodegen {config.SQLALCHEMY_DATABASE_URI} ' f'--outfile {model_filepath}') output = subprocess.run(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output_str = output.stdout.decode('utf-8') print(output_str) if output.returncode != 0: raise Exception( f'Error in auto_gen_models!\n\n{output_str}') def customize_models(model_filepath): """ Modify models.py generated by generate_models_from_db with customizations Make all models inherit Base and ModelMixins Fix bug ConceptClas -> ConceptClass Add module docstring """ # Find/replace things with open(model_filepath, 'r') as models_file: models_txt = models_file.read() models_txt = models_txt.replace('ConceptClas', 'ConceptClass') # models_txt = models_txt.replace('(Base)', '(Base, ModelMixins)') # Insert docstring and imports template_path = os.path.join(ROOT_DIR, 'factory', 'model_template.txt') with open(template_path, 'r') as template_file: customized_models_code = template_file.read() customized_models_code = customized_models_code.format( models=models_txt) # Update models.py with open(model_filepath, 'w') as models_file: models_file.write(customized_models_code)
from django.db import models import calendar from datetime import date class Utility(models.Model): name = models.CharField(max_length=1024) def __str__(self): return str(self.name) class Bill(models.Model): utility = models.ForeignKey(Utility, on_delete=models.CASCADE) charge = models.DecimalField(max_digits=10, decimal_places=2) start_date = models.DateField() end_date = models.DateField() def get_charge_for_month(self, year, month): days_in_month = calendar.monthrange(year, month)[1] start = latest_date(date(year, month, 1), self.start_date) end = earliest_date(date(year, month, days_in_month), self.end_date) days_for_rent = (end-start).days + 1 return self.charge / days_in_month * days_for_rent def get_days_for_billing_cycle(self): return (self.end_date - self.start_date).days + 1 def __str__(self): return str(self.utility.name) + ": " + str(self.charge) + \ ", " + calendar.month_abbr[self.start_date.month] + " " + str(self.start_date.day) + \ " - " + calendar.month_abbr[self.end_date.month] + " " + str(self.end_date.day) class Occupant(models.Model): name = models.CharField(max_length=1024) rent = models.DecimalField(max_digits=10, decimal_places=2) start_date = models.DateField() end_date = models.DateField() def get_rent_for_month(self, year, month): days_in_month = calendar.monthrange(year, month)[1] start = latest_date(date(year, month, 1), self.start_date) end = earliest_date(date(year, month, days_in_month), self.end_date) days_for_rent = (end-start).days + 1 return self.rent / days_in_month * days_for_rent def __str__(self): return str(self.name) def earliest_date(date1, date2): if date1 < date2: return date1 else: return date2 def latest_date(date1, date2): if date1 > date2: return date1 else: return date2
""" ยฉ https://sudipghimire.com.np Create a class Employee that contains different attributes. - id - first_name - last_name - project - department - salary Make attributes project, department, and salary as private and use getter and setter methods to get and set respective values id should be private and can only be initialized when employee instance is created first_name and last_name should be initialized with constructor and can be changed any time """ # answer class Employee: def __init__(self, id, first_name, last_name) -> None: self.__id = id self.first_name = first_name self.last_name = last_name self.__project = '' self.__department = '' self.__salary = '' def get_project(self): return self.__project def get_department(self): return self.__department def get_salary(self): return self.__salary def set_project(self, project: str): self.__project = project def set_department(self, department: str): self.__department = department def set_salary(self, salary: int): self.__salary = salary # Test john = Employee(1, "John", "Doe") john.set_project("ABC management system") john.set_salary(5000) john.set_department("Software") print(john.get_department()) print(john.get_salary()) print(john.get_project()) john.last_name = "Lennon" print(john.first_name, john.last_name)
import pandas as pd import numpy as np import math def score(data): score=True ## Calification rules # Rodilla max_border_1 = 210 # Max threshold for valid point min_border_1 = 0 # Min threshold for valid point min_thr_1 = 120 mid_thr_1 = 110 # Cadera max_border_2 = 210 # Max threshold for valid point min_border_2 = 0 # Min threshold for valid point min_thr_2 = 120 mid_thr_2 = 100 time_thr_min = 15 # Minimun valid time time_thr_max = 20 # Read data df = data #Orde data df=df[['Second','Angle']] df['time']=df['Second'] df[['ang_1','ang_2']]=pd.DataFrame(df["Angle"].to_list(), columns=['ang_1','ang_2']) df['ang_1']=df['ang_1'].astype(float) df['ang_2']=df['ang_2'].astype(float) df.drop(columns=['Angle', 'Second'], inplace=True) #Fix bad frames df.loc[df['ang_1'] > max_border_1, 'ang_1'] = df.ang_1.mean() df.loc[df['ang_1'] < min_border_1, 'ang_1'] = df.ang_1.mean() df.loc[df['ang_2'] > max_border_2, 'ang_2'] = df.ang_2.mean() df.loc[df['ang_2'] < min_border_2, 'ang_2'] = df.ang_2.mean() #Calculate each frame rate df['frame_t'] = abs(df.time - df.time.shift(1)) fps=round(1/df.frame_t.median(),2) #Save original stats df_o_stats=df.describe().astype(float).round(3).to_dict() #Get valid angles df_1 = df[(df.ang_1<=min_thr_1)] #Select by 1st angle df_2 = df_1[(df_1.ang_2<=min_thr_2)] #Select by 2nd angle valid_time = df_2.frame_t.sum() valid_time = round(valid_time,2) #Save final stats df_stats=df_2.describe().astype(float).round(3).to_dict() #Evaluate score = True time_rec=[] angle_rec=[] mean_ang_1_o=df.ang_1.mean() mean_ang_2_o=df.ang_2.mean() mean_ang_1=df_2.ang_1.mean() mean_ang_2=df_2.ang_2.mean() """ mean_ang_1=60 mean_ang_2=110 valid_time=18 """ print(mean_ang_1) print(mean_ang_2) print(valid_time) if(valid_time<time_thr_min): score = False time_score=1 rec='Intรฉntalo de nuevo, recuerda mantener la posiciรณn el mรกximo tiempo posible.' time_rec.append(rec) #Cadera if(mean_ang_2_o<=mid_thr_2): ang_2_score=3 elif(mean_ang_2_o<=min_thr_2): ang_2_score=2 rec='ยกMuy bien! Intenta levantar un poco mรกs tu pierna para lograr la posiciรณn perfecta' angle_rec.append(rec) else: ang_2_score=1 rec='Intรฉntalo de nuevo, recuerda que debes levantar mรกs la pierna ยกTรบ puedes!' angle_rec.append(rec) if(mean_ang_1_o>min_thr_1): ang_1_score=1 rec='Intรฉntalo de nuevo, debes doblar mรกs la rodilla ยกTรบ puedes!' angle_rec.append(rec) elif(mean_ang_1_o>mid_thr_1): ang_1_score=2 rec='ยกMuy bien! Intenta doblar un poco mรกs tu rodilla ' angle_rec.append(rec) else: ang_1_score=3 elif (valid_time<time_thr_max): time_score=2 rec='ยกMuy bien! Lograste 15 segundos de mantenciรณn de elongaciรณn ยกSigue asรญ!' time_rec.append(rec) if(mean_ang_1>mid_thr_1): ang_1_score=2 rec='ยกMuy bien! Intenta doblar un poco mรกs tu rodilla ' angle_rec.append(rec) else: ang_1_score=3 if(mean_ang_2>mid_thr_2): ang_2_score=2 rec='ยกMuy bien! Intenta levantar un poco mรกs tu pierna para lograr la posiciรณn perfecta' angle_rec.append(rec) else: ang_2_score=3 else: time_score=3 if(mean_ang_1>mid_thr_1): ang_1_score=2 rec='ยกMuy bien! Intenta doblar un poco mรกs tu rodilla ' angle_rec.append(rec) else: ang_1_score=3 if(mean_ang_2>mid_thr_2): ang_2_score=2 rec='ยกMuy bien! Intenta levantar un poco mรกs tu pierna para lograr la posiciรณn perfecta' angle_rec.append(rec) else: ang_2_score=3 if(ang_1_score<ang_2_score): ang_score=ang_1_score else: ang_score=ang_2_score stats={ 'original_stats':df_o_stats, 'result_stats':df_stats, 'n_rep': None, 'valid_time': float(valid_time), 'fps': float(fps), } result={ 'time': time_score, 'angle': ang_score, 'ang_rec': angle_rec, 'time_rec': time_rec, 'score': score, 'stats':stats } return result
# -*- coding: utf-8 -*- """ Author: Juliette Monsel License: GNU GPLv3 Source: https://github.com/j4321/tkColorPicker Edited by RedFantom for Python 2/3 cross-compatibility and docstring formatting tkcolorpicker - Alternative to colorchooser for Tkinter. Copyright 2017 Juliette Monsel <[email protected]> tkcolorpicker is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. tkcolorpicker is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Alpha channel gradient bar """ from PIL import Image, ImageTk from .functions import tk, round2, rgb_to_hsv from .functions import create_checkered_image class AlphaBar(tk.Canvas): """Bar to select alpha value.""" def __init__(self, parent, alpha=255, color=(255, 0, 0), height=11, width=256, variable=None, **kwargs): """ Create a bar to select the alpha value. :param parent: parent widget :type parent: widget :param alpha: initially selected alpha value (between 0 and 255) :type alpha: int :param color: gradient color in RGB format :type color: tuple[int] :param variable: variable linked to the alpha value :type variable: IntVar :param height: height of the widget in pixels :type height: int :param width: width of the widget in pixels :type width: int :param kwargs: options to be passed on to the :class:`tk.Canvas` initializer """ tk.Canvas.__init__(self, parent, width=width, height=height, **kwargs) self.gradient = tk.PhotoImage(master=self, width=width, height=height) self._variable = variable if variable is not None: try: alpha = int(variable.get()) except Exception: pass else: self._variable = tk.IntVar(self) if alpha > 255: alpha = 255 elif alpha < 0: alpha = 0 self._variable.set(alpha) try: self._variable.trace_add("write", self._update_alpha) except Exception: self._variable.trace("w", self._update_alpha) self.bind('<Configure>', lambda e: self._draw_gradient(alpha, color)) self.bind('<ButtonPress-1>', self._on_click) self.bind('<B1-Motion>', self._on_move) def _draw_gradient(self, alpha, color): """Draw the gradient and put the cursor on alpha.""" self.delete("gradient") self.delete("cursor") del self.gradient width = self.winfo_width() height = self.winfo_height() bg = create_checkered_image(width, height) r, g, b = color w = width - 1. gradient = Image.new("RGBA", (width, height)) for i in range(width): for j in range(height): gradient.putpixel((i, j), (r, g, b, round2(i / w * 255))) self.gradient = ImageTk.PhotoImage(Image.alpha_composite(bg, gradient), master=self) self.create_image(0, 0, anchor="nw", tags="gardient", image=self.gradient) self.lower("gradient") x = alpha / 255. * width h, s, v = rgb_to_hsv(r, g, b) if v < 50: fill = "gray80" else: fill = 'black' self.create_line(x, 0, x, height, width=2, tags='cursor', fill=fill) def _on_click(self, event): """Move selection cursor on click.""" x = event.x self.coords('cursor', x, 0, x, self.winfo_height()) self._variable.set(round2((255. * x) / self.winfo_width())) def _on_move(self, event): """Make selection cursor follow the cursor.""" w = self.winfo_width() x = min(max(event.x, 0), w) self.coords('cursor', x, 0, x, self.winfo_height()) self._variable.set(round2((255. * x) / w)) def _update_alpha(self, *args): alpha = int(self._variable.get()) if alpha > 255: alpha = 255 elif alpha < 0: alpha = 0 self.set(alpha) self.event_generate("<<AlphaChanged>>") def get(self): """Return alpha value of color under cursor.""" coords = self.coords('cursor') return round2((255. * coords[0]) / self.winfo_width()) def set(self, alpha): """ Set cursor position on the color corresponding to the alpha value. :param alpha: new alpha value (between 0 and 255) :type alpha: int """ if alpha > 255: alpha = 255 elif alpha < 0: alpha = 0 x = alpha / 255. * self.winfo_width() self.coords('cursor', x, 0, x, self.winfo_height()) self._variable.set(alpha) def set_color(self, color): """ Change gradient color and change cursor position if an alpha value is supplied. :param color: new gradient color in RGB(A) format :type color: tuple[int] """ if len(color) == 3: alpha = self.get() else: alpha = color[3] self._draw_gradient(alpha, color[:3])
import os