content
stringlengths
5
1.05M
# (C) Copyright 2010-2020 Enthought, Inc., Austin, TX # All rights reserved. import unittest from traits.testing.unittest_tools import UnittestTools from force_bdss.api import KPISpecification from force_bdss.tests.probe_classes.mco import ProbeMCOFactory from force_wfmanager.ui.setup.mco.base_mco_options_model_view import ( BaseMCOOptionsModelView ) class TestBaseMCOOptionsModelView(unittest.TestCase, UnittestTools): def setUp(self): self.mco_options_model_view = BaseMCOOptionsModelView() def test_mco_options_model_view_init(self): self.assertIsNone(self.mco_options_model_view.model) self.assertTrue(self.mco_options_model_view.valid) def test__check_model_name(self): self.mco_options_model_view.available_variables = ( [('T1', 'PRESSURE'), ('T2', 'PRESSURE')] ) self.assertEqual(['T1', 'T2'], self.mco_options_model_view._combobox_values) self.mco_options_model_view.model = KPISpecification(name='T1') self.mco_options_model_view.available_variables.remove( self.mco_options_model_view.available_variables[-1] ) self.assertTrue(self.mco_options_model_view.valid) self.mco_options_model_view.available_variables.remove( self.mco_options_model_view.available_variables[0] ) self.assertEqual('', self.mco_options_model_view.model.name) error_message = self.mco_options_model_view.model.verify() self.assertIn( 'KPI is not named', error_message[0].local_error ) def test_verify_mco_options(self): factory = ProbeMCOFactory({'id': '0', 'name': 'plugin'}) parameter_factory = factory.parameter_factories[0] model = parameter_factory.create_model() self.mco_options_model_view.model = model with self.assertTraitChanges( self.mco_options_model_view, 'verify_workflow_event', 1): model.test_trait = 10
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 """ Implementation of flags command """ import os from .base import Base from ..context import bugzilla_instance from ..bugzilla import BugzillaError from .. import ui class Command(Base): """Flags operations: add/remove/set""" def register(self, subparsers): """Register parser for flags-related commands""" parser_ls = subparsers.add_parser('flags') parser_ls.set_defaults(func=self.run_ls) parser_ls.add_argument('bug_id', type=int, help='bug ID') parser_add = subparsers.add_parser('addflag') parser_add.set_defaults(func=self.run_add) parser_add.add_argument('bug_id', type=int, help='bug ID') parser_add.add_argument('name', type=str, help='flag name') parser_add.add_argument('requestee', type=str, nargs='?', help='requestee') parser_rm = subparsers.add_parser('rmflags') parser_rm.set_defaults(func=self.run_rm) parser_rm.add_argument('bug_id', type=int, help='bug ID') parser_rm.add_argument('name', type=str, nargs='+', help='flag name') parser_set = subparsers.add_parser('setflag') parser_set.set_defaults(func=self.run_set) parser_set.add_argument('bug_id', type=int, help='bug ID') parser_set.add_argument('name', type=str, help='flag name') parser_set.add_argument('status', type=str, choices=['+', '-'], help='flag status') def run_ls(self, args): """Implementation of the 'flags' command""" bugzilla = bugzilla_instance() try: bug = bugzilla.bug(args.bug_id) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) rows = [] for f in bug.flags: row = [] row.append(str(f.object_id)) row.append(f.name) row.append(f.status) row.append(f.requestee) rows.append(row) if rows: column_formats = [] for i in range(len(rows[0]) - 1): width = max([len(str(row[i])) for row in rows]) column_format = '{: >%d}' % width column_formats.append(column_format) row_format = ' '.join(column_formats) row_format += ' {}' for row in rows: ui.output(row_format.format(*row)) def run_add(self, args): """Implementation of the 'addflag' command""" bugzilla = bugzilla_instance() try: bugzilla.add_flag(args.bug_id, args.name, args.requestee) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) def run_rm(self, args): """Implementation of the 'rmflags' command""" bugzilla = bugzilla_instance() try: bugzilla.rm_flags(args.bug_id, args.name) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message)) def run_set(self, args): """Implementation of the 'setflag' command""" bugzilla = bugzilla_instance() try: bugzilla.update_flag(args.bug_id, args.name, args.status) except BugzillaError as ex: ui.fatal('Bugzilla error: {}'.format(ex.message))
from typing import Union, List, Optional from pyspark.sql.types import ( StructType, StructField, StringType, ArrayType, DateType, BooleanType, DataType, TimestampType, ) # This file is auto-generated by generate_schema so do not edit manually # noinspection PyPep8Naming class ActivityDefinitionSchema: """ This resource allows for the definition of some activity to be performed, independent of a particular patient, practitioner, or other performance context. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueQuantity", ], extension_depth: int = 0, max_extension_depth: Optional[int] = 2, ) -> Union[StructType, DataType]: """ This resource allows for the definition of some activity to be performed, independent of a particular patient, practitioner, or other performance context. id: The logical id of the resource, as used in the URL for the resource. Once assigned, this value never changes. extension: May be used to represent additional information that is not part of the basic definition of the resource. In order to make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer is allowed to define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. meta: The metadata about the resource. This is content that is maintained by the infrastructure. Changes to the content may not always be associated with version changes to the resource. implicitRules: A reference to a set of rules that were followed when the resource was constructed, and which must be understood when processing the content. language: The base language in which the resource is written. text: A human-readable narrative that contains a summary of the resource, and may be used to represent the content of the resource to a human. The narrative need not encode all the structured data, but is required to contain sufficient detail to make it "clinically safe" for a human to just read the narrative. Resource definitions may define what content should be represented in the narrative to ensure clinical safety. contained: These resources do not have an independent existence apart from the resource that contains them - they cannot be identified independently, and nor can they have their own independent transaction scope. resourceType: This is a ActivityDefinition resource url: An absolute URI that is used to identify this activity definition when it is referenced in a specification, model, design or an instance. This SHALL be a URL, SHOULD be globally unique, and SHOULD be an address at which this activity definition is (or will be) published. The URL SHOULD include the major version of the activity definition. For more information see [Technical and Business Versions](resource.html#versions). identifier: A formal identifier that is used to identify this activity definition when it is represented in other formats, or referenced in a specification, model, design or an instance. version: The identifier that is used to identify this version of the activity definition when it is referenced in a specification, model, design or instance. This is an arbitrary value managed by the activity definition author and is not expected to be globally unique. For example, it might be a timestamp (e.g. yyyymmdd) if a managed version is not available. There is also no expectation that versions can be placed in a lexicographical sequence. To provide a version consistent with the Decision Support Service specification, use the format Major.Minor.Revision (e.g. 1.0.0). For more information on versioning knowledge assets, refer to the Decision Support Service specification. Note that a version is required for non-experimental active assets. name: A natural language name identifying the activity definition. This name should be usable as an identifier for the module by machine processing applications such as code generation. title: A short, descriptive, user-friendly title for the activity definition. status: The status of this activity definition. Enables tracking the life-cycle of the content. experimental: A boolean value to indicate that this activity definition is authored for testing purposes (or education/evaluation/marketing), and is not intended to be used for genuine usage. date: The date (and optionally time) when the activity definition was published. The date must change if and when the business version changes and it must change if the status code changes. In addition, it should change when the substantive content of the activity definition changes. publisher: The name of the individual or organization that published the activity definition. description: A free text natural language description of the activity definition from a consumer's perspective. purpose: Explaination of why this activity definition is needed and why it has been designed as it has. usage: A detailed description of how the asset is used from a clinical perspective. approvalDate: The date on which the resource content was approved by the publisher. Approval happens once when the content is officially approved for usage. lastReviewDate: The date on which the resource content was last reviewed. Review happens periodically after approval, but doesn't change the original approval date. effectivePeriod: The period during which the activity definition content was or is planned to be in active use. useContext: The content was developed with a focus and intent of supporting the contexts that are listed. These terms may be used to assist with indexing and searching for appropriate activity definition instances. jurisdiction: A legal or geographic region in which the activity definition is intended to be used. topic: Descriptive topics related to the content of the activity. Topics provide a high-level categorization of the activity that can be useful for filtering and searching. contributor: A contributor to the content of the asset, including authors, editors, reviewers, and endorsers. contact: Contact details to assist a user in finding and communicating with the publisher. copyright: A copyright statement relating to the activity definition and/or its contents. Copyright statements are generally legal restrictions on the use and publishing of the activity definition. relatedArtifact: Related artifacts such as additional documentation, justification, or bibliographic references. library: A reference to a Library resource containing any formal logic used by the asset. kind: A description of the kind of resource the activity definition is representing. For example, a MedicationRequest, a ProcedureRequest, or a CommunicationRequest. Typically, but not always, this is a Request resource. code: Detailed description of the type of activity; e.g. What lab test, what procedure, what kind of encounter. timingTiming: The period, timing or frequency upon which the described activity is to occur. timingDateTime: The period, timing or frequency upon which the described activity is to occur. timingPeriod: The period, timing or frequency upon which the described activity is to occur. timingRange: The period, timing or frequency upon which the described activity is to occur. location: Identifies the facility where the activity will occur; e.g. home, hospital, specific clinic, etc. participant: Indicates who should participate in performing the action described. productReference: Identifies the food, drug or other product being consumed or supplied in the activity. productCodeableConcept: Identifies the food, drug or other product being consumed or supplied in the activity. quantity: Identifies the quantity expected to be consumed at once (per dose, per meal, etc.). dosage: Provides detailed dosage instructions in the same way that they are described for MedicationRequest resources. bodySite: Indicates the sites on the subject's body where the procedure should be performed (I.e. the target sites). transform: A reference to a StructureMap resource that defines a transform that can be executed to produce the intent resource using the ActivityDefinition instance as the input. dynamicValue: Dynamic values that will be evaluated to produce values for elements of the resulting resource. For example, if the dosage of a medication must be computed based on the patient's weight, a dynamic value would be used to specify an expression that calculated the weight, and the path on the intent resource that would contain the result. """ from spark_fhir_schemas.stu3.complex_types.extension import ExtensionSchema from spark_fhir_schemas.stu3.complex_types.meta import MetaSchema from spark_fhir_schemas.stu3.complex_types.narrative import NarrativeSchema from spark_fhir_schemas.stu3.simple_types.resourcelist import ResourceListSchema from spark_fhir_schemas.stu3.complex_types.identifier import IdentifierSchema from spark_fhir_schemas.stu3.complex_types.period import PeriodSchema from spark_fhir_schemas.stu3.complex_types.usagecontext import ( UsageContextSchema, ) from spark_fhir_schemas.stu3.complex_types.codeableconcept import ( CodeableConceptSchema, ) from spark_fhir_schemas.stu3.complex_types.contributor import ContributorSchema from spark_fhir_schemas.stu3.complex_types.contactdetail import ( ContactDetailSchema, ) from spark_fhir_schemas.stu3.complex_types.relatedartifact import ( RelatedArtifactSchema, ) from spark_fhir_schemas.stu3.complex_types.reference import ReferenceSchema from spark_fhir_schemas.stu3.complex_types.timing import TimingSchema from spark_fhir_schemas.stu3.complex_types.range import RangeSchema from spark_fhir_schemas.stu3.complex_types.activitydefinition_participant import ( ActivityDefinition_ParticipantSchema, ) from spark_fhir_schemas.stu3.complex_types.quantity import QuantitySchema from spark_fhir_schemas.stu3.complex_types.dosage import DosageSchema from spark_fhir_schemas.stu3.complex_types.activitydefinition_dynamicvalue import ( ActivityDefinition_DynamicValueSchema, ) if ( max_recursion_limit and nesting_list.count("ActivityDefinition") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + ["ActivityDefinition"] schema = StructType( [ # The logical id of the resource, as used in the URL for the resource. Once # assigned, this value never changes. StructField("id", StringType(), True), # May be used to represent additional information that is not part of the basic # definition of the resource. In order to make the use of extensions safe and # manageable, there is a strict set of governance applied to the definition and # use of extensions. Though any implementer is allowed to define an extension, # there is a set of requirements that SHALL be met as part of the definition of # the extension. StructField( "extension", ArrayType( ExtensionSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # The metadata about the resource. This is content that is maintained by the # infrastructure. Changes to the content may not always be associated with # version changes to the resource. StructField( "meta", MetaSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # A reference to a set of rules that were followed when the resource was # constructed, and which must be understood when processing the content. StructField("implicitRules", StringType(), True), # The base language in which the resource is written. StructField("language", StringType(), True), # A human-readable narrative that contains a summary of the resource, and may be # used to represent the content of the resource to a human. The narrative need # not encode all the structured data, but is required to contain sufficient # detail to make it "clinically safe" for a human to just read the narrative. # Resource definitions may define what content should be represented in the # narrative to ensure clinical safety. StructField( "text", NarrativeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # These resources do not have an independent existence apart from the resource # that contains them - they cannot be identified independently, and nor can they # have their own independent transaction scope. StructField( "contained", ArrayType( ResourceListSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # This is a ActivityDefinition resource StructField("resourceType", StringType(), True), # An absolute URI that is used to identify this activity definition when it is # referenced in a specification, model, design or an instance. This SHALL be a # URL, SHOULD be globally unique, and SHOULD be an address at which this # activity definition is (or will be) published. The URL SHOULD include the # major version of the activity definition. For more information see [Technical # and Business Versions](resource.html#versions). StructField("url", StringType(), True), # A formal identifier that is used to identify this activity definition when it # is represented in other formats, or referenced in a specification, model, # design or an instance. StructField( "identifier", ArrayType( IdentifierSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # The identifier that is used to identify this version of the activity # definition when it is referenced in a specification, model, design or # instance. This is an arbitrary value managed by the activity definition author # and is not expected to be globally unique. For example, it might be a # timestamp (e.g. yyyymmdd) if a managed version is not available. There is also # no expectation that versions can be placed in a lexicographical sequence. To # provide a version consistent with the Decision Support Service specification, # use the format Major.Minor.Revision (e.g. 1.0.0). For more information on # versioning knowledge assets, refer to the Decision Support Service # specification. Note that a version is required for non-experimental active # assets. StructField("version", StringType(), True), # A natural language name identifying the activity definition. This name should # be usable as an identifier for the module by machine processing applications # such as code generation. StructField("name", StringType(), True), # A short, descriptive, user-friendly title for the activity definition. StructField("title", StringType(), True), # The status of this activity definition. Enables tracking the life-cycle of the # content. StructField("status", StringType(), True), # A boolean value to indicate that this activity definition is authored for # testing purposes (or education/evaluation/marketing), and is not intended to # be used for genuine usage. StructField("experimental", BooleanType(), True), # The date (and optionally time) when the activity definition was published. # The date must change if and when the business version changes and it must # change if the status code changes. In addition, it should change when the # substantive content of the activity definition changes. StructField("date", StringType(), True), # The name of the individual or organization that published the activity # definition. StructField("publisher", StringType(), True), # A free text natural language description of the activity definition from a # consumer's perspective. StructField("description", StringType(), True), # Explaination of why this activity definition is needed and why it has been # designed as it has. StructField("purpose", StringType(), True), # A detailed description of how the asset is used from a clinical perspective. StructField("usage", StringType(), True), # The date on which the resource content was approved by the publisher. Approval # happens once when the content is officially approved for usage. StructField("approvalDate", DateType(), True), # The date on which the resource content was last reviewed. Review happens # periodically after approval, but doesn't change the original approval date. StructField("lastReviewDate", DateType(), True), # The period during which the activity definition content was or is planned to # be in active use. StructField( "effectivePeriod", PeriodSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # The content was developed with a focus and intent of supporting the contexts # that are listed. These terms may be used to assist with indexing and searching # for appropriate activity definition instances. StructField( "useContext", ArrayType( UsageContextSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A legal or geographic region in which the activity definition is intended to # be used. StructField( "jurisdiction", ArrayType( CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Descriptive topics related to the content of the activity. Topics provide a # high-level categorization of the activity that can be useful for filtering and # searching. StructField( "topic", ArrayType( CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A contributor to the content of the asset, including authors, editors, # reviewers, and endorsers. StructField( "contributor", ArrayType( ContributorSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Contact details to assist a user in finding and communicating with the # publisher. StructField( "contact", ArrayType( ContactDetailSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A copyright statement relating to the activity definition and/or its contents. # Copyright statements are generally legal restrictions on the use and # publishing of the activity definition. StructField("copyright", StringType(), True), # Related artifacts such as additional documentation, justification, or # bibliographic references. StructField( "relatedArtifact", ArrayType( RelatedArtifactSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A reference to a Library resource containing any formal logic used by the # asset. StructField( "library", ArrayType( ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A description of the kind of resource the activity definition is representing. # For example, a MedicationRequest, a ProcedureRequest, or a # CommunicationRequest. Typically, but not always, this is a Request resource. StructField("kind", StringType(), True), # Detailed description of the type of activity; e.g. What lab test, what # procedure, what kind of encounter. StructField( "code", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # The period, timing or frequency upon which the described activity is to occur. StructField( "timingTiming", TimingSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # The period, timing or frequency upon which the described activity is to occur. StructField("timingDateTime", TimestampType(), True), # The period, timing or frequency upon which the described activity is to occur. StructField( "timingPeriod", PeriodSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # The period, timing or frequency upon which the described activity is to occur. StructField( "timingRange", RangeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Identifies the facility where the activity will occur; e.g. home, hospital, # specific clinic, etc. StructField( "location", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Indicates who should participate in performing the action described. StructField( "participant", ArrayType( ActivityDefinition_ParticipantSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Identifies the food, drug or other product being consumed or supplied in the # activity. StructField( "productReference", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Identifies the food, drug or other product being consumed or supplied in the # activity. StructField( "productCodeableConcept", CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Identifies the quantity expected to be consumed at once (per dose, per meal, # etc.). StructField( "quantity", QuantitySchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Provides detailed dosage instructions in the same way that they are described # for MedicationRequest resources. StructField( "dosage", ArrayType( DosageSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # Indicates the sites on the subject's body where the procedure should be # performed (I.e. the target sites). StructField( "bodySite", ArrayType( CodeableConceptSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), # A reference to a StructureMap resource that defines a transform that can be # executed to produce the intent resource using the ActivityDefinition instance # as the input. StructField( "transform", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, ), True, ), # Dynamic values that will be evaluated to produce values for elements of the # resulting resource. For example, if the dosage of a medication must be # computed based on the patient's weight, a dynamic value would be used to # specify an expression that calculated the weight, and the path on the intent # resource that would contain the result. StructField( "dynamicValue", ArrayType( ActivityDefinition_DynamicValueSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth, max_extension_depth=max_extension_depth, ) ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] return schema
# -*- coding: utf-8 -*- from .models import ConferenceModerator def list_conference_moderator(user): qs = ConferenceModerator.objects.filter(moderator=user) return qs.all()
from __future__ import annotations import matplotlib as mpl # https://stackoverflow.com/a/26853961/353337 def _merge(dict1, dict2): """Merge two dicts, dict2 takes precedence.""" return {**dict1, **dict2} def duftify(style: dict, bar: bool = False) -> dict: try: grid_color = style["grid.color"] except KeyError: # default grid color, # <https://matplotlib.org/stable/tutorials/introductory/customizing.html> grid_color = "#b0b0b0" _stroke_width = 0.3 # make the xticks slightly wider to make them easier to see _xtick_width = 0.4 # See <https://matplotlib.org/stable/tutorials/introductory/customizing.html> for all # possible rcParams. dufte_style = { "font.size": 14, "text.color": grid_color, "axes.labelcolor": grid_color, "axes.labelpad": 18, "axes.spines.left": False, "axes.spines.bottom": False, "axes.spines.top": False, "axes.spines.right": False, "ytick.minor.left": False, # Axes aren't used in this theme, but still set some properties in case the user # decides to turn them on. "axes.edgecolor": grid_color, "axes.linewidth": _stroke_width, # default is "line", i.e., below lines but above patches (bars) "axes.axisbelow": True, # "ytick.right": False, "ytick.color": grid_color, "ytick.major.width": _stroke_width, "xtick.minor.top": False, "xtick.minor.bottom": False, "xtick.color": grid_color, "xtick.major.width": _xtick_width, "axes.grid": True, "axes.grid.axis": "y", "grid.color": grid_color, # Choose the line width such that it's very subtle, but still serves as a guide. "grid.linewidth": _stroke_width, "axes.xmargin": 0, "axes.ymargin": 0, "axes.titlepad": 40, "axes.titlesize": 14, } if bar: # hide xticks for bars; the label is enough dufte_style["xtick.major.width"] = 0 # unhide the bar labels dufte_style["xtick.major.pad"] = 13 dufte_style["font.size"] = 16 # default: dufte_style["axes.xmargin"] = mpl.rcParams["axes.xmargin"] # style_bar["ytick.major.size"] = 10 dufte_style["axes.titlelocation"] = "left" dufte_style["axes.titlesize"] = 18 return _merge(style, dufte_style) dufte = duftify({}) dufte_bar = duftify({}, bar=True)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Generate elev2D.th for a Bay-Delta SCHSIM model using tides at Point Reyes and Monterey. 2015-06-16: Customized """ import sys import pandas as pd from netCDF4 import Dataset import gdal from schimpy.separate_species import separate_species from schimpy.schism_mesh import read_mesh from vtools.data.vtime import hours, days, seconds from vtools.datastore.read_ts import read_noaa, read_ts import numpy as np from datetime import datetime import struct, argparse, re import time ################# command line application ##################### def create_arg_parser(): import textwrap parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, epilog=textwrap.dedent( """ ============== Example ================== > gen_elev2D.py --outfile elev2D.nc --stime=2009-03-12 --etime=2010-01-01 9415020_gageheight.csv 9413450_gageheight.csv """), description="""Script to create elev2D.th boundary condition from Point Reyes and Monterey NOAA file""" ) parser.add_argument('--stime', default=None, required=False, help="Start time in ISO-like format 2009-03-12T00:00:00. Time part and 'T' are optional.") parser.add_argument('--etime', default=None, required=False, help='End time.') parser.add_argument('--hgrid', default='hgrid.gr3', required=False, help='Name of hgrid file if not hgrid.gr3') parser.add_argument('--outfile', default='elev2D.th.nc', help='Name of output file: either elev2D.th or elev2D.th.nc') parser.add_argument('--slr', default=0.0, type=float, required=False, help='Scalar sea level rise increment') parser.add_argument('pt_reyes', default=None, help='Pt Reyes data file, must have a buffer of 16 days at either end of series') parser.add_argument('monterey', default=None, help='Monterey data file, must have a buffer of 16 days at either end of series') return parser class THWriter(object): def __init__(self,path,size,starttime): pass #self.myfilehnandle = def write_step(self,iter,time,vals): pass def write_all(self,times,vals): # if you get to this point pass def __del__(self): pass # tear down/close things class BinaryTHWriter(THWriter): #super(THWriter, self).