import random from torchelper.utils.dist_util import get_rank from torchelper.models.model_builder import ModelBuilder from tqdm import tqdm import torch import time import torch.distributed as dist import torch.multiprocessing as mp from torchelper.utils.config import merge_cfg from torchelper.utils.cls_utils import get_cls, new_cls, auto_new_cls from torchelper.data.base_dataset import get_data_loader import torch.backends.cudnn as cudnn import subprocess from torch.utils.tensorboard import SummaryWriter from torchelper.utils import logger def check_close_port(port): result = subprocess.run(['lsof', '-i:'+str(port)], stdout=subprocess.PIPE) out = result.stdout.decode('utf-8') lines = out.split('\n') if len(lines)<=1: return print(out) lines = lines[1:] for line in lines: arr = [s for s in line.split(' ') if len(s)>0] if len(arr)<2: continue pid = int(arr[1]) os.system('kill '+str(pid)) print("kill", pid) def check_close_gpu_ids(gpu_ids): if not isinstance(gpu_ids, list): gpu_ids = [gpu_ids] print('kill:', gpu_ids) result = subprocess.run(['nvidia-smi'], stdout=subprocess.PIPE) out = result.stdout.decode('utf-8') lines = out.split('\n') if len(lines)<=1: return start_flag = False for line in lines: if not start_flag: if line.startswith('|=') and not '+' in line: start_flag = True else: line = ' '.join(line.split()) arr = line.split(' ') if len(arr)<8: continue gpu_id = int(arr[1]) pid = int(arr[4]) for gid in gpu_ids: if gpu_id == gid and arr[6].endswith('/python'): os.system('kill '+str(pid)) print('kill', arr[6]) def get_port(def_port): result = subprocess.run(['lsof', '-i:'+str(def_port)], stdout=subprocess.PIPE) out = result.stdout.decode('utf-8') lines = out.split('\n') if len(lines)<=1: return def_port return get_port(def_port+1) def validate(net:ModelBuilder, epoch:int, val_dataset): '''ๆ‰ง่กŒ้ชŒ่ฏ้›† :param net: ModelBuilderๅญ็ฑปๅฎžไพ‹ :param epoch: int, ๅฝ“ๅ‰epoch :param val_dataset: ้ชŒ่ฏ้›† :return: ่ฟ”ๅ›žๆ่ฟฐ :raises ValueError: ๆ่ฟฐๆŠ›ๅ‡บๅผ‚ๅธธๅœบๆ™ฏ ''' if get_rank()==0: net.set_eval() # net.before_validate(epoch) # time.sleep(10) val_data:dict = {} for data in tqdm(val_dataset): res = net.validate(epoch, data) if res is None: continue for key, val in res.items(): val_data[key] = val + val_data.get(key, 0) line = 'epoch: '+str(epoch)+', ' if val_data is not None: val_arr = [] for key, val in val_data.items(): val_arr.append(key + ":" + str(val_data[key] * 1.0 / len(val_dataset))) line = line+', '.join(val_arr) # val_data = net.after_validate(epoch) if val_data is not None: val_arr = [] for key, val in val_data.items(): val_arr.append(key + ":" + str(val_data[key])) line = line +','+ ', '.join(val_arr) print(line) torch.distributed.barrier() #ๆ›ดๆ–ฐtensorboardๆ˜พ็คบ def update_tensorboard(builder:ModelBuilder, tb_writer, epoch, step, step_per_epoch_per_gpu, gpu_count): if tb_writer is None: return audios = builder.get_audio_dict() images = builder.get_img_dict() scalars = builder.get_scalar_dict() metrics = builder.get_metric_dict() audios = audios if audios is not None else {} images = images if images is not None else {} scalars = scalars if scalars is not None else {} metrics = metrics if metrics is not None else {} step = (epoch*step_per_epoch_per_gpu+step)*gpu_count # print(epoch, step_per_epoch_per_gpu, epoch*step_per_epoch_per_gpu) for k, v in audios.items(): if v is None: logger.warn(k+" is None ... ") continue tb_writer.add_audio(k, v, step, sample_rate=16000) for k, v in images.items(): if v is None: logger.warn(k+" is None ... ") continue tb_writer.add_image(k, v, step) for k, v in scalars.items(): if v is None: logger.warn(k+" is None ... ") continue tb_writer.add_scalar(k, v, step) for k, v in metrics.items(): if v is None: logger.warn(k+" is None ... ") continue tb_writer.add_scalar(k, v, step) def update_pbar(builder:ModelBuilder, pbar): if pbar is None: return scalars = builder.get_scalar_dict() if scalars is None: return msg = [] for k, v in scalars.items(): msg.append('%s:%.5f'%(k, v)) pbar.set_description(', '.join(msg)) def train(gpu_id, cfg, is_dist): train_data_cfg = merge_cfg(cfg['dataset']['train'], cfg) val_data_cfg = merge_cfg(cfg['dataset']['val'], cfg) train_dataset = auto_new_cls(train_data_cfg) val_dataset = auto_new_cls(val_data_cfg) gpu_count = len(cfg['ori_gpu_ids']) train_dataloader = get_data_loader(cfg['batch_per_gpu'], train_dataset, num_workers=0, dist=True) val_dataloader = get_data_loader(cfg['batch_per_gpu'], val_dataset, dist=False) builder:ModelBuilder = get_cls(cfg['model_builder'])(cfg, True, cfg['ckpt_dir']) builder.set_dataset(train_dataset) dataset_size = len(train_dataloader) tb_writer = None step_per_epoch_per_gpu = dataset_size if gpu_id==0: tb_writer = SummaryWriter(cfg['ckpt_dir']) builder.perform_cb('on_begin_train') for epoch in range(cfg['start_epoch'], cfg['total_epoch']): # validate(builder, epoch, val_dataloader) builder.set_train() if gpu_id==0: pbar = tqdm(train_dataloader) enum_data = enumerate(pbar) else: pbar = None enum_data = enumerate(train_dataloader) builder.perform_cb('on_begin_epoch', epoch=epoch) for i, data in enum_data: builder.on_begin_forward(data, epoch, i) builder.perform_cb('on_begin_step', epoch=epoch, step=i) builder.forward_wrapper(epoch, i, data) builder.on_end_forward( epoch, i) builder.on_begin_backward( epoch, i) # ่ฎก็ฎ—loss builder.backward_wrapper() if is_dist: # ๅคšๅกๅŒๆญฅ torch.distributed.barrier() builder.on_end_backward( epoch, i) builder.perform_cb('on_end_step', epoch=epoch, step=i) if gpu_id==0: update_pbar(builder, pbar) update_tensorboard(builder, tb_writer, epoch, i, step_per_epoch_per_gpu, gpu_count) builder.perform_cb('on_end_epoch', epoch=epoch) # builder.save_model(epoch, save_max_count, save_max_time) validate(builder, epoch, val_dataloader) builder.perform_cb('on_end_train') def train_worker(gpu_id, nprocs, cfg, is_dist, port): '''็‹ฌ็ซ‹่ฟ›็จ‹่ฟ่กŒ ''' os.environ['NCCL_BLOCKING_WAIT']="1" os.environ['NCCL_ASYNC_ERROR_HANDLING']='1' random.seed(0) torch.manual_seed(0) cudnn.deterministic = True # ๆๅ‡้€Ÿๅบฆ๏ผŒไธป่ฆๅฏนinput shapeๆ˜ฏๅ›บๅฎšๆ—ถๆœ‰ๆ•ˆ๏ผŒๅฆ‚ๆžœๆ˜ฏๅŠจๆ€็š„๏ผŒ่€—ๆ—ถๅ่€Œๆ…ข torch.backends.cudnn.benchmark = True dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:'+str(port), world_size=len(cfg['gpu_ids']), rank=gpu_id) torch.cuda.set_device(gpu_id) # ๆŒ‰batchๅˆ†ๅ‰ฒ็ป™ๅ„ไธชGPU # cfg['batch_size'] = int(cfg['batch_size'] / nprocs) train(gpu_id, cfg, is_dist) def train_main(cfg): check_close_gpu_ids(cfg['ori_gpu_ids']) # check_close_port(cfg['port']) gpu_nums = len(cfg['gpu_ids']) # if gpu_nums>1: port = get_port(cfg['port']) print('init port:', port) mp.spawn(train_worker, nprocs=gpu_nums, args=(gpu_nums, cfg, True, port)) # else: # train(cfg['gpu_ids'][0], cfg, False)
from typing import Callable from starlette.requests import Request from starlette.responses import JSONResponse from app.src.exception import APIException def http_exception_factory(status_code: int) -> Callable: def http_exception(_: Request, exception: APIException) -> JSONResponse: return JSONResponse(status_code=status_code, content={"message": exception.message}) return http_exception
from abc import ABCMeta from functools import lru_cache from PIL import Image import numpy as np from torch.utils.data.dataset import Dataset as TorchDataset from torchvision.transforms import ToTensor, Compose from utils import coerce_to_path_and_check_exist, use_seed from utils.path import DATASETS_PATH class _AbstractMultiObjectDataset(TorchDataset): __metaclass__ = ABCMeta root = DATASETS_PATH name = NotImplementedError n_channels = 3 n_classes = NotImplementedError img_size = NotImplementedError N = NotImplementedError instance_eval = True def __init__(self, split, **kwargs): self.data_path = coerce_to_path_and_check_exist(self.root / self.name) self.split = split self.eval_mode = kwargs.get('eval_mode', False) or split == 'test' self.eval_semantic = kwargs.get('eval_semantic', False) if self.eval_mode: self.size = 320 elif split == 'val': with use_seed(42): self.val_indices = np.random.choice(range(self.N), 100, replace=False) self.size = 100 else: self.size = self.N def __len__(self): return self.size def __getitem__(self, idx): path = self.data_path if self.split == 'val': idx = self.val_indices[idx] inp = self.transform(Image.open(path / 'images' / f'{idx}.png').convert('RGB')) if self.eval_semantic: label = (self.transform_gt(Image.open(path / 'sem_masks' / f'{idx}.png').convert('L')) * 255).long() else: label = (self.transform_gt(Image.open(path / 'masks' / f'{idx}.png').convert('L')) * 255).long() return inp, label @property @lru_cache() def transform(self): return Compose([ToTensor()]) @property @lru_cache() def transform_gt(self): return Compose([ToTensor()]) class DSpritesGrayDataset(_AbstractMultiObjectDataset): name = 'dsprites_gray' img_size = (64, 64) N = 60000 n_classes = 4 class CLEVR6Dataset(_AbstractMultiObjectDataset): name = 'clevr6' img_size = (128, 128) N = 34963 n_classes = 7 class TetrominoesDataset(_AbstractMultiObjectDataset): name = 'tetrominoes' img_size = (35, 35) N = 60000 n_classes = 20
# Standard Library import configparser # Third Party import pytest # CrazyHusk from crazyhusk import config def test_config_init(empty_parser: config.UnrealConfigParser) -> None: assert isinstance(empty_parser, configparser.RawConfigParser) @pytest.mark.parametrize( "input_string,output_string", [ ("AxisConfig", "AxisConfig"), ("+AxisConfig", "AxisConfig"), ("-AxisConfig", "AxisConfig"), (".AxisConfig", "AxisConfig"), ("!AxisConfig", "AxisConfig"), ], ) def test_config_optionxform( empty_parser: config.UnrealConfigParser, input_string: str, output_string: str ) -> None: assert empty_parser.optionxform(input_string) == output_string
import numpy as np import os import cPickle as pickle import seaborn as sns sns.set(style="white", palette="Set2") import matplotlib.pyplot as plt log_dir = "./experiments/log/backprop/" log_dir = "./experiments/paper/temp/" # filename = log_dir + "01-11-2016--11-51-41-0.p" for filename in sorted(os.listdir(log_dir)): filename = log_dir + filename if filename[-2:]!=".p" or filename.split("-")[1] != "11": continue print(filename) exp = pickle.load(open(filename, "rb")) title = "%s-C_%g-l_rate_%s" % (exp.dataset.solver, exp.dataset.C, exp.comment.split("rate: ").pop()) # export_name = "./experiments/paper/cifar10/bp/%s" % title # pickle.dump(exp, open(export_name + ".p", "wb")) fig = plt.figure() fig.suptitle(title) ax1 = fig.add_subplot(211) train_err, = ax1.plot(exp.train_time, exp.train_err, label="Training error") val_err, = ax1.plot(exp.val_time, exp.val_err, label="Validation error") ax1.legend(handles=[train_err, val_err]) ax1.set_ylabel("Error") ax2 = fig.add_subplot(212) train_acc, = ax2.plot(exp.train_time, exp.train_acc, label="Training accuracy") val_acc, = ax2.plot(exp.val_time, exp.val_acc, label="Validation accuracy") ax2.set_ylim([0., 100.]) ax2.legend(handles=[train_acc, val_acc]) ax2.set_xlabel("Time (s)") ax2.set_ylabel("Accuracy (%)") # plt.savefig(export_name + ".png") # plt.close() plt.show()
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals from logging import getLogger from unittest import TestCase from conda.base.context import context from conda.common.compat import text_type from conda.models.channel import Channel from conda.models.index_record import IndexJsonRecord from conda.models.prefix_record import PrefixRecord log = getLogger(__name__) blas_value = 'accelerate' if context.subdir == 'osx-64' else 'openblas' class PrefixRecordTests(TestCase): def test_prefix_record_no_channel(self): pr = PrefixRecord( name='austin', version='1.2.3', build_string='py34_2', build_number=2, url="https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2", subdir="win-32", md5='0123456789', files=(), ) assert pr.url == "https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2" assert pr.channel.canonical_name == 'defaults' assert pr.subdir == "win-32" assert pr.fn == "austin-1.2.3-py34_2.tar.bz2" channel_str = text_type(Channel("https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2")) assert channel_str == "https://repo.continuum.io/pkgs/free" assert dict(pr.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, url="https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2", md5='0123456789', files=(), channel=channel_str, subdir="win-32", fn="austin-1.2.3-py34_2.tar.bz2", constrains=(), depends=(), ) def test_provides_features(self): base = IndexJsonRecord( name='austin', version='1.2.3', build_string='py34_2', build_number=2, subdir="win-32", url="https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2", ) assert base.track_features == () assert base.provides_features == {} assert dict(base.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, subdir="win-32", depends=(), constrains=(), ) rec = IndexJsonRecord.from_objects(base, track_features='debug nomkl') assert rec.track_features == ('debug', 'nomkl') assert rec.provides_features == {'debug': 'true', 'blas': blas_value} assert dict(rec.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, subdir="win-32", depends=(), constrains=(), track_features='debug nomkl', provides_features={'debug': 'true', 'blas': blas_value}, ) rec = IndexJsonRecord.from_objects(base, track_features='debug nomkl', provides_features={'blas': 'openblas'}) assert rec.track_features == ('debug', 'nomkl') assert rec.provides_features == {'blas': 'openblas'} assert dict(rec.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, subdir="win-32", depends=(), constrains=(), track_features='debug nomkl', provides_features={'blas': 'openblas'}, ) rec = IndexJsonRecord.from_objects(base, provides_features={'blas': 'openblas'}) assert rec.track_features == () assert rec.provides_features == {'blas': 'openblas'} assert dict(rec.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, subdir="win-32", depends=(), constrains=(), provides_features={'blas': 'openblas'}, ) base = IndexJsonRecord( name='python', version='1.2.3', build_string='2', build_number=2, subdir="win-32", url="https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2", ) assert base.track_features == () assert base.provides_features == {} def test_requires_features(self): rec = IndexJsonRecord( name='austin', version='1.2.3', build_string='py34_2', build_number=2, subdir="win-32", url="https://repo.continuum.io/pkgs/free/win-32/austin-1.2.3-py34_2.tar.bz2", features='debug nomkl', depends=('python 2.7.*', 'numpy 1.11*'), ) assert rec.features == ('debug', 'nomkl') assert rec.requires_features == {'debug': 'true', 'blas': blas_value} assert dict(rec.dump()) == dict( name='austin', version='1.2.3', build='py34_2', build_number=2, subdir="win-32", depends=('python 2.7.*', 'numpy 1.11*'), constrains=(), features='debug nomkl', requires_features={'debug': 'true', 'blas': blas_value}, )
# -*- coding: utf-8 -*- """ Created on Mon Nov 15 19:59:16 2021 @author: abhay.saini """ import argparse import pandas as pd import torch import numpy as np import datasets import transformers from transformers import Trainer, TrainingArguments import nltk from pyarrow import csv from transformers import ( AutoModelForSeq2SeqLM, AutoTokenizer, Seq2SeqTrainingArguments, Seq2SeqTrainer, DataCollatorForSeq2Seq, ) parser = argparse.ArgumentParser(description="""Preprocessor""") parser.add_argument( "--output_file_name", action="store", dest="output_file_name", default="summary_generated_1.csv", required=False, help="""name of the output summaries file""", ) parser.add_argument( "--input_path", action="store", dest="input_path", default="/input/wikipedia_connector/cnvrg/wiki_output_2.csv", required=False, help="""name of the file containing the wikipedia output""", ) parser.add_argument( "--default_model", action="store", dest="default_model", default="./Model/bart_large_cnn_original_1/", required=False, help="""cnvrg trained model""", ) parser.add_argument( "--min_percent", action="store", dest="min_percent", default="0.07", required=False, help="""ratio of minimum length of the summary""", ) parser.add_argument( "--encoder_max_length", action="store", dest="encoder_max_length", default="256", required=True, help="""hyperparamter while training""", ) args = parser.parse_args() language = "english" address_model_cnvrg = args.default_model rows_cnt = pd.read_csv(args.input_path).shape[0] sub1 = "train[:" + str(rows_cnt) + "]" input_doc = datasets.load_dataset("csv", data_files=args.input_path, split=(str(sub1))) model_cnvrg = AutoModelForSeq2SeqLM.from_pretrained(address_model_cnvrg) output_file_name = args.output_file_name tokenizer = AutoTokenizer.from_pretrained("Tokenizer/") min_percent = float(args.min_percent) encoder_max_length = int(args.encoder_max_length) def generate_summary(test_samples, model): outputs_1 = [] outputs_str_1 = [] for i in range(len(test_samples)): inputs = tokenizer( test_samples["document"][i], padding="max_length", truncation=True, max_length=encoder_max_length, return_tensors="pt", ) print(i) input_ids = inputs.input_ids.to(model.device) attention_mask = inputs.attention_mask.to(model.device) min_length_1 = min_percent * len(test_samples["document"][i]) #max_length_1 = max_percent * len(test_samples["document"][i]) outputs = model.generate( input_ids, attention_mask=attention_mask, max_length=500, min_length=round(min_length_1), ) outputs_str = tokenizer.batch_decode(outputs, skip_special_tokens=True) outputs_1.append(outputs) outputs_str_1.append(outputs_str) return outputs_1, outputs_str_1 print("defined_generate function") def batch_tokenize_preprocess(batch, tokenizer, max_source_length, max_target_length): source, target = batch["document"], batch["summary"] source_tokenized = tokenizer( source, padding="max_length", truncation=True, max_length=max_source_length ) target_tokenized = tokenizer( target, padding="max_length", truncation=True, max_length=max_target_length ) batch = {k: v for k, v in source_tokenized.items()} # Ignore padding in the loss batch["labels"] = [ [-100 if token == tokenizer.pad_token_id else token for token in l] for l in target_tokenized["input_ids"] ] return batch print("defined tokenize function") summaries_case_0 = generate_summary(input_doc, model_cnvrg)[1] print(summaries_case_0) print("generated summaries") summaries_generated = pd.DataFrame(summaries_case_0, columns=["Generated_Summary"]) print(summaries_generated) print("created dataframe") summaries_generated.to_csv("/cnvrg/{}".format(output_file_name), index=False) print("outputted summaries")
'''Example test script. Basic checks of device before processed Input Variables: args - arguments dictionary given to demo tester that may be used to changed nature of test. dev - Example device under test name - Name of test being run. results - Results map of all tests. Test Specific Arguments: args["hw_rev"] - hardware revision to expect ''' expected_hw_rev = args["hw_rev"] output_good("Welcome") output_normal("Reading device 3.3V power rail.") mV = dev.read_3v3_rail() store_value("V3.3 power rail mV", mV) threshold_check(mV, 3300, 90, "mV", "Power rail check") output_normal("Checking device current draw.") mA = dev.read_current() store_value("mA draw", mA) threshold_check(mA, 150, 10, "mA", "Power draw") output_normal("Read hardware revision from device pull ups.") hw_rev = dev.read_revision() store_value("HW Rev", hw_rev) exact_check(hw_rev, expected_hw_rev, "Hardware revision")
import functools import inspect import logging from concurrent.futures import ProcessPoolExecutor from fastapi import FastAPI from fasture import models from fasture import task_db from fasture.plugin_mgr import get_plugin_manager from fasture.routers import jobs, tasks log = logging.getLogger(__name__) executor = ProcessPoolExecutor(max_workers=2) app = FastAPI() @app.get("/", description="why not", include_in_schema=False) async def root(): return {"message": "Hello World"} app.include_router(tasks.router, prefix="/tasks", tags=["tasks"]) # app.include_router(jobs.router, prefix="/jobs", tags=["jobs"]) {"one": 11, "two": 22} def make_future(long_running, job_name): log.info("registering %s", job_name) @functools.wraps(long_running) async def wrapped(params: dict) -> dict: log.info("Queuing %s", job_name) future = executor.submit(long_running, params) task = models.Task( job_name=job_name, future=future, ) uid = task_db.store_task(task) future.add_done_callback(task.future_callback) return {"task_uid": uid} return wrapped def register_dynamic_routes(): pm = get_plugin_manager() for plugin in pm.get_plugins(): log.info(pm.get_name(plugin)) job_name = pm.get_name(plugin) doc = plugin.fasture_job.__doc__ summary = description = "" if doc: summary, *description = doc.split("\n") description = inspect.cleandoc("\n".join(description)) app.add_api_route( f"/launch/{job_name}", # plugin.fasture_job, make_future(plugin.fasture_job, job_name), summary=summary, description=description, methods=["POST"], tags=["jobs"], ) register_dynamic_routes() @app.on_event("shutdown") def shutdown_event(): log.info("Shutting down executor") app.extra["executor"].shutdown(wait=True)
import tkinter as tk from tkinter import Menu, Tk, Text, DISABLED, RAISED,Frame, FLAT, Button, Scrollbar, Canvas, END from tkinter import messagebox as MessageBox from tkinter import ttk from campo import Campo from arbol import Arbol import http.client #Metodo GET para probar peticiones al servidor def myGET(): myConnection = http.client.HTTPConnection('localhost', 8000, timeout=10) headers = { "Content-type": "text/plain" } myConnection.request("GET", "/data/database.tytus", "", headers) response = myConnection.getresponse() print("Status: {} and reason: {}".format(response.status, response.reason)) myData = response.read() print(myData.decode("utf-8") ) myConnection.close() #Metodo POST para probar peticiones al servidor def myPOST(): myConnection = http.client.HTTPConnection('localhost', 8000, timeout=10) headers = { "Content-type": "text/plain" } postData = "Test http.server from http.client :D" myConnection.request("POST", "/", postData, headers) response = myConnection.getresponse() print("Status: {} and reason: {}".format(response.status, response.reason)) myData = response.read() print(myData.decode("utf-8") ) myConnection.close() def CrearMenu(masterRoot): ########### menu ############ #Se crea la barra barraDeMenu=Menu(masterRoot, tearoff=0,relief=FLAT, font=("Verdana", 12),activebackground='red') #Se crean los menus que se deseen archivo=Menu(barraDeMenu, tearoff=0) #Crear las opciones de la opciรณn del menรบ #Se elimino el comando de crear Ventana por problemas con las imagenes archivo.add_command(label="Nueva ventana") archivo.add_command(label="Abrir un documento",command=abrirDoc) archivo.add_command(label="Abrir un modelo") archivo.add_separator() archivo.add_command(label="Nueva Query") archivo.add_command(label="Guardar como...") archivo.add_command(label="Guardar") archivo.add_separator() archivo.add_command(label="Salir") #creando el Editar editar=Menu(barraDeMenu, tearoff=0) #agregando su lista editar.add_command(label="Cortar") editar.add_command(label="Pegar") editar.add_command(label="Copiar") editar.add_separator() editar.add_command(label="Seleccionar todo") editar.add_command(label="Formato") editar.add_command(label="Preferencias") #se agrega Tools tools=Menu(barraDeMenu, tearoff=0) #se agrega su lista tools.add_command(label="Configuraciรณn") tools.add_command(label="Utilidades") #Temporary tools to test client-server connection tools.add_command(label="SELECT (GET)", command = myGET) tools.add_command(label="CREATE (POST)", command = myPOST) #se agrega ayuda ayuda=Menu(barraDeMenu, tearoff=0) #lista de ayuda ayuda.add_command(label="Documentaciรณn de TytuSQL") ayuda.add_command(label="Acerca de TytuSQL") #Se agrgan los menรบs a la barra barraDeMenu.add_cascade(label="Archivo",menu=archivo) barraDeMenu.add_cascade(label="Editar",menu=editar) barraDeMenu.add_cascade(label="Herramientas",menu=tools) barraDeMenu.add_cascade(label="Ayuda",menu=ayuda) #Se indica que la barra de menรบ debe estar en la ventana return barraDeMenu def abrirDoc(): MessageBox.showinfo(title="Aviso",message="Hizo clic en abrir documento") def CrearVentana(): raiz = Tk() #Configuracion de ventana raiz.title("TytuSQL") #Cambiar el nombre de la ventana #raiz.iconbitmap('resources/icon.ico') raiz.rowconfigure(0, minsize=800, weight=1) raiz.columnconfigure(1, minsize=800, weight=1) raiz.config(menu=CrearMenu(raiz), background='silver') #Frame del Arbol FrameIzquiero = Frame(raiz, relief=RAISED, bd=2) FrameIzquiero.pack(side="left", fill="both") #Se llama a la clase Arbol Arbol(FrameIzquiero) #Boton para realizar consulta Button(raiz, text="Enviar Consulta").pack(side="top",fill="both") #Consola de Salida consola = Text(raiz) consola.pack(side="bottom",fill="both") consola.insert(1.0,"Consola de Salida") consola.config(state=DISABLED) #Campo de texto Campo(raiz).pack(side="right", fill="both", expand=True) ###### CREAMOS EL PANEL PARA LAS PESTAร‘AS ######## raiz.mainloop() def main(): CrearVentana() if __name__ == "__main__": main()