__init__(path) def __init__(self,fpath_out,nloc,starttime): self.outfile = open(fpath_out, 'wb') #self.myfilehnandle = self.tformat="f" self.valformat="f"*nloc def write_step(self,iter,time,vals): print("Writing Output") buf = struct.pack(self.tformat, time) self.outfile.write(buf) buf = struct.pack(self.valformat, *vals) self.outfile.write(buf) def write_all(self,times,vals): # if you get to this point pass def __del__(self): self.outfile.close() # tear down/close things class NetCDFTHWriter(THWriter): def __init__(self,fpath_out,nloc,starttime,dt): self.outfile = Dataset(fpath_out, "w", format="NETCDF4_CLASSIC") fout = self.outfile time = fout.createDimension("time", None) nOpenBndNodes = fout.createDimension("nOpenBndNodes", nloc) nLevels = fout.createDimension("nLevels", 1) nComponents = fout.createDimension("nComponents", 1) one = fout.createDimension("one", 1) # create netCDF dimension variables and self.times = fout.createVariable("time","f8", ("time",)) #todo: what is timestep all about? Did we invent this? Why variable rather than attribute? #todo: what is timestep all about? Did we invent this? Why variable rather than attribute? self.timestep = fout.createVariable("time_step","f4", ("one",)) self.timestep[0] = dt # create elevation time series data to be writen to netCDF file self.timeseries = fout.createVariable("time_series", "f4", ("time", "nOpenBndNodes", "nLevels", "nComponents")) # variable attributes self.times.long_name = "simulation time in seconds" self.times.units = "seconds since " + str(starttime) self.timeseries.long_name = "water surface elevation at ocean boundary" self.timestep.long_name = "time step in seconds" self.timeseries.units = "meters NAVD88" # Global Attributes -- Metadata fout.description = "Water Surface Elevation Boundary Conditions at Ocean Boundary " fout.history = "Created " + str(datetime.now()) fout.source = "gen_ elev2D.py" def write_step(self,iter,time,vals): self.timeseries[iter,:,0,0]= vals self.times[iter]=time def write_all(self,times,vals): # if you get to this point pass def __del__(self): self.outfile.close() def main(): parser = create_arg_parser() args = parser.parse_args() monterey_fpath = args.monterey pt_reyes_fpath = args.pt_reyes hgrid_fpath = args.hgrid fpath_out = args.outfile slr = args.slr stime = args.stime etime = args.etime return gen_elev2D(hgrid_fpath,fpath_out,pt_reyes_fpath,monterey_fpath,stime,etime,slr) def gen_elev2D(hgrid_fpath,outfile,pt_reyes_fpath,monterey_fpath,start,end,slr): max_gap = 5 stime = start etime = end fpath_out = outfile #todo: hardwire nnode = 83 tbuf = days(16) # convert start time string input to datetime sdate = pd.Timestamp(stime) if not etime is None: # convert start time string input to datetime edate = pd.Timestamp(etime) bufend = edate + tbuf else: edate = None bufend = None # UTM positions of Point Reyes, Monterey, SF pos_pr = np.array([502195.03, 4205445.47]) pos_mt = np.array([599422.84, 4051630.37]) pos_sf = np.array([547094.79, 4184499.42]) var_subtidal = np.array([0.938, 0.905, 0.969]) # pr, mt, sf var_semi = np.array([0.554, 0.493, 0.580]) # Assume 45 degree from north-west to south-east tangent = np.array([1, -1]) tangent = tangent / np.linalg.norm(tangent) # Normalize # Rotate 90 cw to get normal vec normal = np.array([tangent[1], -tangent[0]]) print("tangent: {}".format(tangent)) print("normal: {}".format(normal)) mt_rel = pos_mt - pos_pr x_mt = np.dot(tangent, mt_rel) # In pr-mt direction y_mt = np.dot(normal, mt_rel) # Normal to x-direction to the # Grid #todo: what is the difference between this and m = read_grid()?? mesh = read_mesh(hgrid_fpath) ocean_boundary = mesh.boundaries[0] # First one is ocean # Data print("Reading Point Reyes...") pt_reyes = read_noaa(pt_reyes_fpath, start=sdate - tbuf, end=bufend, force_regular=True) pt_reyes.interpolate(limit=max_gap,inplace=True) if pt_reyes.isna().any(axis=None): raise ValueError("pt_reyes has gaps larger than fill limit") ts_pr_subtidal, ts_pr_diurnal, ts_pr_semi, noise = separate_species(pt_reyes,noise_thresh_min=150) del noise print("Reading Monterey...") monterey = read_noaa(monterey_fpath, start=sdate - tbuf, end=bufend, force_regular=True) monterey.interpolate(limit=max_gap,inplace=True) if pt_reyes.isna().any(axis=None): raise ValueError("monterey has gaps larger than fill limit") if pt_reyes.index.freq != monterey.index.freq: raise ValueError( "Point Reyes and Monterey time step must be the same in gen_elev2D.py") ts_mt_subtidal, ts_mt_diurnal, ts_mt_semi, noise = separate_species(monterey,noise_thresh_min=150) del noise dt = monterey.index.freq/seconds(1) print("Done Reading") print("Interpolating and subsetting Point Reyes") # interpolate_ts(ts_pr_subtidal.window(sdate,edate),step) ts_pr_subtidal = ts_pr_subtidal.loc[sdate:edate] ts_pr_diurnal = ts_pr_diurnal.loc[sdate:edate] # interpolate_ts(ts_pr_semi.window(sdate,edate),step) ts_pr_semi = ts_pr_semi.loc[sdate:edate] print("Interpolating and subsetting Monterey") # interpolate_ts(ts_mt_subtidal.window(sdate,edate),step) ts_mt_subtidal = ts_mt_subtidal.loc[sdate:edate] # interpolate_ts(ts_mt_diurnal.window(sdate,edate),step) ts_mt_diurnal = ts_mt_diurnal.loc[sdate:edate] # interpolate_ts(ts_mt_semi.window(sdate,edate),step) ts_mt_semi = ts_mt_semi.loc[sdate:edate] print("Creating writer") # requires dt be known for netcdf if fpath_out.endswith("th"): thwriter = BinaryTHWriter(fpath_out,nnode,None) elif fpath_out.endswith("nc"): thwriter = NetCDFTHWriter(fpath_out,nnode,sdate,dt) else: raise ValueError("File extension for output not recognized in file: {}".format(fpath_out)) # Grid boundaries = mesh.nodes[ocean_boundary.nodes] pos_rel = boundaries[:, :2] - pos_pr # x, y in a new principal axes x = np.dot(pos_rel, tangent.reshape((2, -1))) y = np.dot(pos_rel, normal.reshape((2, -1))) theta_x = x / x_mt theta_x_comp = 1. - theta_x theta_y = y / y_mt theta_y_comp = 1. - theta_y var_y = (theta_y_comp * var_semi[0] + theta_y * var_semi[1]) # adj_subtidal_mt = 0.08 # Adjustment in Monterey subtidal signal # scaling_diurnal_mt = 0.95 # Scaling of Monterey diurnal signal (for K1/Q1) # Used this up to v75 adj_subtidal_mt = 0. # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 1. # Scaling of Monterey diurnal signal (for K1/Q1) # New trial for LSC2 with v75 adj_subtidal_mt = -0.07 # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 0.95 # Scaling of Monterey diurnal signal (for K1/Q1) scaling_semidiurnal_mt = 1.03 adj_subtidal_mt = -0.14 # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 0.90 # Scaling of Monterey diurnal signal (for K1/Q1) scaling_semidiurnal_mt = 1.07 adj_subtidal_mt = 0.10 # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 0.90 # Scaling of Monterey diurnal signal (for K1/Q1) scaling_semidiurnal_mt = 1.03 adj_subtidal_mt = 0.10 # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 0.97 # Scaling of Monterey diurnal signal (for K1/Q1) # Scaling of Point Reyes diurnal signal (for K1/Q1) scaling_diurnal_pr = 0.97 scaling_semidiurnal_mt = 1.025 # Scaling at Monterey semi-diurnal signal adj_subtidal_mt = 0.09 # Adjustment in Monterey subtidal signal scaling_diurnal_mt = 0.94 # Scaling of Monterey diurnal signal (for K1/Q1) # Scaling of Point Reyes diurnal signal (for K1/Q1) scaling_diurnal_pr = 0.94 scaling_semidiurnal_mt = 1.0 # Scaling at Monterey semi-diurnal signal if ts_pr_semi.isna().any(axis=None): print(ts_pr_semi[ts_pr_semi.isna()]) raise ValueError('Above times are missing in Point Reyes data') for i in range(len(ts_pr_semi)): t = float(dt * i) # semi-diurnal # Scaling pr = ts_pr_semi.iloc[i,0] mt = ts_mt_semi.iloc[i,0] * scaling_semidiurnal_mt if np.isnan(pr) or np.isnan(mt): raise ValueError("One of values is numpy.nan.") eta_pr_side = var_y / var_semi[0] * pr eta_mt_side = var_y / var_semi[1] * mt eta = eta_pr_side * theta_x_comp + eta_mt_side * theta_x # diurnal # Interpolate in x-direction only to get a better phase pr = ts_pr_diurnal.iloc[i,0] * scaling_diurnal_pr mt = ts_mt_diurnal.iloc[i,0] * scaling_diurnal_mt #if i < 5: # print("yu") # print(pr) # print(mt) if np.isnan(pr) or np.isnan(mt): raise ValueError("One of values is numpy.nan.") eta += pr * theta_x_comp + mt * theta_x # Subtidal # No phase change in x-direction. Simply interpolate in # y-direction. pr = ts_pr_subtidal.iloc[i,0] mt = ts_mt_subtidal.iloc[i,0] + adj_subtidal_mt if np.isnan(pr) or np.isnan(mt): raise ValueError("One of values is numpy.nan.") eta += pr * theta_y_comp + mt * theta_y + slr # write data to netCDF file thwriter.write_step(i,t,eta) # Delete class del thwriter if __name__ == "__main__": main()
from sklearn.model_selection import train_test_split from lifelines import CoxPHFitter import matplotlib.pyplot as plt import streamlit as st class Model: def __init__(self, data): self.data = data def coxPH(self): train_features = ['gender_Female', 'Partner_Yes', 'Dependents_Yes', 'PhoneService_Yes', 'MultipleLines_Yes', 'InternetService_DSL', 'InternetService_Fiber optic', 'OnlineSecurity_Yes', 'DeviceProtection_Yes', 'TechSupport_Yes', 'StreamingTV_Yes', 'StreamingMovies_Yes', 'Contract_One year', 'Contract_Two year', 'PaperlessBilling_Yes', 'PaymentMethod_Bank transfer (automatic)', 'PaymentMethod_Credit card (automatic)', 'PaymentMethod_Electronic check', 'MonthlyCharges', 'TotalCharges', 'tenure', 'Churn_Yes'] cph_train, cph_test = train_test_split(self.data[train_features], test_size=0.2, random_state=100) cph = CoxPHFitter() cph.fit(cph_train, 'tenure', 'Churn_Yes') self.visualize(cph) return cph_train, cph_test, cph def visualize(self, model): plt.clf() model.print_summary() st.write(''' **Feature significance chart aka coefficient chart:** This tells us the relative significance of each feature on the customer churn. Feature with positive coef increases the probability of customer churn and feature with negative coef reduces the churn probability. ''') model.plot() st.pyplot(plt) st.write(''' \n **Survival curves** for customers whose TotalCharges are 4000, 2500, 2000 and 0. Clearly customers with high TotalCharges have high survival chances. ''') model.plot_partial_effects_on_outcome('TotalCharges', [0, 2000, 2500, 4000], cmap='coolwarm').set_xlabel('tenure period') st.pyplot(plt) st.write('### Approach') st.write("""Survival analysis models are used to predict churn. It helps you predict the survival chances of the customer at any given point of time. Here we have used one type of survival analysis model called as CoXPH for predicting churn""") link = '[Read more](https://en.wikipedia.org/wiki/Survival_analysis)' st.markdown(link, unsafe_allow_html=True)
num = (int(input('Digite um numero')), int(input('Digite outro numero')), int(input('Digite mais um numero')), int(input('Digite ultimo numero'))) print(f'Vc Digitou os numeros {num}') print(f'o numero 9 apareceu {num.count(9)} vezes') if 3 in num: print(f'o valor 3 apareceu na {num.index(3) + 1}') else: print(' o valor 3 não foi digitado') for n in num: if n % 2 == 0: print(f'o numero {n} é par')
import graph_preprocessing as gp import time import random import json import os from numba import jit, cuda # graph = { # 1: [8, 3, 7], # 2: [7], # 3: [1, 5], # 4: [5, 8], # 5: [4,3], # 6: [7], # 7: [1, 2, 6], # 8: [1, 4] # } # hospital = [8,6, 2, 7] start = time.time() graph_reader = gp.Graph_Reader() graph = graph_reader.readGraph() # hospital = graph_reader.readHospital() hospital = {} node = [5] allPaths = {} visitedNodePath = {} number_hospitals = 250 for h in range(number_hospitals): numb = random.randint(0, len(graph) - 1) while (numb in hospital and numb not in graph): numb = random.randint(0, len(graph) - 1) hospital[numb] = 1 print("List of Hospital:") print(hospital) print("Done Reading Graphs: " + str(time.time() - start)) nodesWithoutHospital = len(graph) - number_hospitals def write_data_json_file(output_directory, file_name, writePath): # Load in existing file record if os.path.isfile('./' + output_directory + file_name): with open(output_directory + file_name) as json_file: f_data = json.load(json_file) if len(f_data) != 0: data = f_data data = writePath with open(output_directory + file_name, 'w') as outfile: json.dump(data, outfile) def backtrack(parent, startNode, end): path = [end] while path[-1] != startNode: currentNode = parent[path[-1]] visitedNodePath[path[-1]] = True path.append(currentNode) newPath = path.copy() newPath.reverse() allPaths[currentNode] = newPath #print(allPaths[currentNode]) #print("Run" + str(currentNode) + " " + str(time.time() - start)) print("Completion: " + str(round(len(allPaths) / nodesWithoutHospital * 100, 6)) + "%") path.reverse() return path def BFS_Selected(startNode, hospitalNode): visitedNode = {} queue = [] parent = {} queue.append(startNode) visitedNode[startNode] = True while queue: currentNode = queue.pop(0) if currentNode == hospitalNode: return backtrack(parent, startNode, currentNode) for i in range(len(graph[currentNode])): if graph[currentNode][i] not in visitedNode: if graph[currentNode][i] in allPaths: return allPaths[graph[currentNode][i]] parent[graph[currentNode][i]] = currentNode queue.append(graph[currentNode][i]) visitedNode[graph[currentNode][i]] = True def BFS_Shortest(startNode): visitedNode = {} queue = [] parent = {} queue.append(startNode) visitedNode[startNode] = True while queue: currentNode = queue.pop(0) if currentNode in hospital: return backtrack(parent, startNode, currentNode) for i in range(len(graph[currentNode])): if graph[currentNode][i] not in visitedNode: parent[graph[currentNode][i]] = currentNode queue.append(graph[currentNode][i]) visitedNode[graph[currentNode][i]] = True # @jit def BFS_ShortestCuda(startNode): visitedNode = {} queue = [] parent = {} queue.append(startNode) visitedNode[startNode] = True while queue: currentNode = queue.pop(0) if currentNode in hospital: return backtrack(parent, startNode, currentNode) for i in range(len(graph[currentNode])): if graph[currentNode][i] not in visitedNode: parent[graph[currentNode][i]] = currentNode queue.append(graph[currentNode][i]) visitedNode[graph[currentNode][i]] = True def analyseGraphEdges(): edgeCounts = {} for key in graph: edgeCounts[key] = len(graph[key]) write_data_json_file("output/", "edgesCount.json", edgeCounts) topEdges = 4 highKeys = [] for key in graph: if len(graph[key]) >= topEdges and key not in hospital: highKeys.append(key) for key in highKeys: if key not in allPaths: BFS_ShortestCuda(key) for key in graph: if key not in allPaths and key not in hospital: BFS_ShortestCuda(key) write_data_json_file("output/", "AppendingBFS_output.json", {"hospitals": hospital, "paths": allPaths}) print("Nodes Number:" + str(len(graph))) print("Run Finished: " + str(time.time() - start))
#This program demonstrates usage of 'With' statement from Lesson 6 with open("E:\SelfStudy\Python\PyMegaCourse\example3.txt","a+") as file: #file.seek(0) content=file.read() file.write("\nTest 8")
# Copyright Hybrid Logic Ltd. See LICENSE file for details. """ Tests for the control service REST API. """ import socket from contextlib import closing from uuid import uuid4 from pyrsistent import thaw, pmap from twisted.trial.unittest import TestCase from twisted.internet.defer import gatherResults from treq import get, json_content, content from eliot import Message from ..testtools import ( REALISTIC_BLOCKDEVICE_SIZE, loop_until, random_name, find_free_port, ) from .testtools import ( MONGO_IMAGE, require_mongo, get_mongo_client, require_cluster, require_moving_backend, ) # A command that will run an "HTTP" in a Busybox container. The server # responds "hi" to any request. BUSYBOX_HTTP = [ u"sh", u"-c", u"""\ echo -n '#!/bin/sh echo -n "HTTP/1.1 200 OK\r\n\r\nhi" ' > /tmp/script.sh; chmod +x /tmp/script.sh; nc -ll -p 8080 -e /tmp/script.sh """ ] def verify_socket(host, port): """ Wait until the destionation can be connected to. :param bytes host: Host to connect to. :param int port: Port to connect to. :return Deferred: Firing when connection is possible. """ def can_connect(): with closing(socket.socket()) as s: conn = s.connect_ex((host, port)) Message.new( message_type="acceptance:verify_socket", host=host, port=port, result=conn, ).write() return conn == 0 dl = loop_until(can_connect) return dl class ContainerAPITests(TestCase): """ Tests for the container API. """ def _create_container(self, cluster): """ Create a container listening on port 8080. :return: ``Deferred`` firing with a tuple of ``Cluster`` instance and container dictionary once the container is up and running. """ data = { u"name": random_name(self), u"image": "clusterhq/flask:latest", u"ports": [{u"internal": 80, u"external": 8080}], u'restart_policy': {u'name': u'never'}, u"node_uuid": cluster.nodes[0].uuid, } d = cluster.create_container(data) def check_result(result): cluster, response = result self.addCleanup(cluster.remove_container, data[u"name"]) self.assertEqual(response, data) dl = verify_socket(cluster.nodes[0].public_address, 8080) dl.addCallback(lambda _: response) return dl d.addCallback(check_result) return d @require_cluster(1) def test_create_container_with_ports(self, cluster): """ Create a container including port mappings on a single-node cluster. """ return self._create_container(cluster) @require_cluster(1) def test_create_container_with_environment(self, cluster): """ Create a container including environment variables on a single-node cluster. """ data = { u"name": random_name(self), u"image": "clusterhq/flaskenv:latest", u"ports": [{u"internal": 8080, u"external": 8081}], u"environment": {u"ACCEPTANCE_ENV_LABEL": 'acceptance test ok'}, u'restart_policy': {u'name': u'never'}, } data[u"node_uuid"] = cluster.nodes[0].uuid d = cluster.create_container(data) def check_result((cluster, response)): self.addCleanup(cluster.remove_container, data[u"name"]) self.assertEqual(response, data) return cluster def query_environment(host, port): """ The running container, clusterhq/flaskenv, is a simple Flask app that returns a JSON dump of the container's environment, so we make an HTTP request and parse the response. """ req = get( "http://{host}:{port}".format(host=host, port=port), persistent=False ).addCallback(json_content) return req d.addCallback(check_result) def checked(cluster): host = cluster.nodes[0].public_address d = verify_socket(host, 8081) d.addCallback(lambda _: query_environment(host, 8081)) return d d.addCallback(checked) d.addCallback( lambda response: self.assertDictContainsSubset(data[u"environment"], response) ) return d @require_moving_backend @require_mongo @require_cluster(2) def test_move_container_with_dataset(self, cluster): """ Create a mongodb container with an attached dataset, issue API call to move the container. Wait until we can connect to the running container on the new host and verify the data has moved with it. """ creating_dataset = create_dataset(self, cluster) def created_dataset(result): cluster, dataset = result mongodb = { u"name": random_name(self), u"node_uuid": cluster.nodes[0].uuid, u"image": MONGO_IMAGE, u"ports": [{u"internal": 27017, u"external": 27017}], u'restart_policy': {u'name': u'never'}, u"volumes": [{u"dataset_id": dataset[u"dataset_id"], u"mountpoint": u"/data/db"}], } created = cluster.create_container(mongodb) created.addCallback(lambda _: self.addCleanup( cluster.remove_container, mongodb[u"name"])) created.addCallback( lambda _: get_mongo_client(cluster.nodes[0].public_address)) def got_mongo_client(client): database = client.example database.posts.insert({u"the data": u"it moves"}) return database.posts.find_one() created.addCallback(got_mongo_client) def inserted(record): moved = cluster.move_container( mongodb[u"name"], cluster.nodes[1].uuid ) def destroy_and_recreate(_, record): """ After moving our container via the API, we then remove the container on the new host and recreate it, pointing to the same dataset, but with the new container instance exposing a different external port. This technique ensures that the test does not pass by mere accident without the container having moved; by recreating the container on its new host after moving, we can be sure that if we can still connect and read the data, the dataset was successfully moved along with the container. """ removed = cluster.remove_container(mongodb[u"name"]) mongodb2 = mongodb.copy() mongodb2[u"ports"] = [ {u"internal": 27017, u"external": 27018} ] mongodb2[u"node_uuid"] = cluster.nodes[1].uuid removed.addCallback( lambda _: cluster.create_container(mongodb2)) removed.addCallback(lambda _: record) return removed moved.addCallback(destroy_and_recreate, record) return moved created.addCallback(inserted) def moved(record): d = get_mongo_client(cluster.nodes[1].public_address, 27018) d.addCallback(lambda client: client.example.posts.find_one()) d.addCallback(self.assertEqual, record) return d created.addCallback(moved) return created creating_dataset.addCallback(created_dataset) return creating_dataset @require_mongo @require_cluster(1) def test_create_container_with_dataset(self, cluster): """ Create a mongodb container with an attached dataset, insert some data, shut it down, create a new container with same dataset, make sure the data is still there. """ creating_dataset = create_dataset(self, cluster) def created_dataset(result): cluster, dataset = result mongodb = { u"name": random_name(self), u"node_uuid": cluster.nodes[0].uuid, u"image": MONGO_IMAGE, u"ports": [{u"internal": 27017, u"external": 27017}], u'restart_policy': {u'name': u'never'}, u"volumes": [{u"dataset_id": dataset[u"dataset_id"], u"mountpoint": u"/data/db"}], } created = cluster.create_container(mongodb) created.addCallback(lambda _: self.addCleanup( cluster.remove_container, mongodb[u"name"])) created.addCallback( lambda _: get_mongo_client(cluster.nodes[0].public_address)) def got_mongo_client(client): database = client.example database.posts.insert({u"the data": u"it moves"}) return database.posts.find_one() created.addCallback(got_mongo_client) def inserted(record): removed = cluster.remove_container(mongodb[u"name"]) mongodb2 = mongodb.copy() mongodb2[u"ports"] = [{u"internal": 27017, u"external": 27018}] removed.addCallback( lambda _: cluster.create_container(mongodb2)) removed.addCallback(lambda _: record) return removed created.addCallback(inserted) def restarted(record): d = get_mongo_client(cluster.nodes[0].public_address, 27018) d.addCallback(lambda client: client.example.posts.find_one()) d.addCallback(self.assertEqual, record) return d created.addCallback(restarted) return created creating_dataset.addCallback(created_dataset) return creating_dataset @require_cluster(1) def test_current(self, cluster): """ The current container endpoint includes a currently running container. """ creating = self._create_container(cluster) def created(data): data[u"running"] = True def in_current(): current = cluster.current_containers() current.addCallback(lambda result: data in result) return current return loop_until(in_current) creating.addCallback(created) return creating def assert_busybox_http(self, host, port): """ Assert that a HTTP serving a response with body ``b"hi"`` is running at given host and port. This can be coupled with code that only conditionally starts up the HTTP server via Flocker in order to check if that particular setup succeeded. :param bytes host: Host to connect to. :param int port: Port to connect to. """ def query(host, port): req = get( "http://{host}:{port}".format(host=host, port=port), persistent=False ).addCallback(content) return req d = verify_socket(host, port) d.addCallback(lambda _: query(host, port)) d.addCallback(self.assertEqual, b"hi") return d @require_cluster(1) def test_non_root_container_can_access_dataset(self, cluster): """ A container running as a user that is not root can write to a dataset attached as a volume. """ _, port = find_free_port() node = cluster.nodes[0] container = { u"name": random_name(self), u"node_uuid": node.uuid, u"image": u"busybox", u"ports": [{u"internal": 8080, u"external": port}], u'restart_policy': {u'name': u'never'}, u"volumes": [{u"dataset_id": None, u"mountpoint": u"/data"}], u"command_line": [ # Run as non-root user: u"su", u"-", u"nobody", u"-c", u"sh", u"-c", # Write something to volume we attached, and then # expose what we wrote as a web server; for info on nc options # you can do `docker run busybox man nc`. u"""\ echo -n '#!/bin/sh echo -n "HTTP/1.1 200 OK\r\n\r\nhi" ' > /data/script.sh; chmod +x /data/script.sh; nc -ll -p 8080 -e /data/script.sh """]} creating_dataset = create_dataset(self, cluster) def created_dataset(result): cluster, dataset = result container[u"volumes"][0][u"dataset_id"] = dataset[u"dataset_id"] return cluster.create_container(container) creating_dataset.addCallback(created_dataset) creating_dataset.addCallback(lambda _: self.addCleanup( cluster.remove_container, container[u"name"])) creating_dataset.addCallback( lambda _: self.assert_busybox_http(node.public_address, port)) return creating_dataset @require_cluster(2) def test_linking(self, cluster): """ A link from an origin container to a destination container allows the origin container to establish connections to the destination container when the containers are running on different machines using an address obtained from ``<ALIAS>_PORT_<PORT>_TCP_{ADDR,PORT}``-style environment set in the origin container's environment. """ _, destination_port = find_free_port() _, origin_port = find_free_port() [destination, origin] = cluster.nodes busybox = pmap({ u"image": u"busybox", }) destination_container = busybox.update({ u"name": random_name(self), u"node_uuid": destination.uuid, u"ports": [{u"internal": 8080, u"external": destination_port}], u"command_line": BUSYBOX_HTTP, }) self.addCleanup( cluster.remove_container, destination_container[u"name"] ) origin_container = busybox.update({ u"name": random_name(self), u"node_uuid": origin.uuid, u"links": [{u"alias": "DEST", u"local_port": 80, u"remote_port": destination_port}], u"ports": [{u"internal": 9000, u"external": origin_port}], u"command_line": [ u"sh", u"-c", u"""\ echo -n '#!/bin/sh nc $DEST_PORT_80_TCP_ADDR $DEST_PORT_80_TCP_PORT ' > /tmp/script.sh; chmod +x /tmp/script.sh; nc -ll -p 9000 -e /tmp/script.sh """]}) self.addCleanup( cluster.remove_container, origin_container[u"name"] ) running = gatherResults([ cluster.create_container(thaw(destination_container)), cluster.create_container(thaw(origin_container)), # Wait for the link target container to be accepting connections. verify_socket(destination.public_address, destination_port), # Wait for the link source container to be accepting connections. verify_socket(origin.public_address, origin_port), ]) running.addCallback( lambda _: self.assert_busybox_http( origin.public_address, origin_port)) return running def create_dataset(test_case, cluster, maximum_size=REALISTIC_BLOCKDEVICE_SIZE): """ Create a dataset on a cluster (on its first node, specifically). :param TestCase test_case: The test the API is running on. :param Cluster cluster: The test ``Cluster``. :param int maximum_size: The size of the dataset to create on the test cluster. :return: ``Deferred`` firing with a tuple of (``Cluster`` instance, dataset dictionary) once the dataset is present in actual cluster state. """ # Configure a dataset on node1 requested_dataset = { u"primary": cluster.nodes[0].uuid, u"dataset_id": unicode(uuid4()), u"maximum_size": maximum_size, u"metadata": {u"name": u"my_volume"}, } configuring_dataset = cluster.create_dataset(requested_dataset) # Wait for the dataset to be created waiting_for_create = configuring_dataset.addCallback( lambda (cluster, dataset): cluster.wait_for_dataset(dataset) ) return waiting_for_create class DatasetAPITests(TestCase): """ Tests for the dataset API. """ @require_cluster(1) def test_dataset_creation(self, cluster): """ A dataset can be created on a specific node. """ return create_dataset(self, cluster) @require_moving_backend @require_cluster(2) def test_dataset_move(self, cluster): """ A dataset can be moved from one node to another. """ waiting_for_create = create_dataset(self, cluster) # Once created, request to move the dataset to node2 def move_dataset((cluster, dataset)): moved_dataset = { u'primary': cluster.nodes[1].uuid } return cluster.update_dataset(dataset['dataset_id'], moved_dataset) dataset_moving = waiting_for_create.addCallback(move_dataset) # Wait for the dataset to be moved waiting_for_move = dataset_moving.addCallback( lambda (cluster, dataset): cluster.wait_for_dataset(dataset) ) return waiting_for_move @require_cluster(1) def test_dataset_deletion(self, cluster): """ A dataset can be deleted, resulting in its removal from the node. """ created = create_dataset(self, cluster) def delete_dataset(result): cluster, dataset = result deleted = cluster.delete_dataset(dataset["dataset_id"]) def not_exists(): request = cluster.datasets_state() request.addCallback( lambda actual_datasets: dataset["dataset_id"] not in (d["dataset_id"] for d in actual_datasets)) return request deleted.addCallback(lambda _: loop_until(not_exists)) return deleted created.addCallback(delete_dataset) return created
#!/usr/bin/env python ########################################################################## # frontends/swig_python/RemoteThrill.py # # Part of Project Thrill - http://project-thrill.org # # Copyright (C) 2015 Timo Bingmann <[email protected]> # # All rights reserved. Published under the BSD-2 license in the LICENSE file. ########################################################################## import marshal import rpyc class RemoteDIA(): def __init__(self, dias): self._dias = dias def AllGather(self): # make async objects anetrefs = [rpyc.async(dia.AllGather) for dia in self._dias] # issue async requests asyncs = [ref() for ref in anetrefs] for a in asyncs: a.wait() # return values of workers as list return [a.value for a in asyncs] def Size(self): # make async objects anetrefs = [rpyc.async(dia.Size) for dia in self._dias] # issue async requests asyncs = [ref() for ref in anetrefs] for a in asyncs: a.wait() # return values of workers as list return [a.value for a in asyncs] def Map(self, map_function): # make async objects anetrefs = [rpyc.async(dia.Map) for dia in self._dias] # issue async requests _map_function = marshal.dumps(map_function.__code__) asyncs = [ref(_map_function) for ref in anetrefs] for a in asyncs: a.wait() # return RemoteDIA return RemoteDIA([a.value for a in asyncs]) def ReduceBy(self, key_extractor, reduce_function): # make async objects anetrefs = [rpyc.async(dia.ReduceBy) for dia in self._dias] # issue async requests _key_extractor = marshal.dumps(key_extractor.__code__) _reduce_function = marshal.dumps(reduce_function.__code__) asyncs = [ref(_key_extractor, _reduce_function) for ref in anetrefs] for a in asyncs: a.wait() # return RemoteDIA return RemoteDIA([a.value for a in asyncs]) class RemoteThrill(): def __init__(self, rpyc_hosts, thrill_hosts): # connect to rpyc servers self._conn = [rpyc.connect(*hp) for hp in rpyc_hosts] # set up background serving threads self._bgthr = [rpyc.BgServingThread(conn) for conn in self._conn] # make async objects to create Thrill contexts anetrefs = [rpyc.async(conn.root.Create) for conn in self._conn] # issue async requests asyncs = [ref(rank, thrill_hosts) for rank, ref in enumerate(anetrefs)] for a in asyncs: a.wait() # get created Thrill contexts self._ctx = [a.value for a in asyncs] def Distribute(self, array): # make async objects anetrefs = [rpyc.async(ctx.Distribute) for ctx in self._ctx] # issue async requests asyncs = [ref(array) for ref in anetrefs] for a in asyncs: a.wait() # return RemoteDIA return RemoteDIA([a.value for a in asyncs]) def Generate(self, generator_function, size): # make async objects anetrefs = [rpyc.async(ctx.Generate) for ctx in self._ctx] # issue async requests _generator_function = marshal.dumps(generator_function.__code__) asyncs = [ref(_generator_function, size) for ref in anetrefs] for a in asyncs: a.wait() # return RemoteDIA return RemoteDIA([a.value for a in asyncs]) ##########################################################################
import skimage.io as io import skimage.transform as skt import numpy as np from PIL import Image from src.models.class_patcher import patcher from src.utils.imgproc import * class patcher(patcher): def __init__(self, body='./body/body_milk.png', **options): super().__init__('ミルク', body=body, pantie_position=[741, 224], **options) self.mask = io.imread('./mask/mask_milk.png') self.sign_position = [754, 113] try: self.add_sign = self.options['add_sign'] except: self.add_sign = self.ask(question='Add immoral sign?', default=False) if self.add_sign: try: self.sign = Image.open(self.options['fsign']) except: self.sign = Image.open('./material/anna_sign.png') self.sign = self.sign.resize((int(self.sign.width * 0.6), int(self.sign.height * 0.6))) def convert(self, image): pantie = np.array(image) mask = io.imread('./mask/mask_milk.png') pantie = np.bitwise_and(pantie, mask) [r, c, d] = pantie.shape front = pantie[:160 + 30, :200, :] back = pantie[:300, 200:, ] patch = pantie[-100:-5, 546:, :][::-1, ::-1, :] # Front and front patch pre-processing front = resize(front, (2, 2)) patch = resize(patch, (1.0, 1.15)) [fr, fc, _] = front.shape [pr, pf, _] = patch.shape patch_pad = np.zeros((fr, fc, d)) patch_pad[-pr:, :pf, :] = patch patch_pad = perspective_transform(patch_pad, np.matrix('1, 0, 0; 0, 1, 0; -0.002,0,1')) patch_pad = patch_pad[-pr - 40:, :pf - 20, :][:, ::-1, :] [pr, pf, _] = patch_pad.shape # Alpha blending and transform between front and front patch remain = front[-pr:, :pf, :] * np.float32(skm.dilation(patch_pad[:, :, -1] == 0))[:, :, np.newaxis] nonzeromask = np.logical_or(skm.dilation(patch_pad[:, :, -1] == 1), remain[:, :, -1] == 1) patch_pad = remain + patch_pad normalizer = patch_pad[:, :, -1][:, :, np.newaxis] normalizer[normalizer == 0] = 1 patch_pad = patch_pad / normalizer patch_pad[:, :, -1] = np.float32(nonzeromask) front[-pr:, :pf, :] = patch_pad front = perspective_transform(front, np.matrix('1, 0, 0; 0, 1, 0; -0.001,0,1')) front = front[:, :-120, :] front = affine_transform(front, 30, 0, inv=True) # Back transform back = resize(back, (1.3, 1.3))[:, ::-1, :] back = perspective_transform(back, np.matrix('1, 0, 0; 0, 1, 0; 0.0002,0,1'))[:, ::-1, :] back = affine_transform(back, 70, 150, inv=False) back = back[:, 138:, :] [fr, fc, _] = front.shape [br, bc, _] = back.shape pantie = np.zeros((np.max([fr, br]), fc + bc - 2, d)) shiftr = 35 row_point = np.clip(shiftr + fr, 0, np.max([fr, br])) pantie[shiftr:row_point, :fc, :] = front[:-(shiftr + fr - row_point), :, :] pantie[:bc, fc - 1:, :] = back[:, 1:, :] # io.imshow(pantie) # Finalize pantie = np.uint8(pantie * 255) return Image.fromarray(pantie) def patch(self, image, transparent=False): image = self.convert(image) if transparent: patched = Image.new("RGBA", self.body_size) else: patched = self.body.copy() if self.add_sign: self.paste(patched, self.sign, self.sign_position) patched = self.paste(patched, image, self.pantie_position) return patched
"""93. Restore IP Addresses""" class Solution(object): def restoreIpAddresses(self, s): """ :type s: str :rtype: List[str] """ ## Practice: """ DFS Backtrack string, iterate through first 3 eles for each string. """ self.res = [] self.dfs(0, "", s) return self.res def dfs(self, cnt, path, s): if cnt > 4: ## !! don't forget return if cnt == 4 and not s: self.res.append(path[:-1]) return for i in range(1, len(s)+1): if s[:i] == "0" or (s[0] != '0' and 0< int(s[:i]) < 256): self.dfs(cnt + 1, path + s[:i] + '.', s[i:]) ## res = [] self.backtrack(s, 0, "", res) return res def backtrack(self, s, idx, path, res): if idx > 4: return if idx == 4 and not s: res.append(path[:-1]) return # don't forget to end this track for i in range(1, len(s)+1): # each integer is between 0 and 255 # cannot have leading zeros if s[:i] == '0' or (s[0] != '0' and 0 < int(s[:i])< 256): self.backtrack(s[i:], idx+1, path+s[:i]+".", res)