""" CISCO_ENTITY_SENSOR_MIB The CISCO\-ENTITY\-SENSOR\-MIB is used to monitor the values of sensors in the Entity\-MIB (RFC 2037) entPhysicalTable. """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class SensorDataScale(Enum): """ SensorDataScale (Enum Class) International System of Units (SI) prefixes. .. data:: yocto = 1 .. data:: zepto = 2 .. data:: atto = 3 .. data:: femto = 4 .. data:: pico = 5 .. data:: nano = 6 .. data:: micro = 7 .. data:: milli = 8 .. data:: units = 9 .. data:: kilo = 10 .. data:: mega = 11 .. data:: giga = 12 .. data:: tera = 13 .. data:: exa = 14 .. data:: peta = 15 .. data:: zetta = 16 .. data:: yotta = 17 """ yocto = Enum.YLeaf(1, "yocto") zepto = Enum.YLeaf(2, "zepto") atto = Enum.YLeaf(3, "atto") femto = Enum.YLeaf(4, "femto") pico = Enum.YLeaf(5, "pico") nano = Enum.YLeaf(6, "nano") micro = Enum.YLeaf(7, "micro") milli = Enum.YLeaf(8, "milli") units = Enum.YLeaf(9, "units") kilo = Enum.YLeaf(10, "kilo") mega = Enum.YLeaf(11, "mega") giga = Enum.YLeaf(12, "giga") tera = Enum.YLeaf(13, "tera") exa = Enum.YLeaf(14, "exa") peta = Enum.YLeaf(15, "peta") zetta = Enum.YLeaf(16, "zetta") yotta = Enum.YLeaf(17, "yotta") class SensorDataType(Enum): """ SensorDataType (Enum Class) sensor measurement data types. valid values are\: other(1)\: a measure other than those listed below unknown(2)\: unknown measurement, or arbitrary, relative numbers voltsAC(3)\: electric potential voltsDC(4)\: electric potential amperes(5)\: electric current watts(6)\: power hertz(7)\: frequency celsius(8)\: temperature percentRH(9)\: percent relative humidity rpm(10)\: shaft revolutions per minute cmm(11),\: cubic meters per minute (airflow) truthvalue(12)\: value takes { true(1), false(2) } specialEnum(13)\: value takes user defined enumerated values dBm(14)\: dB relative to 1mW of power .. data:: other = 1 .. data:: unknown = 2 .. data:: voltsAC = 3 .. data:: voltsDC = 4 .. data:: amperes = 5 .. data:: watts = 6 .. data:: hertz = 7 .. data:: celsius = 8 .. data:: percentRH = 9 .. data:: rpm = 10 .. data:: cmm = 11 .. data:: truthvalue = 12 .. data:: specialEnum = 13 .. data:: dBm = 14 """ other = Enum.YLeaf(1, "other") unknown = Enum.YLeaf(2, "unknown") voltsAC = Enum.YLeaf(3, "voltsAC") voltsDC = Enum.YLeaf(4, "voltsDC") amperes = Enum.YLeaf(5, "amperes") watts = Enum.YLeaf(6, "watts") hertz = Enum.YLeaf(7, "hertz") celsius = Enum.YLeaf(8, "celsius") percentRH = Enum.YLeaf(9, "percentRH") rpm = Enum.YLeaf(10, "rpm") cmm = Enum.YLeaf(11, "cmm") truthvalue = Enum.YLeaf(12, "truthvalue") specialEnum = Enum.YLeaf(13, "specialEnum") dBm = Enum.YLeaf(14, "dBm") class SensorStatus(Enum): """ SensorStatus (Enum Class) Indicates the operational status of the sensor. ok(1) means the agent can read the sensor value. unavailable(2) means that the agent presently can not report the sensor value. nonoperational(3) means that the agent believes the sensor is broken. The sensor could have a hard failure (disconnected wire), or a soft failure such as out\-of\-range, jittery, or wildly fluctuating readings. .. data:: ok = 1 .. data:: unavailable = 2 .. data:: nonoperational = 3 """ ok = Enum.YLeaf(1, "ok") unavailable = Enum.YLeaf(2, "unavailable") nonoperational = Enum.YLeaf(3, "nonoperational") class SensorThresholdRelation(Enum): """ SensorThresholdRelation (Enum Class) sensor threshold relational operator types. valid values are\: lessThan(1)\: if the sensor value is less than the threshold value lessOrEqual(2)\: if the sensor value is less than or equal to the threshold value greaterThan(3)\: if the sensor value is greater than the threshold value greaterOrEqual(4)\: if the sensor value is greater than or equal to the threshold value equalTo(5)\: if the sensor value is equal to the threshold value notEqualTo(6)\: if the sensor value is not equal to the threshold value .. data:: lessThan = 1 .. data:: lessOrEqual = 2 .. data:: greaterThan = 3 .. data:: greaterOrEqual = 4 .. data:: equalTo = 5 .. data:: notEqualTo = 6 """ lessThan = Enum.YLeaf(1, "lessThan") lessOrEqual = Enum.YLeaf(2, "lessOrEqual") greaterThan = Enum.YLeaf(3, "greaterThan") greaterOrEqual = Enum.YLeaf(4, "greaterOrEqual") equalTo = Enum.YLeaf(5, "equalTo") notEqualTo = Enum.YLeaf(6, "notEqualTo") class SensorThresholdSeverity(Enum): """ SensorThresholdSeverity (Enum Class) sensor threshold severity. Valid values are\: other(1) \: a severity other than those listed below. minor(10) \: Minor Problem threshold. major(20) \: Major Problem threshold. critical(30)\: Critical problem threshold. A system might shut down the sensor associated FRU automatically if the sensor value reach the critical problem threshold. .. data:: other = 1 .. data:: minor = 10 .. data:: major = 20 .. data:: critical = 30 """ other = Enum.YLeaf(1, "other") minor = Enum.YLeaf(10, "minor") major = Enum.YLeaf(20, "major") critical = Enum.YLeaf(30, "critical") class CISCOENTITYSENSORMIB(Entity): """ .. attribute:: entsensorglobalobjects **type**\: :py:class:`Entsensorglobalobjects <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.CISCOENTITYSENSORMIB.Entsensorglobalobjects>` .. attribute:: entsensorvaluetable This table lists the type, scale, and present value of a sensor listed in the Entity\-MIB entPhysicalTable **type**\: :py:class:`Entsensorvaluetable <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.CISCOENTITYSENSORMIB.Entsensorvaluetable>` .. attribute:: entsensorthresholdtable This table lists the threshold severity, relation, and comparison value, for a sensor listed in the Entity\-MIB entPhysicalTable **type**\: :py:class:`Entsensorthresholdtable <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.CISCOENTITYSENSORMIB.Entsensorthresholdtable>` """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB, self).__init__() self._top_entity = None self.yang_name = "CISCO-ENTITY-SENSOR-MIB" self.yang_parent_name = "CISCO-ENTITY-SENSOR-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([("entSensorGlobalObjects", ("entsensorglobalobjects", CISCOENTITYSENSORMIB.Entsensorglobalobjects)), ("entSensorValueTable", ("entsensorvaluetable", CISCOENTITYSENSORMIB.Entsensorvaluetable)), ("entSensorThresholdTable", ("entsensorthresholdtable", CISCOENTITYSENSORMIB.Entsensorthresholdtable))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict() self.entsensorglobalobjects = CISCOENTITYSENSORMIB.Entsensorglobalobjects() self.entsensorglobalobjects.parent = self self._children_name_map["entsensorglobalobjects"] = "entSensorGlobalObjects" self._children_yang_names.add("entSensorGlobalObjects") self.entsensorvaluetable = CISCOENTITYSENSORMIB.Entsensorvaluetable() self.entsensorvaluetable.parent = self self._children_name_map["entsensorvaluetable"] = "entSensorValueTable" self._children_yang_names.add("entSensorValueTable") self.entsensorthresholdtable = CISCOENTITYSENSORMIB.Entsensorthresholdtable() self.entsensorthresholdtable.parent = self self._children_name_map["entsensorthresholdtable"] = "entSensorThresholdTable" self._children_yang_names.add("entSensorThresholdTable") self._segment_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB" class Entsensorglobalobjects(Entity): """ .. attribute:: entsensorthreshnotifglobalenable This variable enables the generation of entSensorThresholdNotification globally on the device. If this object value is 'false', then no entSensorThresholdNotification will be generated on this device. If this object value is 'true', then whether a entSensorThresholdNotification for a threshold will be generated or not depends on the instance value of entSensorThresholdNotificationEnable for that threshold **type**\: bool """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB.Entsensorglobalobjects, self).__init__() self.yang_name = "entSensorGlobalObjects" self.yang_parent_name = "CISCO-ENTITY-SENSOR-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('entsensorthreshnotifglobalenable', YLeaf(YType.boolean, 'entSensorThreshNotifGlobalEnable')), ]) self.entsensorthreshnotifglobalenable = None self._segment_path = lambda: "entSensorGlobalObjects" self._absolute_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOENTITYSENSORMIB.Entsensorglobalobjects, ['entsensorthreshnotifglobalenable'], name, value) class Entsensorvaluetable(Entity): """ This table lists the type, scale, and present value of a sensor listed in the Entity\-MIB entPhysicalTable. .. attribute:: entsensorvalueentry An entSensorValueTable entry describes the present reading of a sensor, the measurement units and scale, and sensor operational status **type**\: list of :py:class:`Entsensorvalueentry <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.CISCOENTITYSENSORMIB.Entsensorvaluetable.Entsensorvalueentry>` """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB.Entsensorvaluetable, self).__init__() self.yang_name = "entSensorValueTable" self.yang_parent_name = "CISCO-ENTITY-SENSOR-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("entSensorValueEntry", ("entsensorvalueentry", CISCOENTITYSENSORMIB.Entsensorvaluetable.Entsensorvalueentry))]) self._leafs = OrderedDict() self.entsensorvalueentry = YList(self) self._segment_path = lambda: "entSensorValueTable" self._absolute_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOENTITYSENSORMIB.Entsensorvaluetable, [], name, value) class Entsensorvalueentry(Entity): """ An entSensorValueTable entry describes the present reading of a sensor, the measurement units and scale, and sensor operational status. .. attribute:: entphysicalindex (key) **type**\: int **range:** 1..2147483647 **refers to**\: :py:class:`entphysicalindex <ydk.models.cisco_ios_xe.ENTITY_MIB.ENTITYMIB.Entphysicaltable.Entphysicalentry>` .. attribute:: entsensortype This variable indicates the type of data reported by the entSensorValue. This variable is set by the agent at start\-up and the value does not change during operation **type**\: :py:class:`SensorDataType <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.SensorDataType>` .. attribute:: entsensorscale This variable indicates the exponent to apply to sensor values reported by entSensorValue. This variable is set by the agent at start\-up and the value does not change during operation **type**\: :py:class:`SensorDataScale <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.SensorDataScale>` .. attribute:: entsensorprecision This variable indicates the number of decimal places of precision in fixed\-point sensor values reported by entSensorValue. This variable is set to 0 when entSensorType is not a fixed\-point type\: e.g.'percentRH(9)', 'rpm(10)', 'cmm(11)', or 'truthvalue(12)'. This variable is set by the agent at start\-up and the value does not change during operation **type**\: int **range:** \-8..9 .. attribute:: entsensorvalue This variable reports the most recent measurement seen by the sensor. To correctly display or interpret this variable's value, you must also know entSensorType, entSensorScale, and entSensorPrecision. However, you can compare entSensorValue with the threshold values given in entSensorThresholdTable without any semantic knowledge **type**\: int **range:** \-1000000000..1073741823 .. attribute:: entsensorstatus This variable indicates the present operational status of the sensor **type**\: :py:class:`SensorStatus <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.SensorStatus>` .. attribute:: entsensorvaluetimestamp This variable indicates the age of the value reported by entSensorValue **type**\: int **range:** 0..4294967295 .. attribute:: entsensorvalueupdaterate This variable indicates the rate that the agent updates entSensorValue **type**\: int **range:** 0..999999999 **units**\: seconds .. attribute:: entsensormeasuredentity This object identifies the physical entity for which the sensor is taking measurements. For example, for a sensor measuring the voltage output of a power\-supply, this object would be the entPhysicalIndex of that power\-supply; for a sensor measuring the temperature inside one chassis of a multi\-chassis system, this object would be the enPhysicalIndex of that chassis. This object has a value of zero when the physical entity for which the sensor is taking measurements can not be represented by any one row in the entPhysicalTable, or that there is no such physical entity **type**\: int **range:** 0..2147483647 """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB.Entsensorvaluetable.Entsensorvalueentry, self).__init__() self.yang_name = "entSensorValueEntry" self.yang_parent_name = "entSensorValueTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['entphysicalindex'] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('entphysicalindex', YLeaf(YType.str, 'entPhysicalIndex')), ('entsensortype', YLeaf(YType.enumeration, 'entSensorType')), ('entsensorscale', YLeaf(YType.enumeration, 'entSensorScale')), ('entsensorprecision', YLeaf(YType.int32, 'entSensorPrecision')), ('entsensorvalue', YLeaf(YType.int32, 'entSensorValue')), ('entsensorstatus', YLeaf(YType.enumeration, 'entSensorStatus')), ('entsensorvaluetimestamp', YLeaf(YType.uint32, 'entSensorValueTimeStamp')), ('entsensorvalueupdaterate', YLeaf(YType.int32, 'entSensorValueUpdateRate')), ('entsensormeasuredentity', YLeaf(YType.int32, 'entSensorMeasuredEntity')), ]) self.entphysicalindex = None self.entsensortype = None self.entsensorscale = None self.entsensorprecision = None self.entsensorvalue = None self.entsensorstatus = None self.entsensorvaluetimestamp = None self.entsensorvalueupdaterate = None self.entsensormeasuredentity = None self._segment_path = lambda: "entSensorValueEntry" + "[entPhysicalIndex='" + str(self.entphysicalindex) + "']" self._absolute_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB/entSensorValueTable/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOENTITYSENSORMIB.Entsensorvaluetable.Entsensorvalueentry, ['entphysicalindex', 'entsensortype', 'entsensorscale', 'entsensorprecision', 'entsensorvalue', 'entsensorstatus', 'entsensorvaluetimestamp', 'entsensorvalueupdaterate', 'entsensormeasuredentity'], name, value) class Entsensorthresholdtable(Entity): """ This table lists the threshold severity, relation, and comparison value, for a sensor listed in the Entity\-MIB entPhysicalTable. .. attribute:: entsensorthresholdentry An entSensorThresholdTable entry describes the thresholds for a sensor\: the threshold severity, the threshold value, the relation, and the evaluation of the threshold. Only entities of type sensor(8) are listed in this table. Only pre\-configured thresholds are listed in this table. Users can create sensor\-value monitoring instruments in different ways, such as RMON alarms, Expression\-MIB, etc. Entries are created by the agent at system startup and FRU insertion. Entries are deleted by the agent at FRU removal **type**\: list of :py:class:`Entsensorthresholdentry <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.CISCOENTITYSENSORMIB.Entsensorthresholdtable.Entsensorthresholdentry>` """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB.Entsensorthresholdtable, self).__init__() self.yang_name = "entSensorThresholdTable" self.yang_parent_name = "CISCO-ENTITY-SENSOR-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([("entSensorThresholdEntry", ("entsensorthresholdentry", CISCOENTITYSENSORMIB.Entsensorthresholdtable.Entsensorthresholdentry))]) self._leafs = OrderedDict() self.entsensorthresholdentry = YList(self) self._segment_path = lambda: "entSensorThresholdTable" self._absolute_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOENTITYSENSORMIB.Entsensorthresholdtable, [], name, value) class Entsensorthresholdentry(Entity): """ An entSensorThresholdTable entry describes the thresholds for a sensor\: the threshold severity, the threshold value, the relation, and the evaluation of the threshold. Only entities of type sensor(8) are listed in this table. Only pre\-configured thresholds are listed in this table. Users can create sensor\-value monitoring instruments in different ways, such as RMON alarms, Expression\-MIB, etc. Entries are created by the agent at system startup and FRU insertion. Entries are deleted by the agent at FRU removal. .. attribute:: entphysicalindex (key) **type**\: int **range:** 1..2147483647 **refers to**\: :py:class:`entphysicalindex <ydk.models.cisco_ios_xe.ENTITY_MIB.ENTITYMIB.Entphysicaltable.Entphysicalentry>` .. attribute:: entsensorthresholdindex (key) An index that uniquely identifies an entry in the entSensorThresholdTable. This index permits the same sensor to have several different thresholds **type**\: int **range:** 1..99999999 .. attribute:: entsensorthresholdseverity This variable indicates the severity of this threshold **type**\: :py:class:`SensorThresholdSeverity <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.SensorThresholdSeverity>` .. attribute:: entsensorthresholdrelation This variable indicates the relation between sensor value (entSensorValue) and threshold value (entSensorThresholdValue), required to trigger the alarm. when evaluating the relation, entSensorValue is on the left of entSensorThresholdRelation, entSensorThresholdValue is on the right. in pseudo\-code, the evaluation\-alarm mechanism is\: ... if (entSensorStatus == ok) then if (evaluate(entSensorValue, entSensorThresholdRelation, entSensorThresholdValue)) then if (entSensorThresholdNotificationEnable == true)) then raise\_alarm(sensor's entPhysicalIndex); endif endif endif .. **type**\: :py:class:`SensorThresholdRelation <ydk.models.cisco_ios_xe.CISCO_ENTITY_SENSOR_MIB.SensorThresholdRelation>` .. attribute:: entsensorthresholdvalue This variable indicates the value of the threshold. To correctly display or interpret this variable's value, you must also know entSensorType, entSensorScale, and entSensorPrecision. However, you can directly compare entSensorValue with the threshold values given in entSensorThresholdTable without any semantic knowledge **type**\: int **range:** \-1000000000..1073741823 .. attribute:: entsensorthresholdevaluation This variable indicates the result of the most recent evaluation of the threshold. If the threshold condition is true, entSensorThresholdEvaluation is true(1). If the threshold condition is false, entSensorThresholdEvaluation is false(2). Thresholds are evaluated at the rate indicated by entSensorValueUpdateRate **type**\: bool .. attribute:: entsensorthresholdnotificationenable This variable controls generation of entSensorThresholdNotification for this threshold. When this variable is 'true', generation of entSensorThresholdNotification is enabled for this threshold. When this variable is 'false', generation of entSensorThresholdNotification is disabled for this threshold **type**\: bool """ _prefix = 'CISCO-ENTITY-SENSOR-MIB' _revision = '2015-01-15' def __init__(self): super(CISCOENTITYSENSORMIB.Entsensorthresholdtable.Entsensorthresholdentry, self).__init__() self.yang_name = "entSensorThresholdEntry" self.yang_parent_name = "entSensorThresholdTable" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['entphysicalindex','entsensorthresholdindex'] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('entphysicalindex', YLeaf(YType.str, 'entPhysicalIndex')), ('entsensorthresholdindex', YLeaf(YType.int32, 'entSensorThresholdIndex')), ('entsensorthresholdseverity', YLeaf(YType.enumeration, 'entSensorThresholdSeverity')), ('entsensorthresholdrelation', YLeaf(YType.enumeration, 'entSensorThresholdRelation')), ('entsensorthresholdvalue', YLeaf(YType.int32, 'entSensorThresholdValue')), ('entsensorthresholdevaluation', YLeaf(YType.boolean, 'entSensorThresholdEvaluation')), ('entsensorthresholdnotificationenable', YLeaf(YType.boolean, 'entSensorThresholdNotificationEnable')), ]) self.entphysicalindex = None self.entsensorthresholdindex = None self.entsensorthresholdseverity = None self.entsensorthresholdrelation = None self.entsensorthresholdvalue = None self.entsensorthresholdevaluation = None self.entsensorthresholdnotificationenable = None self._segment_path = lambda: "entSensorThresholdEntry" + "[entPhysicalIndex='" + str(self.entphysicalindex) + "']" + "[entSensorThresholdIndex='" + str(self.entsensorthresholdindex) + "']" self._absolute_path = lambda: "CISCO-ENTITY-SENSOR-MIB:CISCO-ENTITY-SENSOR-MIB/entSensorThresholdTable/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(CISCOENTITYSENSORMIB.Entsensorthresholdtable.Entsensorthresholdentry, ['entphysicalindex', 'entsensorthresholdindex', 'entsensorthresholdseverity', 'entsensorthresholdrelation', 'entsensorthresholdvalue', 'entsensorthresholdevaluation', 'entsensorthresholdnotificationenable'], name, value) def clone_ptr(self): self._top_entity = CISCOENTITYSENSORMIB() return self._top_entity
from django.apps import apps as django_apps from django.conf import settings from django.core.exceptions import ImproperlyConfigured SETTINGS = None def load_settings(): global SETTINGS try: SETTINGS = settings.BASE_BACKEND except AttributeError: SETTINGS = {} load_settings() def get_password_reset_table(): """ Return the Password Reset model that is active in this project. """ if SETTINGS.get("USE_BASE_BACKEND_RESET_PASSWORD_TABLE", False): return django_apps.get_model("base_backend.PasswordReset", require_ready=False) else: try: return django_apps.get_model(SETTINGS.get("PASSWORD_RESET_TABLE", None), require_ready=False) except ValueError: raise ImproperlyConfigured("PHONE_VERIFICATION_OTP_TABLE must be of the form 'app_label.model_name'") except LookupError: raise ImproperlyConfigured( "PHONE_VERIFICATION_OTP_TABLE refers to model '%s' that has not been installed" % settings.PASSWORD_RESET_TABLE) def get_otp_verification_table(): """ Return the OTP Verification model that is active in this project. """ if SETTINGS.get("USE_BASE_BACKEND_OTP_TABLE", False): return django_apps.get_model("base_backend.SmsVerification", require_ready=False) else: try: return django_apps.get_model(SETTINGS.get("PHONE_VERIFICATION_OTP_TABLE", None), require_ready=False) except ValueError: raise ImproperlyConfigured("PHONE_VERIFICATION_OTP_TABLE must be of the form 'app_label.model_name'") except LookupError: raise ImproperlyConfigured( "PHONE_VERIFICATION_OTP_TABLE refers to model '%s' that has not been installed" % settings.PHONE_VERIFICATION_OTP_TABLE) def get_send_sms_function(): """ return the implemented function for sending sms, it should accept the named params: phone: Phone number. message: A message. """ if SETTINGS.get("SEND_SMS_FUNC", None): return settings.SEND_SMS_FUNC else: raise ImproperlyConfigured("you are trying to send an sms, but the SEND_SMS_FUNC is not provided in the" " settings.")