''' - Leetcode problem: 25 - Difficulty: Hard - Brief problem description: Given a linked list, reverse the nodes of a linked list k at a time and return its modified list. k is a positive integer and is less than or equal to the length of the linked list. If the number of nodes is not a multiple of k then left-out nodes in the end should remain as it is. Example: Given this linked list: 1->2->3->4->5 For k = 2, you should return: 2->1->4->3->5 For k = 3, you should return: 3->2->1->4->5 Note: Only constant extra memory is allowed. You may not alter the values in the list's nodes, only nodes itself may be changed. - Solution Summary: - Used Resources: --- Bo Zhou ''' # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def reverseKGroup(self, head: ListNode, k: int) -> ListNode: if head == None or head.next == None: return head pre_tail = None result_head = None while self.checkLengthValid(head, k): new_head, new_tail = self.reverseByN(head, k) if result_head == None: result_head = new_head if pre_tail != None: pre_tail.next = new_head pre_tail = new_tail head = new_tail.next return result_head # return tuple (head_node, tail_node) def reverseByN(self, head, n): pre = head cur = head.next i = 0 while i < n - 1: pre.next = cur.next cur.next = head cur, head = pre.next, cur i += 1 return head, pre def checkLengthValid(self, head, n): for i in range(n): if head == None: return False head = head.next return True
import json import os from transfacils import models from transfacils.helpers.get_trans_api_data import line_data_generator, \ get_line_data def initialize_lines_db(filename: str = "initial_data.json"): base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) with open(os.path.join(base_dir, "fixtures/", filename), "w") as file: data_list = initialize_line_data() json.dump(data_list, file, sort_keys=True, ensure_ascii=False, indent=4) def initialize_line_data(): data_dicts = [] line = get_line_data() line_dict = {"model": "transfacils.route", "pk": line["line_cd"], "fields": {"name": line["line_name"], "kind": models.Route.TRAIN}} data_dicts.append(line_dict) for station in line_data_generator(): data_dict = {"model": "transfacils.station", "pk": station["station_cd"], "fields": {"name": station["station_name"], "route": station["line_cd"], "group_cd": station["station_g_cd"], "next_station": station["next"], "previous_station": station["previous"]}} data_dicts.append(data_dict) return data_dicts
""" Performance-related tests to make sure we don't use more memory than we should. For now this is just for SpectralCube, not DaskSpectralCube. """ from __future__ import print_function, absolute_import, division import numpy as np import pytest import tempfile import sys try: import tracemalloc tracemallocOK = True except ImportError: tracemallocOK = False # The comparison of Quantities in test_memory_usage # fail with older versions of numpy from distutils.version import LooseVersion NPY_VERSION_CHECK = LooseVersion(np.version.version) >= "1.13" from .test_moments import moment_cube from .helpers import assert_allclose from ..spectral_cube import SpectralCube from . import utilities from astropy import convolution, units as u WINDOWS = sys.platform == "win32" def find_base_nbytes(obj): # from http://stackoverflow.com/questions/34637875/size-of-numpy-strided-array-broadcast-array-in-memory if obj.base is not None: return find_base_nbytes(obj.base) return obj.nbytes def test_pix_size(): mc_hdu = moment_cube() sc = SpectralCube.read(mc_hdu) s,y,x = sc._pix_size() # float64 by default bytes_per_pix = 8 assert find_base_nbytes(s) == sc.shape[0]*bytes_per_pix assert find_base_nbytes(y) == sc.shape[1]*sc.shape[2]*bytes_per_pix assert find_base_nbytes(x) == sc.shape[1]*sc.shape[2]*bytes_per_pix def test_compare_pix_size_approaches(): mc_hdu = moment_cube() sc = SpectralCube.read(mc_hdu) sa,ya,xa = sc._pix_size() s,y,x = (sc._pix_size_slice(ii) for ii in range(3)) assert_allclose(sa, s) assert_allclose(ya, y) assert_allclose(xa, x) def test_pix_cen(): mc_hdu = moment_cube() sc = SpectralCube.read(mc_hdu) s,y,x = sc._pix_cen() # float64 by default bytes_per_pix = 8 assert find_base_nbytes(s) == sc.shape[0]*bytes_per_pix assert find_base_nbytes(y) == sc.shape[1]*sc.shape[2]*bytes_per_pix assert find_base_nbytes(x) == sc.shape[1]*sc.shape[2]*bytes_per_pix @pytest.mark.skipif('True') def test_parallel_performance_smoothing(): import timeit setup = 'cube,_ = utilities.generate_gaussian_cube(shape=(300,64,64))' stmt = 'result = cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(20.0), num_cores={0}, use_memmap=False)' rslt = {} for ncores in (1,2,3,4): time = timeit.timeit(stmt=stmt.format(ncores), setup=setup, number=5, globals=globals()) rslt[ncores] = time print() print("memmap=False") print(rslt) setup = 'cube,_ = utilities.generate_gaussian_cube(shape=(300,64,64))' stmt = 'result = cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(20.0), num_cores={0}, use_memmap=True)' rslt = {} for ncores in (1,2,3,4): time = timeit.timeit(stmt=stmt.format(ncores), setup=setup, number=5, globals=globals()) rslt[ncores] = time stmt = 'result = cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(20.0), num_cores={0}, use_memmap=True, parallel=False)' rslt[0] = timeit.timeit(stmt=stmt.format(1), setup=setup, number=5, globals=globals()) print() print("memmap=True") print(rslt) if False: for shape in [(300,64,64), (600,64,64), (900,64,64), (300,128,128), (300,256,256), (900,256,256)]: setup = 'cube,_ = utilities.generate_gaussian_cube(shape={0})'.format(shape) stmt = 'result = cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(20.0), num_cores={0}, use_memmap=True)' rslt = {} for ncores in (1,2,3,4): time = timeit.timeit(stmt=stmt.format(ncores), setup=setup, number=5, globals=globals()) rslt[ncores] = time stmt = 'result = cube.spectral_smooth(kernel=convolution.Gaussian1DKernel(20.0), num_cores={0}, use_memmap=True, parallel=False)' rslt[0] = timeit.timeit(stmt=stmt.format(1), setup=setup, number=5, globals=globals()) print() print("memmap=True shape={0}".format(shape)) print(rslt) # python 2.7 doesn't have tracemalloc @pytest.mark.skipif('not tracemallocOK or (sys.version_info.major==3 and sys.version_info.minor<6) or not NPY_VERSION_CHECK or WINDOWS') def test_memory_usage(): """ Make sure that using memmaps happens where expected, for the most part, and that memory doesn't get overused. """ ntf = tempfile.NamedTemporaryFile() tracemalloc.start() snap1 = tracemalloc.take_snapshot() # create a 64 MB cube cube,_ = utilities.generate_gaussian_cube(shape=[200,200,200]) sz = _.dtype.itemsize snap1b = tracemalloc.take_snapshot() diff = snap1b.compare_to(snap1, 'lineno') diffvals = np.array([dd.size_diff for dd in diff]) # at this point, the generated cube should still exist in memory assert diffvals.max()*u.B >= 200**3*sz*u.B del _ snap2 = tracemalloc.take_snapshot() diff = snap2.compare_to(snap1b, 'lineno') assert diff[0].size_diff*u.B < -0.3*u.MB cube.write(ntf.name, format='fits') # writing the cube should not occupy any more memory snap3 = tracemalloc.take_snapshot() diff = snap3.compare_to(snap2, 'lineno') assert sum([dd.size_diff for dd in diff])*u.B < 100*u.kB del cube # deleting the cube should remove the 64 MB from memory snap4 = tracemalloc.take_snapshot() diff = snap4.compare_to(snap3, 'lineno') assert diff[0].size_diff*u.B < -200**3*sz*u.B cube = SpectralCube.read(ntf.name, format='fits') # reading the cube from filename on disk should result in no increase in # memory use snap5 = tracemalloc.take_snapshot() diff = snap5.compare_to(snap4, 'lineno') assert diff[0].size_diff*u.B < 1*u.MB mask = cube.mask.include() snap6 = tracemalloc.take_snapshot() diff = snap6.compare_to(snap5, 'lineno') assert diff[0].size_diff*u.B >= mask.size*u.B filled_data = cube._get_filled_data(use_memmap=True) snap7 = tracemalloc.take_snapshot() diff = snap7.compare_to(snap6, 'lineno') assert diff[0].size_diff*u.B < 100*u.kB filled_data = cube._get_filled_data(use_memmap=False) snap8 = tracemalloc.take_snapshot() diff = snap8.compare_to(snap7, 'lineno') assert diff[0].size_diff*u.B > 10*u.MB del filled_data # cube is <1e8 bytes, so this is use_memmap=False filled_data = cube.filled_data[:] snap9 = tracemalloc.take_snapshot() diff = snap9.compare_to(snap6, 'lineno') assert diff[0].size_diff*u.B > 10*u.MB # python 2.7 doesn't have tracemalloc @pytest.mark.skipif('not tracemallocOK or (sys.version_info.major==3 and sys.version_info.minor<6) or not NPY_VERSION_CHECK') def test_memory_usage_coordinates(): """ Watch out for high memory usage on huge spatial files """ ntf = tempfile.NamedTemporaryFile() tracemalloc.start() snap1 = tracemalloc.take_snapshot() size = 200 # create a "flat" cube cube,_ = utilities.generate_gaussian_cube(shape=[1,size,size]) sz = _.dtype.itemsize snap1b = tracemalloc.take_snapshot() diff = snap1b.compare_to(snap1, 'lineno') diffvals = np.array([dd.size_diff for dd in diff]) # at this point, the generated cube should still exist in memory assert diffvals.max()*u.B >= size**2*sz*u.B del _ snap2 = tracemalloc.take_snapshot() diff = snap2.compare_to(snap1b, 'lineno') assert diff[0].size_diff*u.B < -0.3*u.MB print(cube) # printing the cube should not occupy any more memory # (it will allocate a few bytes for the cache, but should *not* # load the full size x size coordinate arrays for RA, Dec snap3 = tracemalloc.take_snapshot() diff = snap3.compare_to(snap2, 'lineno') assert sum([dd.size_diff for dd in diff])*u.B < 100*u.kB
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Covid Plots # # I wanted to test out using jupyter notebook to show off some plotly graphs. So here goes. # %% import pandas as pd import matplotlib.pyplot as plt import numpy as np import plotly.graph_objects as go from plotly.subplots import make_subplots from covid_alberta import * # %% abC19scaper = albertaC19_webscraper.albertaC19_webscraper() abTotal, abRegion, abTesting = abC19scaper.scrape_all(return_dataframes=True) # %% abTesting['total_tests'] = 0 abTesting['total_tests'] = abTesting.sum(axis=1) region_cum = alberta_stats.calculate_cumulatives(abRegion, combine_df=True) region_dt = alberta_stats.calculate_doublingtimes_region(region_cum, combine_df=False) total_dt = alberta_stats.calculate_doublingtimes_region(abTotal, col_suffix='cum_cases', combine_df=False) all_data = abTotal.join([total_dt, region_cum, region_dt, abTesting['total_tests']]) all_data.rename(columns={'new_cases': 'Ab_cases', 'cum_cases':'Ab_cumCases', 'dtime':'Ab_dtime', 'dtime_rw':'Ab_dtime_rw'}, inplace=True) # %% # Set up the defaults and the data ln_width = 2 days_to_trim = 1 mode = 'lines' trace_formats = {'Ab_cases': {'mode': mode, 'line': {'color': 'green', 'width':ln_width}, 'name': 'Alberta Daily'}, 'Calgary_cumCases': {'mode': mode, 'line': {'color': 'orange', 'width':ln_width}, 'name': 'Calgary Cumulative'}, 'Edmont_cumCases': {'mode': mode, 'line': {'color': 'blue', 'width':ln_width}, 'name': 'Edmonton Cumulative'} } plot_data = all_data[:-days_to_trim] updated = plot_data.index[-1].strftime("%B %d") # Create the plot data = list() date_fmt = "%m/%d" for key in trace_formats.keys(): data.append(go.Scatter(x=plot_data.index.strftime(date_fmt), y=plot_data[key], mode=trace_formats[key]['mode'], line=trace_formats[key]['line'], name=trace_formats[key]['name'], ) ) data.append(go.Bar(x=plot_data.index.strftime(date_fmt), y=plot_data['total_tests'], name='C19 Tests/day', yaxis='y2', marker={'color':'darkgrey'})) layout = go.Layout(title=f'{updated} - Alberta Covid-19: Case Counts and Number of Tests', xaxis=dict(domain=[0.01, 0.95], title='Date', titlefont={'size': 12}, rangemode='nonnegative', tick0=0, dtick=2, tickangle=45, tickfont={'color':'black', 'size':10}), yaxis=dict(title='Case Count', titlefont=dict(color='black'), tickfont={'color':'black', 'size':11}, overlaying='y2', side='right', rangemode='nonnegative', tick0=0, dtick=100), yaxis2=dict(domain=[0.1, 0.95], title='New Tests per Day', titlefont={'size': 12, 'color':'black'}, tickfont={'color':'black', 'size':11}, showgrid=False, anchor='x', side='left', rangemode='nonnegative', ticks='inside'), legend_orientation="h", hovermode='x') fig = go.Figure(data=data, layout=layout) fig.show() fig.write_html('images/Alberta_dailyCases.html') # %% # Set up the defaults and the data ln_width = 2 days_to_trim = 1 mode = 'lines' trace_formats = {'Alberta': {'x_data': 'Ab_cumCases', 'y_data': 'Ab_dtime_rw', 'mode': mode, 'line': {'color': 'green', 'width':ln_width}}, 'Calgary': {'x_data': 'Calgary_cumCases', 'y_data': 'Calgary_dtime_rw', 'mode': mode, 'line': {'color': 'orange', 'width':ln_width}}, 'Edmonton': {'x_data': 'Edmont_cumCases', 'y_data': 'Edmont_dtime_rw', 'mode': mode, 'line': {'color': 'blue', 'width':ln_width}} } plot_data = all_data[:-days_to_trim] updated = plot_data.index[-1].strftime("%B %d") # Create the plot fig = go.Figure() annotations = list() for key in trace_formats.keys(): fig.add_trace(go.Scatter(x=plot_data[trace_formats[key]['x_data']], y=plot_data[trace_formats[key]['y_data']], mode=trace_formats[key]['mode'], line=trace_formats[key]['line'], name=key, hovertemplate='dt: %{y: 0.2f}' ), ) last_x = plot_data[trace_formats[key]['x_data']][-1] last_y = plot_data[trace_formats[key]['y_data']][-1] last_day = plot_data.index[-1].strftime("%B %d") annotations.append(dict(x=last_x, y=last_y, xref='x', yref='y', text=last_day, showarrow=True, ax=0, ay=-10)) fig.update_layout(dict(title=f'{updated} - Doubling Time: 6 day rolling window', titlefont={'size':20}, xaxis=dict(title='Cumulative Case Count', titlefont={'size': 10}, rangemode='nonnegative', tick0=0, dtick=200, tickfont={'color':'black', 'size':10}), yaxis=dict(title='Doubling Time (Days)', titlefont={'size': 10}, tickfont={'color':'black', 'size':10}, side='left', rangemode='nonnegative', tick0=0, dtick=1), legend_orientation="v", hovermode='x', annotations=annotations )) fig.show() fig.write_html('images/Alberta_doublingTime_RW.html')
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetGenericArtifactsContentResult', 'AwaitableGetGenericArtifactsContentResult', 'get_generic_artifacts_content', ] @pulumi.output_type class GetGenericArtifactsContentResult: """ A collection of values returned by getGenericArtifactsContent. """ def __init__(__self__, artifact_id=None, id=None): if artifact_id and not isinstance(artifact_id, str): raise TypeError("Expected argument 'artifact_id' to be a str") pulumi.set(__self__, "artifact_id", artifact_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) @property @pulumi.getter(name="artifactId") def artifact_id(self) -> str: return pulumi.get(self, "artifact_id") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") class AwaitableGetGenericArtifactsContentResult(GetGenericArtifactsContentResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetGenericArtifactsContentResult( artifact_id=self.artifact_id, id=self.id) def get_generic_artifacts_content(artifact_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetGenericArtifactsContentResult: """ This data source provides details about a specific Generic Artifacts Content resource in Oracle Cloud Infrastructure Generic Artifacts Content service. Gets the specified artifact's content. ## Example Usage ```python import pulumi import pulumi_oci as oci test_generic_artifacts_content = oci.genericartifactscontent.get_generic_artifacts_content(artifact_id=oci_generic_artifacts_content_artifact["test_artifact"]["id"]) ``` :param str artifact_id: The [OCID](https://docs.cloud.oracle.com/iaas/Content/General/Concepts/identifiers.htm) of the artifact. Example: `ocid1.genericartifact.oc1..exampleuniqueID` """ __args__ = dict() __args__['artifactId'] = artifact_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:genericartifactscontent/getGenericArtifactsContent:getGenericArtifactsContent', __args__, opts=opts, typ=GetGenericArtifactsContentResult).value return AwaitableGetGenericArtifactsContentResult( artifact_id=__ret__.artifact_id, id=__ret__.id)
import logging from logging import config as config_log from colorlog import ColoredFormatter from DeviceManager.conf import CONFIG from DeviceManager.utils import HTTPRequestError class Log: def __init__(self, LOG_LEVEL = CONFIG.log_level, LOG_FORMAT = "[%(log_color)s%(asctime)-8s%(reset)s] |%(log_color)s%(module)-8s%(reset)s| %(log_color)s%(levelname)s%(reset)s: %(log_color)s%(message)s%(reset)s", DISABLED = False): #Disable all others modules logs LOGGING = { 'version': 1, 'disable_existing_loggers': True, } dateFormat = '%d/%m/%y - %H:%M:%S' config_log.dictConfig(LOGGING) self.formatter = ColoredFormatter(LOG_FORMAT, dateFormat) self.log = logging.getLogger('device-manager.' + __name__) self.log.setLevel(LOG_LEVEL) self.log.disabled = DISABLED self.level = LOG_LEVEL if not getattr(self.log, 'handler_set', None): self.stream = logging.StreamHandler() self.stream.setLevel(LOG_LEVEL) self.stream.setFormatter(self.formatter) self.log.setLevel(LOG_LEVEL) self.log.addHandler(self.stream) self.log.handler_set = True def update_log_level(self, LEVEL): levelToName = ['CRITICAL', 'ERROR', 'WARNING', 'INFO', 'DEBUG'] try: self.log = logging.getLogger('device-manager.' + __name__) for hdlr in self.log.handlers[:]: self.log.removeHandler(hdlr) self.stream = logging.StreamHandler() self.stream.setLevel(LEVEL) self.stream.setFormatter(self.formatter) self.log.setLevel(LEVEL) self.log.addHandler(self.stream) self.log.handler_set = True self.level = LEVEL except ValueError: raise HTTPRequestError(400, "Unknown level: {} valid are {}".format(LEVEL, levelToName)) def get_log_level(self): return self.level def color_log(self): return self.log
import os import re import time from contextlib import closing import psycopg2 from confluent_kafka import Consumer DSN_TEMPLATE = os.environ.get("CDC_POSTGRES_DSN_TEMPLATE", "postgres:///{database}") DATABASE_NAME = "test_db" def _wait_for_slot() -> None: with closing( psycopg2.connect(DSN_TEMPLATE.format(database="postgres")) ) as connection: for i in range(1, 10): print("Waiting for slot") with connection.cursor() as cursor: cursor.execute("SELECT * FROM pg_replication_slots;") for row in cursor: print("Found slot") return time.sleep(1) def test_producer() -> None: _wait_for_slot() with closing( psycopg2.connect(DSN_TEMPLATE.format(database="test_db")) ) as connection: with connection.cursor() as cursor: cursor.execute( "CREATE TABLE test_producer (a integer, b text, c timestamptz, primary key(a))" ) cursor.execute( "INSERT INTO test_producer (a, b, c) VALUES (%s, %s, %s)", [1, "test", "2019-06-16 06:21:39+00"], ) connection.commit() conf = { "bootstrap.servers": "kafka:9092", "auto.offset.reset": "smallest", "group.id": "test", } consumer = Consumer(conf) consumer.subscribe(["cdc"]) def assert_message(regex: str) -> None: message = consumer.poll(timeout=60) assert message is not None value = message.value().decode("utf-8") result = re.search(regex, value) assert ( result is not None ), f"Unexpected message: {value}. Expected regex {regex}" assert_message(r"BEGIN \d+") assert_message( r"INSERT\: a\[integer\]\:1 b\[text\]\:'test' c\[timestamp with time zone\]\:'2019\-06\-16 06\:21\:39\+00'" ) assert_message(r"COMMIT .+")
from yapsy.IPlugin import IPlugin from yapsy.PluginManager import PluginManagerSingleton from flask.ext.admin import BaseView, expose from flask import render_template import logging, inspect class PluginObj(IPlugin, BaseView): def __init__(self, **kwargs): IPlugin.__init__(self) BaseView.__init__(self, **kwargs) self.manager = PluginManagerSingleton.get() self.logger = logging.getLogger(self.__class__.__name__) self.enabled = False self.viewable = False self.widgetized = False self.use_filestore = False self.use_sqllog = False #set defaults for template paths # ais/plugins/name/widget.html # ais/plugins/name/index.html path_items = inspect.getfile(self.__class__).split('/')[-3:-1] self.path = str.join('/',path_items) self.view_template = self.path+'/index.html' self.widget_template = self.path+'/widget.html' self.url="/"+self.__class__.__name__.lower()+"/" self.filestore = None try: getattr(self.manager, 'app') except Exception: pass else: self.app = self.manager.app self.logger.debug("%s Init finished", self.__class__.__name__) def is_accessible(self): ''' Makes viewable plugins appear and disappear as enabled/disabled ''' return self.enabled def activate(self): super(PluginObj, self).activate() self.logger.debug("Plugin: %s activated" % self.__class__.__name__) def deactivate(self): super(PluginObj, self).deactivate() self.logger.debug("Plugin: %s deactivated" % self.__class__.__name__) def widget_view(self): template = self.widget_template return render_template(template, data=self) def get_configs(self): ''' get_configs returns a list of Config objects that the plugin wants to seed the db with. ''' return list() @expose('/') def plugin_view(self): template = self.view_template return self.render(template, data=self)
# Uses python3 n = int(input()) if n == 1: print(1) print(1) quit() W = n prizes = [] for i in range(1, n): if W>2*i: prizes.append(i) W -= i else: prizes.append(W) break print(len(prizes)) print(' '.join([str(i) for i in prizes]))
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2020 Huawei Device Co., Ltd. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import sys class Menuconfig(): @classmethod def _promt(cls, questions, **kwargs): prompt = importlib.import_module('hb_internal.cts.prompt') common = importlib.import_module('hb_internal.cts.common') return prompt.prompt(questions, style=common.get_style('answer'), **kwargs) def list_promt(self, name, message, choices, **kwargs): questions = self.get_questions('list', name, message, choices) return self._promt(questions, **kwargs) def checkbox_promt(self, name, message, choices, **kwargs): questions = self.get_questions('checkbox', name, message, choices) return self._promt(questions, **kwargs) @classmethod def get_questions(cls, promt_type, name, message, choices): questions = [{ 'type': promt_type, 'qmark': 'OHOS', 'name': name, 'message': message, 'choices': choices }] return questions if __name__ == "__main__": pass
import torch import numpy as np import open3d as o3d class FPFH_RANSAC(torch.nn.Module): def __init__(self, voxel_size, max_dist, max_iter, max_val): super().__init__() self.voxel_size = voxel_size self.max_iter = max_iter self.max_val = max_val self.max_dist = max_dist def preprocess_point_cloud(self, p): '''p: numpy array [npts, 3]. returns downsampled pointcloud and its fpfh features''' voxel_size = self.voxel_size pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(p[:,:3]) pcd_down = pcd.voxel_down_sample(voxel_size) pcd_down.estimate_normals( o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 2.0, max_nn=30)) pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature( pcd_down, o3d.geometry.KDTreeSearchParamHybrid(radius=voxel_size * 5.0, max_nn=100)) return (pcd_down, pcd_fpfh) def forward(self, pb): '''pb [batch, 2, npts, 4]. returns the registration result from FPFH RANSAC model''' assert pb.size(0) == 1, 'batch size must be 1' #compute fpfh features p0, fp0 = self.preprocess_point_cloud(pb[0,0].cpu().numpy()) p1, fp1 = self.preprocess_point_cloud(pb[0,1].cpu().numpy()) #compute registration res = o3d.pipelines.registration.registration_ransac_based_on_feature_matching(p0, p1, fp0, fp1, self.max_dist, ransac_n=3, criteria=o3d.pipelines.registration.RANSACConvergenceCriteria(self.max_iter, self.max_val)) Rt = res.transformation.astype(np.float32) R, t = Rt[:3,:3], Rt[:3, -1] R = torch.from_numpy(R).unsqueeze(0).cuda() t = torch.from_numpy(t).view(1,1,3).cuda() return R,t
from __future__ import print_function import os import sys from documentcloud import DocumentCloud print("Enter your Document Cloud Credentials") sys.stdout.write("Username: ") username = raw_input().strip() sys.stdout.write("Password: ") password = raw_input().strip() base_uri = "https://sourceafrica.net/api/" client = DocumentCloud(username, password, base_uri) import pdb; pdb.set_trace() print(client.projects.all())
import os import sys import resource import subprocess import argparse import logging import itertools import collections import json import numpy as np import pdb logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) def make_expts(b_fq_toc, b_compbined_alleles, b_r1, b_r2, bulk_toc, G_ij, seed): BULK_FQ = b_r1 + b_r2 # combined the r1 and r2 lists with open(bulk_toc, 'w') as TOC: for bulk_sample in range(len(BULK_FQ)//2): dist = G_ij[bulk_sample] experiment = {'total_reads': 100000, 'rng_seed': seed, 'mix_path_r1': BULK_FQ[bulk_sample], 'mix_path_r2': BULK_FQ[len(BULK_FQ)//2 + bulk_sample]} TOC.write('Bulk sample {} consists of:\n'.format(bulk_sample + 1)) b_fq_fnames = open(b_fq_toc, 'r').readlines() logger.info("mixing fastqs") for num in range(len(b_fq_fnames) // 2): proto_r1 = b_fq_fnames[2*num].strip() proto_r2 = b_fq_fnames[2*num+1].strip() experiment['sc{}'.format(num+1)] = { 'fraction': dist[num], 'path_r1': proto_r1, 'path_r2': proto_r2 } TOC.write(' {} of mutant reference {}\n'.format(dist[num - 1], num)) experiment = json.dumps(experiment) mix_fastq(experiment) def mix_fastq(jsonconfig): # Load experiment configuration from json filet mix_config = json.loads(jsonconfig) # Set the rng np.random.seed(mix_config['rng_seed']) # Remove output files if they exist remove_file(mix_config['mix_path_r1']) remove_file(mix_config['mix_path_r2']) # read-sample-write each single cell for i in range(1, len(mix_config) - 3): logger.info("Processing single cell {}...".format(i)) cell_readcount = int(np.floor(mix_config['total_reads'] * mix_config['sc{}'.format(i)]['fraction'])) etl_mix(source_path_r1 = mix_config['sc{}'.format(i)]['path_r1'], source_path_r2 = mix_config['sc{}'.format(i)]['path_r2'], readcount = cell_readcount, mix_path_r1 = mix_config['mix_path_r1'], mix_path_r2 = mix_config['mix_path_r2']) def etl_mix(source_path_r1, source_path_r2, readcount, mix_path_r1, mix_path_r2): """Load reads from source fq.gz file, sample readcount reads, and append to mix fq.""" logger.info("Loading reads...") read1 = load_reads(source_path_r1) read2 = load_reads(source_path_r2) # Check that readcount is less than total number of reads available if(readcount > len(read1)): sys.exit(1) if(readcount > len(read2)): sys.exit(1) # Sample reads logger.info("Sampling reads...") sample_idx = np.random.choice(len(read1), size=readcount, replace=False) # Write reads write_reads(read1, sample_idx, mix_path_r1) write_reads(read2, sample_idx, mix_path_r2) def load_reads(source_path): """Returns reads from source path fq.gz file.""" logger.info("Uncompressing and loading {}...".format(source_path)) readlines = subprocess.check_output(["gunzip", "-c", source_path]).splitlines() # Populate a list of lists for the read data logger.info("Compiling data structure...") read_list = [] for i in range(0, len(readlines), 4): read_id = readlines[i].decode('utf-8') read_seq = readlines[i+1].decode('utf-8') read_id2 = readlines[i+2].decode('utf-8') read_qc = readlines[i+3].decode('utf-8') read_list.append([read_id, read_seq, read_id2, read_qc]) logger.debug("Using {} Mb of memory.".format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1000)) return read_list def write_reads(reads, sample_idx, mix_path): # Write R1 reads to file logger.info("Writing mixture fq...") with open(mix_path, 'a') as fh: for idx in sample_idx: fh.write("\n".join(reads[idx])) fh.write("\n") def remove_file(filename): """Deletes a file if it exists.""" try: os.remove(filename) except OSError: pass
## Script (Python) "guard_cancelled_object" ##bind container=container ##bind context=context ##bind namespace= ##bind script=script ##bind subpath=traverse_subpath ##parameters= ##title= ## workflow = context.portal_workflow # Note: Also used by profiles/default/types/AnalysisRequest.xml # Can't do anything to the object if it's cancelled if workflow.getInfoFor(context, 'cancellation_state', "active") == "cancelled": return False return True
import torch # "long" and "short" denote longer and shorter samples class PixelShuffle1D(torch.nn.Module): """ 1D pixel shuffler. https://arxiv.org/pdf/1609.05158.pdf Upscales sample length, downscales channel length "short" is input, "long" is output """ def __init__(self, upscale_factor): super(PixelShuffle1D, self).__init__() self.upscale_factor = upscale_factor def forward(self, x): batch_size = x.shape[0] short_channel_len = x.shape[1] short_width = x.shape[2] long_channel_len = short_channel_len // self.upscale_factor long_width = self.upscale_factor * short_width x = x.contiguous().view([batch_size, self.upscale_factor, long_channel_len, short_width]) x = x.permute(0, 2, 3, 1).contiguous() x = x.view(batch_size, long_channel_len, long_width) return x class PixelUnshuffle1D(torch.nn.Module): """ Inverse of 1D pixel shuffler Upscales channel length, downscales sample length "long" is input, "short" is output """ def __init__(self, downscale_factor): super(PixelUnshuffle1D, self).__init__() self.downscale_factor = downscale_factor def forward(self, x): batch_size = x.shape[0] long_channel_len = x.shape[1] long_width = x.shape[2] short_channel_len = long_channel_len * self.downscale_factor short_width = long_width // self.downscale_factor x = x.contiguous().view([batch_size, long_channel_len, short_width, self.downscale_factor]) x = x.permute(0, 3, 1, 2).contiguous() x = x.view([batch_size, short_channel_len, short_width]) return x
import random import emoji def nick_generator(): nicks = [ 'Васёк', 'Геракл', 'Фетида', 'Зевс', 'Врач', 'Вкусняшка', 'Л0ЛЬК0' ] return random.choice(nicks) def switch_chars(txt): symbols = 'qwertyuiopasdfghjklzxcvbnm' symbols += 'йёцукенгшщзхъфывапролджэячсмитьбю' symbols += '1234567890' try: for symbol in txt: if symbol.lower() not in symbols: txt = txt.replace(symbol, "") except : pass return txt def switch_chars_donat(txt): symbols = 'qwertyuiopasdfghjklzxcvbnm' symbols += 'йёцукенгшщзхъфывапролджэячсмитьбю' symbols += '1234567890' symbols += '|°•-_=' try: _space = False for symbol in txt: if symbol in ' ' and not _space: _space = True elif symbol.lower() not in symbols: txt = txt.replace(symbol, "") else: _space = False except : pass return txt def check_emoji(txt): if txt in str(emoji.UNICODE_EMOJI): return True else: return False def new_guild_password(length): output = "" for x in range(length): output += random.choice('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz1234567890') return output def get_new_exp(lvl): new_exp = [10, 20, 75, 125, 250, 500, 850] if int(lvl) < 7: return (new_exp[lvl]) else: return (99999999)