# -*- coding: utf-8 from django.apps import AppConfig class DjangoGrpcConfig(AppConfig): name = 'django_grpc' verbose_name = 'Django gRPC server'
from datetime import datetime, timedelta from babel.dates import format_timedelta, format_date from collections import namedtuple import pandas as pd FeedparserTime = namedtuple( "FeedparserTime", [ "tm_year", "tm_mon", "tm_mday", "tm_hour", "tm_min", "tm_sec", "tm_wday", "tm_yday", "tm_isdst", ], ) def pretty_format_date(date: datetime) -> str: delta = datetime.now() - date if delta < timedelta(days=7): return format_timedelta(delta, locale="cs_CZ") elif date > datetime(year=datetime.now().year, month=1, day=1): return format_date(date, "d. MMMM", locale="cs_CZ") else: return format_date(date, "d. MMMM y", locale="cs_CZ") def format_articles(selected_articles: pd.DataFrame) -> pd.DataFrame: # TODO: resolve feedparser time format elsewhere selected_articles["published"] = selected_articles["published"].map( pretty_format_date ) return selected_articles
#!/bin/python #import numpy import os from sklearn.svm.classes import SVC import cPickle import sys import pandas as pd import numpy as np # Performs K-means clustering and save the model to a local file if __name__ == '__main__': if len(sys.argv) != 5: print "Usage: {0} event_name feat_dir feat_dim output_file".format(sys.argv[0]) print "event_name -- name of the event (P001, P002 or P003 in Homework 1)" print "feat_dir -- dir of feature files" print "feat_dim -- dim of features" print "output_file -- path to save the svm model" exit(1) event_name = sys.argv[1] feat_dir = sys.argv[2] feat_dim = int(sys.argv[3]) output_file = sys.argv[4] ########################################### feature = pd.read_csv(feat_dir, header=None, delimiter = ' ') file_list = '/home/ubuntu/11775-hws/hw1_code/list/all.video' trn_list = '/home/ubuntu/11775-hws/all_trn.lst' c = pd.read_csv(trn_list, header=None, delimiter = ' ') # c = c.replace('P001',0) # c = c.replace('P002',1) # c = c.replace('P003',2) # c = c.fillna(4) # y_train = c.iloc[:,1] y_train = pd.get_dummies(c.iloc[:,1], dummy_na = True) # y_train = np.asarray(y_train) if event_name == 'P001': y_train = y_train.iloc[:,0] elif event_name == 'P002': y_train = y_train.iloc[:,1] else : y_train = y_train.iloc[:,2] trn_list = c.iloc[:,0] trn_list = np.asarray(trn_list) # print(trn_list) f = open(file_list, "r") idx = 0 idx_list = [] for line in f.readlines(): if line.replace('\n','') in list(trn_list): # print('yes') idx_list.append(idx) idx += 1 f.close() x_train = feature.iloc[idx_list, :] print('x_train', x_train.shape[0], x_train.shape[1]) print('y_train', y_train.shape[0]) svm = SVC(C=0.001, gamma = 0.0001, probability=True) svm.fit(x_train, y_train) cPickle.dump(svm, open(output_file,"wb"), cPickle.HIGHEST_PROTOCOL) ############################## print 'SVM trained successfully for event %s!' % (event_name)
# MenuTitle: Round All Hint values # -*- coding: utf-8 -*- __doc__ = """ Rounds the hints to a whole number for all glyphs in the font. """ for g in Glyphs.font.glyphs: for l in g.layers: for h in l.hints: h.position = round(h.position) h.width = round(h.width) if h.originNode: h.originNode.position = NSPoint(round(h.originNode.position.x), round(h.originNode.position.y)) if h.targetNode: h.targetNode.position = NSPoint(round(h.targetNode.position.x), round(h.targetNode.position.y)) if h.otherNode1: h.otherNode1.position = NSPoint(round(h.otherNode1.position.x), round(h.otherNode1.position.y)) if h.otherNode2: h.otherNode2.position = NSPoint(round(h.otherNode2.position.x), round(h.otherNode2.position.y))
import os import inspect from functools import partial from datasets.voc_sbd import VOCSBDDataset from datasets.seg_transforms import ConstantPad, ToTensor, Normalize from test import main if __name__ == '__main__': project_dir = os.path.dirname(inspect.getabsfile(main)) exp_name = os.path.splitext(os.path.basename(__file__))[0] # Make sure the config and model have the same base name exp_dir = os.path.join('tests', exp_name) model = os.path.join('weights', exp_name + '.pth') data_dir = 'data/vocsbd' # The dataset will be downloaded automatically test_dataset = partial(VOCSBDDataset, data_dir, 'val') img_transforms = [ConstantPad(512, lbl_fill=255)] tensor_transforms = [ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])] os.chdir(project_dir) os.makedirs(exp_dir, exist_ok=True) main(exp_dir, model=model, test_dataset=test_dataset, img_transforms=img_transforms, tensor_transforms=tensor_transforms, forced=True)
#!/usr/bin/env python # coding=utf-8 """Diksiyonaryo CLI (https://github.com/njncalub/diksiyonaryo-ph). โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•— โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•— โ•šโ•โ• โ•šโ•โ•โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ•šโ•โ• โ•šโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ•šโ•โ•โ•โ•โ•โ• โ•šโ•โ•โ•šโ•โ• โ•šโ•โ• โ–„โ–€ โ•šโ•โ•โ•โ•โ•โ•โ•โ•šโ•โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•โ• โ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•— โ•šโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•— โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•— โ•šโ•โ• โ•šโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•šโ•โ• โ•šโ•โ•โ•šโ•โ• โ•šโ•โ• โ•šโ•โ• โ•šโ•โ•โ•โ•โ•โ• Usage: diksiyonaryo.py [options] (init | drop) diksiyonaryo.py [options] fetch [<letter>] diksiyonaryo.py [options] define <word> diksiyonaryo.py [options] search <query> diksiyonaryo.py [options] run [<host> <port>] diksiyonaryo.py [options] shell diksiyonaryo.py (-h | --help) diksiyonaryo.py (-v | --version) diksiyonaryo.py test Options: --settings=<file> Use a different settings file [default: config.settings.local]. --start=<page> When fetching, specify which page to start at [default: 0]. --end=<page> When fetching, specify which page to end. --max-pages=<max> Set an upper limit on how many pages the scraper will fetch, per letter. --from=<letter> When fetching all letters, specify a letter to start at. --to=<letter> When fetching all letters, specify a letter to end at. --debug Force debug mode. -q, --quiet Decrease amount of text shown [default: False]. -h, --help Show this help message and exit. -v, --version Show version and exit. """ from docopt import docopt from app import DiksiyonaryoApp, __version__ from utils.settings import load_settings if __name__ == '__main__': args = docopt(__doc__, version=__version__) settings = load_settings(filename=args['--settings']) app = DiksiyonaryoApp(settings=settings, is_quiet=args['--quiet']) if args['init']: app.run_init_db() elif args['drop']: app.run_drop_db() elif args['fetch']: if args['<letter>']: app.run_fetch_letter(letter=args['<letter>'], max_pages=args['--max-pages'], start=args['--start'], end=args['--end']) else: app.run_fetch_all(start=args['--start'], end=args['--end'], from_letter=args['--from'], to_letter=args['--to']) elif args['define']: app.run_define(word=args['<word>']) elif args['search']: app.run_search(query=args['<query>']) elif args['test']: app.run_test() elif args['run']: options = { 'host': args['<host>'] or settings.API_SERVER_HOST, 'port': args['<port>'] or settings.API_SERVER_PORT, 'debug': args['--debug'] or settings.API_SERVER_DEBUG, } app.run_server(**options) elif args['shell']: app.run_shell()
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-07 18:48 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('app', '0001_initial'), ] operations = [ migrations.CreateModel( name='Admin', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nombre', models.CharField(blank=True, max_length=200, null=True)), ('eslogan', models.CharField(blank=True, max_length=600, null=True)), ('imagen_logo', models.CharField(blank=True, max_length=3600, null=True)), ('video', models.CharField(blank=True, max_length=3600, null=True)), ('mision', models.CharField(blank=True, max_length=2000, null=True)), ('vision', models.CharField(blank=True, max_length=2000, null=True)), ('acerca', models.CharField(blank=True, max_length=2000, null=True)), ], options={ 'db_table': 'admin', 'managed': False, }, ), migrations.CreateModel( name='Bitacora', fields=[ ('id_bit', models.BigIntegerField(primary_key=True, serialize=False)), ('fecha', models.DateField(blank=True, null=True)), ], options={ 'db_table': 'bitacora', 'managed': False, }, ), migrations.CreateModel( name='Chat', fields=[ ('id_chat', models.BigIntegerField(primary_key=True, serialize=False)), ('status', models.CharField(blank=True, max_length=1, null=True)), ('usuario_id_admin', models.BigIntegerField(blank=True, null=True)), ('usuario_id_user', models.BigIntegerField(blank=True, null=True)), ], options={ 'db_table': 'chat', 'managed': False, }, ), migrations.CreateModel( name='Elemento', fields=[ ('id_elemento', models.BigIntegerField(primary_key=True, serialize=False)), ('nombre', models.CharField(blank=True, max_length=100, null=True)), ('tipo', models.CharField(blank=True, max_length=1, null=True)), ('data', models.CharField(blank=True, max_length=3600, null=True)), ('permisos', models.BigIntegerField(blank=True, null=True)), ], options={ 'db_table': 'elemento', 'managed': False, }, ), migrations.CreateModel( name='Grupo', fields=[ ('id_grupo', models.BigIntegerField(primary_key=True, serialize=False)), ('nombre', models.CharField(blank=True, max_length=80, null=True)), ], options={ 'db_table': 'grupo', 'managed': False, }, ), migrations.CreateModel( name='Mensaje', fields=[ ('id_mensaje', models.BigIntegerField(primary_key=True, serialize=False)), ('emisor', models.CharField(blank=True, max_length=200, null=True)), ('fecha', models.DateField(blank=True, null=True)), ('mensaje', models.CharField(blank=True, max_length=2000, null=True)), ], options={ 'db_table': 'mensaje', 'managed': False, }, ), migrations.CreateModel( name='Usuario', fields=[ ('id_usuario', models.BigIntegerField(primary_key=True, serialize=False)), ('nombre', models.CharField(blank=True, max_length=200, null=True)), ('apellido', models.CharField(blank=True, max_length=200, null=True)), ('telefono', models.BigIntegerField(blank=True, null=True)), ('direccion', models.CharField(blank=True, max_length=600, null=True)), ('clave', models.CharField(blank=True, max_length=32, null=True)), ('correo', models.CharField(blank=True, max_length=100, null=True)), ('foto', models.CharField(blank=True, max_length=3600, null=True)), ('genero', models.CharField(blank=True, max_length=40, null=True)), ('fecha_nacimiento', models.DateField(blank=True, null=True)), ('fecha_registro', models.DateField(blank=True, null=True)), ('status', models.CharField(blank=True, max_length=1, null=True)), ('status_cuenta', models.CharField(blank=True, max_length=40, null=True)), ], options={ 'db_table': 'usuario', 'managed': False, }, ), migrations.CreateModel( name='UsuarioGrupo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'db_table': 'usuario_grupo', 'managed': False, }, ), ]
import sys from direct.showbase.ShowBase import ShowBase from pandac.PandaModules import * class MyApp(ShowBase): def __init__(self): ShowBase.__init__(self) # quit when esc is pressed self.accept('escape',sys.exit) base.disableMouse() # load the box model box = self.loader.loadModel("models/box") box.reparentTo(render) box.setScale(2.0, 2.0, 2.0) box.setPos(8, 50, 0) panda = base.loader.loadModel("models/panda") panda.reparentTo(render) panda.setPos(0, 10, 0) panda.setScale(0.1, 0.1, 0.1) cNodePanda = panda.attachNewNode(CollisionNode('cnode_panda')) cNodePanda.node().addSolid(CollisionSphere(0,0,5,5)) cNodePanda.show() # CollisionTraverser and a Collision Handler is set up self.picker = CollisionTraverser() self.picker.showCollisions(render) self.pq = CollisionHandlerQueue() self.pickerNode = CollisionNode('mouseRay') self.pickerNP = camera.attachNewNode(self.pickerNode) self.pickerNode.setFromCollideMask(BitMask32.bit(1)) box.setCollideMask(BitMask32.bit(1)) panda.setCollideMask(BitMask32.bit(1)) self.pickerRay = CollisionRay() self.pickerNode.addSolid(self.pickerRay) self.picker.addCollider(self.pickerNP,self.pq) self.accept("mouse1",self.mouseClick) def mouseClick(self): print('mouse click') # check if we have access to the mouse if base.mouseWatcherNode.hasMouse(): # get the mouse position mpos = base.mouseWatcherNode.getMouse() # set the position of the ray based on the mouse position self.pickerRay.setFromLens(base.camNode,mpos.getX(),mpos.getY()) self.picker.traverse(render) # if we have hit something sort the hits so that the closest is first and highlight the node if self.pq.getNumEntries() > 0: self.pq.sortEntries() pickedObj = self.pq.getEntry(0).getIntoNodePath() print('click on ' + pickedObj.getName()) app = MyApp() app.run()
""" 2 Beautiful Matrix - https://codeforces.com/problemset/problem/263/A """ l = [] for i in range(5): l.append(list(map(int, input().split()))) # print(l) for i in range(len(l)): for j in range(len(l[0])): if l[i][j] == 1: x, y = i+1, j+1 break print(abs(x - 3) + abs(y - 3))
from .menu import * from .stage import * from .cutscene import * from .director import Director
import sys import unittest import zeit.content.article.edit.browser.testing class DivisionBlockTest( zeit.content.article.edit.browser.testing.EditorTestCase): @unittest.skipIf( sys.platform == 'darwin', '*testing* focus does not work under OSX for reasons unknown') def test_division_is_focused_after_add(self): s = self.selenium self.add_article() block_id = self.create_block('division') s.waitForElementPresent('css=#' + block_id + ' textarea:focus')
""" $Id: SOAP.py,v 1.2 2000/03/13 22:32:35 kmacleod Exp $ SOAP.py implements the Simple Object Access Protocol <http://develop.com/SOAP/> """ from StringIO import StringIO from ScarabMarshal import * from xml.sax import saxlib, saxexts from types import * import string import base64 # just constants DICT = "dict" ARRAY = "array" CHAR = "char" class SOAPMarshaler(Marshaler): def __init__(self, stream): self.written_stream_header = 0 self.write = stream.write self.flush = stream.flush def encode_call(self, method, map): dict = { 'id':0 } self.m_init(dict) self.write('''<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1" xmlns:tbd="ToBeDetermined"> <SOAP:Body> ''') self._marshal({ method : map }, dict) self.write(''' </SOAP:Body> </SOAP:Envelope> ''') self.m_finish(dict) def encode_response(self, method, map): dict = { 'id':0 } self.m_init(dict) self.write('''<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1" xmlns:tbd="ToBeDetermined"> <SOAP:Body> ''') self._marshal({ method + "Response" : map }, dict) self.write(''' </SOAP:Body> </SOAP:Envelope> ''') self.m_finish(dict) def encode_fault(self, faultcode, message, runcode, detail = None): dict = { 'id':0 } self.m_init(dict) self.write('''<SOAP:Envelope xmlns:SOAP="urn:schemas-xmlsoap-org:soap.v1" xmlns:tbd="ToBeDetermined"> <SOAP:Body> ''') if detail == None: self._marshal({ "SOAP:Fault" : { 'faultcode' : faultcode, 'faultstring' : message, 'runcode' : runcode } }, dict) else: self._marshal({ "SOAP:Fault" : { 'faultcode' : faultcode, 'faultstring' : message, 'runcode' : runcode, 'detail' : detail } }, dict) self.write(''' </SOAP:Body> </SOAP:Envelope> ''') self.m_finish(dict) def m_init(self, dict): self.write('<?xml version="1.0"?>') def m_finish(self, dict): self.write("\n\f\n") def persistent_id(self, object): return None def m_reference(self, object, dict): """ already done """ def m_None(self, object, dict): """ already done """ def m_int(self, object, dict): self.write(str(object)) def m_long(self, object, dict): self.write(str(object)) def m_float(self, object, dict): self.write(str(object)) def m_complex(self, object, dict): self.write(str(object)) def m_string(self, object, dict): self.write(str(object)) def m_list(self, object, dict): # FIXME missing ref ids n = len(object) for k in range(n): type = self._type(object[k]) self.write('<tbd:urtype' + type + '>') self._marshal(object[k], dict) self.write('</tbd:urtype>') def m_tuple(self, object, dict): # FIXME missing ref ids # FIXME set type to tuple n = len(object) for k in range(n): type = self._type(object[k]) self.write('<tbd:urtype' + type + '>') self._marshal(object[k], dict) self.write('</tbd:urtype>') def m_dictionary(self, object, dict): # FIXME missing ref ids items = object.items() n = len(items) for k in range(n): key, value = items[k] type = self._type(value) self.write('<' + key + type + '>') self._marshal(value, dict) self.write('</' + key + '>') def m_instance(self, object, dict): # FIXME missing ref ids cls = object.__class__ module = whichmodule(cls) name = cls.__name__ try: getstate = object.__getstate__ except AttributeError: stuff = object.__dict__ else: stuff = getstate() items = stuff.items() n = len(items) for k in range(n): key, value = items[k] type = self._type(value) self.write('<' + key + type + '>') self._marshal(value, dict) self.write('</' + key + '>') def _type(self, object): t = type(object) if t == ListType: return ' SOAP:arrayType="tbd:urtype[]"' elif t == TupleType: return ' SOAP:arrayType="tbd:urtype[]"' elif t == NoneType: return ' xsi:null="1"' return '' class SOAPUnmarshaler(Unmarshaler, saxlib.DocumentHandler): def __init__(self, stream): self.memo = {} self.stream = stream def _unmarshal(self): self.parse_value_stack = [ {} ] self.parse_utype_stack = [ DICT ] self.parse_type_stack = [ ] self.parser = saxexts.make_parser() self.parser.setDocumentHandler(self) self.parser.setErrorHandler(self) lines = [] stream = self.stream # FIXME SAX parsers should support this on streams line = stream.readline() while (line != "\f\n") and (line != ""): lines.append(line) line = stream.readline() if len(lines) == 0: raise EOFError stream = StringIO(string.join(lines)) self.parser.parseFile(stream) o = self.parse_value_stack[0] delattr(self, 'parse_value_stack') self.parser.close() return o def startElement(self, name, attrs): self.chars = "" xsi_type = None if attrs.has_key('xsi:type'): xsi_type = attrs['xsi:type'] elif (attrs.has_key('xsi:null') and attrs['xsi:null'] == '1'): xsi_type = "None" self.parse_type_stack.append(xsi_type) # FIXME 'list' is a temp hack for a specific user if (attrs.has_key('SOAP:arrayType') or (attrs.has_key('type') and attrs['type'] == 'list')): self.parse_utype_stack.append(ARRAY) self.parse_value_stack.append( [ ] ) else: # will be set to DICT if a sub-element is found self.parse_utype_stack.append(CHAR) def endElement(self, name): # FIXME do something with types xsi_type = self.parse_type_stack.pop() utype = self.parse_utype_stack.pop() if utype is CHAR: if xsi_type == "None": value = None else: value = self.chars else: value = self.parse_value_stack.pop() # if we're in an element, and our parent element was defaulted # to CHAR, then we're in a struct and we need to create that # dictionary. if self.parse_utype_stack[-1] is CHAR: self.parse_value_stack.append( { } ) self.parse_utype_stack[-1] = DICT if self.parse_utype_stack[-1] is DICT: self.parse_value_stack[-1][name] = value else: self.parse_value_stack[-1].append(value) def characters(self, ch, start, length): self.chars = self.chars + ch[start:start + length] def fatalError(self, exc): raise exc # Shorthands (credits to and most copied from pickle.py) def encode_call(file, method, object): SOAPMarshaler(file).encode_call(method, object) def encode_calls(method, object): file = StringIO() SOAPMarshaler(file).encode_call(method, object) return file.getvalue() def encode_response(file, method, object): SOAPMarshaler(file).encode_response(method, object) def encode_responses(method, object): file = StringIO() SOAPMarshaler(file).encode_response(method, object) return file.getvalue() def encode_fault(file, faultcode, message, runcode, detail = None): SOAPMarshaler(file).encode_fault(faultcode, message, runcode, detail) def encode_faults(faultcode, message, runcode, detail = None): file = StringIO() SOAPMarshaler(file).encode_fault(faultcode, message, runcode, detail) return file.getvalue() def dump(object, file): SOAPMarshaler(file).dump(object) def dumps(object): file = StringIO() SOAPMarshaler(file).dump(object) return file.getvalue() def decode(file): return SOAPUnmarshaler(file).decode() def decodes(str): file = StringIO(str) return SOAPUnmarshaler(file).decode() def load(file): return SOAPUnmarshaler(file).load() def loads(str): file = StringIO(str) return SOAPUnmarshaler(file).load() if __name__ == '__main__': runtests(load, loads, dump, dumps)
from discord.ext import commands from discord.ext.commands import BadArgument, CommandError from cogs.utils.DataBase.Items import Item from cogs.utils.DataBase.guild import Filter from cogs.utils.errors import BadListType, BadQueryType def convert_quantity(text: str) -> int: allowed_symbols = "1234567890ek.+-*/" if set(text) > set(allowed_symbols): raise BadArgument("unsupported quantity") try: new = eval(text) return new except SyntaxError: for i in text: if i not in allowed_symbols: raise BadArgument("unsupported quantity") new = text.replace('k', "*1e3") try: new = eval(new) return new except SyntaxError: raise BadArgument("unsupported quantity") def to_lower(text): if text.lower() in ('sell', 'buy', 'all'): return text.lower() else: raise BadListType def calc_quantity(args): relation = '' value = None for i, arg in enumerate(args): if arg in ('>', '=', '<'): relation += arg else: value = convert_quantity(arg[i:]) break if relation in ('>', '<', '=', '<=', '>=', '=') and value is not None: return relation, value else: raise BadQueryType def listing_args(items, query): if query is None: return Filter(items) kwargs = {} queries = query.split(' ') # sample: price>=1e6 quantity<20 for q in queries: if q.startswith("price") or q.startswith("p"): if len(q.split('price')) == 2: args = q.split('price')[1] else: args = q.split('p')[1] kwargs['price'], kwargs['price_type'] = calc_quantity(args) elif q.startswith("quantity") or q.startswith("q"): if len(q.split('price')) == 2: args = q.split('price')[1] else: args = q.split('q')[1] kwargs['quantity'], kwargs['quantity_type'] = calc_quantity(args) # items = None # price = '0' # price_type = '>' # quantity = '1' # quantity_type = '>=' # order_by = 'time' # order_type = "DESC" # trade = False return Filter(items, **kwargs) class Incorrect_Args(CommandError): def __init__(self): pass class StockConverter(commands.Converter): def __getitem__(self, item): pass async def convert(self, ctx, args) -> list: if args.find('=') == -1: item = await Item.convert(ctx, args) return [item, 1] else: item, quantity = args.split('=') quantity = convert_quantity(quantity) item = await Item.convert(ctx, item) return [item, quantity] class CompleteConvertor(commands.Converter): def __getitem__(self, item): pass async def convert(self, ctx, argument): args = argument.split(', ') if len(args) == 1: typer = 'money' trader = await StockConverter().convert(ctx, args[0]) return typer, trader else: trader1 = await TradeConvertor().convert(ctx, args[0]) trader2 = await TradeConvertor().convert(ctx, args[1]) return 'item', trader1, trader2 class TradeConvertor(commands.Converter): async def convert(self, ctx, args): args = args.split(' ') return_items = [] for arg in args: if arg.find('=') != -1: item, quantity = arg.split('=') quantity = convert_quantity(quantity) item = await Item.convert(ctx, item) return_items.append((item, quantity)) else: item = await Item.convert(ctx, args.strip()) return_items.append((item, 1)) return return_items
from .search.search import Search