import datetime import json import numpy as np import pandas as pd import requests import xarray as xr from utils import divide_chunks, get_indices_not_done, \ get_site_codes, append_to_csv_column_wise, load_s3_zarr_store,\ convert_df_to_dataset def get_all_streamflow_data(output_file, sites_file, huc2=None, num_sites_per_chunk=5, start_date="1970-01-01", end_date='2019-01-01', time_scale='H', output_format='zarr', num_site_chunks_write=6, s3=False): """ gets all streamflow data for a date range for a given huc2. Calls are chunked by station :param output_file: [str] path to the csv file or zarr store where the data will be stored :param sites_file: [str] path to file that contains the nwis site information :param huc2: [str] zero-padded huc 2 (e.g., "02") :param num_sites_per_chunk: [int] the number of sites that will be pulled at in each web service call :param start_date: [str] the start date of when you want the data for (e.g., "1980-01-01") :param end_date: [str] the end date of when you want the data for (e.g., "1990-01-01") :param time_scale: [str] Pandas like time string for the time scale at which the data will be aggregated (e.g., 'H' for hour or 'D' for daily) :param output_format: [str] the format of the output file. 'csv' or 'zarr' :param num_site_chunks_write: :param S3: :return: None """ product = get_product_from_time_scale(time_scale) site_codes = get_site_codes(sites_file, huc2) not_done_sites = get_indices_not_done(output_file, site_codes, 'site_code', output_format, is_column=False, s3=s3) site_codes_chunked = divide_chunks(not_done_sites, num_sites_per_chunk) # loop through site_code_chunks chunk_dfs = [] i = 0 for site_chunk in site_codes_chunked: last_chunk = False if site_chunk[-1] == not_done_sites[-1]: last_chunk = True streamflow_df_sites = None # catch if there is a problem on the server retrieving the data try: streamflow_df_sites = get_streamflow_data(site_chunk, start_date, end_date, product, time_scale) except json.decoder.JSONDecodeError: continue if streamflow_df_sites is not None: chunk_dfs.append(streamflow_df_sites) # add the number of stations for which we got data i += streamflow_df_sites.shape[1] if not i % (num_site_chunks_write * num_sites_per_chunk) or \ last_chunk: print('writing out', flush=True) write_out_chunks(chunk_dfs, output_file, output_format) chunk_dfs = [] def write_out_chunks(chunks_dfs, out_file, out_format): all_chunks_df = pd.concat(chunks_dfs, axis=1) # write the data out to the output file if out_format == 'zarr': zarr_store = load_s3_zarr_store(out_file) append_to_zarr(all_chunks_df, zarr_store) elif out_format == 'csv': append_to_csv_column_wise(all_chunks_df, out_file) else: raise ValueError("output_format should be 'csv' or 'zarr'") def get_product_from_time_scale(time_scale): """ get the the USGS nwis product that is appropriate for the time scale :param time_scale: str - Pandas like time string for the time scale at which the data will be aggregated (e.g., 'H' for hour or 'D' for daily) :return: """ iv_scales = ['15T', 'T', 'H'] dv_scale = ['D'] if time_scale in iv_scales: return 'iv' elif time_scale in dv_scale: return 'dv' else: raise ValueError("time scale must be '15T', 'T', 'H', or 'D'") def append_to_zarr(streamflow_df, output_zarr): # chunks time_chunk = len(streamflow_df.index) site_code_chunk = len(streamflow_df.columns) ds = convert_df_to_dataset(streamflow_df, 'site_code', 'datetime', 'streamflow', {'datetime': time_chunk, 'site_code': site_code_chunk}) ds.to_zarr(output_zarr, append_dim='site_code', mode='a') def get_streamflow_data(sites, start_date, end_date, product, time_scale): response = call_nwis_service(sites, start_date, end_date, product) data = json.loads(response.text) streamflow_df = nwis_json_to_df(data, start_date, end_date, time_scale) return streamflow_df def call_nwis_service(sites, start_date, end_date, product): """ gets the data for a list of sites from a start date to an end date """ base_url = "http://waterservices.usgs.gov/nwis/{}/?format=json&sites={}&" \ "startDT={}&endDT={}&parameterCd=00060&siteStatus=all" url = base_url.format(product, ",".join(sites), start_date, end_date) request_start_time = datetime.datetime.now() print(f"starting request for sites {sites} at {request_start_time}, " f"for period {start_date} to {end_date}", flush=True) r = None while not r: try: r = requests.get(url) except: print('there was some problem. trying again', flush=True) request_end_time = datetime.datetime.now() request_time = request_end_time - request_start_time print(f"took {request_time} to get data for huc {sites}", flush=True) return r def format_dates(datetime_txt): # convert datetime datetime_ser = pd.to_datetime(datetime_txt, utc=True) # remove the time zone info since we are now in utc datetime_ser = datetime_ser.dt.tz_localize(None) return datetime_ser def resample_reindex(df, start_date, end_date, time_scale): # resample to get mean at correct time scale df_resamp = df.resample(time_scale).mean() # get new index date_index = pd.date_range(start=start_date, end=end_date, freq=time_scale) # make so the index goes from start to end regardless of actual data # presence df_reindexed = df_resamp.reindex(date_index) return df_reindexed def delete_non_approved_data(df): """ disregard the data that do not have the "approved" tag in the qualifier column :param df: dataframe with qualifiers :return: dataframe with just the values that are approved """ # first I have to get the actual qualifiers. originally, these are lists # in a column in the df (e.g., [A, [91]] # todo: what does the number mean (i.e., [91]) qualifiers_list = df['qualifiers'].to_list() qualifiers = [q[0] for q in qualifiers_list] # check qualifier's list if qualifiers[0] not in ['A', 'P']: print("we have a weird qualifier. it is ", qualifiers[0]) qualifier_ser = pd.Series(qualifiers, index=df.index) approved_indices = (qualifier_ser == 'A') approved_df = df[approved_indices] return approved_df def format_df(ts_df, site_code, start_date, end_date, time_scale, only_approved=True): """ format unformatted dataframe. this includes setting a datetime index, resampling, reindexing to the start and end date, renaming the column to the site code, removing the qualifier column and optionally screening out any data points that are not approved :param ts_df: (dataframe) unformatted time series dataframe from nwis json data :param site_code: (str) the site_code of the site (taken from json data) :param start_date: (str) start date of call :param end_date: (str) end date of call :param time_scale: (str) time scale in which you want to resample and at which your new index will be. should be a code (i.e., 'H' for hourly) :param only_approved: (bool) whether or not to screen out non-approved data points :return: formatted dataframe """ # convert datetime ts_df['dateTime'] = format_dates(ts_df['dateTime']) ts_df.set_index('dateTime', inplace=True) if only_approved: # get rid of any points that were not approved ts_df = delete_non_approved_data(ts_df) # delete qualifiers column del ts_df['qualifiers'] # rename the column from 'value' to the site_code ts_df = ts_df.rename(columns={'value': site_code}) # make the values numeric ts_df[site_code] = pd.to_numeric(ts_df[site_code]) ts_df = resample_reindex(ts_df, start_date, end_date, time_scale) return ts_df def nwis_json_to_df(json_data, start_date, end_date, time_scale='H'): """ combine time series in json produced by nwis web from multiple sites into one pandas df. the df is also resampled to a time scale and reindexed so the dataframes are from the start date to the end date regardless of whether there is data available or not """ df_collection = [] time_series = json_data['value']['timeSeries'] for ts in time_series: site_code = ts['sourceInfo']['siteCode'][0]['value'] print('processing the data for site ', site_code, flush=True) # this is where the actual data is ts_data = ts['values'][0]['value'] if ts_data: ts_df = pd.DataFrame(ts_data) ts_df_formatted = format_df(ts_df, site_code, start_date, end_date, time_scale) df_collection.append(ts_df_formatted) if df_collection: df_combined = pd.concat(df_collection, axis=1) df_combined = df_combined.replace(-999999, np.nan) return df_combined else: return None
import numpy as np from mygrad import log, log1p, log2, log10 from tests.wrappers.uber import backprop_test_factory, fwdprop_test_factory @fwdprop_test_factory( mygrad_func=log, true_func=np.log, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log_fwd(): pass @backprop_test_factory( mygrad_func=log, true_func=np.log, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log_backward(): pass @fwdprop_test_factory( mygrad_func=log2, true_func=np.log2, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log2_fwd(): pass @backprop_test_factory( mygrad_func=log2, true_func=np.log2, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log2_backward(): pass @fwdprop_test_factory( mygrad_func=log10, true_func=np.log10, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log10_fwd(): pass @backprop_test_factory( mygrad_func=log10, true_func=np.log10, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log10_backward(): pass @fwdprop_test_factory( mygrad_func=log1p, true_func=np.log1p, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log1p_fwd(): pass @backprop_test_factory( mygrad_func=log1p, true_func=np.log1p, index_to_bnds={0: (1e-5, 100)}, num_arrays=1 ) def test_log1p_backward(): pass
from pyspark.sql import SparkSession spark = SparkSession\ .builder\ .appName("SparkApp")\ .master("spark://VN-L2041.hcg.homecredit.net:7077")\ .getOrCreate() df1 = spark.range(2, 10000000, 2) df2 = spark.range(2, 10000000, 4) step1 = df1.repartition(5) step12 = df2.repartition(6) step2 = step1.selectExpr("id * 5 as id") step3 = step2.join(step12, ["id"]) step4 = step3.selectExpr("sum(id)") result = step4.collect() # 2500000000000 print(result)
import asyncio import logging import time import math from aiohttp import ClientConnectionError from asyncio.queues import QueueEmpty from .utils import Throttler from botocore.exceptions import ClientError from .base import Base from . import exceptions from .processors import JsonProcessor log = logging.getLogger(__name__) class Producer(Base): def __init__( self, stream_name, endpoint_url=None, region_name=None, buffer_time=0.5, put_rate_limit_per_shard=1000, put_bandwidth_limit_per_shard=1024, after_flush_fun=None, batch_size=500, max_queue_size=10000, processor=None, skip_describe_stream=False, retry_limit=None, expo_backoff=None, expo_backoff_limit=120, create_stream=False, create_stream_shards=1, ): super(Producer, self).__init__( stream_name, endpoint_url=endpoint_url, region_name=region_name, retry_limit=retry_limit, expo_backoff=expo_backoff, expo_backoff_limit=expo_backoff_limit, skip_describe_stream=skip_describe_stream, create_stream=create_stream, create_stream_shards=create_stream_shards, ) self.buffer_time = buffer_time self.processor = processor if processor else JsonProcessor() self.queue = asyncio.Queue(maxsize=max_queue_size) self.batch_size = batch_size # A single shard can ingest up to 1 MiB of data per second (including partition keys) # or 1,000 records per second for writes self.put_rate_limit_per_shard = put_rate_limit_per_shard self.put_rate_throttle = None self.put_bandwidth_limit_per_shard = put_bandwidth_limit_per_shard self.put_bandwidth_throttle = None if put_bandwidth_limit_per_shard > 1024: log.warning( ( "Put bandwidth {}kb exceeds 1024kb. Expect throughput errors..".format( put_bandwidth_limit_per_shard ) ) ) self.set_put_rate_throttle() self.flush_task = asyncio.create_task(self._flush()) self.is_flushing = False self.after_flush_fun = after_flush_fun # keep track of these (used by unit test only) self.throughput_exceeded_count = 0 # overflow buffer self.overflow = [] self.flush_total_records = 0 self.flush_total_size = 0 def set_put_rate_throttle(self): self.put_rate_throttle = Throttler( rate_limit=self.put_rate_limit_per_shard * (len(self.shards) if self.shards else 1), period=1, ) self.put_bandwidth_throttle = Throttler( # kb per second. Go below a bit to avoid hitting the threshold size_limit=self.put_bandwidth_limit_per_shard * (len(self.shards) if self.shards else 1), period=1, ) async def put(self, data): # Raise exception from Flush Task to main task otherwise raise exception inside # Flush Task will fail silently if self.flush_task.done(): raise self.flush_task.exception() if not self.stream_status == self.ACTIVE: await self.get_conn() elif self.queue.qsize() >= self.batch_size: await self.flush() for output in self.processor.add_item(data): await self.queue.put(output) async def close(self): log.debug(f"Closing Connection.. (stream status:{self.stream_status})") if not self.stream_status == self.RECONNECT: # Cancel Flush Task self.flush_task.cancel() # final flush (probably not required but no harm) await self.flush() await self.client.close() async def _flush(self): while True: if self.stream_status == self.ACTIVE: if not self.is_flushing: await self.flush() await asyncio.sleep(self.buffer_time) async def flush(self): if self.is_flushing: log.debug("Flush already in progress, ignoring..") return self.is_flushing = True if self.processor.has_items(): for output in self.processor.get_items(): await self.queue.put(output) while True: self.flush_total_records = 0 self.flush_total_size = 0 if self.queue.qsize() > 0 or len(self.overflow) > 0: log.debug( "flush queue={} overflow={}".format( self.queue.qsize(), len(self.overflow) ) ) items = await self.get_batch() if not items: break else: result = await self._push_kinesis(items) await self.process_result(result, items) self.is_flushing = False async def process_result(self, result, items): if result["FailedRecordCount"]: errors = list( set( [ r.get("ErrorCode") for r in result["Records"] if r.get("ErrorCode") ] ) ) if not errors: raise exceptions.UnknownException( "Failed to put records but no errorCodes return in results" ) if "ProvisionedThroughputExceededException" in errors: log.warning( "Throughput exceeded ({} records failed, added back..), pausing for 0.25s..".format( result["FailedRecordCount"] ) ) self.throughput_exceeded_count += 1 for i, record in enumerate(result["Records"]): if "ErrorCode" in record: self.overflow.append(items[i]) # log.debug("items={} overflow={}".format(len(items), len(overflow))) await asyncio.sleep(0.25) elif "InternalFailure" in errors: log.warning("Received InternalFailure from Kinesis") await self.get_conn() for i, record in enumerate(result["Records"]): if "ErrorCode" in record: self.overflow.append(items[i]) else: raise exceptions.UnknownException( "Failed to put records due to: {}".format(", ".join(errors)) ) else: if self.after_flush_fun: await self.after_flush_fun(items) async def get_batch(self): items = [] flush_max_size = 0 for num in range(self.queue.qsize() + len(self.overflow)): async with self.put_rate_throttle: if self.overflow: item = self.overflow.pop() else: try: item = self.queue.get_nowait() except QueueEmpty: break size_kb = math.ceil(item[0] / 1024) flush_max_size += size_kb if flush_max_size > 1024: self.overflow.append(item) elif num <= self.batch_size: async with self.put_bandwidth_throttle(size=self.flush_total_size): items.append(item) self.flush_total_size += size_kb self.flush_total_records += item[1] else: self.overflow.append(item) return items async def _push_kinesis(self, items): log.debug( "doing flush with {} record ({} items) @ {} kb".format( len(items), self.flush_total_records, self.flush_total_size ) ) while True: try: # todo: custom partition key results = await self.client.put_records( Records=[ { "Data": item.data, "PartitionKey": "{0}{1}".format( time.perf_counter(), time.time() ), } for item in items ], StreamName=self.stream_name, ) log.info( "flush complete with {} record ({} items) @ {} kb".format( len(items), self.flush_total_records, self.flush_total_size ) ) return results except ClientError as err: code = err.response["Error"]["Code"] if code == "ValidationException": if ( "must have length less than or equal" in err.response["Error"]["Message"] ): log.warning( "Batch size {} exceeded the limit. retrying with less".format( len(items) ) ) existing_batch_size = self.batch_size self.batch_size -= round(self.batch_size / 10) # Must be small batch of big items, take at least one out.. if existing_batch_size == self.batch_size: self.batch_size -= 1 self.overflow.extend(items) self.flush_total_records = 0 self.flush_max_size = 0 self.flush_total_size = 0 items = await self.get_batch() else: log.warning( f'Unknown ValidationException error code {err.response["Error"]["Code"]}' ) log.exception(err) await self.get_conn() # raise err elif code == "ResourceNotFoundException": raise exceptions.StreamDoesNotExist( "Stream '{}' does not exist".format(self.stream_name) ) from None else: log.warning( f'Unknown Client error code {err.response["Error"]["Code"]}' ) log.exception(err) await self.get_conn() # raise err except ClientConnectionError as err: await self.get_conn() except asyncio.CancelledError: return except Exception as e: log.exception(e) log.critical("Unknown Exception Caught") await self.get_conn()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 3 10:57:50 2019 @author: ngritti """ from PyQt5.QtCore import Qt from PyQt5 import QtCore from PyQt5.QtWidgets import (QApplication, QVBoxLayout, QDialog, QGridLayout, QLabel, QPushButton, QWidget, QSizePolicy, QSpinBox, QDoubleSpinBox) from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import numpy as np import sys, warnings, os, time from skimage.io import imread import scipy.ndimage as ndi from matplotlib.figure import Figure import matplotlib as mpl from matplotlib.path import Path as MplPath import matplotlib.patches as mpatches import utils_postprocessing, utils_image warnings.filterwarnings("ignore") #!/usr/bin/env python # -*- coding: utf-8 -*- ''' # https://stackoverflow.com/questions/52581727/how-to-return-value-from-the-qwidget class spotWindow(QDialog): def __init__(self, val, parent=None): super(spotWindow, self).__init__(parent) self.val = val self.initUI() def initUI(self): endButton = QPushButton('OK') endButton.clicked.connect(self.on_clicked) lay = QVBoxLayout(self) lay.addWidget(endButton) self.setWindowTitle(str(self.val)) @QtCore.pyqtSlot() def on_clicked(self): self.val += 1 self.accept() app = QApplication(sys.argv) # in the outside code, use ex = spotWindow(0) ex.show() if ex.exec_() == QtWidgets.QDialog.Accepted: print(ex.val) else: print('Bad exit') ''' class spotWindow(QDialog): def __init__(self, input_folder, params, parent=None): super(spotWindow, self).__init__(parent) self.input_folder = input_folder self.params = params # load the first image to use for parameter definition and find out the number of channels _, cond = os.path.split(input_folder) save_folder = os.path.join(input_folder,'result_segmentation') props = utils_postprocessing.load_morpho_params(save_folder, cond) props = {key:props[key][0] for key in props} mask_file = props['mask_file'] path_to_mask = os.path.join(input_folder,mask_file) self.mask = imread(path_to_mask)[props['slice']].astype(np.float) input_file = props['input_file'] path_to_file = os.path.join(input_folder,input_file) self.img = imread(path_to_file).astype(float) if len(self.img.shape) == 2: self.img = np.expand_dims(self.img,0) self.img = np.array([img[props['slice']] for img in self.img]) self.n_channels = self.img.shape[0] # if params are none, set them to default values params_default = [0.8,2,0,(2,self.img.shape[1]*self.img.shape[2])] for i,p in enumerate(self.params): # if there is no channel indexing, create one if length 1 if p==None: self.params[i] = [None for i in self.n_channels] # for every element in the channel indexing, if it is None, set it to defualt for ch in range(len(p)): if (p[ch]==None) or (p[ch]==(None,None)): self.params[i][ch] = params_default[i] # create window self.initUI() self.updateParamsAndFigure() def initUI(self): self.figure = Figure(figsize=(10, 2.5), dpi=100) self.canvas = FigureCanvas(self.figure) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.figure.clear() axs = self.figure.subplots(nrows=1, ncols=4) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) for i in [0,1,3]: axs[i].axis('off') axs[2].set_xlabel('Fluo') axs[2].ticklabel_format(axis="x", style="sci", scilimits=(2,2)) axs[2].set_ylabel('Counts') axs[2].ticklabel_format(axis="y", style="sci", scilimits=(0,2)) self.canvas.draw() self.channel = QSpinBox() self.channel.setMaximum(self.n_channels-1) self.channel.valueChanged.connect(self.updateChannel) self.channel.setAlignment(Qt.AlignRight) self.enhancement = QDoubleSpinBox() self.enhancement.setMinimum(0) self.enhancement.setMaximum(1) self.enhancement.setSingleStep(0.05) self.enhancement.setValue(self.params[0][self.channel.value()]) self.enhancement.setAlignment(Qt.AlignRight) self.nClasses = QSpinBox() self.nClasses.setMinimum(2) self.nClasses.setValue(self.params[1][self.channel.value()]) self.nClasses.valueChanged.connect(self.updatenThrChoice) self.nClasses.setAlignment(Qt.AlignRight) self.nThr = QSpinBox() self.nThr.setValue(self.params[2][self.channel.value()]) self.nThr.setAlignment(Qt.AlignRight) self.minSize = QSpinBox() self.minSize.setMaximum(self.img.shape[1]*self.img.shape[2]) self.minSize.setValue(self.params[3][self.channel.value()][0]) self.minSize.setAlignment(Qt.AlignRight) self.maxSize = QSpinBox() self.maxSize.setMaximum(self.img.shape[1]*self.img.shape[2]) self.maxSize.setValue(self.img.shape[1]*self.img.shape[2]) self.maxSize.setAlignment(Qt.AlignRight) applyButton = QPushButton('Apply params') applyButton.clicked.connect(self.updateParamsAndFigure) endButton = QPushButton('UPDATE AND RETURN PARAMS') endButton.clicked.connect(self.on_clicked) lay = QGridLayout(self) lay.addWidget(NavigationToolbar(self.canvas, self),0,0,1,2) lay.addWidget(self.canvas,1,0,1,2) lay.addWidget(QLabel('Current channel'),2,0,1,1) lay.addWidget(self.channel,2,1,1,1) lay.addWidget(QLabel('Enhancement'),3,0,1,1) lay.addWidget(self.enhancement,3,1,1,1) lay.addWidget(QLabel('Expected classes for thresholding'),4,0,1,1) lay.addWidget(self.nClasses,4,1,1,1) lay.addWidget(QLabel('Selected threshold'),5,0,1,1) lay.addWidget(self.nThr,5,1,1,1) lay.addWidget(QLabel('Minimum spot size'),6,0,1,1) lay.addWidget(self.minSize,6,1,1,1) lay.addWidget(QLabel('Maximum spot size'),7,0,1,1) lay.addWidget(self.maxSize,7,1,1,1) lay.addWidget(applyButton,8,0,1,2) lay.addWidget(endButton,9,0,1,2) self.setWindowTitle(self.input_folder) QApplication.setStyle('Macintosh') def updatenThrChoice(self): self.nThr.setMaximum(self.nClasses.value()-2) def updateChannel(self): ch = self.channel.value() self.enhancement.setValue(self.params[0][ch]) self.nClasses.setValue(self.params[1][ch]) self.nThr.setValue(self.params[2][ch]) self.minSize.setValue(self.params[3][ch][0]) self.maxSize.setValue(self.params[3][ch][1]) self.updateParamsAndFigure() def updateParamsAndFigure(self): from matplotlib import rc from matplotlib.backends.backend_pdf import PdfPages rc('font', size=8) rc('font', family='Arial') # rc('font', serif='Times') rc('pdf', fonttype=42) # rc('text', usetex=True) self.nThr.setMaximum(self.nClasses.value()-2) ch = self.channel.value() enhancement = self.enhancement.value() nclasses = self.nClasses.value() nThr = self.nThr.value() sizelims = (self.minSize.value(),self.maxSize.value()) dict_, enhanced, thrs, objects = utils_image.detect_peaks(self.img[ch], self.mask, enhancement=enhancement, nclasses=nclasses, nThr=nThr, sizelims=sizelims) ### update the values self.params[0][ch] = enhancement self.params[1][ch] = nclasses self.params[2][ch] = nThr self.params[3][ch] = sizelims ### update the plot self.figure.clear() axs = self.figure.subplots(nrows=1, ncols=4) self.figure.subplots_adjust(top=0.9,right=1.,left=0.,bottom=0.2)#,wspace=0.01)#,hspace=0.01) for i in [0,1,3]: axs[i].axis('off') axs[2].set_xlabel('Fluo') axs[2].ticklabel_format(axis="x", style="sci", scilimits=(2,2)) axs[2].set_ylabel('Counts') axs[2].ticklabel_format(axis="y", style="sci", scilimits=(0,2)) axs[0].set_title('Input image') axs[1].set_title('Enhanced image') axs[2].set_title('Histogram') axs[3].set_title('Segmented spots: %d'%len(dict_['centroid'])) axs[2].set_yscale('log') axs[0].imshow(self.img[ch], cmap='magma',vmin = np.percentile(self.img[ch],0.3), vmax = np.percentile(self.img[ch],99.7)) axs[1].imshow(enhanced, cmap='magma',vmin = np.percentile(enhanced,0.3), vmax = np.percentile(enhanced,99.7)) n,_,_ = axs[2].hist(enhanced[self.mask>0],bins=100) for thr in thrs: axs[2].plot([thr,thr],[0,np.max(n)],'-r') axs[2].plot([thrs[nThr]],[np.max(n)],'*r',ms=10) axs[3].imshow(objects, cmap='gray') for coords, area in zip(dict_['centroid'],dict_['area']): # draw circle around segmented coins circle = mpatches.Circle((coords[1],coords[0]),radius=np.sqrt(area/np.pi), fc=(1,0,0,0.5), ec = (1,0,0,1), linewidth=2) axs[3].add_patch(circle) # axs[3].plot(coords[1],coords[0],'+r',ms=5,alpha=.8) self.canvas.draw() @QtCore.pyqtSlot() def on_clicked(self): self.accept()
""" * Primitives 3D. * * Placing mathematically 3D objects in synthetic space. * The lights() method reveals their imagined dimension. * The box() and sphere() functions each have one parameter * which is used to specify their size. These shapes are * positioned using the translate() function. """ size(640, 360, P3D) background(0) lights() noStroke() pushMatrix() translate(130, height/2, 0) rotateY(1.25) rotateX(-0.4) box(100) popMatrix() noFill() stroke(255) pushMatrix() translate(500, height*0.35, -200) sphere(280) popMatrix()
class Goal(object): def __init__(self, goalTuple): super().__init__() self._GoalID = goalTuple[0] self._ProjectID = goalTuple[1] self._ProjectTargetWeight = goalTuple[2] def getGoalID(self): return self._GoalID def getProjectID(self): return self._ProjectID def getProjectTargetWeight(self): return self._ProjectTargetWeight
from exchanges import helpers from exchanges import bitfinex from exchanges import bitstamp from exchanges import okcoin from exchanges import cex from exchanges import btce from time import sleep from datetime import datetime import csv # PREPARE OUTPUT FILE # tell computer where to put CSV filename = datetime.now().strftime("%Y-%m-%d--%H-%M-%S") outfile_path='csvoutput'+filename+'.csv' # open it up, the w means we will write to it writer = csv.writer(open(outfile_path, 'w')) #create a list with headings for our columns headers = ['datetime', 'bitstamp_price', 'bitstamp_bid', 'bitstamp_ask', 'bitfinex_price', 'bitfinex_bid', 'bitfinex_ask', 'okcoin_price', 'okcoin_bid', 'okcoin_ask', 'cex_price', 'cex_bid', 'cex_ask', 'btc-e_price', 'btc-e_bid', 'btc_ask'] #write the row of headings to our CSV file writer.writerow(headers) # GET DATA, PUT INTO FILE - LOOP FOR A CERTAIN TIME #set a counter telling us how many times we've gone through the loop, this is the first time, so we'll set it at 1 i = 1 #loop through pages of JSON returned, 100 is an arbitrary number while i < 200: #print out what number loop we are on, which will make it easier to track down problems when they appear print i #initialize the row row = [] #add every 'cell' to the row list, identifying the item just like an index in a list row.append(datetime.now()) row.append(bitstamp.get_current_price()) row.append(bitstamp.get_current_bid()) row.append(bitstamp.get_current_ask()) row.append(bitfinex.get_current_price()) row.append(bitfinex.get_current_bid()) row.append(bitfinex.get_current_ask()) row.append(okcoin.get_current_price()) row.append(okcoin.get_current_bid()) row.append(okcoin.get_current_ask()) row.append(cex.get_current_price()) row.append(cex.get_current_bid()) row.append(cex.get_current_ask()) row.append(btce.get_current_price()) row.append(btce.get_current_ask()) row.append(btce.get_current_bid()) #once you have all the cells in there, write the row to your csv writer.writerow(row) #increment our loop counter, now we're on the next time through the loop i = i + 1 #tell Python to rest for 5 secs, so we don't exceed our rate limit sleep(5)
import numpy def bad_reward(dead, water_amount): if water_amount > 0 and not dead: return 1 return 0 def good_reward(old_moisture, new_moisture): # gaussian function old_moisture_reward = numpy.exp(-numpy.power(old_moisture - 0.5, 2.) / (2 * numpy.power(0.25, 2.))) new_moisture_reward = numpy.exp(-numpy.power(new_moisture - 0.5, 2.) / (2 * numpy.power(0.25, 2.))) return new_moisture_reward - old_moisture_reward
while True: user = input('Criptografar(1) Descriptografar(2) cancelar(0):') if user == '0':break mensagem = input("sua mensagem: ").lower().replace(' ','') senha = input("sua senha: ").lower().replace(' ','') crip = '' alpha = 'abcdefghijklmnopqrstuvwxyz' while len(mensagem) > len(senha): senha+=senha # ** caso a mensagem seja maior que a senha ** def criptografar(mensagem, senha): global crip for l in range(len(mensagem)): crip = crip + alpha[((alpha.find(mensagem[l]) + alpha.find(senha[l]))%26)] return crip def descriptografar(mensagem, senha): global crip for l in range(len(mensagem)): crip = crip + alpha[((alpha.find(mensagem[l]) - alpha.find(senha[l]))%26)] return crip if user == '1': print('Mensagem Criptografada:', criptografar(mensagem, senha)) elif user == '2': print('Mensagem Descriptografada:', descriptografar(mensagem, senha))
# Generated by Django 3.1.4 on 2021-01-30 22:34 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("person", "0024_date_migration_information_target_group"), ] operations = [ migrations.RemoveField( model_name="speakerinformation", name="exclude_unconfirmed", ), migrations.RemoveField( model_name="speakerinformation", name="include_submitters", ), ]
# -*- coding: utf-8 -*- u""" Created on 2015-7-13 @author: cheng.li """ from PyFin.tests.DateUtilities.testCalendar import TestCalendar from PyFin.tests.DateUtilities.testDate import TestDate from PyFin.tests.DateUtilities.testPeriod import TestPeriod from PyFin.tests.DateUtilities.testSchedule import TestSchedule from PyFin.tests.DateUtilities.testDayCounter import TestDayCounter __all__ = ["TestCalendar", "TestDate", "TestPeriod", "TestSchedule", "TestDayCounter"]
# -*- coding: utf-8 -*- """ Created on Sun Dec 4 18:14:29 2016 @author: becker """ import numpy as np import scipy.linalg as linalg import scipy.sparse as sparse try: from simfempy.meshes.simplexmesh import SimplexMesh except ModuleNotFoundError: from simfempy.meshes.simplexmesh import SimplexMesh import simfempy.fems.bdrydata #=================================================================# class FemP1(object): def __init__(self, mesh=None): if mesh is not None: self.setMesh(mesh) self.dirichlet_al = 10 def setMesh(self, mesh, bdrycond=None): self.mesh = mesh self.nloc = self.mesh.dimension+1 simps = self.mesh.simplices self.cols = np.tile(simps, self.nloc).reshape(-1) self.rows = np.repeat(simps, self.nloc).reshape(-1) self.cellgrads = self.computeCellGrads() self.massmatrix = self.computeMassMatrix() if bdrycond: self.robinmassmatrix = self.computeBdryMassMatrix(bdrycond, type="Robin") def computeCellGrads(self): ncells, normals, cellsOfFaces, facesOfCells, dV = self.mesh.ncells, self.mesh.normals, self.mesh.cellsOfFaces, self.mesh.facesOfCells, self.mesh.dV scale = -1/self.mesh.dimension # print("dV", np.where(dV<0.0001)) # print("dV", dV[dV<0.00001]) return scale*(normals[facesOfCells].T * self.mesh.sigma.T / dV.T).T def computeMassMatrix(self, lumped=False): nnodes = self.mesh.nnodes scalemass = 1 / self.nloc / (self.nloc+1); massloc = np.tile(scalemass, (self.nloc,self.nloc)) massloc.reshape((self.nloc*self.nloc))[::self.nloc+1] *= 2 mass = np.einsum('n,kl->nkl', self.mesh.dV, massloc).ravel() return sparse.coo_matrix((mass, (self.rows, self.cols)), shape=(nnodes, nnodes)).tocsr() def computeBdryMassMatrix(self, bdrycond, type, lumped=False): # TODO: find a way to get linear solution exactly with lumped=True nnodes = self.mesh.nnodes rows = np.empty(shape=(0), dtype=int) cols = np.empty(shape=(0), dtype=int) mat = np.empty(shape=(0), dtype=float) if lumped: for color, faces in self.mesh.bdrylabels.items(): if bdrycond.type[color] != type: continue scalemass = bdrycond.param[color]/ self.mesh.dimension normalsS = self.mesh.normals[faces] dS = linalg.norm(normalsS, axis=1) nodes = self.mesh.faces[faces] rows = np.append(rows, nodes) cols = np.append(cols, nodes) mass = np.repeat(scalemass*dS, self.mesh.dimension) mat = np.append(mat, mass) return sparse.coo_matrix((mat, (rows, cols)), shape=(nnodes, nnodes)).tocsr() else: for color, faces in self.mesh.bdrylabels.items(): if bdrycond.type[color] != type: continue scalemass = bdrycond.param[color] / (1+self.mesh.dimension)/self.mesh.dimension normalsS = self.mesh.normals[faces] dS = linalg.norm(normalsS, axis=1) nodes = self.mesh.faces[faces] nloc = self.nloc-1 rows = np.append(rows, np.repeat(nodes, nloc).reshape(-1)) cols = np.append(cols, np.tile(nodes, nloc).reshape(-1)) massloc = np.tile(scalemass, (nloc, nloc)) massloc.reshape((nloc*nloc))[::nloc+1] *= 2 mat = np.append(mat, np.einsum('n,kl->nkl', dS, massloc).reshape(-1)) return sparse.coo_matrix((mat, (rows, cols)), shape=(nnodes, nnodes)).tocsr() def prepareBoundary(self, colorsdir, colorsflux=[]): bdrydata = simfempy.fems.bdrydata.BdryData() bdrydata.nodesdir={} bdrydata.nodedirall = np.empty(shape=(0), dtype=int) for color in colorsdir: facesdir = self.mesh.bdrylabels[color] bdrydata.nodesdir[color] = np.unique(self.mesh.faces[facesdir].flat[:]) bdrydata.nodedirall = np.unique(np.union1d(bdrydata.nodedirall, bdrydata.nodesdir[color])) bdrydata.nodesinner = np.setdiff1d(np.arange(self.mesh.nnodes, dtype=int),bdrydata.nodedirall) bdrydata.nodesdirflux={} for color in colorsflux: facesdir = self.mesh.bdrylabels[color] bdrydata.nodesdirflux[color] = np.unique(self.mesh.faces[facesdir].ravel()) return bdrydata def matrixDiffusion(self, k, bdrycond, method, bdrydata): # alpha = problemdata.bdrycond.param[color] # print(f"??? {alpha=}") nnodes = self.mesh.nnodes matxx = np.einsum('nk,nl->nkl', self.cellgrads[:, :, 0], self.cellgrads[:, :, 0]) matyy = np.einsum('nk,nl->nkl', self.cellgrads[:, :, 1], self.cellgrads[:, :, 1]) matzz = np.einsum('nk,nl->nkl', self.cellgrads[:, :, 2], self.cellgrads[:, :, 2]) mat = ( (matxx+matyy+matzz).T*self.mesh.dV*k).T.ravel() A = sparse.coo_matrix((mat, (self.rows, self.cols)), shape=(nnodes, nnodes)).tocsr() A += self.robinmassmatrix return self.matrixDirichlet(A, bdrycond, method, bdrydata) def formDiffusion(self, du, u, k): graduh = np.einsum('nij,ni->nj', self.cellgrads, u[self.mesh.simplices]) graduh = np.einsum('ni,n->ni', graduh, self.mesh.dV*k) # du += np.einsum('nj,nij->ni', graduh, self.cellgrads) raise ValueError(f"graduh {graduh.shape} {du.shape}") return du def computeRhs(self, u, problemdata, kheatcell, method, bdrydata): rhs = problemdata.rhs rhscell = problemdata.rhscell rhspoint = problemdata.rhspoint bdrycond = problemdata.bdrycond normals = self.mesh.normals b = np.zeros(self.mesh.nnodes) if rhs: x, y, z = self.mesh.points.T b += self.massmatrix * rhs(x, y, z) if rhscell: scale = 1/(self.mesh.dimension+1) for label,fct in rhscell.items(): if fct is None: continue cells = self.mesh.cellsoflabel[label] xc, yc, zc = self.mesh.pointsc[cells].T bC = scale*fct(xc, yc, zc)*self.mesh.dV[cells] # print("bC", bC) np.add.at(b, self.mesh.simplices[cells].T, bC) if rhspoint: for label,fct in rhspoint.items(): if fct is None: continue points = self.mesh.verticesoflabel[label] xc, yc, zc = self.mesh.points[points].T # print("xc, yc, zc, f", xc, yc, zc, fct(xc, yc, zc)) b[points] += fct(xc, yc, zc) help = np.zeros(self.mesh.nnodes) for color, faces in self.mesh.bdrylabels.items(): if bdrycond.type[color] != "Robin": continue if not color in bdrycond.fct or bdrycond.fct[color] is None: continue nodes = np.unique(self.mesh.faces[faces].reshape(-1)) x, y, z = self.mesh.points[nodes].T # print(f"normals {normals.shape}") # raise ValueError(f"normals = {np.mean(normals, axis=0)}") # nx, ny, nz = normals[faces].T nx, ny, nz = np.mean(normals[faces], axis=0) help[nodes] = bdrycond.fct[color](x, y, z, nx, ny, nz) b += self.robinmassmatrix*help scale = 1 / self.mesh.dimension for color, faces in self.mesh.bdrylabels.items(): if bdrycond.type[color] != "Neumann": continue if not color in bdrycond.fct or bdrycond.fct[color] is None: continue normalsS = normals[faces] dS = linalg.norm(normalsS,axis=1) normalsS = normalsS/dS[:,np.newaxis] assert(dS.shape[0] == len(faces)) x1, y1, z1 = self.mesh.pointsf[faces].T nx, ny, nz = normalsS.T bS = scale * bdrycond.fct[color](x1, y1, z1, nx, ny, nz) * dS np.add.at(b, self.mesh.faces[faces].T, bS) if bdrycond.hasExactSolution(): for color, faces in self.mesh.bdrylabels.items(): if bdrycond.type[color] != "Robin": continue normalsS = normals[faces] dS = linalg.norm(normalsS, axis=1) normalsS = normalsS / dS[:, np.newaxis] assert (dS.shape[0] == len(faces)) x1, y1, z1 = self.mesh.pointsf[faces].T nx, ny, nz = normalsS.T bS = scale * bdrycond.fctexact["Neumann"](x1, y1, z1, nx, ny, nz) * dS np.add.at(b, self.mesh.faces[faces].T, bS) return self.vectorDirichlet(b, u, bdrycond, method, bdrydata) def matrixDirichlet(self, A, bdrycond, method, bdrydata): nodesdir, nodedirall, nodesinner, nodesdirflux = bdrydata.nodesdir, bdrydata.nodedirall, bdrydata.nodesinner, bdrydata.nodesdirflux nnodes = self.mesh.nnodes for color, nodes in nodesdirflux.items(): nb = nodes.shape[0] help = sparse.dok_matrix((nb, nnodes)) for i in range(nb): help[i, nodes[i]] = 1 bdrydata.Asaved[color] = help.dot(A) bdrydata.A_inner_dir = A[nodesinner, :][:, nodedirall] if method == 'strong': help = np.ones((nnodes)) help[nodedirall] = 0 help = sparse.dia_matrix((help, 0), shape=(nnodes, nnodes)) A = help.dot(A.dot(help)) help = np.zeros((nnodes)) help[nodedirall] = 1.0 help = sparse.dia_matrix((help, 0), shape=(nnodes, nnodes)) A += help else: bdrydata.A_dir_dir = self.dirichlet_al*A[nodedirall, :][:, nodedirall] help = np.ones(nnodes) help[nodedirall] = 0 help = sparse.dia_matrix((help, 0), shape=(nnodes, nnodes)) help2 = np.zeros(nnodes) help2[nodedirall] = np.sqrt(self.dirichlet_al) help2 = sparse.dia_matrix((help2, 0), shape=(nnodes, nnodes)) A = help.dot(A.dot(help)) + help2.dot(A.dot(help2)) return A, bdrydata def vectorDirichlet(self, b, u, bdrycond, method, bdrydata): nodesdir, nodedirall, nodesinner, nodesdirflux = bdrydata.nodesdir, bdrydata.nodedirall, bdrydata.nodesinner, bdrydata.nodesdirflux if u is None: u = np.zeros_like(b) elif u.shape != b.shape : raise ValueError("u.shape != b.shape {} != {}".format(u.shape, b.shape)) x, y, z = self.mesh.points.T for color, nodes in nodesdirflux.items(): bdrydata.bsaved[color] = b[nodes] if method == 'strong': for color, nodes in nodesdir.items(): if color in bdrycond.fct: dirichlet = bdrycond.fct[color](x[nodes], y[nodes], z[nodes]) b[nodes] = dirichlet else: b[nodes] = 0 u[nodes] = b[nodes] b[nodesinner] -= bdrydata.A_inner_dir * b[nodedirall] else: for color, nodes in nodesdir.items(): dirichlet = bdrycond.fct[color] if dirichlet: u[nodes] = dirichlet(x[nodes], y[nodes], z[nodes]) else: u[nodes] = 0 b[nodes] = 0 b[nodesinner] -= bdrydata.A_inner_dir * u[nodedirall] b[nodedirall] += bdrydata.A_dir_dir * u[nodedirall] return b, u, bdrydata def vectorDirichletZero(self, du, bdrydata): nodesdir = bdrydata.nodesdir for color, nodes in nodesdir.items(): du[nodes] = 0 return du def tonode(self, u): return u # def grad(self, ic): # normals = self.mesh.normals[self.mesh.facesOfCells[ic,:]] # grads = 0.5*normals/self.mesh.dV[ic] # chsg = (ic == self.mesh.cellsOfFaces[self.mesh.facesOfCells[ic,:],0]) # # print("### chsg", chsg, "normals", normals) # grads[chsg] *= -1. # return grads def computeErrorL2(self, solexact, uh): x, y, z = self.mesh.points.T en = solexact(x, y, z) - uh xc, yc, zc = self.mesh.pointsc.T ec = solexact(xc, yc, zc) - np.mean(uh[self.mesh.simplices], axis=1) return np.sqrt( np.dot(en, self.massmatrix*en) ), np.sqrt(np.sum(ec**2* self.mesh.dV)), en def computeErrorFluxL2(self, solexact, diffcell, uh): xc, yc, zc = self.mesh.pointsc.T graduh = np.einsum('nij,ni->nj', self.cellgrads, uh[self.mesh.simplices]) errv = 0 for i in range(self.mesh.dimension): solxi = solexact.d(i, xc, yc, zc) errv += np.sum( diffcell*(solxi-graduh[:,i])**2* self.mesh.dV) return np.sqrt(errv) def computeBdryMean(self, u, colors): # colors = [int(x) for x in data.split(',')] mean, omega = np.zeros(len(colors)), np.zeros(len(colors)) for i,color in enumerate(colors): faces = self.mesh.bdrylabels[color] normalsS = self.mesh.normals[faces] dS = linalg.norm(normalsS, axis=1) omega[i] = np.sum(dS) mean[i] = np.sum(dS*np.mean(u[self.mesh.faces[faces]],axis=1)) return mean/omega def comuteFluxOnRobin(self, u, faces, dS, uR, cR): uhmean = np.sum(dS * np.mean(u[self.mesh.faces[faces]], axis=1)) xf, yf, zf = self.mesh.pointsf[faces].T nx, ny, nz = np.mean(self.mesh.normals[faces], axis=0) if uR: uRmean = np.sum(dS * uR(xf, yf, zf, nx, ny, nz)) else: uRmean=0 return cR*(uRmean-uhmean) def computeBdryDn(self, u, colors, bdrydata, bdrycond): # colors = [int(x) for x in data.split(',')] flux, omega = np.zeros(len(colors)), np.zeros(len(colors)) for i,color in enumerate(colors): faces = self.mesh.bdrylabels[color] normalsS = self.mesh.normals[faces] dS = linalg.norm(normalsS, axis=1) omega[i] = np.sum(dS) if bdrycond.type[color] == "Robin": flux[i] = self.comuteFluxOnRobin(u, faces, dS, bdrycond.fct[color], bdrycond.param[color]) elif bdrycond.type[color] == "Dirichlet": bs, As = bdrydata.bsaved[color], bdrydata.Asaved[color] flux[i] = np.sum(As * u - bs) else: raise NotImplementedError(f"computeBdryDn for condition '{bdrycond.type[color]}' color={color}") return flux def computeBdryFct(self, u, colors): # colors = [int(x) for x in data.split(',')] nodes = np.empty(shape=(0), dtype=int) for color in colors: faces = self.mesh.bdrylabels[color] nodes = np.unique(np.union1d(nodes, self.mesh.faces[faces].ravel())) return self.mesh.points[nodes], u[nodes] def computePointValues(self, u, colors): # colors = [int(x) for x in data.split(',')] up = np.empty(len(colors)) for i,color in enumerate(colors): nodes = self.mesh.verticesoflabel[color] up[i] = u[nodes] return up def computeMeanValues(self, u, colors): # colors = [int(x) for x in data.split(',')] up = np.empty(len(colors)) for i, color in enumerate(colors): up[i] = self.computeMeanValue(u,color) return up def computeMeanValue(self, u, color): cells = self.mesh.cellsoflabel[color] # print("umean", np.mean(u[self.mesh.simplices[cells]],axis=1)) return np.sum(np.mean(u[self.mesh.simplices[cells]],axis=1)*self.mesh.dV[cells]) # ------------------------------------- # if __name__ == '__main__': trimesh = SimplexMesh(geomname="backwardfacingstep", hmean=0.3) fem = FemP1(trimesh) fem.testgrad() import plotmesh import matplotlib.pyplot as plt plotmesh.meshWithBoundaries(trimesh) plt.show()
import lc_data_access import time lc_access = lc_data_access.LC_Access() # TODO: # > Deal with the async aspect if there are too many calls. # > Cleanup this file for testing. # > link to the problem on the !get command. # > don't count duplicates. # > update recap command to say something if there aren't any users. start_time = time.time() # Get a user # print(lc_access.get_user_most_recent('testuser')) # print(lc_access.get_users_str()) # print() # # Users recents: # print("Testing User's Recents:") # print(lc_access.users_recents()) # print() # # Remove a user # print(lc_access.get_users_str()) # print(lc_access.remove_user("testuser")) # print("testuser removed, here's who's left:") # print(lc_access.get_users_str()) # print() # Weekly Recap print(lc_access.weekly_recap()) end_time = time.time() print("Took {} seconds.", end_time - start_time)
# =============================================================================== # # # # This file has been generated automatically!! Do not change this manually! # # # # =============================================================================== # from __future__ import annotations from pydantic import Field from ..base_object import BaseObject class DeleteChatMessagesByDate(BaseObject): """ Deletes all messages between the specified dates in a chat. Supported only for private chats and basic groups. Messages sent in the last 30 seconds will not be deleted :param chat_id: Chat identifier :type chat_id: :class:`int` :param min_date: The minimum date of the messages to delete :type min_date: :class:`int` :param max_date: The maximum date of the messages to delete :type max_date: :class:`int` :param revoke: Pass true to delete chat messages for all users; private chats only :type revoke: :class:`bool` """ ID: str = Field("deleteChatMessagesByDate", alias="@type") chat_id: int min_date: int max_date: int revoke: bool @staticmethod def read(q: dict) -> DeleteChatMessagesByDate: return DeleteChatMessagesByDate.construct(**q)
import re import socketserver # 自定义处理函数 class MyHandler(socketserver.BaseRequestHandler): def handle(self): """自定义处理方法""" data = self.request.recv(2048) if data: header, other = data.decode("utf-8").split("\r\n", 1) self.set_request_headers(other) # 把请求头组装成字典 # GET /xxx HTTP/1.1 ret = re.match("[^ ]+ ([^ ]+)", header) if ret: file_name = ret.group(1) if file_name == "/": file_name = "/index.html" # 代表主页 # 是否是动态页面 if file_name.endswith(".py"): # .py去除掉 self.response_body = self.__dynamic_handler(file_name[:-3]) else: # 静态页面 self.response_body = self.__static_handler(file_name) # 根据有没有内容来设置返回的状态码 if self.response_body: self.start_response("200 ok") # 有这个文件 else: self.response_404() # 404页面 # 响应浏览器 self.response() # 没有变化 def set_request_headers(self, headers): """设置请求头为指定格式""" self.request_headers = dict() for line in headers.splitlines(): # 防止出现:Host:https://www.baidu.com 这种情况 item = line.split(":", 1) # key-value array if len(item) == 2: # 最后一行是空([:]) self.request_headers[item[0]] = item[1] # 没有变化 def start_response(self, status, header_dict={}): """设置响应头""" self.response_headers = f"HTTP/1.1 {status}\r\n" for key, value in header_dict.items(): self.response_headers += f"{key}:{value}\r\n" # header和body分隔的地方是两个\r\n self.response_headers += "Server:MyServer\r\n\r\n" # 没有变化 def response(self): """响应浏览器""" self.request.send( self.response_headers.encode("utf-8") + self.response_body) # 没有变化 def response_404(self): """返回404页面""" self.start_response("404 Not Found") # 没有这个文件 self.response_body = self.__static_handler("/404.html") # 没有变化 def __static_handler(self, file_name): """返回文件内容""" file_name = f"./root{file_name}" print(file_name) import os if os.path.exists(file_name): # 二进制方式打开文件(图片、文本都适用) with open(file_name, "rb") as f: return f.read() else: return None def __dynamic_handler(self, name): """动态页面""" self.request_headers["path"] = name # 把请求方法传递过去 from dynamic.frame import WebFrame # 根据WSGI协议来 return WebFrame().application(self.request_headers, self.start_response) # 没有变化 def main(): with socketserver.ThreadingTCPServer(("", 8080), MyHandler) as server: server.allow_reuse_address = True # 防止端口占用 server.serve_forever() if __name__ == "__main__": main()
#!/share/software/user/open/python/3.6.1/bin/python3 from src.ModelDriver import * ## MODIFY THESE PARAMS FOR SPECIFIC RUN ### X_train = "/oak/stanford/groups/aboettig/Aparna/NNreviews/TestRobustness/jitterData/train_5.23.18_JitterRad-40.0_jitterPerc-0.5_xyz.txt" Y_train = "/oak/stanford/groups/aboettig/Aparna/NNproject/clean_data/train_5.23.18_unbalanced_unaugmented_rna_2.txt" X_dev = "/oak/stanford/groups/aboettig/Aparna/NNproject/clean_data/dev_5.23.18_unbalanced_unaugmented_xyz.txt" Y_dev = "/oak/stanford/groups/aboettig/Aparna/NNproject/clean_data/dev_5.23.18_unbalanced_unaugmented_rna_2.txt" version = 0 specific_info = "RF_AbdA_train_5.23.18_JitterRad-40.0_jitterPerc-0.5" architecture = "rf" num_estimators = 900 min_sample_split = 15 max_depth = None max_leaf_nodes = 3 random_state = 0 class_weight = "balanced" n_jobs = -1 tag = specific_info ## END OF PARAMS TO MODIFY ## PARAMETERS = { "X_train" : X_train, "Y_train" : Y_train, "X_dev" : X_dev, "Y_dev" : Y_dev, "architecture" : architecture, "num_estimators" : num_estimators, "min_sample_split" : min_sample_split, "max_depth" : max_depth, "max_leaf_nodes" : max_leaf_nodes, "random_state" : random_state, "class_weight" : class_weight, "n_jobs" : n_jobs, "tag" : tag, "print_cost" : True } modelDriver = ModelDriver(PARAMETERS) modelDriver.load() modelDriver.init_model() modelDriver.run_model()
# -*- coding: utf-8 -*- ''' Provide authentication using a Slack token Slack auth can be defined like any other eauth module: .. code-block:: yaml external_auth: slack: fred: - .* - '@runner' ''' # Import python libs from __future__ import absolute_import, print_function, unicode_literals import logging # Import salt libs import salt.utils.http log = logging.getLogger(__name__) __virtualname__ = 'slack' def __virtual__(): return __virtualname__ def auth(username, password): ''' Slack authentication ''' url = https://slack.com/api/auth.test?token={}'.format(self.password) # Post to the API endpoint. If 200 is returned then the result will be the ACLs # for this user result = salt.utils.http.query(url, method='POST', status=True, decode=True) if result['status'] == 200: log.debug('eauth REST call returned 200: %s', result) if result['dict'] is not None: if result['dict']['ok'] == False: log.debug('eauth Slack call failed (reject by server): %s', result) return False if result['dict']['user'] != username: log.debug('eauth Slack call failed (user mismatch): %s', result) return False return True else: log.debug('eauth Slack call failed (non-200 response): %s', result) return False
"""Refresh cog.""" from discord.ext import commands, tasks from bot import google class Refresh(commands.Cog, command_attrs={"hidden": True}): """All the miscellaneous commands.""" def __init__(self, bot): self.bot = bot self.refresh_loop.start() @staticmethod async def run_refresh(): """Reload all the data on the worksheets.""" await google.connector.rules.refresh() await google.connector.whatis.refresh() @commands.command() async def refresh(self, ctx): """Refresh data for Info and Tourney.""" with ctx.typing(): await self.run_refresh() await ctx.send("♻ **Refreshed!**") @tasks.loop(hours=1) async def refresh_loop(self): """Loop that refreshes worksheets.""" await self.run_refresh() def setup(bot): bot.add_cog(Refresh(bot))
from cyaron import * CASES = 10 for t in range(1, CASES + 1): io = IO(f"{t}.in") # ============================== n = 100 k = randint(0, int(1e12)) if t <= 5 else int(1e12) io.input_writeln(n, k) for i in range(n): io.input_writeln( *(randint(-1000 if t <= 7 else 0, 1000) for j in range(n)) ) # ============================== io.close()
""" Convert img-list to tensorflow TFRecord format """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import numpy as np import pandas as pd import argparse import cv2 import json from natsort import natsorted from tqdm import tqdm from .. import pipeline as pipe from .. import utils from collections import OrderedDict np.random.seed(21) def run(view_angles, extra_radius_buffer_px, num_channels, stride, crop_size, view_planes, num_negative_examples_per_nodule_free_patient_per_view_plane, HU_tissue_range): # check dataset if not pipe.dataset_name == 'LUNA16': raise ValueError('gen_nodule_seg_data only valid for dataset LUNA16') sys.exit() # define view_planes view_planes = [x if x in ['y', 'x', 'z'] else 'ERROR' for x in natsorted(view_planes)] if len(view_planes) == 0: pipe.log.error("No view_plane is determined!!! Continue with default 'zyx'.") view_planes = ['x','y','z'] # default if len(crop_size) != 2: raise ValueError('Wrong crop_size. Use format HeightxWidth') sys.exit() gen_nodule_masks_json = pipe.load_json('out.json', 'gen_nodule_masks') resample_lungs_json = pipe.load_json('out.json', 'resample_lungs') patients_lst = OrderedDict(pipe.patients_by_split) for lst_type in patients_lst.keys(): if len(patients_lst[lst_type]) == 0: continue pipe.log.info('processing lst {} with len {}'.format(lst_type, len(patients_lst[lst_type]))) generate_data_lsts( HU_tissue_range, gen_nodule_masks_json, resample_lungs_json, lst_type, patients_lst[lst_type], num_channels, stride, crop_size, view_planes, num_negative_examples_per_nodule_free_patient_per_view_plane) def get_slice_from_zyx_array(array, slice_start, slice_end, axis): slice_start = max(0, slice_start) slice_end = min(slice_end, array.shape[axis]) if slice_start>slice_end: print ('ERROR with slice_start, slice_end!!!') sys.exit() if axis == 0: return np.swapaxes(array[slice_start:slice_end].copy(),0,2) # z,y,x -> x,y,z # order equal to gen_prob_maps ordering elif axis == 1: return np.swapaxes(array[:, slice_start:slice_end].copy(), 1, 2) #z,y,x, -> z,x,y elif axis == 2: return array[:, :, slice_start:slice_end].copy() #z,y,x def ensure_point_lst_within_array(lst, array_shape): return [int(np.clip(x, 0, array_shape)) for x in lst] def generate_data_lsts(HU_tissue_range, gen_nodule_masks_json, resample_lungs_json, lst_type, patient_lst, num_channels, stride, crop_size, view_planes, num_negatives_per_patient, use_shell_slices=False): # initialize some vars num_data = 0 patient_slice_num = 0 all_data = [] stacked_data = np.zeros(list(crop_size)+[num_channels]+[3], dtype=np.uint8) lst_out_path = pipe.get_step_dir() + lst_type + '_nodule_seg_data.lst' with open(lst_out_path, 'w') as out_lst: for pa_cnt, patient in enumerate(tqdm(patient_lst)): patient_slice_num = 0 try: patient_json = gen_nodule_masks_json[patient] except: pipe.log.error('could not load gen_nodule_mask patient_json for patient {}!!!'.format(patient)) sys.exit() try: scan = pipe.load_array(resample_lungs_json[patient]['basename'], 'resample_lungs') except: pipe.log.error('could not load resample_lungs_array of patient {}. continue with next patient.'.format(patient)) continue try: mask = pipe.load_array(gen_nodule_masks_json[patient]['basename'], 'gen_nodule_masks') except: pipe.log.error('could not load mask-array of patient {}. Continue with next patient'.format(patient)) continue #normalize and zero_center scan and lab. Also checking dtyppe if scan.dtype == np.int16: scan = ((scan/(float(HU_tissue_range[1]-HU_tissue_range[0])))*255).astype(np.uint8) elif scan.dtype == np.float32: scan = (scan*255).astype(np.uint8) elif scan.dtype == np.uint8: scan = scan else: pipe.log.error('dtype of scan for patient {} is NOT one of these [uint8, float32, int16]. Continue with next patient'.format(patient)) if mask.dtype == np.uint8: mask = mask else: pipe.log.error('dtype of mask for patient {} is NOT uint8. Continue with next patient'.format(patient)) # combine scan and mask to data data = np.zeros(list(scan.shape)+[3], dtype=np.uint8) data[:, :, :, 0] = scan data[:, :, :, 1:3] = mask # initialize some lists images_nodule_free = [] nodules_extract_coords_lst = [] num_nodule_pakets_lst = [] nodules_center_coords_lst = [] nodule_id_lst = [] images = [] # get patient infos if patient_json['nodule_patient']: nodules = patient_json['nodules'] for nodule in nodules: #skip nodules < 3 #adjustment for retraining LUNA (checkpoints for this setting already included pretrained in the April 7 model release) if nodule['nodule_priority'] < 3: continue #nodule_bounding_box_coords_zyx_px = nodule["nodule_box_ymin/ymax_xmin/xmax_zmin/zmax_px"] factor = 1.0 nodule_center_zyx_px = nodule['center_zyx_px'] nodule_max_diameter_zyx_px = nodule['max_diameter_zyx_px'] nodule_bounding_box_coords_zyx_px = nodule["nodule_box_zmin/zmax_ymin/ymax_xmin/xmax_px"] # ensure points within array nodule_bounding_box_coords_zyx_px = [ensure_point_lst_within_array([nodule_bounding_box_coords_zyx_px[x]], data.shape[x//2])[0] for x in range(6)] # ensure that bounding box has at least num_channel size nodule_bounding_box_coords_zyx_px = [int(nodule_bounding_box_coords_zyx_px[v]) if v%2==0 else max(int(nodule_bounding_box_coords_zyx_px[v]+1), int(nodule_bounding_box_coords_zyx_px[v-1])+num_channels) for v in range(6)] # get center_box_coords nodule_center_box_coords_zyx_px = nodule["nodule_center_box_zmin/zmax_px_ymin/ymax_xmin/xmax"] # ensure points within array nodule_center_box_coords_zyx_px = [ensure_point_lst_within_array([nodule_center_box_coords_zyx_px[x]], data.shape[x//2])[0] for x in range(6)] # draw center # loop over view_planes for view_plane in view_planes: # get affected layers from scan and homogenize plan orientation (num_channels always in last dimension) if view_plane =='z': center_coords = [nodule_center_box_coords_zyx_px[0], nodule_center_box_coords_zyx_px[1]] shell_coords = [nodule_bounding_box_coords_zyx_px[0], nodule_bounding_box_coords_zyx_px[1]] nodule_box_coords = [nodule_bounding_box_coords_zyx_px[4], nodule_bounding_box_coords_zyx_px[5], # y on first axis nodule_bounding_box_coords_zyx_px[2], nodule_bounding_box_coords_zyx_px[3]] # x on second axis axis = 0 elif view_plane =='y': center_coords = [nodule_center_box_coords_zyx_px[2], nodule_center_box_coords_zyx_px[3]] shell_coords = [nodule_bounding_box_coords_zyx_px[2], nodule_bounding_box_coords_zyx_px[3]] nodule_box_coords = [nodule_bounding_box_coords_zyx_px[0], nodule_bounding_box_coords_zyx_px[1], # z on first axis nodule_bounding_box_coords_zyx_px[4], nodule_bounding_box_coords_zyx_px[5]] # x on second axis axis = 1 elif view_plane =='x': center_coords = [nodule_center_box_coords_zyx_px[4], nodule_center_box_coords_zyx_px[5]] shell_coords = [nodule_bounding_box_coords_zyx_px[4], nodule_bounding_box_coords_zyx_px[5]] nodule_box_coords = [nodule_bounding_box_coords_zyx_px[0], nodule_bounding_box_coords_zyx_px[1], # z on first axis nodule_bounding_box_coords_zyx_px[2], nodule_bounding_box_coords_zyx_px[3]] # y on second axis axis = 2 if use_shell_slices: shell_slices = get_slice_from_zyx_array(data, shell_coords[0], shell_coords[1], axis=axis) slices = shell_slices else: center_slices = get_slice_from_zyx_array(data, center_coords[0], center_coords[1], axis=axis) slices = center_slices num_layers = slices.shape[2] # for nodules with many layers split several parts from nodules_pakets = [] if num_layers == num_channels: nodules_pakets.append(list(range(num_channels))) elif num_layers > num_channels: rand_offset = np.random.randint(0,int((num_layers-num_channels) % (stride))+1) for paket in range(int((num_layers-num_channels)/(stride))+1): nodules_pakets.append(list(np.arange(rand_offset+paket*stride, rand_offset+paket*stride+num_channels))) # make nodule_pakets where label is central layer of paket for nodules_paket in nodules_pakets: images.append(slices[:,:,min(nodules_paket):min(nodules_paket)+num_channels]) nodules_extract_coords_lst.append(nodule_box_coords) num_nodule_pakets_lst.append(len(nodules_pakets)) nodule_id_lst.append(nodule['nodule_id']) # get some negative samples for every view_plane rand_layers_z = np.random.permutation(range(scan.shape[0])) rand_layers_y = np.random.permutation(range(scan.shape[1])) rand_layers_x = np.random.permutation(range(scan.shape[2])) rand_layer_cnt = 0 while len(images_nodule_free) < num_negatives_per_patient*len(view_planes): if 'z' in view_planes: idx0 = min(rand_layers_z[rand_layer_cnt], scan.shape[0]-num_channels) idx1 = idx0 + num_channels idx2 = np.random.randint(0, max(1,scan.shape[1]-crop_size[0])) idx3 = idx2 + crop_size[0] idx4 = np.random.randint(0, max(1,scan.shape[2]-crop_size[1])) idx5 = idx4 + crop_size[1] # introduce some random black parts if np.random.randint(0,10)==0: rand_black_padding = np.random.randint(0,4) if rand_black_padding: idx2 += np.random.randint(1,crop_size[0]//3) elif rand_black_padding ==1: idx3 -= np.random.randint(1,crop_size[0]//3) elif rand_black_padding==2: idx3 += np.random.randint(1,crop_size[1]//3) elif rand_black_padding==3: idx4 -= np.random.randint(1,crop_size[1]//3) if np.sum(mask[idx0:idx1, idx2:idx3, idx4:idx5]) < 1: images_nodule_free.append(np.swapaxes(data[idx0:idx1, idx2:idx3, idx4:idx5].copy(), 0, 2)) # cv2.imwrite('test_imgs/'+'y'+'_'+str(num_data)+'_'+str(len(images_nodule_free))+'_shitto.jpg', data[idx0+(idx1-idx0)//2, idx2:idx3, idx4:idx5,0]) if 'y' in view_planes: idx0 = np.random.randint(0, max(1,scan.shape[0]-crop_size[0])) idx1 = idx0 + crop_size[0] idx2 = min(rand_layers_y[rand_layer_cnt], scan.shape[1]-num_channels) idx3 = idx2 + num_channels idx4 = np.random.randint(0, max(1,scan.shape[2]-crop_size[1])) idx5 = idx4 + crop_size[1] # introduce some random black parts if np.random.randint(0,10)==0: rand_black_padding = np.random.randint(0,4) if rand_black_padding: idx0 += np.random.randint(1,crop_size[0]//3) elif rand_black_padding ==1: idx1 -= np.random.randint(1,crop_size[0]//3) elif rand_black_padding==2: idx3 += np.random.randint(1,crop_size[1]//3) elif rand_black_padding==3: idx4 -= np.random.randint(1,crop_size[1]//3) if np.sum(mask[idx0:idx1, idx2:idx3, idx4:idx5]) < 1: images_nodule_free.append(np.swapaxes(data[idx0:idx1, idx2:idx3, idx4:idx5].copy(), 1,2)) # cv2.imwrite('test_imgs/'+'x'+'_'+str(num_data)+'_'+str(len(images_nodule_free))+'_shitto.jpg', data[idx0:idx1, idx2+(idx3-idx2)//2, idx4:idx5,0]) if 'x' in view_planes: idx0 = np.random.randint(0, max(1,scan.shape[0]-crop_size[0])) idx1 = idx0 + crop_size[0] idx2 = np.random.randint(0, max(1,scan.shape[1]-crop_size[1])) idx3 = idx2 + crop_size[1] idx4 = min(rand_layers_x[rand_layer_cnt], scan.shape[2]-num_channels) idx5 = idx4 + num_channels # introduce some random black parts if np.random.randint(0,10)==0: rand_black_padding = np.random.randint(0,4) if rand_black_padding: idx0 += np.random.randint(1,crop_size[0]//3) elif rand_black_padding ==1: idx1 -= np.random.randint(1,crop_size[0]//3) elif rand_black_padding==2: idx2 += np.random.randint(1,crop_size[1]//3) elif rand_black_padding==3: idx3 -= np.random.randint(1,crop_size[1]//3) if np.sum(mask[idx0:idx1, idx2:idx3, idx4:idx5]) < 1: images_nodule_free.append(data[idx0:idx1, idx2:idx3, idx4:idx5].copy()) # cv2.imwrite('test_imgs/'+'z'+'_'+str(num_data)+'_'+str(len(images_nodule_free))+'_shitto.jpg', data[idx0:idx1, idx2:idx3, idx4+(idx5-idx4)//2,0]) rand_layer_cnt += 1 if rand_layer_cnt == min(len(rand_layers_z), len(rand_layers_y), len(rand_layers_x)): break # loop over all images and labels sprang out from nodule cropped_images_lsts = {'nodules': [images, nodules_extract_coords_lst, num_nodule_pakets_lst, nodule_id_lst], 'nodule_free': [images_nodule_free, [None]*len(images_nodule_free), [1]*len(images_nodule_free), [-1]*len(images_nodule_free)]} for cropped_images_lst_key in cropped_images_lsts.keys(): zipped_lsts = cropped_images_lsts[cropped_images_lst_key] # loop over all pakets in images,.. for img_cnt in range(len(zipped_lsts[0])): org_img = zipped_lsts[0][img_cnt][:,:,:,:1] org_lab = zipped_lsts[0][img_cnt][:,:,:,1:3] nodule_box_coords_in_extract = zipped_lsts[1][img_cnt] num_nodule_pakets = zipped_lsts[2][img_cnt] nodule_id = zipped_lsts[3][img_cnt] img = np.zeros(crop_size+[num_channels]+[1], dtype=np.uint8) lab = np.zeros(crop_size+[1]+[2], dtype=np.uint8) # first channel ist label to predict, second channel for drawing center # crop or pad org_img img_coords = [] org_coords = [] if patient_json['nodule_patient']: # crop random around nodule or pad black # ensure that nodule is within crop for idx in range(2): if crop_size[idx] < org_img.shape[idx]: if patient_json['nodule_patient']: img_coords.append(0) img_coords.append(crop_size[idx]) if (nodule_box_coords_in_extract[idx*2+1]-nodule_box_coords_in_extract[idx*2])<crop_size[idx]: start_random = max(0,min(org_img.shape[idx]-crop_size[idx], nodule_box_coords_in_extract[idx*2+1]-(crop_size[idx]))) end_random = max(start_random+1, min(nodule_box_coords_in_extract[idx*2], org_img.shape[idx]-crop_size[idx])) org_coords.append(np.random.randint(start_random, end_random)) org_coords.append(org_coords[-1]+crop_size[idx]) else: org_coords.append(np.random.randint(0, org_img.shape[idx]-crop_size[idx])) org_coords.append(org_coords[-1]+crop_size[idx]) else: img_coords.append(0) img_coords.append(crop_size[idx]) org_coords.append(np.random.randint(0, org_img.shape[idx]-crop_size[idx])) org_coords.append(org_coords[-1]+crop_size[idx]) elif crop_size[idx] >= org_img.shape[idx]: img_coords.append((crop_size[idx]-org_img.shape[idx])/2) img_coords.append(img_coords[-1]+org_img.shape[idx]) org_coords.append(0) org_coords.append(org_img.shape[idx]) else: # crop or pad negative_img for idx in range(2): if org_img.shape[idx] >= img.shape[idx]: # start img_coords.append(0) org_coords.append((org_img.shape[idx]-img.shape[idx])//2) # end img_coords.append(img.shape[idx]) org_coords.append(org_coords[-1]+img.shape[idx]) else: # start img_coords.append((img.shape[idx]-org_img.shape[idx])//2) org_coords.append(0) # end img_coords.append(img_coords[-1]+org_img.shape[idx]) org_coords.append(org_img.shape[idx]) img_coords = [int(x) for x in img_coords] org_coords = [int(x) for x in org_coords] img[img_coords[0]:img_coords[1], img_coords[2]:img_coords[3], :] = org_img[org_coords[0]:org_coords[1], org_coords[2]:org_coords[3]].copy() lab[img_coords[0]:img_coords[1], img_coords[2]:img_coords[3], 0] = org_lab[org_coords[0]:org_coords[1], org_coords[2]:org_coords[3], org_lab.shape[2]//2].copy() # stack img and lab and include in all_data lst stacked_data[:,:,:img.shape[-2],:1] = img.copy() stacked_data[:,:,:lab.shape[-2],1:3] = lab.copy() all_data.append(stacked_data.copy()) # write info to out_lst out_lst.write('{}\t{}\t{}\t{}\t{}\t{}\n'.format(num_data, patient, nodule_id, patient_slice_num, 1 if cropped_images_lst_key=='nodules' else 0, num_nodule_pakets)) num_data += 1 patient_slice_num += 1 # if 0 and cropped_images_lst_key=='nodules': # randy = np.random.randint(0,10000) # cv2.imwrite('test_imgs/'+str(randy)+'_img.jpg', stacked_data[:,:,stacked_data.shape[2]//2,0]) # cv2.imwrite('test_imgs/'+str(randy)+'_lab.jpg', stacked_data[:,:,stacked_data.shape[2]//2,1]) # cv2.imwrite('test_imgs/'+str(randy)+'_center.jpg', stacked_data[:,:,stacked_data.shape[2]//2,2]) # if num_data == 3000 and 1: # out_path = pipe.save_array(basename=lst_type+'.npy' , array=np.array(all_data, dtype=np.uint8), step_name='gen_nodule_seg_data') # out_lst.close() # sys.exit() pipe.log.info('{} num data: {}'.format(lst_type, num_data)) print ('saving npy-construct') out_path = pipe.save_array(basename=lst_type+'.npy' , array=np.array(all_data, dtype=np.uint8), step_name='gen_nodule_seg_data') # load list and save again with headers out_lst = pd.read_csv(lst_out_path, header=None, sep='\t') out_lst = out_lst.rename(columns={0:'ongoing_num',1:'id', 2:'nodule_id', 3:'patient_slice_num', 4:'is_nodule', 5:'num_nodule_pakets'}) # calculate num_nodule_compensation_factor based on biggest nodule out_lst['compensation_factor'] = np.max(out_lst['num_nodule_pakets'].values.tolist())/out_lst['num_nodule_pakets'] # negatives compensation_factor set to zero out_lst['compensation_factor'].loc[out_lst['is_nodule']==0] = 1 print ('maximal compensation_factor', np.max(out_lst['compensation_factor'].values)) # save out_lst.to_csv('/'.join(lst_out_path.split('/')[:-1])+ '/' + lst_out_path.split('/')[-1].split('.')[0]+'_DF.csv', index=False,sep='\t')
from rjgtoys.cli import Command class GreeterBase(Command): DEFAULT_NAME = "you" def _arg_name(self, p): p.add_argument( '--name', type=str, help="Name of the person to greet", default=self.DEFAULT_NAME ) def run(self, args): print(f"Hello {args.name}!")
from rest_framework import exceptions, serializers from api.v2.serializers.summaries import StatusTypeSummarySerializer from core.models import StatusType class StatusTypeRelatedField(serializers.RelatedField): def get_queryset(self): return StatusType.objects.all() def to_representation(self, status_type): serializer = StatusTypeSummarySerializer( status_type, context=self.context) return serializer.data def to_internal_value(self, data): queryset = self.get_queryset() if isinstance(data, dict): identity = data.get("id", None) else: identity = data try: return queryset.get(id=identity) except: raise exceptions.ValidationError( "StatusType with id '%s' does not exist." % identity )
from test_all_fixers import lib3to2FixerTestCase class Test_printfunction(lib3to2FixerTestCase): fixer = u"printfunction" def test_generic(self): b = u"""print()""" a = u"""from __future__ import print_function\nprint()""" self.check(b, a) def test_literal(self): b = u"""print('spam')""" a = u"""from __future__ import print_function\nprint('spam')""" self.check(b, a) def test_not_builtin_unchanged(self): s = u"this.shouldnt.be.changed.because.it.isnt.builtin.print()" self.unchanged(s) # XXX: Quoting this differently than triple-quotes, because with newline # XXX: setting, I can't quite get the triple-quoted versions to line up. def test_arbitrary_printing(self): b = u"import dinosaur.skull\nimport sys\nprint"\ u"(skull.jaw, skull.jaw.biteforce, file=sys.stderr)" a = u"from __future__ import print_function\n"\ u"import dinosaur.skull\nimport sys\nprint"\ u"(skull.jaw, skull.jaw.biteforce, file=sys.stderr)" self.check(b, a) def test_long_arglist(self): b = u"print(spam, spam, spam, spam, spam, baked_beans, spam, spam,"\ u"spam, spam, sep=', spam, ', end=wonderful_spam)\nprint()" a = u"from __future__ import print_function\n"\ u"print(spam, spam, spam, spam, spam, baked_beans, spam, spam,"\ u"spam, spam, sep=', spam, ', end=wonderful_spam)\nprint()" self.check(b, a)
from django import forms from utils.api.client import MarketAccessAPIClient from utils.forms import ( ChoiceFieldWithHelpText, ClearableMixin, DayMonthYearField, MultipleChoiceFieldWithHelpText, YesNoBooleanField, YesNoDontKnowBooleanField, ) from .mixins import APIFormMixin class UpdateCommercialValueForm(APIFormMixin, forms.Form): commercial_value = forms.IntegerField( min_value=0, max_value=1000000000000, localize=True, label="What is the value of the barrier to the affected business(es) in GBP?", error_messages={ "required": "Enter a value", "min_value": "Enter a valid number", "max_value": "Enter a valid number", }, ) commercial_value_explanation = forms.CharField( widget=forms.Textarea, error_messages={"required": "Enter a value description and timescale"}, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch(id=self.id, **self.cleaned_data) class UpdateBarrierTitleForm(APIFormMixin, forms.Form): title = forms.CharField( label="Suggest a title for this barrier", help_text=( "Include both the title or service name and the country being " "exported to, for example, Import quotas for steel rods in India." ), max_length=255, error_messages={ "max_length": "Title should be %(limit_value)d characters or fewer", "required": "Enter a title for this barrier", }, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch(id=self.id, title=self.cleaned_data["title"]) class UpdateBarrierProductForm(APIFormMixin, forms.Form): product = forms.CharField( label="What product or service is being exported?", max_length=255, error_messages={ "max_length": "Product or service should be %(limit_value)d characters or fewer", "required": "Enter a product or service", }, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch(id=self.id, product=self.cleaned_data["product"]) class UpdateBarrierSummaryForm(APIFormMixin, forms.Form): summary = forms.CharField( label="Give us a summary of the barrier and how you found out about it", widget=forms.Textarea, error_messages={"required": "Enter a brief description for this barrier"}, ) is_summary_sensitive = YesNoBooleanField( label="Does the summary contain OFFICIAL-SENSITIVE information?", error_messages={ "required": ( "Indicate if summary contains OFFICIAL-SENSITIVE information or not" ) }, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, summary=self.cleaned_data["summary"], is_summary_sensitive=self.cleaned_data["is_summary_sensitive"], ) class UpdateBarrierSourceForm(APIFormMixin, forms.Form): CHOICES = [ ("COMPANY", "Company"), ("TRADE", "Trade association"), ("GOVT", "Government entity"), ("OTHER", "Other "), ] source = forms.ChoiceField( label="How did you find out about the barrier?", choices=CHOICES, widget=forms.RadioSelect, error_messages={"required": "Select how you became aware of the barrier"}, ) other_source = forms.CharField( label="Please specify", required=False, max_length=255, error_messages={ "max_length": "Other source should be %(limit_value)d characters or fewer", }, ) def clean(self): cleaned_data = super().clean() source = cleaned_data.get("source") other_source = cleaned_data.get("other_source") if source == "OTHER": if not other_source and "other_source" not in self.errors: self.add_error( "other_source", "Enter how you became aware of the barrier" ) else: cleaned_data["other_source"] = "" def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, source=self.cleaned_data["source"], other_source=self.cleaned_data["other_source"], ) class UpdateBarrierPriorityForm(APIFormMixin, forms.Form): CHOICES = [ ("UNKNOWN", "<strong>Unknown</strong> priority"), ("HIGH", "<strong>High</strong> priority"), ("MEDIUM", "<strong>Medium</strong> priority"), ("LOW", "<strong>Low</strong> priority"), ] priority = forms.ChoiceField( label="What is the priority of the barrier?", choices=CHOICES, widget=forms.RadioSelect, error_messages={"required": "Select a barrier priority"}, ) priority_summary = forms.CharField( label="Why did the priority change? (optional)", widget=forms.Textarea, required=False, ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) initial_priority = kwargs.get("initial", {}).get("priority") if initial_priority == "UNKNOWN": self.fields[ "priority_summary" ].label = "Why did you choose this priority? (optional)" def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, priority=self.cleaned_data["priority"], priority_summary=self.cleaned_data["priority_summary"], ) class UpdateBarrierTermForm(APIFormMixin, forms.Form): CHOICES = [ ( 1, "A procedural, short-term barrier", "for example, goods stuck at the border or documentation issue", ), ( 2, "A long-term strategic barrier", "for example, a change of regulation", ), ] term = ChoiceFieldWithHelpText( label="What is the scope of the barrier?", choices=CHOICES, widget=forms.RadioSelect, error_messages={"required": "Select a barrier scope"}, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch(id=self.id, term=self.cleaned_data["term"]) class UpdateBarrierEndDateForm(ClearableMixin, APIFormMixin, forms.Form): end_date = DayMonthYearField( label="End date", help_text=( "For example, 30 11 2020. If you don't know the day, please enter 1 for " "the first of the month." ), error_messages={"required": "Enter the end date"}, ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) end_date = kwargs.get("initial", {}).get("end_date") if end_date: self.fields["end_date"].label = "Change end date" def clean_end_date(self): return self.cleaned_data["end_date"].isoformat() def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, end_date=self.cleaned_data.get("end_date"), ) class UpdateBarrierTagsForm(APIFormMixin, forms.Form): tags = MultipleChoiceFieldWithHelpText( label="Is this issue caused by or related to any of the following?", choices=[], required=False, ) def __init__(self, tags, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["tags"].choices = tags def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch(id=self.id, tags=self.cleaned_data["tags"]) class UpdateTradeDirectionForm(APIFormMixin, forms.Form): trade_direction = forms.ChoiceField( label="Which trade direction does this barrier affect?", choices=[], widget=forms.RadioSelect, error_messages={"required": "Select a trade direction"}, ) def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, trade_direction=self.cleaned_data["trade_direction"] ) def __init__(self, trade_direction_choices, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["trade_direction"].choices = trade_direction_choices class CausedByTradingBlocForm(forms.Form): caused_by_trading_bloc = YesNoDontKnowBooleanField( label="", error_messages={ "required": ("Indicate if the barrier was caused by the trading bloc") }, ) def __init__(self, trading_bloc, *args, **kwargs): super().__init__(*args, **kwargs) self.fields["caused_by_trading_bloc"].label = ( f"Was this barrier caused by a regulation introduced by " f"{trading_bloc['short_name']}?" ) self.fields["caused_by_trading_bloc"].help_text = self.get_help_text( trading_bloc.get("code") ) def get_help_text(self, trading_bloc_code): help_text = { "TB00016": ( "Yes should be selected if the barrier is a local application of an EU " "regulation. If it is an EU-wide barrier, the country location should " "be changed to EU in the location screen." ) } return help_text.get(trading_bloc_code, "") class UpdateCausedByTradingBlocForm(APIFormMixin, CausedByTradingBlocForm): def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, caused_by_trading_bloc=self.cleaned_data["caused_by_trading_bloc"], ) class UpdateEconomicAssessmentEligibilityForm(APIFormMixin, forms.Form): economic_assessment_eligibility = YesNoBooleanField( label="Is the barrier eligible for an initial economic assessment?", error_messages={ "required": ( "Select yes if the barrier is eligible for an initial economic assessment" ) }, ) economic_assessment_eligibility_summary = forms.CharField( label="Why is this barrier not eligible for an initial economic assessment?", help_text="Please explain why this barrier is not eligible", max_length=1500, widget=forms.Textarea, required=False, ) def clean(self): cleaned_data = super().clean() economic_assessment_eligibility = cleaned_data.get( "economic_assessment_eligibility" ) economic_assessment_eligibility_summary = cleaned_data.get( "economic_assessment_eligibility_summary" ) if economic_assessment_eligibility is False: if not economic_assessment_eligibility_summary: self.add_error( "economic_assessment_eligibility_summary", "Enter why this barrier is not eligible", ) else: cleaned_data["economic_assessment_eligibility_summary"] = "" def save(self): client = MarketAccessAPIClient(self.token) client.barriers.patch( id=self.id, economic_assessment_eligibility=self.cleaned_data[ "economic_assessment_eligibility" ], economic_assessment_eligibility_summary=self.cleaned_data[ "economic_assessment_eligibility_summary" ], )
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings import os import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.framework import Program from paddle.fluid.compiler import CompiledProgram from paddle.fluid.executor import Executor from paddle.fluid.parallel_executor import ParallelExecutor from paddle.fluid.framework import Variable, Parameter from .runtime_base import RuntimeBase from ..base.private_helper_function import wait_server_ready __all__ = [] def conv_indent(indent): return "".join([" "] * indent) PSERVER_SAVE_SUFFIX = ".shard" def parse_table_class(varname, o_main_program): from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op for op in o_main_program.global_block().ops: if not is_distributed_sparse_op(op) and not is_sparse_op(op): continue param_name = op.input("W")[0] if param_name == varname and op.type == "lookup_table" or op.type == "lookup_table_v2": if op.has_attr('table_class') and op.attr("table_class") != "none": return op.attr('table_class') else: return "CommonSparseTable" class Accessor: def __init__(self): self.accessor_class = "" self.optimizer = None self.feature_dim = -1 self.embedding_dim = -1 self.optimizer = None def to_string(self, indent): accessor_str = "{}accessor {{{}\n{}}}" attrs = "" attrs += "accessor_class: \"{}\" ".format(self.accessor_class) attrs += "fea_dim: {} ".format(self.feature_dim) attrs += "embedx_dim: {} ".format(self.embedding_dim) attrs += "\n" if self.optimizer is not None: attrs += self.optimizer.to_string(indent) return accessor_str.format( conv_indent(indent), attrs, conv_indent(indent)) class CommonAccessor: def __init__(self): self.accessor_class = "" self.table_name = None self.entry = None self.attrs = [] self.params = [] self.dims = [] self.trainer_num = 0 self.sync = "false" self.initializers = [] self.opt_input_map = {} self.opt_attr_map = {} self.opt_init_map = {} self.define_optimize_map() def define_optimize_map(self): opt_input_map = {} opt_input_map["sgd"] = [("Param", None), ("LearningRate", 1)] opt_input_map["adam"] = [("Param", None), ("Moment1", None), ("Moment2", None), ("Beta1Pow", 1), ("Beta2Pow", 1), ("LearningRate", 1)] opt_input_map["sum"] = [("Param", None)] opt_input_map["naive_adagrad"] = [("Param", None), ("G2Sum", 1), ("LearningRate", 1)] opt_attr_map = {} opt_attr_map["sgd"] = [] opt_attr_map["sum"] = [] opt_attr_map["naive_adagrad"] = [] opt_attr_map["adam"] = [("beta1", "f"), ("beta2", "f"), ("epsilon", "f")] opt_init_map = {} opt_init_map["gaussian_random"] = ["seed", "mean", "std"] opt_init_map["fill_constant"] = ["value"] opt_init_map["uniform_random"] = ["seed", "min", "max"] opt_init_map["truncated_gaussian_random"] = ["seed", "mean", "std"] self.opt_attr_map = opt_attr_map self.opt_input_map = opt_input_map self.opt_init_map = opt_init_map def parse_entry(self, varname, o_main_program): from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_distributed_sparse_op from paddle.fluid.incubate.fleet.parameter_server.ir.public import is_sparse_op for op in o_main_program.global_block().ops: if not is_distributed_sparse_op(op) and not is_sparse_op(op): continue param_name = op.input("W")[0] if param_name == varname and op.type == "lookup_table": self.entry = op.attr('entry') break if param_name == varname and op.type == "lookup_table_v2": self.entry = "none" break def get_shard(self, total_dim, shard_num, pserver_id): # remainder = total_dim % shard_num blocksize = int(total_dim / shard_num + 1) if blocksize * (pserver_id + 1) <= total_dim: return blocksize else: if blocksize * pserver_id < total_dim: return total_dim - blocksize * pserver_id else: return 0 def get_initializer_attr(self, value_name, o_startup_program): l_in = "&" attr_str = "" origin_var_name = value_name for op in o_startup_program.global_block().ops: if op.type in self.opt_init_map.keys( ) and origin_var_name == op.output("Out")[0]: init_attr = [op.type] for attr in self.opt_init_map[op.type]: init_attr.append(str(op.attr(attr))) attr_str = l_in.join(init_attr) break return attr_str def parse_by_optimizer(self, grad_name, is_sparse, total_dims, compiled_strategy): from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_optimize_ops param_name = compiled_strategy.grad_name_to_param_name[grad_name] main_program, startup_program = compiled_strategy.get_origin_programs() pserver_id = compiled_strategy.get_role_id() pserver_num = len(compiled_strategy.get_ps_endpoints()) optimizer_ops = _get_optimize_ops(main_program) oop = None for op in optimizer_ops: if ("Param" in op.input_names) and ( op.input("Param")[0] == param_name): oop = op break if oop is None: raise ValueError("can not find optimizer for {}".format(grad_name)) params = [] dims = [] attrs = [] initializers = [] self.trainer_num = compiled_strategy.get_trainers() if compiled_strategy.is_geo_mode(): param_varnames = self.opt_input_map["sum"] attr_varnames = self.opt_attr_map["sum"] self.accessor_class = "sum" elif compiled_strategy.use_ps_gpu and is_sparse: param_varnames = self.opt_input_map["naive_adagrad"] attr_varnames = self.opt_attr_map["naive_adagrad"] self.accessor_class = "sgd" else: param_varnames = self.opt_input_map[oop.type] attr_varnames = self.opt_attr_map[oop.type] self.accessor_class = oop.type for (formal_name, shape) in param_varnames: params.append(formal_name) if formal_name == "G2Sum": dims.append(1) initializer = "fill_constant&0" initializers.append(initializer) else: param = main_program.global_block().vars[oop.input(formal_name)[ 0]] if formal_name == "LearningRate" and param.name != "learning_rate_0": warnings.warn("will support decay soon") param = main_program.global_block().vars["learning_rate_0"] if shape is None: if is_sparse: shape = total_dims else: shape = self.get_shard(total_dims, pserver_num, pserver_id) dims.append(shape) initializer = self.get_initializer_attr(param.name, startup_program) initializers.append(initializer) for (attr_varname, type_) in attr_varnames: value = oop.attr(attr_varname) attrs.append("&".join([attr_varname, type_, str(value)])) self.params = params self.dims = dims self.initializers = initializers self.attrs = attrs def to_string(self, indent): accessor_str = "{}common {{{}\n{}}}" attrs = "" attrs += "name: \"{}\" ".format(self.accessor_class) if self.table_name: attrs += "table_name: \"{}\" ".format(self.table_name) if self.entry: attrs += "entry: \"{}\" ".format(self.entry) attrs += "trainer_num: {} ".format(self.trainer_num) attrs += "sync: {} ".format(self.sync) for param in self.params: attrs += "params: \"{}\" ".format(param) for dim in self.dims: attrs += "dims: {} ".format(dim) for initializer in self.initializers: attrs += "initializers: \"{}\" ".format(initializer) attrs += "\n" return accessor_str.format( conv_indent(indent), attrs, conv_indent(indent)) class Tensor: def __init__(self): self.main_program_id = None self.startup_program_id = None self.feed_var_name = None self.fetch_var_name = None self.tensor_table_class = False def to_string(self, indent): program_str = "{}tensor {{{}\n{}}}" attrs = "" attrs += "feed_var_name: \"{}\" ".format(str(self.feed_var_name)) attrs += "fetch_var_name: \"{}\" ".format(str(self.fetch_var_name)) attrs += "startup_program_id: {} ".format(str(self.startup_program_id)) attrs += "main_program_id: {} ".format(str(self.main_program_id)) attrs += "tensor_table_class: \"{}\" ".format( str(self.tensor_table_class)) attrs += "\n" return program_str.format( conv_indent(indent), attrs, conv_indent(indent)) class Table: def __init__(self): self.id = -1 self.table_class = None self.shard_num = -1 self.type = None self.accessor = None self.common = None self.tensor = None def to_string(self, indent): table_str = "{}downpour_table_param {{{}\n{}}}" attrs = "" attrs += "table_id: {} ".format(self.id) attrs += "table_class: \"{}\" ".format(self.table_class) attrs += "shard_num: {} ".format(self.shard_num) attrs += "type: {}".format(self.type) attrs += "\n" indent += 2 if self.accessor is not None: attrs += self.accessor.to_string(indent) attrs += "\n" if self.tensor is not None: attrs += self.tensor.to_string(indent) attrs += "\n" if self.common is not None: attrs += self.common.to_string(indent) attrs += "\n" return table_str.format(conv_indent(indent), attrs, conv_indent(indent)) class Service: def __init__(self): self.server_class = "BrpcPsServer" self.client_class = "BrpcPsClient" self.service_class = "BrpcPsService" self.start_server_port = 0 self.server_thread_num = 12 def to_string(self, indent): service_str = "{}service_param {{{}\n{}}}" attrs = "" attrs += "server_class: \"{}\" ".format(self.server_class) attrs += "client_class: \"{}\" ".format(self.client_class) attrs += "service_class: \"{}\" ".format(self.service_class) attrs += "start_server_port: {} ".format(self.start_server_port) attrs += "server_thread_num: {} ".format(self.server_thread_num) return service_str.format( conv_indent(indent), attrs, conv_indent(indent)) class DownpourServer: def __init__(self): self.service = None self.tables = [] def set_service_param(self, service): self.service = service def append_tables(self, table): if not isinstance(table, Table): raise ValueError("only support instance Table") self.tables.append(table) def to_string(self, indent): server_str = "{}downpour_server_param {{{}\n{}}}" table_strs = "" indent += 2 table_strs += "\n" table_strs += self.service.to_string(indent) for table in self.tables: table_strs += "\n" table_strs += table.to_string(indent) return server_str.format( conv_indent(indent), table_strs, conv_indent(indent)) class Server: def __init__(self): self.servers = [] def add_server(self, server): if not isinstance(server, DownpourServer): raise ValueError("only support instance DownpourServer") self.servers.append(server) def __str__(self): server_str = "server_param {{{}\n}}" indent = 2 servers_str = "" for server in self.servers: servers_str += "\n" servers_str += server.to_string(indent) return server_str.format(servers_str) class DownpourWorker: def __init__(self): self.tables = [] def append_tables(self, table): if not isinstance(table, Table): raise ValueError("only support instance Table") self.tables.append(table) def to_string(self, indent): worker_str = "{}downpour_worker_param {{{}\n{}}}" table_strs = "" indent += 2 for table in self.tables: table_strs += "\n" table_strs += table.to_string(indent) return worker_str.format( conv_indent(indent), table_strs, conv_indent(indent)) class Worker: def __init__(self): self.workers = [] def add_worker(self, worker): if not isinstance(worker, DownpourWorker): raise ValueError("only support instance DownpourWorker") self.workers.append(worker) def __str__(self): worker_str = "worker_param {{{}\n}}" indent = 2 workers_str = "" for worker in self.workers: workers_str += "\n" workers_str += worker.to_string(indent) return worker_str.format(workers_str) class TheOnePSRuntime(RuntimeBase): def __init__(self): super(TheOnePSRuntime, self).__init__() self._communicator = None self._server = None self._worker = fluid.core.DistFleetWrapper() self._server_sub_program = [] self._heter_client = None def _set_basic_info(self, context): self.context = context self.role_maker = context["role_maker"] self.origin_main_program = context["origin_main_program"] self.origin_startup_program = context["origin_startup_program"] self.async_strategy = self._get_distributed_strategy() self.compiled_strategy = self.build_compiled_startegy() def _get_distributed_strategy(self): strategy = None from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ StrategyFactory dist_strategy = self.context["valid_strategy"] k_steps = dist_strategy.a_sync_configs["k_steps"] if not dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if dist_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if dist_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") if dist_strategy.a_sync_configs["use_ps_gpu"]: strategy.use_ps_gpu = True return strategy def build_compiled_startegy(self): from paddle.fluid.incubate.fleet.parameter_server.ir.public import CompileTimeStrategy compiled_config = CompileTimeStrategy( self.origin_main_program, self.origin_main_program, self.async_strategy, self.role_maker) if self.async_strategy.use_ps_gpu: compiled_config.use_ps_gpu = True return compiled_config def _init_worker(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import \ SyncStrategy, GeoStrategy is_sync = self.compiled_strategy.is_sync_mode() worker = self._get_fleet_proto(is_server=False, is_sync=is_sync) server = self._get_fleet_proto(is_server=True, is_sync=is_sync) dist_strategy = self.context["valid_strategy"] use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"] if use_ps_gpu: main_program = self.context['loss'].block.program if not main_program._fleet_opt: main_program._fleet_opt = {} main_program._fleet_opt["use_ps_gpu"] = True gpus_env = os.getenv("FLAGS_selected_gpus") main_program._fleet_opt[ "worker_places"] = [int(s) for s in gpus_env.split(",")] def sync_strategy_envs(): kwargs = {} kwargs[ "pserver_endpoints"] = self.role_maker._get_pserver_endpoints() kwargs["trainer_id"] = self.role_maker._worker_index() return kwargs proto_txt = str(worker) + "\n" + str(server) debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) endpoints = self.compiled_strategy.get_ps_endpoints() string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) dense_map = self.compiled_strategy.get_the_one_recv_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode) send_ctx = self.compiled_strategy.get_the_one_send_context( split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=self.role_maker._is_heter_parameter_server_mode, ep_list=endpoints) trainer_config = self.async_strategy.get_trainer_runtime_config() debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("worker: \n{}".format(proto_txt)) print("communicator send_ctx:") for key in send_ctx: print("{}: {}".format(key, send_ctx[key])) for key in dense_map: print("{}: {}".format(key, dense_map[key])) kwargs = {} kwargs['need_global_step'] = "0" kwargs["trainer_id"] = self.role_maker._role_id() kwargs["trainers"] = self.role_maker._worker_num() #if self.role_maker._is_heter_worker(): # kwargs["trainer_id"] += kwargs["trainers"] for table in server.servers[0].tables: if table.table_class == "BarrierTable": kwargs["barrier_table_id"] = table.id break if isinstance(self.async_strategy, SyncStrategy): sync_kwargs = sync_strategy_envs() kwargs.update(sync_kwargs) from paddle.fluid.communicator import Communicator, HeterClient self._communicator = Communicator( trainer_config.mode, kwargs, trainer_config.get_communicator_flags()) self._communicator.init_with_ctx(send_ctx, dense_map, proto_txt, string_hosts, fluid.global_scope()) dist_strategy = self.context["valid_strategy"] is_test = bool(int(os.getenv("TEST_MODE", "0"))) if self.role_maker._is_first_worker( ) and self.role_maker._is_heter_parameter_server_mode: # for ps-heter mode load all parameters on first_worker init_params = self.compiled_strategy.get_the_one_recv_context( split_dense_table=True, use_origin_program=True) else: init_params = dense_map import paddle.distributed.fleet as fleet if not is_test: self._communicator.init_params(init_params) fleet.util.barrier() self._communicator.pull_dense(init_params) fleet.util.barrier() if not self._communicator.is_running(): self._communicator.start() else: warnings.warn("communicator has been initialized, skip") launch_barrier = dist_strategy.a_sync_configs["launch_barrier"] launch_barrier_flag = int(os.getenv("FLAGS_LAUNCH_BARRIER", "1")) if launch_barrier and launch_barrier_flag: # for trainer wait server ready wait_server_ready(self.role_maker._get_pserver_endpoints()) if self.role_maker._is_heter_parameter_server_mode and self.role_maker._get_next_trainers( ) != []: wait_server_ready(self.role_maker._get_next_trainers()) if self.role_maker._is_heter_parameter_server_mode: previous_trainers = [] if self.role_maker._get_previous_trainers() != []: previous_trainers = self.role_maker._get_previous_trainers() next_trainers = [] if self.role_maker._get_next_trainers() != []: next_trainers = self.role_maker._get_next_trainers() self._heter_client = HeterClient(next_trainers, previous_trainers, self.role_maker._role_id()) def _push_sparse_param(self, var_name, table_id=-1, scope=fluid.global_scope()): self._communicator.push_sparse_param(var_name, table_id, scope) def _get_executor(self): executor = fluid.Executor(fluid.CPUPlace()) if self.role_maker._is_heter_parameter_server_mode: if self.role_maker._is_heter_worker(): heter_device_type = self.role_maker._heter_device_type().upper() if heter_device_type not in ["GPU", "XPU", "CPU"]: raise ValueError("Heter Worker Not Support Device {}". format(device_type)) if heter_device_type == "GPU": executor = Executor( fluid.CUDAPlace( int(os.getenv("FLAGS_selected_gpus", "0")))) elif heter_device_type == "XPU": executor = Executor( fluid.XPUPlace( int(os.getenv("FLAGS_selected_xpus", "0")))) return executor def _get_fleet_proto(self, is_server, is_sync): def _build_merge_accessor(ctx): accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None if ctx.is_sparse(): accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = ctx.sections()[1] else: accessor.feature_dim = ctx.sections()[0] accessor.embedding_dim = 1 return accessor def _build_barrier_table(idx): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = "BarrierTable" table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = "barrier_table" trainer_num = self.compiled_strategy.get_trainers() if self.role_maker._is_heter_parameter_server_mode: trainer_num += len(self.role_maker._get_heter_worker_endpoints( )) common.trainer_num = trainer_num common.attrs = "" common.dims = [] common.params = [] table.common = common return table def _build_tensor_table(idx, tensor_dict): table = Table() table.id = idx table.type = "PS_OTHER_TABLE" table.table_class = tensor_dict["tensor_table_class"] table.shard_num = 256 accessor = Accessor() accessor.accessor_class = "CommMergeAccessor" accessor.optimizer = None accessor.feature_dim = 0 accessor.embedding_dim = 0 table.accessor = accessor common = CommonAccessor() common.table_name = tensor_dict["feed_var_name"] common.trainer_num = self.compiled_strategy.get_trainers() common.attrs = "" common.dims = [] common.params = [] table.common = common tensor = Tensor() tensor.main_program_id = tensor_dict["main_program_id"] tensor.startup_program_id = tensor_dict["startup_program_id"] tensor.feed_var_name = tensor_dict["feed_var_name"] tensor.fetch_var_name = tensor_dict["fetch_var_name"] tensor.tensor_table_class = tensor_dict["tensor_table_class"] table.tensor = tensor return table def _add_tensor_table(tables): tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() program_idx = 0 for table_name in tensor_table_dict: if tensor_table_dict[table_name]["startup_program"] != None: tensor_table_dict[table_name][ "startup_program_id"] = program_idx self._server_sub_program.append(tensor_table_dict[ table_name]["startup_program"].desc) program_idx += 1 if tensor_table_dict[table_name]["main_program"] != None: tensor_table_dict[table_name][ "main_program_id"] = program_idx self._server_sub_program.append(tensor_table_dict[ table_name]["main_program"].desc) program_idx += 1 # Todo: Hard code for lr_decay table apply table id new_table = _build_tensor_table( len(tables), tensor_table_dict[table_name]) tables.append(new_table) return tables def _get_tables(): send_ctx = self.compiled_strategy.get_the_one_send_context( use_origin_program=True, split_dense_table=self.role_maker. _is_heter_parameter_server_mode) tables = [] for idx, (name, ctx) in enumerate(send_ctx.items()): if ctx.is_tensor_table() or len(ctx.origin_varnames()) < 1: continue table = Table() table.id = ctx.table_id() common = CommonAccessor() if ctx.is_sparse(): table.type = "PS_SPARSE_TABLE" table.shard_num = 256 common.table_name = self.compiled_strategy.grad_name_to_param_name[ ctx.origin_varnames()[0]] if self.compiled_strategy.is_geo_mode(): table.table_class = "SparseGeoTable" else: table.table_class = parse_table_class( common.table_name, self.origin_main_program) else: table.type = "PS_DENSE_TABLE" table.table_class = "CommonDenseTable" table.shard_num = 256 common.table_name = "MergedDense" common.parse_by_optimizer(ctx.origin_varnames()[0], ctx.is_sparse(), ctx.sections()[1] if ctx.is_sparse() else ctx.sections()[0], self.compiled_strategy) if ctx.is_sparse(): common.parse_entry(common.table_name, self.origin_main_program) if is_sync: common.sync = "true" else: common.sync = "false" table.common = common accessor = _build_merge_accessor(ctx) table.accessor = accessor tables.append(table) tensor_table_dict = self.compiled_strategy.get_tensor_table_dict() if len(tensor_table_dict) > 0: tables = _add_tensor_table(tables) else: empty_porgram = Program() self._server_sub_program.append(empty_porgram.desc) barrier_table = _build_barrier_table(len(tables)) tables.append(barrier_table) return tables if is_server: server = Server() downpour_server = DownpourServer() service = Service() dist_strategy = self.context["valid_strategy"] use_ps_gpu = dist_strategy.a_sync_configs["use_ps_gpu"] if use_ps_gpu: service.server_class = "PsLocalServer" service.client_class = "PsLocalClient" downpour_server.set_service_param(service) tables = _get_tables() downpour_server.tables = tables server.add_server(downpour_server) return server else: worker = Worker() downpour_worker = DownpourWorker() tables = _get_tables() downpour_worker.tables = tables worker.add_worker(downpour_worker) return worker def _init_server(self, dirname=None, var_names=None, **kwargs): role_id = self.compiled_strategy.get_role_id() endpoints = self.compiled_strategy.get_ps_endpoints() is_sync = self.compiled_strategy.is_sync_mode() trainers = self.compiled_strategy.get_trainers() if self.role_maker._is_heter_parameter_server_mode: trainers += len(self.role_maker._get_heter_worker_endpoints()) server = self._get_fleet_proto(is_server=True, is_sync=is_sync) proto_txt = str(server) debug = bool(int(os.getenv("PSERVER_DEBUG", "0"))) if debug: print("server: \n{}".format(proto_txt)) string_hosts = [] for idx, ep in enumerate(endpoints): host, port = ep.split(":") pshost = fluid.core.PSHost(host, int(port), idx) string_hosts.append(pshost.serialize_to_string()) self._server = fluid.core.DistFleetWrapper() self._server.init_server(proto_txt, string_hosts, role_id, trainers, self._server_sub_program) from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames dist_varnames = get_sparse_tablenames(self.origin_main_program, True) sparse_varnames = get_sparse_tablenames(self.origin_main_program, False) distributed_varnames = dist_varnames + sparse_varnames if var_names is None: load_varnames = distributed_varnames else: for var_name in var_names: if var_name not in distributed_varnames: raise ValueError( "fleet.init server can only load sparse variables in {}". format(distributed_varnames)) load_varnames = var_names if dirname is None or not load_varnames: return sparse_table_maps = {} for table in server.servers[0].tables: if table.type == "PS_SPARSE_TABLE" and table.common is not None: sparse_table_maps[table.common.table_name] = table.id dirname = os.path.normpath(dirname) pserver_id = self.role_maker._role_id() for var_name in load_varnames: table_id = sparse_table_maps[var_name] # path = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX, # "{}.block{}.txt".format(var_name, pserver_id)) # meta = os.path.join(dirname, var_name + PSERVER_SAVE_SUFFIX, # "{}.block{}.meta".format(var_name, pserver_id)) self._server.load_sparse(dirname, "0", table_id) def _run_server(self): ep = self.compiled_strategy.get_ps_endpoint() host, port = ep.split(":") self._server.run_server(host, int(port)) def _init_heter_worker(self): executor = self._get_executor() startup_program = fluid.default_startup_program() #real_startup_program = startup_program._heter_pipeline_opt[ # "startup_program"] executor.run(startup_program) self._init_worker() def _run_heter_worker(self, dataset=None, scope=None, thread=0, debug=False, fetch_list=None, fetch_info=None, print_period=100, fetch_handler=None): executor = self._get_executor() # dataset is not needed for heter worker executor.train_from_dataset( program=fluid.default_main_program(), dataset=None, debug=debug, fetch_list=fetch_list, fetch_info=fetch_info, print_period=print_period) def _stop_worker(self): self._communicator.stop() if self.role_maker._is_heter_parameter_server_mode: assert self._heter_client != None, "heter client should not be None in heterps mode" self._heter_client.stop() #executor = self._get_executor() #executor.close() @staticmethod def __exclude_vars(exclude_var_names=[]): def is_valid(var): if var.name in exclude_var_names: return False from paddle.fluid.incubate.fleet.parameter_server.ir.public import _get_varname_parts origin_varname, _, _ = _get_varname_parts(var.name) if origin_varname.endswith("@GRAD"): return False if origin_varname == "learning_rate_0": return False if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \ var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \ var.desc.type() == core.VarDesc.VarType.READER: return False return var.persistable return is_valid def _save_sparse_params(self, executor, dirname, context, main_program, mode): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames distributed_varnames = get_sparse_tablenames( self.compiled_strategy.origin_main_program, True) values = [] for id, names in context.items(): if names[0] not in distributed_varnames: # only save sparse param to local self._worker.recv_and_save_model(id, dirname) # save sparse & distributed param on server self._worker.save_one_model(id, dirname, mode) values.extend(names) return values def _save_distributed_persistables(self, executor, dirname, main_program, mode=0): denses = self.compiled_strategy.get_the_one_recv_context( is_dense=True, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparse_varnames = self._save_sparse_params(executor, dirname, sparses, main_program, mode) recv_dense_varnames = [] for id, names in denses.items(): recv_dense_varnames.extend(names) saved_varnames = sparse_varnames remaining_vars = list( filter( TheOnePSRuntime.