import praw import random import os from flask import Flask, render_template, redirect, send_from_directory, url_for from werkzeug.middleware.proxy_fix import ProxyFix app = Flask(__name__) app.wsgi_app= ProxyFix(app.wsgi_app) reddit = praw.Reddit(client_id='pua14mlzkyv5_ZfQ2WmqpQ', client_secret='T5loHbaVD7m-RNMpFf0z24iOJsInwg', user_agent='Oxygen', check_for_async= False) @app.route("/favicon.png") def favicon(): return send_from_directory(os.path.join(app.root_path, 'static'), 'favicon.png',mimetype='favicon.png') @app.route("/", methods=['GET']) def home(): subreddits = ['hentai', 'rule34', 'nsfw'] choices = random.choice(subreddits) nsfw_submission = reddit.subreddit(choices).new(limit=15) post_to_pick = random.randint(1,15) for i in range(0, post_to_pick): submission = next(x for x in nsfw_submission if not x.stickied) title = submission.title link = submission.permalink url = submission.url upvotes = submission.score upvote_ratio = submission.upvote_ratio author = submission.author print(link) return render_template("home.html", title=title, url=url, upvotes=upvotes, author=author, upvote_ratio=upvote_ratio, link=link) @app.route('/hentai') def hentai(): nsfw_submission = reddit.subreddit("hentai").new(limit=15) post_to_pick = random.randint(1,15) for i in range(0, post_to_pick): submission = next(x for x in nsfw_submission if not x.stickied) title = submission.title link = submission.permalink url = submission.url upvotes = submission.score upvote_ratio = submission.upvote_ratio author = submission.author return f"<img src='{url}'>" @app.route("/endpoint") def endpoints(): pass @app.route("/api/v1/femboy") def femboy(): nsfw_submission = reddit.subreddit('FemboysAndHentai').hot() post_to_pick = random.randint(1,30) for i in range(0, post_to_pick): submission = next(x for x in nsfw_submission if not x.stickied) title = submission.title return {'status': 200, 'title':title,'link': submission.url} @app.route("/api/v1/nsfw") def nsfw(): nsfw_submission = reddit.subreddit('nsfw').hot() post_to_pick = random.randint(1,30) for i in range(0, post_to_pick): submission = next(x for x in nsfw_submission if not x.stickied) title = submission.title return {'status':200, 'title':title, 'link':submission.url} if __name__ == "__main__": app.run(debug=True, port=2323)
# Copyright 2021 InterDigital R&D and Tรฉlรฉcom Paris. # Author: Giorgia Cantisani # License: Apache 2.0 """Utils for fine tuning """ import torch BN_TYPES = (torch.nn.BatchNorm1d, torch.nn.BatchNorm2d, torch.nn.BatchNorm3d) def _make_trainable(module): """Unfreezes a given module. Args: module: The module to unfreeze """ for param in module.parameters(): param.requires_grad = True module.train() def _recursive_freeze(module, train_bn=True): """Freezes the layers of a given module. Args: module: The module to freeze train_bn: If True, leave the BatchNorm layers in training mode """ children = list(module.children()) if not children: if not (isinstance(module, BN_TYPES) and train_bn): for param in module.parameters(): param.requires_grad = False module.eval() else: # Make the BN layers trainable _make_trainable(module) else: for child in children: _recursive_freeze(module=child, train_bn=train_bn) def freeze(module, n=None, train_bn=True): """Freezes the layers up to index n (if n is not None). Args: module: The module to freeze (at least partially) n: Max depth at which we stop freezing the layers. If None, all the layers of the given module will be frozen. train_bn: If True, leave the BatchNorm layers in training mode """ modules = list(module.modules()) n_max = len(modules) if n is None else int(n) for module in modules[:n_max]: _recursive_freeze(module=module, train_bn=train_bn) for module in modules[n_max:]: _make_trainable(module=module) def filter_params(module, train_bn=True): """Yields the trainable parameters of a given module. Args: module: A given module train_bn: If True, leave the BatchNorm layers in training mode Returns: Generator """ children = list(module.children()) if not children: if not (isinstance(module, BN_TYPES) and train_bn): for param in module.parameters(): if param.requires_grad: yield param else: for child in children: for param in filter_params(module=child, train_bn=train_bn): yield param def _unfreeze_and_add_param_group(module, optimizer, lr=None, train_bn=True): """Unfreezes a module and adds its parameters to an optimizer.""" _make_trainable(module) params_lr = optimizer.param_groups[0]['lr'] if lr is None else float(lr) optimizer.add_param_group( {'params': filter_params(module=module, train_bn=train_bn), 'lr': params_lr / 10., }) # Test if __name__ == '__main__': # Load pretrained model klass, args, kwargs, state = torch.load('./demucs/tasnet.th', 'cpu') model = klass(*args, **kwargs) model.load_state_dict(state) # Select individual modules encoder = model.encoder separator = model.separator decoder = model.decoder # Freeze some layers freeze(encoder) freeze(separator, n=338) # Count trainable parameters def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) nr_parameters = count_parameters(model) print(nr_parameters) # Initialize an optimizer optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
from datetime import datetime import pytest from brewlog.models import BrewerProfile @pytest.mark.usefixtures('app') class TestBrewerProfileObject: def test_create_no_names(self, user_factory): user = user_factory(first_name=None, last_name=None, nick=None) assert 'anonymous' in user.name.lower() def test_last_created_public_only(self, user_factory): user_factory(is_public=True) user_factory(is_public=False) assert len(BrewerProfile.last_created(public_only=True)) == 1 def test_last_created_all(self, user_factory): user_factory(is_public=True) user_factory(is_public=False) assert len(BrewerProfile.last_created(public_only=False)) == 2 def test_public_ordering(self, user_factory): user_p_b = user_factory(nick='b', is_public=True) user_p_a = user_factory(nick='a', is_public=True) assert BrewerProfile.public(order_by=BrewerProfile.nick).first() == user_p_a assert BrewerProfile.public().first() == user_p_b def test_emailconfirmation_set(self, mocker, user_factory): user = user_factory() dt = datetime(2019, 6, 14, 22, 11, 30) mocker.patch( 'brewlog.models.users.datetime', mocker.Mock(utcnow=mocker.Mock(return_value=dt)), ) user.set_email_confirmed(True) assert user.email_confirmed is True assert user.confirmed_dt == dt def test_emailconfirmation_clear(self, mocker, user_factory): dt = datetime(2019, 6, 14, 22, 11, 30) user = user_factory(email_confirmed=True, confirmed_dt=dt) user.set_email_confirmed(False) assert user.email_confirmed is False assert user.confirmed_dt is None
class List(object): def method(self): pass
""" SamFirm Bot check updates module""" from asyncio import create_subprocess_shell from asyncio.subprocess import PIPE from telethon import events from samfirm_bot import TG_LOGGER, TG_BOT_ADMINS from samfirm_bot.samfirm_bot import BOT, SAM_FIRM from samfirm_bot.utils.checker import is_device, is_region @BOT.on(events.NewMessage(pattern=r'/samcheck(?:@\S+)?(?: )(.*)(?: )([a-zA-Z0-9]{3})(?: )?(.*)?')) async def check(event): """Send a message when the command /samcheck is sent.""" model = event.pattern_match.group(1).upper() region = event.pattern_match.group(2).upper() try: version = event.pattern_match.group(3).upper() except IndexError: version = None if event.message.sender_id not in TG_BOT_ADMINS: if not await is_device(model) or not await is_region(region): await event.reply("**Either model or region is incorrect!**") return command = SAM_FIRM.check_update(model, region, version) bot_reply = await event.reply("__Checking...__") process = await create_subprocess_shell(command, stdin=PIPE, stdout=PIPE) output = await process.stdout.read() output = output.decode().strip() await process.wait() if output and "Could not" in output: await bot_reply.edit("**Not Found!**") return if output and "Version" in output: update = SAM_FIRM.parse_output(output) TG_LOGGER.info(update) message = f"**Device**: {SAM_FIRM.get_device_name(update['model'])}\n" \ f"**Model:** {update['model']}\n" \ f"**System Version:** {update['system']}\n" \ f"**Android Version:** {update['android']}\n" \ f"**CSC Version:** {update['csc']}\n" \ f"**Bootloader Version:** {update['bootloader']}\n" \ f"**Release Date:** {update['date']}\n" \ f"**Size:** {update['size']}" await bot_reply.edit(message) return
# -*- coding: utf-8 -*- # Copyright (2017-2018) Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # Python libs import logging # 3rd party libs from flask import abort from flask import Blueprint from flask import request from flask import Response from flask_api import status from hpOneView.exceptions import HPOneViewException # own libs from oneview_redfish_toolkit.api.session import Session from oneview_redfish_toolkit.api.session_collection import SessionCollection from oneview_redfish_toolkit.blueprints.util.response_builder import \ ResponseBuilder from oneview_redfish_toolkit import client_session session = Blueprint('session', __name__) @session.route(SessionCollection.BASE_URI, methods=["GET"]) def get_collection(): result = SessionCollection(client_session.get_session_ids()) return ResponseBuilder.success(result) @session.route(SessionCollection.BASE_URI + "/" + "<session_id>", methods=["GET"]) def get_session(session_id): if session_id not in client_session.get_session_ids(): abort(status.HTTP_404_NOT_FOUND) return ResponseBuilder.success(Session(session_id)) @session.route(SessionCollection.BASE_URI + "/" + "<session_id>", methods=["DELETE"]) def delete_session(session_id): token = request.headers.get('x-auth-token') session_for_delete = client_session.get_session_id_by_token(token) if session_id != session_for_delete: abort(status.HTTP_404_NOT_FOUND) client_session.clear_session_by_token(token) return Response(status=status.HTTP_204_NO_CONTENT, mimetype="application/json") @session.route(SessionCollection.BASE_URI, methods=["POST"]) def post_session(): """Posts Session The response to the POST request to create a session includes: - An X-Auth-Token header that contains a session auth token that the client can use an subsequent requests. - A Location header that contains a link to the newly created session resource. - The JSON response body that contains a full representation of the newly created session object. Exception: HPOneViewException: Invalid username or password. return abort(401) """ try: try: body = request.get_json() username = body["UserName"] password = body["Password"] except Exception: error_message = "Invalid JSON key. The JSON request body " \ "must have the keys UserName and Password" abort(status.HTTP_400_BAD_REQUEST, error_message) token, session_id = client_session.login(username, password) sess = Session(session_id) return ResponseBuilder.success(sess, { "Location": sess.redfish["@odata.id"], "X-Auth-Token": token }) except HPOneViewException as e: logging.exception('Unauthorized error: {}'.format(e)) abort(status.HTTP_401_UNAUTHORIZED)
""" Serializers for low-level elements of the canonical record. Specifically, this maps concepts in :mod:`.domain` to low-level elements in :mod:`arxiv.canonical.record` and visa-versa. """ from io import BytesIO from json import dumps, load from typing import Callable, IO, Tuple from ..domain import Version, ContentType, Listing, CanonicalFile, \ VersionedIdentifier, URI from ..record import RecordStream, RecordVersion, RecordMetadata, \ RecordEntryMembers, RecordListing from .decoder import CanonicalDecoder from .encoder import CanonicalEncoder Key = str ContentLoader = Callable[[Key], IO[bytes]]
import argparse import logging from scraper import Scraper def parse_args(): """Parse command line arguments""" args_parser = argparse.ArgumentParser() args = args_parser.parse_args() return args def main(): args = parse_args() scraper = Scraper(cache_name=__name__, cache_expiry=36000) # Perform your scraping here if __name__ == "__main__": logging.basicConfig(filename="{}.log".format(__name__), level=logging.INFO) try: main() except Exception as e: logging.exception(e)