__exclude_vars(saved_varnames), main_program.list_vars())) self._communicator.pull_dense(denses) import paddle for var in remaining_vars: # if var.name not in recv_dense_varnames: # continue tensor = var.get_value() paddle.save( tensor, os.path.join(dirname, var.name), use_binary_format=True) def _ps_inference_save_persistables(self, executor, dirname, main_program=None, mode=0, **kwargs): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save() function, executor must be as Executor type") if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed" ) # Todo(MrChengmo): Save optimizer status self._save_distributed_persistables(executor, dirname, main_program, mode) def _ps_inference_save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True, mode=0): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ if isinstance(executor, ParallelExecutor): raise TypeError( "in fleet.save() function, executor must be as Executor type, ParallelExecutor is not allowed" ) if not isinstance(executor, Executor): raise TypeError( "in fleet.save() function, executor must be as Executor type") import paddle program = self.origin_main_program if main_program is None else main_program if isinstance(program, CompiledProgram): raise TypeError( "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed" ) feed_vars = [ program.global_block().var(name) for name in feeded_var_names ] infer_program = paddle.static.normalize_program(program, feed_vars, target_vars) infer_program._copy_dist_param_info_from(program) model_basename = "__model__" model_basename = os.path.join(dirname, model_basename) paddle.save(infer_program, model_basename) self._ps_inference_save_persistables(executor, dirname, infer_program, mode) def _save_inference_model(self, *args, **kwargs): self._ps_inference_save_inference_model(*args, **kwargs) def _save_persistables(self, *args, **kwargs): self._ps_inference_save_persistables(*args, **kwargs) def _load_sparse_params(self, dirname, context, main_program, mode): from paddle.fluid.incubate.fleet.parameter_server.ir.public import get_sparse_tablenames distributed_varnames = get_sparse_tablenames( self.compiled_strategy.origin_main_program, True) values = [] for id, names in context.items(): if names[0] not in distributed_varnames: # TODO: only load sparse param from local warnings.warn("varname is not in distributed_varnames, pass") # load sparse & distributed param on server self._worker.load_one_table(id, dirname, mode) values.extend(names) return values def _load_distributed_persistables(self, dirname, main_program=None, mode=0): if main_program is None: main_program = self.compiled_strategy.get_origin_ps_main_program() if isinstance(main_program, CompiledProgram): raise TypeError( "in fleet.save() function, main_program must be as Program type, CompiledProgram is not allowed" ) denses = self.compiled_strategy.get_the_one_recv_context( is_dense=True, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker._is_heter_parameter_server_mode, use_origin_program=True) sparse_varnames = self._load_sparse_params(dirname, sparses, main_program, mode) recv_dense_varnames = [] for id, names in denses.items(): recv_dense_varnames.extend(names) loaded_varnames = sparse_varnames remaining_vars = list( filter( TheOnePSRuntime.__exclude_vars(loaded_varnames), main_program.list_vars())) import paddle for var in remaining_vars: if var.name not in recv_dense_varnames: continue tensor = paddle.load(os.path.join(dirname, var.name)) var.set_value(tensor) self._communicator.init_params(denses) def load_model(self, path, mode): self._load_distributed_persistables(path, mode=mode) def _shrink(self, threshold): import paddle.distributed.fleet as fleet fleet.util.barrier() if self.role_maker._is_first_worker(): sparses = self.compiled_strategy.get_the_one_recv_context( is_dense=False, split_dense_table=self.role_maker. _is_heter_parameter_server_mode, use_origin_program=True) for id, names in sparses.items(): self._worker.shrink_sparse_table(id, threshold) fleet.util.barrier()
# -*- coding: utf-8 -*- """ Created on Tue Dec 19 13:21:23 2017 @author: James Jiang """ all_lines = [line.rstrip('\n') for line in open('Data.txt')] all_lines_chars = [] for i in range(len(all_lines)): chars = [j for j in all_lines[i]] all_lines_chars.append(chars) index_list = 0 index_all = 0 for i in range(len(all_lines_chars[0])): if all_lines_chars[0][i] == '|': index_list = i mode = 'down' total = 0 while True: if all_lines_chars[index_all][index_list] == ' ': break if all_lines_chars[index_all][index_list] == '+': k = 0 if (mode == 'down') or (mode == 'up'): if index_list != 0: if all_lines_chars[index_all][index_list - 1] != ' ': mode = 'left' k += 1 if index_list != len(all_lines_chars[index_all]) - 1: if all_lines_chars[index_all][index_list + 1] != ' ': mode = 'right' k += 1 elif (mode == 'left') or (mode == 'right'): if index_all != 0: if all_lines_chars[index_all - 1][index_list] != ' ': mode = 'up' k += 1 if index_all != len(all_lines_chars) - 1: if all_lines_chars[index_all + 1][index_list] != ' ': mode = 'down' k += 1 if k == 0: break if mode == 'down': index_all += 1 elif mode == 'up': index_all -= 1 elif mode == 'left': index_list -= 1 elif mode == 'right': index_list += 1 total += 1 print(total)
from django.db import models from django.urls import reverse import datetime from .genre import Genre from .category import Categorie class Artist(models.Model): name = models.CharField(max_length=100) known_as = models.CharField(max_length=60) genre = models.ManyToManyField(Genre) categorie = models.ForeignKey(Categorie, on_delete=models.CASCADE, blank=True) image = models.ImageField(upload_to='uploads/media/images/artist_image/%y/%m/%d') slug = models.SlugField(unique=True) class Meta: ordering = ['known_as'] def __str__(self): return self.known_as def get_absolute_url(self): return reverse("artist-detail", kwargs={"slug": self.slug, 'pk': self.pk})
import setuptools from commandintegrator import __version__ as version with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="commandintegrator", version=version, author="Simon Olofsson", author_email="[email protected]", description="A framework and API for developing chatbots and other command-driven applications", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/dotchetter/commandintegrator", packages=[ "commandintegrator", "commandintegrator.baseclasses", "commandintegrator.core", "commandintegrator.models", "commandintegrator.tools" ], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ "pytz", "requests", "urllib3" ], data_files=[ ('config', [ "commandintegrator\\language.json", "commandintegrator\\commandintegrator.settings" ] ) ], python_requires='>=3.8', include_package_data=True )
from thingsboard_gateway.connectors.converter import Converter, abstractmethod, log class MPlcConverter(Converter): @abstractmethod def convert(self, config, data): pass
# -*- coding: utf-8 -*- from jsonlint.i18n import DummyTranslations from jsonlint.validators import ValidationError, StopValidation class DummyField(object): _translations = DummyTranslations() def __init__(self, data, errors=(), raw_data=None): self.data = data self.errors = list(errors) self.raw_data = raw_data def gettext(self, string): return self._translations.gettext(string) def ngettext(self, singular, plural, n): return self._translations.ngettext(singular, plural, n) def grab_error_message(callable, form, field): try: callable(form, field) except ValidationError as e: return e.args[0] def grab_stop_message(callable, form, field): try: callable(form, field) except StopValidation as e: return e.args[0]
import datetime import posixpath import pytz from pylons import request from pylons import app_globals as g from pylons import tmpl_context as c from pylons.controllers.util import abort from r2.config import feature from r2.controllers import add_controller from r2.controllers.reddit_base import RedditController from r2.lib import websockets, ratelimit, utils from r2.lib.errors import errors from r2.lib.template_helpers import js_timestamp from r2.lib.validator import ( json_validate, validate, validatedForm, VAccountByName, VAdmin, VBoolean, VLength, VModhash, VNotInTimeout, VOneOf, VUser, ) from r2.models import Account from . import events from .validators import VRobinRoom from .pages import ( RobinAdmin, RobinAll, RobinPage, RobinChatPage, RobinJoin, RobinChat, ) from .models import RobinRoom, VALID_VOTES from .matchmaker import add_to_waitinglist from .reaper import prompt_for_voting, reap_ripe_rooms, get_reap_time @add_controller class RobinController(RedditController): def pre(self): RedditController.pre(self) if not feature.is_enabled("robin"): self.abort404() @validate( VUser(), VNotInTimeout(), ) def GET_join(self): room = RobinRoom.get_room_for_user(c.user) if room: return self.redirect("/robin") return RobinPage( title="robin", content=RobinJoin(robin_heavy_load=g.live_config.get( 'robin_heavy_load')), ).render() @validate( VAdmin(), ) def GET_all(self): return RobinPage( title="robin", content=RobinAll(), ).render() @validate( VAdmin(), ) def GET_admin(self): return RobinPage( title="robin", content=RobinAdmin(), ).render() @validate( VUser(), VNotInTimeout(), ) def GET_chat(self): room = RobinRoom.get_room_for_user(c.user) if not room: return self.redirect("/robin/join") return self._get_chat_page(room) @validate( VAdmin(), room=VRobinRoom("room_id", allow_admin=True), ) def GET_force_room(self, room): """Allow admins to view a specific room""" return self._get_chat_page(room) @validate( VAdmin(), user=VAccountByName("user"), ) def GET_user_room(self, user): """Redirect admins to a user's room""" room = RobinRoom.get_room_for_user(user) if not room: self.abort404() self.redirect("/robin/" + room.id) def _get_chat_page(self, room): path = posixpath.join("/robin", room.id, c.user._id36) websocket_url = websockets.make_url(path, max_age=3600) all_user_ids = room.get_all_participants() all_present_ids = room.get_present_participants() all_votes = room.get_all_votes() users = Account._byID(all_user_ids, data=True, stale=True) user_list = [] for user in users.itervalues(): if user._id in all_votes: vote = all_votes.get(user._id) else: vote = None user_list.append({ "name": user.name, "present": user._id in all_present_ids, "vote": vote, }); return RobinChatPage( title="chat in %s" % room.name, content=RobinChat(room=room), extra_js_config={ "robin_room_is_continued": room.is_continued, "robin_room_name": room.name, "robin_room_id": room.id, "robin_websocket_url": websocket_url, "robin_user_list": user_list, "robin_room_date": js_timestamp(room.date), "robin_room_reap_time": js_timestamp(get_reap_time(room)), }, ).render() def _has_exceeded_ratelimit(self, form, room): # grab the ratelimit (as average events per second) for the room's # current level, using the highest level configured that's not bigger # than the room. e.g. if ratelimits are defined for levels 1, 2, and 4 # and the room is level 3, this will give us the ratelimit specified # for 2. desired_avg_per_sec = 1 by_level = g.live_config.get("robin_ratelimit_avg_per_sec", {}) for level, avg_per_sec in sorted(by_level.items(), key=lambda (x,y): int(x)): if int(level) > room.level: break desired_avg_per_sec = avg_per_sec # now figure out how many events per window that means window_size = g.live_config.get("robin_ratelimit_window", 10) allowed_events_per_window = int(desired_avg_per_sec * window_size) try: # now figure out how much they've actually used ratelimit_key = "robin/{}".format(c.user._id36) time_slice = ratelimit.get_timeslice(window_size) usage = ratelimit.get_usage(ratelimit_key, time_slice) # ratelimit them if too much if usage >= allowed_events_per_window: g.stats.simple_event("robin.ratelimit.exceeded") period_end = datetime.datetime.utcfromtimestamp(time_slice.end) period_end_utc = period_end.replace(tzinfo=pytz.UTC) until_reset = utils.timeuntil(period_end_utc) c.errors.add(errors.RATELIMIT, {"time": until_reset}, field="ratelimit", code=429) form.has_errors("ratelimit", errors.RATELIMIT) return True # or record the usage and move on ratelimit.record_usage(ratelimit_key, time_slice) except ratelimit.RatelimitError as exc: g.log.warning("ratelimit error: %s", exc) return False @validatedForm( VUser(), VNotInTimeout(), VModhash(), room=VRobinRoom("room_id"), message=VLength("message", max_length=140), # TODO: do we want md? ) def POST_message(self, form, jquery, room, message): if self._has_exceeded_ratelimit(form, room): return if form.has_errors("message", errors.NO_TEXT, errors.TOO_LONG): return websockets.send_broadcast( namespace="/robin/" + room.id, type="chat", payload={ "from": c.user.name, "body": message, }, ) events.message( room=room, message=message, sent_dt=datetime.datetime.utcnow(), context=c, request=request, ) @validatedForm( VUser(), VNotInTimeout(), VModhash(), room=VRobinRoom("room_id"), vote=VOneOf("vote", VALID_VOTES), ) def POST_vote(self, form, jquery, room, vote): if self._has_exceeded_ratelimit(form, room): return if not vote: # TODO: error return? return g.stats.simple_event('robin.vote.%s' % vote) room.set_vote(c.user, vote) websockets.send_broadcast( namespace="/robin/" + room.id, type="vote", payload={ "from": c.user.name, "vote": vote, }, ) events.vote( room=room, vote=vote, sent_dt=datetime.datetime.utcnow(), context=c, request=request, ) @validatedForm( VUser(), VNotInTimeout(), VModhash(), ) def POST_join_room(self, form, jquery): if g.live_config.get('robin_heavy_load'): request.environ["usable_error_content"] = ( "Robin is currently experience high load.") abort(503) room = RobinRoom.get_room_for_user(c.user) if room: # user is already in a room, they should get redirected by the # frontend after polling /api/room_assignment.json return add_to_waitinglist(c.user) @validatedForm( VUser(), VModhash(), ) def POST_leave_room(self, form, jquery): room = RobinRoom.get_room_for_user(c.user) if not room: return room.remove_participants([c.user]) websockets.send_broadcast( namespace="/robin/" + room.id, type="users_abandoned", payload={ "users": [c.user.name], }, ) @json_validate( VUser(), VNotInTimeout(), ) def GET_room_assignment(self, responder): room = RobinRoom.get_room_for_user(c.user) if room: return {"roomId": room.id} @validatedForm( VAdmin(), VModhash(), ) def POST_admin_prompt(self, form, jquery): prompt_for_voting() @validatedForm( VAdmin(), VModhash(), ) def POST_admin_reap(self, form, jquery): reap_ripe_rooms() @validatedForm( VAdmin(), VModhash(), message=VLength("message", max_length=140), ) def POST_admin_broadcast(self, form, jquery, message): if form.has_errors("message", errors.NO_TEXT, errors.TOO_LONG): return websockets.send_broadcast( namespace="/robin", type="system_broadcast", payload={ "body": message, }, )
""" Download views for editorial app. """ # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render, redirect, get_object_or_404 from django.conf import settings from django.core.mail import send_mail from django.http import HttpResponse from django.utils import timezone from django.views.generic import TemplateView , UpdateView, DetailView, FormView, View from django.views.decorators.csrf import csrf_exempt from cStringIO import StringIO from zipfile import ZipFile import datetime import json from braces.views import LoginRequiredMixin, FormMessagesMixin from editorial.views import CustomUserTest # from editorial.forms import StoryDownloadForm from editorial.models import ( Story, Facet, ImageAsset, DocumentAsset, AudioAsset, VideoAsset ) #----------------------------------------------------------------------# # Download View #----------------------------------------------------------------------# class StoryDownloadTemplateView(CustomUserTest, TemplateView): """Display form for a story download.""" template_name = 'editorial/story/story_download_form.html' def test_user(self, user): """User must be member of an org.""" if user.organization: return True raise PermissionDenied() def get_context_data(self, pk): story = Story.objects.get(id=pk) story_images = story.get_story_images() story_documents = story.get_story_documents() story_audio = story.get_story_audio() story_video = story.get_story_video() return { 'story': story, 'story_images': story_images, 'story_documents': story_documents, 'story_audio': story_audio, 'story_video': story_video, } # ACCESS: Any org user, or user from an organization that is in collaborate_with # should be able to download a story # Contractors should not be able to download class StoryDownloadProcessView(CustomUserTest, View): """Create the download for a story and its facets.""" def test_user(self, user): """User must be member of an org.""" if user.organization: return True raise PermissionDenied() def post(self, request, pk): """ Process download form to collect objects and create download file.""" # get the story and associated facets no matter what options are selected story_id = request.POST.get('story') story = get_object_or_404(Story, id=pk) story_txt = story.get_story_download() select_all_images = story.get_story_images() select_all_documents = story.get_story_documents() select_all_audio = story.get_story_audio() select_all_video = story.get_story_video() image_txt = "" document_txt = "" audio_txt = "" video_txt = "" # Set up zip file fp = StringIO() z = ZipFile(fp, mode="w") # Always Zip up story meta z.writestr("story_details.txt", story_txt) # ------------------------------ # # IF SELECT ALL # # ------------------------------ # # if select_all is chosen, then all items will be downloaded story_sa_id = request.POST.get('select_all') if story_sa_id: story = get_object_or_404(Story, id=story_sa_id) if story_sa_id: # Zip up all facets and assets including story metadata for facet in story.facet_set.all(): z.writestr("{name}.txt".format(name=facet.name), facet.get_facet_download()) for image in select_all_images: z.writestr("{image}.jpg".format(image=image.title), image.photo.read()) new_info = image.get_asset_download_info() image_txt += new_info for document in select_all_documents: if document.asset_type == "PDF": z.writestr("{document}.pdf".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "WORD DOC": z.writestr("{document}.docx".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "TEXT": z.writestr("{document}.txt".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "COMMA SEPARATED": z.writestr("{document}.csv".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "EXCEL": z.writestr("{document}.xls".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info for audiofile in select_all_audio: if audiofile.asset_type == "MP3": z.writestr("{audiofile}.mp3".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info if audiofile.asset_type == "WAV": z.writestr("{audiofile}.wav".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info for video in select_all_video: if video.asset_type == "YOUTUBE": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_youtube_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info if video.asset_type == "VIMEO": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_vimeo_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info # user can also select download all items associated with specific facets # ------------------------------ # # IF FACET ALL # # ------------------------------ # facet_sa_id = request.POST.getlist('facet_select_all') if facet_sa_id: for facet in facet_sa_id: facet = get_object_or_404(Facet, id=facet) # Zip up story meta, facet content and facet images if facet: z.writestr("{name}.txt".format(name=facet.name), facet.get_facet_download()) for image in facet.image_assets.all(): z.writestr("{image}.jpg".format(image=image.title), image.photo.read()) new_info = image.get_asset_download_info() image_txt += new_info for document in facet.document_assets.all(): if document.asset_type == "PDF": z.writestr("{document}.pdf".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "WORD DOC": z.writestr("{document}.docx".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "TEXT": z.writestr("{document}.txt".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "COMMA SEPARATED": z.writestr("{document}.csv".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "EXCEL": z.writestr("{document}.xls".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info for audiofile in facet.audio_assets.all(): if audiofile.asset_type == "MP3": z.writestr("{audiofile}.mp3".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info if audiofile.asset_type == "WAV": z.writestr("{audiofile}.wav".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info for video in facet.video_assets.all(): if video.asset_type == "YOUTUBE": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_youtube_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info if video.asset_type == "VIMEO": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_vimeo_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info # if not select all OR facet select all, then user chooses the facet and the images # ------------------------------ # # IF FACET SPECIFIC # # ------------------------------ # facet_sp_id = request.POST.getlist('facet_specific_content') if facet_sp_id: for facet_id in facet_sp_id: facet = get_object_or_404(Facet, id=facet_id) z.writestr("{name}.txt".format(name=facet.name), facet.get_facet_download()) # ------------------------------ # # IF SPECIFIC IMAGES # # ------------------------------ # # if not select all or by facet, then user chooses specific images images = request.POST.getlist('images') images = ImageAsset.objects.filter(pk__in=images) if images: for image in images: z.writestr("{image}.jpg".format(image=image.title), image.photo.read()) new_info = image.get_asset_download_info() image_txt += new_info # ------------------------------ # # IF SPECIFIC DOCUMENTS # # ------------------------------ # # if not select all or by facet, then user chooses specific documents documents = request.POST.getlist('documents') documents = DocumentAsset.objects.filter(pk__in=documents) if documents: for document in documents: if document.asset_type == "PDF": z.writestr("{document}.pdf".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "WORD DOC": z.writestr("{document}.docx".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "TEXT": z.writestr("{document}.txt".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "COMMA SEPARATED": z.writestr("{document}.csv".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info if document.asset_type == "EXCEL": z.writestr("{document}.xls".format(document=document.title), document.document.read()) new_info = document.get_asset_download_info() document_txt += new_info # ------------------------------ # # IF SPECIFIC AUDIO # # ------------------------------ # # if not select all or by facet, then user chooses specific audiofiles audiofiles = request.POST.getlist('audiofiles') audiofiles = AudioAsset.objects.filter(pk__in=audiofiles) if audiofiles: for audiofile in audiofiles: if audiofile.asset_type == "MP3": z.writestr("{audiofile}.mp3".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info if audiofile.asset_type == "WAV": z.writestr("{audiofile}.wav".format(audiofile=audiofile.title), audiofile.audio.read()) new_info = audiofile.get_asset_download_info() audio_txt += new_info # ------------------------------ # # IF SPECIFIC VIDEO # # ------------------------------ # # if not select all or by facet, then user chooses specific video files videos = request.POST.getlist('videofiles') videos = VideoAsset.objects.filter(pk__in=videos) if videos: for video in videos: if video.asset_type == "YOUTUBE": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_youtube_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info if video.asset_type == "VIMEO": # text = video.link.encode('utf-8') # title = video.title.encode('utf-8') # z.writestr("{title}_vimeo_link.txt".format(title=title), text) new_info = video.get_asset_download_info() video_txt += new_info # ------------------------------ # # Create download # # ------------------------------ # #Take the final version of asset_txts and write it. if image_txt: z.writestr("image_details.txt", image_txt) if document_txt: z.writestr("document_details.txt", document_txt) if audio_txt: z.writestr("audio_details.txt", audio_txt) if video_txt: z.writestr("video_details.txt", video_txt) z.close() fp.seek(0) response = HttpResponse(fp, content_type='application/zip') fp.close() return response
from multiprocessing import Pool class Collection: """ Helper to provide a natural Functional Programming approach in Python. """ def __init__(self, val): self.val = val def apply(self, f): return Collection(f(self.val)) def filter(self, f): return Collection(filter(f, self.val)) def reduce(self, f, initial): return Collection(reduce(f, self.val, initial)) def map(self, f): return Collection(map(f, self.val)) def mapGenerator(self, f): return Collection((f(item) for item in self.val)) def flatMap(self, f): return Collection([item for items in map(f, self.val) for item in items]) def parallelMap(self, f, maxConcurrency=4): pool = Pool(processes=maxConcurrency) return Collection(pool.map(f, self.val)) def forEach(self, f): for item in self.val: f(item) # To allow chaining return self def comment(self, comment): # Just allow chaining return self def getValue(self): return self.val def __str__(self): return "Collection(%s)" % str(self.val)
import math from lib.preset import Preset from lib.color_fade import Rainbow from lib.basic_tickers import fade, offset, speed from lib.parameters import FloatParameter class RadialRainbow(Preset): """ demonstrates scene attributes by assigning a color rainbow to fixtures based on their radial position in the scene """ def setup(self): self.add_parameter(FloatParameter('speed', 0.2)) self.add_parameter(FloatParameter('width', 1.0)) self._create_tickers() def parameter_changed(self, parameter): if str(parameter) == 'width': self._create_tickers() def _create_tickers(self): self.clear_tickers() fixtures = self.scene().fixtures() midpoint_tuples = [(f.strand, f.address, f.midpoint()) for f in fixtures] extents = self.scene().extents() center = self.scene().center_point() for strand, address, midpoint in midpoint_tuples: dx, dy = (midpoint[0] - center[0], midpoint[1] - center[1]) angle = (math.pi + math.atan2(dy, dx)) / (2.0 * math.pi) * self.parameter('width').get() self.add_ticker(speed(offset(fade((strand, address), Rainbow), angle), self.parameter('speed')))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A demonstration of simulating open system dynamics by sampling over randomized pure state trajectories. This simulates the dynamics of an edge-driven XXZ chain, which has an analytic solution for lam = 1.0, eps = 2.0. See: T. Prosen, Phys. Rev. Lett. 107, 137201 (2011) For comparison, with short spin chains this script also evolves the full density matrix corresponding to the sample trajectories using Euler integration of the Lindblad master equation. The starting state is a random state composed of N_samp random pure states. @author: Ashley Milsted """ import math as ma import scipy as sp import evoMPS.tdvp_gen_diss as tdvp import time import copy import multiprocessing as mp """ First, we set up some global variables to be used as parameters. """ N = 6 #The length of the finite spin chain. bond_dim = 64 #The maximum bond dimension Nmax_fullrho = 8 #Maximum chain length for computing the full density matrix num_procs = mp.cpu_count() #Number of parallel processes to use live_plot_mode = True #Attempt to show a live plot of expectation values during evolution #If False, save results to a file instead! plot_saved_data = False #Do not simulate. Instead load and plot saved data. plot_res = -1 #Which result to plot. -1 means the last result. #Set number of sample trajectories based on available cores if live plotting if live_plot_mode: if N <= Nmax_fullrho: N_samp = num_procs - 1 #the density matrix computation requires a process too else: N_samp = num_procs else: N_samp = 20 #number of samples to compute when saving data to a file #System parameters lam = 1.0 eps = 2.0 dt = 0.001 #Time-step size for Euler integration N_steps = 1000 #Number of steps to compute res_every = 20 #Number of steps to wait between computation of results (expectation values) random_seed = 1 #Seed used to generate the pseudo-random starting state. #The same random number generator is used to simulate the Wiener processes needed to #integrate the stochastic differential equation. """ Next, we define the operators used, including the Hamiltonian and the Lindblad operators. """ Sx = sp.array([[0., 1.], [1., 0.]]) Sy = 1.j * sp.array([[0., -1.], [1., 0.]]) Sz = sp.array([[1., 0.], [0., -1.]]) Sp = 0.5 * (Sx + 1.j * Sy) Sm = 0.5 * (Sx - 1.j * Sy) def get_ham(N, lam): h = (2. * sp.kron(Sp, Sm) + 2. * sp.kron(Sm, Sp) + lam * sp.kron(Sz, Sz)).reshape(2, 2, 2, 2) return [None] + [h] * (N - 1) def get_linds(N, eps): #Lindblad operators must have same range as Hamiltonian terms. In this case they are nearest-neighbour. Sp1 = (sp.kron(Sp, sp.eye(2))).reshape(2, 2, 2, 2) Sm2 = (sp.kron(sp.eye(2), Sm)).reshape(2, 2, 2, 2) L1 = (1, sp.sqrt(eps) * Sp1) L2 = (N-1, sp.sqrt(eps) * Sm2) return [L1, L2] """ The bond dimension for each site is given as a vector, length N + 1. Here we set the bond dimension = bond_dim for all sites. evoMPS will adjust it to the maximum useful value near the ends of the chain. """ D = [bond_dim] * (N + 1) """ The site Hilbert space dimension is also given as a vector, length N + 1. Here, we set all sites to dimension = 2. """ q = [2] * (N + 1) def get_full_state(s): psi = sp.zeros(tuple([2]*N), dtype=sp.complex128) for ind in sp.ndindex(psi.shape): A = 1.0 for n in xrange(N, 0, -1): A = s.A[n][ind[n-1]].dot(A) psi[ind] = A[0,0] psi = psi.ravel() return psi def get_full_op(op): fop = sp.zeros((2**N, 2**N), dtype=sp.complex128) for n in xrange(1, min(len(op), N + 1)): if op[n] is None: continue n_sites = len(op[n].shape) / 2 opn = op[n].reshape(2**n_sites, 2**n_sites) fop_n = sp.kron(sp.eye(2**(n - 1)), sp.kron(opn, sp.eye(2**(N - n - n_sites + 1)))) assert fop.shape == fop_n.shape fop += fop_n return fop def go(load_from=None, N_steps=100, resQ=None, pid=None, stateQ=None): sp.random.seed(random_seed + pid) s_start = tdvp.EvoMPS_TDVP_Generic_Dissipative(N, D, q, get_ham(N, lam), get_linds(N, eps)) print "Starting MPS sample", pid if load_from is not None: s_start.load_state(load_from) else: s_start.randomize() s = s_start #Send the state to the density matrix simulator if N <= Nmax_fullrho and stateQ is not None: psi = get_full_state(s) stateQ.put([pid, psi]) eta = 1 Hexp = 0 for i in xrange(N_steps + 1): s.update() Szs = [s.expect_1s(Sz, n).real for n in xrange(1, s.N + 1)] pHexp = Hexp Hexp = s.H_expect if i % res_every == 0: if resQ is not None: resQ.put([pid, i, Szs]) else: print pid, i / res_every, Hexp.real, Hexp.real - pHexp.real, Szs s.take_step_dissipative(dt) def fullrho(qu, squ): print "#Starting full density matrix simulation!" #Build state from pure states received from the MPS processes rho = sp.zeros((2**N, 2**N), dtype=sp.complex128) psis = [None] * N_samp for n in range(N_samp): pnum, psi = squ.get() psis[pnum] = psi rho += sp.outer(psi, psi.conj()) squ.task_done() rho /= sp.trace(rho) Hfull = get_full_op(get_ham(N, lam)) linds = get_linds(N, eps) linds = [(n, L.reshape(tuple([sp.prod(L.shape[:sp.ndim(L)/2])]*2))) for (n, L) in linds] linds_full = [sp.kron(sp.eye(2**(n-1)), sp.kron(L, sp.eye(2**(N - n + 1) / L.shape[0]))) for (n, L) in linds] for L in linds_full: assert L.shape == Hfull.shape Qfull = -1.j * Hfull - 0.5 * sp.sum([L.conj().T.dot(L) for L in linds_full], axis=0) szs = [None] + [sp.kron(sp.kron(sp.eye(2**(n - 1)), Sz), sp.eye(2**(N - n))) for n in range(1, N + 1)] for i in range(N_steps + 1): rho /= sp.trace(rho) esz = [] for n in xrange(1, N + 1): esz.append(sp.trace(szs[n].dot(rho)).real) if i % res_every == 0: if qu is None: print esz else: qu.put([-1, i, esz]) qu.put([-2, i, [sp.NaN] * N]) #this slot is reserved for a second "exact" result #Do Euler steps, approximately integrating the Lindblad master equation rho += dt * (Qfull.dot(rho) + rho.dot(Qfull.conj().T) + sum([L.dot(rho).dot(L.conj().T) for L in linds_full])) def plotter(q): import matplotlib matplotlib.use("wxagg") import matplotlib.pyplot as plt fig = plt.figure() lns = [plt.plot([0]*N, ':')[0] for n in range(N_samp)] av = plt.plot([0]*N, 'k-', linewidth=2.0)[0] av_err1 = plt.plot([0]*N, 'k-', linewidth=1.0)[0] av_err2 = plt.plot([0]*N, 'k-', linewidth=1.0)[0] exa = plt.plot([0]*N, 'r-', linewidth=2.0)[0] #exa_s = plt.plot([0]*N, 'm--', linewidth=2.0)[0] plt.legend([exa, av], ["Density matrix", "Sample average"]) plt.xlabel(r"$n$") plt.ylabel(r"$\langle \sigma^z_n \rangle$") plt.ylim((-1, 1)) plt.xlim((0, N - 1)) plt.ion() plt.show() i_buf = 0 data_buf = [[None] * (N_samp + 2)] if N <= Nmax_fullrho: effbuflen = (N_samp + 2) else: effbuflen = N_samp while True: data = q.get() if data is None: break num = data[0] i = data[1] ys = data[2] i_off = (i - i_buf) / res_every if i_off >= len(data_buf): for j in range(len(data_buf), i_off + 1): data_buf.append([None] * (N_samp + 2)) data_buf[i_off][num] = ys if not None in data_buf[0][:effbuflen]: print "Plotting results for step", i_buf, "buffer length", len(data_buf) for j in range(N_samp): lns[j].set_ydata(data_buf[0][j]) av_ys = sp.zeros_like(ys) for da in data_buf[0][:-2]: av_ys += da av_ys /= N_samp av.set_ydata(av_ys) #Compute stdev and use it to display error av_ys_var = 1./(N_samp - 1) / N_samp * sp.sum([(da - av_ys)**2 for da in data_buf[0][:-2]], axis=0) av_ys_e1 = av_ys + sp.sqrt(av_ys_var) av_ys_e2 = av_ys - sp.sqrt(av_ys_var) av_err1.set_ydata(av_ys_e1) av_err2.set_ydata(av_ys_e2) exa.set_ydata(data_buf[0][-1]) #exa_s.set_ydata(data_buf[0][-2]) fig.canvas.draw() data_buf.pop(0) i_buf += res_every plt.pause(0.01) q.task_done() plt.ioff() plt.show() def get_filename(): return 'sample_data_eps%g_lam%g_N%u_ns%u_ts%u_dt%g_resev%u_maxD%u.bin' % (eps, lam, N, N_samp, N_steps, dt, res_every, bond_dim) def writer(q): df = sp.memmap(get_filename(), dtype=sp.float64, mode='w+', shape=(N_samp + 2, N_steps / res_every + 1, N)) while True: data = q.get() if data is None: break num = data[0] i = data[1] ys = data[2] df[num, i / res_every, :] = ys if i == N_steps: df.flush() print "Sample", num, "finished. Data saved." del df def plot_saved(): import matplotlib import matplotlib.pyplot as plt data = sp.memmap(get_filename(), dtype=sp.float64, mode='r', shape=(N_samp + 2, N_steps / res_every + 1, N)) exa = data[-1] data = data[:-2] fins = sp.array([d[plot_res] for d in data if not sp.all(d[plot_res] == 0)]) nsam = len(fins) print "Samples:", nsam av = fins.sum(axis=0) / nsam av_var = 1./(nsam - 1) / nsam * sp.sum((fins/nsam - av)**2, axis=0) av_e1 = av + sp.sqrt(av_var) av_e2 = av - sp.sqrt(av_var) plt.figure() pav = plt.plot(av, 'k-')[0] plt.plot(av_e1, 'k--') plt.plot(av_e2, 'k--') if not sp.all(exa[-1] == 0): pexa = plt.plot(exa[-1], 'r-')[0] plt.legend([pexa, pav], ["Density matrix", "Sample average"]) plt.ylim((-1, 1)) plt.xlabel(r"$n$") plt.ylabel(r"$\langle \sigma^z_n \rangle$") plt.show() def f(args): pid, resQ, stateQ = args go(load_from=None, N_steps=N_steps, resQ=resQ, pid=pid, stateQ=stateQ) if __name__ == "__main__": if plot_saved_data: plot_saved() else: mpm = mp.Manager() qu = mpm.Queue() state_q = mpm.Queue() if live_plot_mode: res_handler = plotter else: res_handler = writer resp = mp.Process(target=res_handler, args=(qu,)) resp.start() p = mp.Pool(num_procs) if N <= Nmax_fullrho: exa = p.apply_async(fullrho, args=(qu, state_q)) p.map(f, zip(range(N_samp), [qu] * N_samp, [state_q] * N_samp)) if N <= Nmax_fullrho: exa.get() qu.put(None) resp.join()
import numpy as np from seizures.features.FeatureExtractBase import FeatureExtractBase from seizures.data.Instance import Instance import numpy as np from numpy import unwrap, angle from scipy.signal import hilbert from matplotlib import pyplot as plt class PLVFeatures(FeatureExtractBase): """ Class to extracts Phase Locking Value (PLV) between pairs of channels. @author V&J """ def __init__(self): pass def extract(self, instance): data = instance.eeg_data n_ch, time = data.shape n_pairs = n_ch*(n_ch-1)/2 # initiate matrices phases = np.zeros((n_ch,time)) delta_phase_pairwise = np.zeros((n_pairs,time)) plv = np.zeros((n_pairs,)) # extract phases for each channel for c in range(n_ch): phases[c,:] = unwrap(angle(hilbert(data[c,:]))) # compute phase differences k = 0 for i in range(n_ch): for j in range(i+1,n_ch): delta_phase_pairwise[k,:] = phases[i,:]-phases[j,:] k+=1 # compute PLV for k in range(n_pairs): plv[k] = np.abs(np.sum(np.exp(1j*delta_phase_pairwise[k,:]))/time) self.assert_features(plv) # features = a 1d ndarray return plv def __str__(self): return "PLV"
from week_zero.swapper import swapper from week_zero.matrix import matrix1 from week_zero.design import design from week_zero.funcy import monkey from week_one.week_one import fibonacci from week_one.week_one import for_loopy, while_loopy, recursive_loopy from main import my_info from week_two.factor import normal_factor from week_two.Palindrome import runner1 from week_two.factorial import factorial_function from week_three.gcd import gcdtest main_menu = [ ["About Me", my_info], ] # Submenu list of [Prompt, Action] # Works similarly to main_menu sub_menu = [ ["Swap", swapper], ["Factorial", factorial_function], ["Factor", normal_factor], ["Palindrome", runner1], ["Fibonacci", fibonacci], ["GCF", gcdtest] ] week_two_sub_menu = [ ["InfoDB For Loop", for_loopy], ["InfoDB While Loop", while_loopy], ["InfoDB Recursive Loop", recursive_loopy], ] week_three_sub_menu = [ ["Matrix", matrix1], ["Design", design], ["Animation", monkey], ] # Menu banner is typically defined by menu owner border = "=" * 25 banner = f"\n{border}\nPlease Select An Option\n{border}" def menu(): print("") title = "\033[96m Adi K Main Menu \n \033[0m" + banner menu_list = main_menu.copy() menu_list.append(["Number Functions", submenu]) menu_list.append(["Looping Fun", week2_submenu]) menu_list.append(["Function Fun", week3_submenu]) buildMenu(title, menu_list) # def submenu # using sub menu list above: # sub_menu works similarly to menu() def submenu(): title = "Function Submenu" + banner buildMenu(title, sub_menu) def week2_submenu(): title = "Function Submenu" + banner buildMenu(title, week_two_sub_menu) def week3_submenu(): title = "Function Submenu" + banner buildMenu(title, week_three_sub_menu) def buildMenu(banner, options): # header for menu print(banner) # build a dictionary from options prompts = {0: ["Exit", None]} for op in options: index = len(prompts) prompts[index] = op # print menu or dictionary for key, value in prompts.items(): print(key, '->', value[0]) # get user choice choice = input("Type your choice> ") print(" ") # validate choice and run # execute selection # convert to number try: choice = int(choice) if choice == 0: # stop return try: # try as function action = prompts.get(choice)[1] action() except TypeError: try: # try as playground style exec(open(action).read()) except FileNotFoundError: print(f"File not found!: {action}") # end function try # end prompts try except ValueError: # not a number error print(f"Not a number: {choice}") except UnboundLocalError: # traps all other errors print(f"Invalid choice: {choice}") # end validation try buildMenu(banner, options) # recursion, start menu over again if __name__ == "__main__": menu()
# Alex Hancock, UCSC CGL # Luigi Monitor import json import boto from boto.s3.key import Key from sqlalchemy import MetaData, Table, Column, String, Float, create_engine unique_job = 'spawnFlop_SRR1988343_demo__consonance_jobs__0992701f6f' sample_id = 'DTB-116_Baseline_1' topfolder = 'UCSF_SU2C_WCDT_DTB-116_DTB-116_Baseline' def getTouchfile(touchfile_name): s3 = boto.connect_s3() bucket_name = 'cgl-core-analysis-run-touch-files' bucket = s3.get_bucket(bucket_name) k = Key(bucket) k.key = touchfile_name contents = k.get_contents_as_string() return contents # # Database initialization, creation if table doesn't exist # db = create_engine('postgresql:///monitor', echo=False) conn = db.connect() metadata = MetaData(db) luigi = Table('luigi', metadata, Column("luigi_job", String(100), primary_key=True), Column("status", String(20)), Column("submitter_specimen_id", String(100)), Column("specimen_uuid", String(100)), Column("workflow_name", String(100)), Column("center_name", String(100)), Column("submitter_donor_id", String(100)), Column("consonance_job_uuid", String(100)), Column("submitter_donor_primary_site", String(100)), Column("project", String(100)), Column("analysis_type", String(100)), Column("program", String(100)), Column("donor_uuid", String(100)), Column("submitter_sample_id", String(100)), Column("submitter_experimental_design", String(100)), Column("submitter_specimen_type", String(100)), Column("workflow_version", String(100)), Column("sample_uuid", String(100)), Column("start_time", Float), Column("last_updated", Float) ) # # S3 Scraping below # filepath = 'consonance-jobs/RNASeq_3_1_x_Coordinator/3_1_3/' + topfolder touchfile_name = filepath + '/' + \ sample_id + \ '_meta_data.json' stringContents = getTouchfile(touchfile_name) jsonMetadata = json.loads(stringContents) ins_query = luigi.insert().values(luigi_job=unique_job, status="DONE", submitter_specimen_id=jsonMetadata[ 'submitter_specimen_id'], specimen_uuid=jsonMetadata['specimen_uuid'], workflow_name=jsonMetadata['workflow_name'], center_name=jsonMetadata['center_name'], submitter_donor_id=jsonMetadata[ 'submitter_donor_id'], consonance_job_uuid=jsonMetadata[ 'consonance_job_uuid'], submitter_donor_primary_site=jsonMetadata[ 'submitter_donor_primary_site'], project=jsonMetadata['project'], analysis_type=jsonMetadata['analysis_type'], program=jsonMetadata['program'], donor_uuid=jsonMetadata['donor_uuid'], submitter_sample_id=jsonMetadata[ 'submitter_sample_id'], submitter_experimental_design=jsonMetadata[ 'submitter_experimental_design'], submitter_specimen_type=jsonMetadata[ 'submitter_specimen_type'], workflow_version=jsonMetadata[ 'workflow_version'], sample_uuid=jsonMetadata['sample_uuid'], start_time=1487716334.29525, last_updated=1487716634.38815) exec_result = conn.execute(ins_query) print exec_result
import sys import SelectiveRepeat import StopAndWait import GoBackN def print_usage(): print("""\nUsage: main.py option config-file-name\n option:\n-st:\tstop and wait\n-sr:\tselective repeat\n-go:\tgo back N\n""") if len(sys.argv) < 3: print_usage() elif len(sys.argv) == 3: method = sys.argv[1] file_name = sys.argv[2] if method == '-sr': SelectiveRepeat.start(file_name) elif method == '-st': StopAndWait.start(file_name) elif method == '-go': GoBackN.start(file_name) else: print_usage()
#!/usr/bin/env python # -*- coding: utf-8 -*- import warnings import os import io import re try: from setuptools import setup from setuptools.command.install import install setup except ImportError: from distutils.core import setup setup # Get the long description from the README def readme(): with open('README.rst') as f: return f.read() # Read, version funcs taken from: # https://github.com/ellisonbg/altair/blob/master/setup.py def read(path, encoding='utf-8'): path = os.path.join(os.path.dirname(__file__), path) with io.open(path, encoding=encoding) as fp: return fp.read() def version(path): """ Obtain the packge version from a python file e.g. pkg/__init__.py See <https://packaging.python.org/en/latest/single_source_version.html>. """ version_file = read(path) version_match = re.search(r"""^__version__ = ['"]([^'"]*)['"]""", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") VERSION = version('trappist/__init__.py') # Setup! setup(name = 'trappist', version = VERSION, description = 'Constraining the stellar evolution of TRAPPIST-1 using MCMC', long_description = readme(), classifiers = [ 'Development Status :: 3 - Alpha', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering :: Astronomy', ], url = 'https://github.com/dflemin3/trappist', author = 'David P. Fleming', author_email = '[email protected]', license = 'MIT', packages = ['trappist'], install_requires = [ 'numpy', 'matplotlib >= 3.0.0', 'scipy', 'emcee == 3.0rc2', 'corner', 'vplot' ], include_package_data = True, zip_safe = False)
from openpnm.algorithms import TransientReactiveTransport, FickianDiffusion from openpnm.utils import logging, Docorator logger = logging.getLogger(__name__) docstr = Docorator() class TransientFickianDiffusion(TransientReactiveTransport, FickianDiffusion): r""" A class to simulate transient diffusion with reactions """ def __init__(self, settings={}, **kwargs): super().__init__(**kwargs) self.settings.update(settings)
from typing import Optional, Union from datetime import date, time from .reserve import Reserve, ReserveSetType from .user import User class Supboard(Reserve): """Supboard reservation data class Attributes: is_complete: A boolean attribute indicates that reservation is complete or not. user: A instance of User class object. start: Reservation start datetime. start_date: Reservation start date only. start_time: Reservation start time only. end: Reservation end datetime. end_date: Reservation end date only. end_time: Reservation end time only. set_type: A string value indicates type of set ("set", "hour"). set_count: A integer value of set's count. count: An integer value of a supboard equipment rent need id: An integer wakeboard reservation identifier canceled: Optional. A boolean meaning that a reserevation is canceled cancel_telegram_id: Optional. An integer telegram identifier of user canceled a reserevation """ def __init__(self, user: Optional[User] = None, start_date: Optional[date] = None, start_time: Optional[time] = None, set_type_id: str = "set", set_count: int = 1, count: int = 1, id: Union[int, None] = None, canceled: Union[bool, None] = False, cancel_telegram_id: Union[int, None] = None): """Wakeboard reservation data class Args: user: Optional. A instance of User class object. start_date: Optional. Wakeboard reservation start date only. start_time: Optional. Wakeboard reservation start time only. set_type: A reservation set type instances. set_count: A integer value of set's count. count: An integer value of a supboard equipment rent need id: An integer wakeboard reservation identifier canceled: Optional. A boolean meaning that a reserevation is canceled cancel_telegram_id: Optional. An integer telegram identifier of user canceled a reserevation """ super().__init__(user=user, start_date=start_date, start_time=start_time, set_type_id=set_type_id, set_count=set_count, count=count, id=id, canceled=canceled, cancel_telegram_id=cancel_telegram_id) if set_type_id == "hour": self.set_type = ReserveSetType(set_type_id, 60) else: self.set_type = ReserveSetType(set_type_id, 30) def __copy__(self): return Supboard(self.user, self.start_date, self.start_time, self.set_type.set_id, self.set_count, self.count, self.id) def __deepcopy__(self): return Supboard(self.user.__deepcopy__(), self.start_date, self.start_time, self.set_type.set_id, self.set_count, self.count, self.id) def __eq__(self, other) -> bool: if (self.start_date == other.start_date and self.set_count == other.set_count and self.minutes == other.minutes and self.count == other.count): return True else: return False if __name__ == "__main__": test = Supboard()
name = "declutter"
#!/usr/bin/python3 def only_diff_elements(set_1, set_2): return (set_1 ^ set_2)
from emf.fields import enviro as env for i in range(1,4): fn1 = 'enviro-files/Envsmpl' + str(i) + '.o01' fn2 = 'enviro-files/Envsmpl' + str(i) + '.o02' env.compare_o01_o02(fn1, fn2, path='o0-comparison')
import requests import logging from shotgun_api3 import Shotgun from sgsession import Session import json log = logging.getLogger(__name__) SLACK_CHANNEL = SLACK_CHANNEL SLACK_TOKEN = SLACK_TOKEN def callback(event): sg = Session() print event['entity'] if event['project']['id'] != 74: return "checking project id is not 74 " + str(event['project']['id']) elif event['meta']['new_value'] != 'rev': return "checking new value is not rev" + str(event['meta']['new_value']) elif event['event_type'] != "Shotgun_Task_Change": return "checking: event['event_type']" + str(event['event_type']) else: seq_link = "" task_id = event['entity']['id'] task = sg.find_one('Task', [('id', 'is', task_id)], ['entity']) shot_id = task['entity']['id'] if 'sg_sequence' in task['entity']: seq_id = task['entity']['sg_sequence']['id'] print seq_id seq_type = task['entity']['sg_sequence']['type'] print seq_type seq_name =task['entity']['sg_sequence']['name'] print seq_name seq_link = '\n<https://markmedia.shotgunstudio.com/detail/Shot/' + str(shot_id) + '|Shot Link> \n<https://markmedia.shotgunstudio.com/detail/Shot/' + str(shot_id) +'#' + str(seq_type) + '_' + str(seq_id) + '_' + str(seq_name) + '|Sequence Link>' print "checking else statement" print event['project']['id'], event['meta']['new_value'], event['event_type'] print "\n" requests.get( 'https://slack.com/api/chat.postMessage', params={ 'channel': SLACK_CHANNEL, 'fallback': 'This is ready for review: '+ str(task['entity']['name']) + '>' + str(event['entity']['name']), 'params': None, 'attachments': json.dumps([ {'fallback': 'This is ready for review: ' + str(task['entity']['name']) + ' > ' + str(event['entity']['name']), 'title': 'This is ready for review: ' + str(task['entity']['name']) + ' > ' + str(event['entity']['name']), 'text': '<https://markmedia.shotgunstudio.com/detail/Task/'+str(event['entity']['id']) + '/|'+ str(task['entity']['name']) + ' ' + str(event['entity']['name']) + ">\nProject: " + str(event['project']['name']) + seq_link } ]), 'token': SLACK_TOKEN, 'username': 'elainew', 'as_user': True } ) __sgevents__ = { 'type': 'callback', 'callback': '%s:callback' % __file__.rstrip('c'), } ''' what change - is it a task? (event object ? event_type > meta (attr name, new value = rev)) - sg_status_list on the task? - is it interesting for stubbs? (is it rev? ) - if interesting, ping stubbs ''' '''build/scripts/sgevents-dispatch -p plugins/examples/slack.py outputcopy.json on rf40.mm -> python build/scripts/sgevents-daemon -p plugins/examples/slack.py '''
def response_decider(): """ This will execute commands or reply base on user input Returns: Nothing """ # Begin Application print(INTRO) # User Input Analyzer while True: # Get user input user_input = input("User: ") if user_input.lower() == "": print("Chakbot: Enter something ( - _ -\")") elif user_input.lower() == "help" or user_input.lower() == "menu": print(HELP_MENU) elif user_input[:4].lower() == "help" and user_input[5:] in HELP_EX.keys(): print("{\r\n" + HELP_EX[user_input[5:]] + "\r\n}\r\n") elif user_input == "//exit": # Always check if user wants to terminate sys.exit() elif user_input[:9].lower() == "calculate": # Determine if formula follows after calculate, if not then prompt if len(user_input) <= 9: # Chakbot will request formula print('Chakbot: ' + str(calculate(input("Chakbot: Sure, what is your formula?\r\nFormula: ")))) else: # Formula following calculate print('Chakbot: ' + str(calculate(user_input[9:]))) elif user_input[:7].lower() == "convert": if len(user_input) <= 7: # Chakbot will request conversion print('Chakbot: ' + str(convert(input("Chakbot: Sure, what do you want to convert?\r\nConversion: ")))) else: # Conversion following convert print('Chakbot: ' + str(convert(user_input[7:]))) elif user_input[:7].lower() == "encrypt": if len(user_input) <= 7: # Chakbot will request message to encrypt print('Chakbot: ' + str(encrypt(input("Chakbot: Sure, what's the message?\r\nMessage: ")))) else: # Conversion following encrypt print('Chakbot: ' + str(encrypt(user_input[8:]))) elif user_input[:7].lower() == "decrypt": if len(user_input) <= 7: # Chakbot will request message and key to decrypt message = input("Chakbot: Sure, what's the message?\r\nMessage: ") print('Chakbot: ' + str(decrypt(message, input("Chakbot: What's the key?\r\nKey: ")))) else: # Conversion following decrypt print('Chakbot: ' + str(decrypt(user_input[8:user_input.rfind(' ')], user_input[user_input.rfind(' ') + 1:]))) elif user_input[:5].lower() == "morse": if len(user_input) <= 5: # Chakbot will request message to translate to morse print('Chakbot: ' + str(morse(input("Chakbot: Sure, what's the message?\r\nMessage: ")))) else: # Conversion following decrypt print('Chakbot: ' + str(morse(user_input[6:]))) elif user_input[:5].lower() == "teach": if len(user_input) <= 5: # Chakbot will request message to translate to morse categ = input("Chakbot: Sure, what's the category?\r\nCategory: ") request = input("Chakbot: Okay, what's the request?\r\nMessage: ") response = input("Chakbot: How should I response to it?\r\nMessage: ") print('Chakbot: ' + str(teach(categ, request, response))) else: # Conversion following decrypt categ = user_input[6:][:user_input[6:].find(' ')] sec_1 = 6 + len(categ) + 2 request = user_input[sec_1: sec_1 + user_input[sec_1:].find("\"")] sec_2 = sec_1 + len(request) + 3 response = user_input[sec_2:len(user_input) - 1] print('Chakbot: ' + str(teach(categ, request, response))) elif user_input[:4].lower() == "game": if len(user_input) <= 4: # Chakbot will request message to translate to morse print(GAMES_MENU) print("Chakbot: " + str(game_launcher(input("Chakbot: Which game would you like to play?\r\nInput: ")))) else: # Conversion following decrypt print('Chakbot: ' + str(game_launcher(user_input[5:]))) else: # Get reply from brain reply = get_message(user_input) # For if user wants to stop talking if reply == 0: option = input("Chakbot: Do you want to leave me? (y/n) <(T ^ T v)\r\nOption: ") if option == 'y': print(str("Chakbot: " + random.choice(CATEGORIES["r;salute"]))) sys.exit() elif option == 'n': print("Chakbot: Yay! We can continue talking ^( ^ o ^ )>") else: print("Chakbot: That's not a valid option, so you are staying with me.") elif reply == 1: # For asking dates print("Chakbot: " + random.choice(CATEGORIES["r;askingdate"]) + " " + str(datetime.datetime.now())) elif reply == 2: # Placeholder for corresponding trivia pass else: # For all responses print("Chakbot: " + reply) if __name__ == "__main__": import sys import datetime from text_output import * from learning import * from cryptography import * from extra_tools import * from games import * # First Initialization read_brain() response_decider()
import dgl import torch import torch.nn as nn from data.molecules import MoleculeDataset from data.QM9 import QM9Dataset from data.SBMs import SBMsDataset from data.TSP import TSPDataset from data.superpixels import SuperPixDataset from data.cora import CoraDataset from models.networks import * from utils.utils import * class TransInput(nn.Module): def __init__(self, trans_fn): super().__init__() self.trans = trans_fn def forward(self, input): if self.trans: input['V'] = self.trans(input['V']) return input class TransOutput(nn.Module): def __init__(self, args): super().__init__() self.args = args if args.task == 'node_level': channel_sequence = (args.node_dim, ) * args.nb_mlp_layer + (args.nb_classes, ) self.trans = MLP(channel_sequence) elif args.task == 'link_level': channel_sequence = (args.node_dim * 2, ) * args.nb_mlp_layer + (args.nb_classes, ) self.trans = MLP(channel_sequence) elif args.task == 'graph_level': channel_sequence = (args.node_dim, ) * args.nb_mlp_layer + (args.nb_classes, ) self.trans = MLP(channel_sequence) else: raise Exception('Unknown task!') def forward(self, input): G, V = input['G'], input['V'] if self.args.task == 'node_level': output = self.trans(V) elif self.args.task == 'link_level': def _edge_feat(edges): e = torch.cat([edges.src['V'], edges.dst['V']], dim=1) return {'e': e} G.ndata['V'] = V G.apply_edges(_edge_feat) output = self.trans(G.edata['e']) elif self.args.task == 'graph_level': G.ndata['V'] = V readout = dgl.mean_nodes(G, 'V') output = self.trans(readout) else: raise Exception('Unknown task!') return output def get_trans_input(args): if args.data in ['ZINC']: trans_input = nn.Embedding(args.in_dim_V, args.node_dim) elif args.data in ['TSP']: trans_input = nn.Linear(args.in_dim_V, args.node_dim) elif args.data in ['SBM_CLUSTER', 'SBM_PATTERN']: trans_input = nn.Embedding(args.in_dim_V, args.node_dim) elif args.data in ['CIFAR10', 'MNIST', 'Cora']: trans_input = nn.Linear(args.in_dim_V, args.node_dim) elif args.data in ['QM9']: trans_input = nn.Linear(args.in_dim_V, args.node_dim) else: raise Exception('Unknown dataset!') return trans_input def get_loss_fn(args): if args.data in ['ZINC', 'QM9']: loss_fn = MoleculesCriterion() elif args.data in ['TSP']: loss_fn = TSPCriterion() elif args.data in ['SBM_CLUSTER', 'SBM_PATTERN']: loss_fn = SBMsCriterion(args.nb_classes) elif args.data in ['CIFAR10', 'MNIST']: loss_fn = SuperPixCriterion() elif args.data in ['Cora']: loss_fn = CiteCriterion() else: raise Exception('Unknown dataset!') return loss_fn def load_data(args): if args.data in ['ZINC']: return MoleculeDataset(args.data) elif args.data in ['QM9']: return QM9Dataset(args.data, args.extra) elif args.data in ['TSP']: return TSPDataset(args.data) elif args.data in ['MNIST', 'CIFAR10']: return SuperPixDataset(args.data) elif args.data in ['SBM_CLUSTER', 'SBM_PATTERN']: return SBMsDataset(args.data) elif args.data in ['Cora']: return CoraDataset(args.data) else: raise Exception('Unknown dataset!') def load_metric(args): if args.data in ['ZINC', 'QM9']: return MAE elif args.data in ['TSP']: return binary_f1_score elif args.data in ['MNIST', 'CIFAR10']: return accuracy_MNIST_CIFAR elif args.data in ['SBM_CLUSTER', 'SBM_PATTERN']: return accuracy_SBM elif args.data in ['Cora']: return CoraAccuracy else: raise Exception('Unknown dataset!')
# based on https://gist.github.com/wshanshan/c825efca4501a491447056849dd207d6 # Ported for ProjectAlf by Alfiananda P.A import os import random import numpy as np from colour import Color from hachoir.metadata import extractMetadata from hachoir.parser import createParser from PIL import Image, ImageDraw, ImageFont from telethon.tl.types import DocumentAttributeFilename from scape import CMD_HELP, bot from scape.events import register bground = "black" @register(outgoing=True, pattern=r"^\.(ascii|asciis)$") async def ascii(event): if not event.reply_to_msg_id: await event.edit("`Reply to Any media..`") return reply_message = await event.get_reply_message() if not reply_message.media: await event.edit("`reply to a image/sticker/video`") return await event.edit("`Downloading Media..`") if reply_message.photo: IMG = await bot.download_media( reply_message, "ascii.png", ) elif ( DocumentAttributeFilename(file_name="AnimatedSticker.tgs") in reply_message.media.document.attributes ): await bot.download_media( reply_message, "ASCII.tgs", ) os.system("lottie_convert.py ASCII.tgs ascii.png") IMG = "ascii.png" elif reply_message.video: video = await bot.download_media( reply_message, "ascii.mp4", ) extractMetadata(createParser(video)) os.system("ffmpeg -i ascii.mp4 -vframes 1 -an -s 480x360 -ss 1 ascii.png") IMG = "ascii.png" else: IMG = await bot.download_media( reply_message, "ascii.png", ) try: await event.edit("`Processing..`") list = await random_color() color1 = list[0] color2 = list[1] bgcolor = bground await asciiart(IMG, color1, color2, bgcolor) cmd = event.pattern_match.group(1) if cmd == "asciis": os.system("cp ascii.png ascii.webp") ascii_file = "ascii.webp" else: ascii_file = "ascii.png" await event.client.send_file( event.chat_id, ascii_file, force_document=False, reply_to=event.reply_to_msg_id, ) await event.delete() os.system("rm *.png *.webp *.mp4 *.tgs") except BaseException as e: os.system("rm *.png *.webp *.mp4 *.png") return await event.edit(str(e)) async def asciiart(IMG, color1, color2, bgcolor): chars = np.asarray(list(" .,:irs?@9B&#")) font = ImageFont.load_default() letter_width = font.getsize("x")[0] letter_height = font.getsize("x")[1] WCF = letter_height / letter_width img = Image.open(IMG) widthByLetter = round(img.size[0] * 0.15 * WCF) heightByLetter = round(img.size[1] * 0.15) S = (widthByLetter, heightByLetter) img = img.resize(S) img = np.sum(np.asarray(img), axis=2) img -= img.min() img = (1.0 - img / img.max()) ** 2.2 * (chars.size - 1) lines = ("\n".join(("".join(r) for r in chars[img.astype(int)]))).split("\n") nbins = len(lines) colorRange = list(Color(color1).range_to(Color(color2), nbins)) newImg_width = letter_width * widthByLetter newImg_height = letter_height * heightByLetter newImg = Image.new("RGBA", (newImg_width, newImg_height), bgcolor) draw = ImageDraw.Draw(newImg) leftpadding = 0 y = 0 lineIdx = 0 for line in lines: color = colorRange[lineIdx] lineIdx += 1 draw.text((leftpadding, y), line, color.hex, font=font) y += letter_height IMG = newImg.save("ascii.png") return IMG # this is from userge async def random_color(): color = [ "#" + "".join([random.choice("0123456789ABCDEF") for k in range(6)]) for i in range(2) ] return color @register(outgoing=True, pattern=r"^\.asciibg(?: |$)(.*)") async def _(event): BG = event.pattern_match.group(1) if BG.isnumeric(): return await event.edit("`Please input a color not a number!`") elif BG: global bground bground = BG else: return await event.edit("`please insert bg of ascii`") await event.edit(f"`Successfully set bg of ascii to` **{BG}**") CMD_HELP.update( { "ascii": "`.ascii`\n" "Usage: create ascii art from media\n\n" "`.asciis`\n" "Usage: same but upload the result as sticker\n\n" "`.asciibg <color>`\n" "Usage: to change background color of this ascii module" } )
import argparse import gym from .agents import HumanPlayer, RandomPlayer, SelfPlayRLAgent parser = argparse.ArgumentParser("Play Connect-Four between two players") parser.add_argument("--p1", choices=['self_play', 'random', 'human'], default='self_play') parser.add_argument("--p2", choices=['self_play', 'random', 'human'], default='human') args = parser.parse_args() env = gym.make('ConnectFour7x7-v0') cross_player = None if args.p1 == 'self_play': cross_player = SelfPlayRLAgent('connect_four_train_data/best_agent.pkl', verbose=True) elif args.p1 == 'human': cross_player = HumanPlayer() elif args.p1 == 'random': cross_player = RandomPlayer() naught_player = None if args.p2 == 'self_play': naught_player = SelfPlayRLAgent('connect_four_train_data/best_agent.pkl', verbose=True) elif args.p2 == 'human': naught_player = HumanPlayer() elif args.p2 == 'random': naught_player = RandomPlayer() cross_player.eval() naught_player.eval() obs = env.reset() while True: action = cross_player.get_action(obs[1], 1) obs, reward, done, _ = env.step((1, action)) env.render() print(reward) if all(done): break action = naught_player.get_action(obs[0], 0) obs, reward, done, _ = env.step((0, action)) env.render() print(reward) if all(done): break if reward[0] == 0.: print("This was draw.") elif reward[0] == -1.: print("Player {} win!".format(cross_player.get_name())) else: print("Player {} win!".format(naught_player.get_name())) print("Switching sides now!") obs = env.reset() while True: action = naught_player.get_action(obs[1], 1) obs, reward, done, _ = env.step((1, action)) env.render() print(reward) if all(done): break action = cross_player.get_action(obs[0], 0) obs, reward, done, _ = env.step((0, action)) env.render() print(reward) if all(done): break if reward[0] == 0.: print("This was draw.") elif reward[0] == -1.: print("Player {} win!".format(naught_player.get_name())) else: print("Player {} win!".format(cross_player.get_name()))
# Delete a video using its video ID import apivideo from apivideo.apis import VideosApi from apivideo.exceptions import ApiAuthException api_key = "your api key here" client = apivideo.AuthenticatedApiClient(api_key) # If you'd rather use the sandbox environment: # client = apivideo.AuthenticatedApiClient(api_key, production=False) client.connect() videos_api = VideosApi(client) title = "Sample AVI Video" # List videos that have the exact, unique title you wanted to delete videos = videos_api.list(title=title) # Get list of videos out of response object or single item depending on whether you filtered videos = videos['data'] # In this case, let's assume we know there's only one video with the title we filtered for. print(videos[0]['video_id']) # Delete the video response = videos_api.delete(videos[0]['video_id']) print(response)
from api import db, bcrypt, UserModel import datetime class Administration(): @staticmethod def create_admin_user(name, login, password): Administration.delete_user(login) user = UserModel(name, login, password, timestamp = datetime.datetime.now()) try: result = db.session.add(user) db.session.commit() except BaseException as e: print(e.orig) @staticmethod def delete_user(login): user_exists = UserModel.query.filter_by(login=login).first() if user_exists is not None: db.session.delete(user_exists) db.session.commit()
def break_words(stuff): """this function will break up words for us. Args: stuff ([string]): [the string to break] """ words = stuff.split(' ') return words def sort_words(words): """this function will sort words Args: words ([string]): [the string to sort] """ return sorted(words) def print_first_word(words): """prints the first word after popping it off. Args: words ([list]): [the list you want to operate on] """ word = words.pop(0) print(word) def print_last_word(words): """prints the last word after popping it off. Args: words ([list]): [the list you want to operate on] """ word = words.pop(-1) print(word) def sort_sentence(sentence): """takes in a full sentence and returns the sorted words. Args: sentence ([string]): [the sentence to sort] """ words = break_words(sentence) return sort_words(words) def print_first_and_last(sentence): """takes in a full sentence and returns the sorted words. Args: sentence ([string]): [the sentence you want to operate on] """ words = break_words(sentence) print_first_word(words) print_last_word(words) def print_first_and_last_sorted(sentence): """sorts the words then print the first and last one. Args: sentence ([string]): [the string you want to operate on] """ words = sort_sentence(sentence) print_first_word(words) print_last_word(words)
# -*- coding: utf-8 -*- # # Copyright (C) 2021 Graz University of Technology. # # invenio-records-lom is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Marshmallow schema for validating and serializing LOM JSONs.""" from flask import current_app from invenio_rdm_records.services.schemas import RDMRecordSchema from marshmallow import fields from werkzeug.local import LocalProxy from .fields import ControlledVocabularyField class LOMRecordSchema(RDMRecordSchema): """Marshmallow schema for validating LOM records.""" # NOTE: To ensure compatibility with invenio systemfields, # use ``NestedAttribute`` instead of ``fields.Nested()``. # overwrite metadata-field: allow any dict metadata = fields.Dict(keys=fields.String(), values=fields.Field()) resource_type = ControlledVocabularyField( vocabulary=LocalProxy(lambda: current_app.config["LOM_RESOURCE_TYPES"]), ) __all__ = ("LOMRecordSchema",)
import re from pathlib import Path from random import random import torch from more_itertools import flatten from torch import nn from torch.utils.data import Dataset from torchvision import transforms from util import dose2locs, loc2dose class ImageDataset(Dataset): def __init__(self, folder, image_size, transparent=False, train=True, norm_f=None, aug_prob=0., greyscale=False, doses=[0.0], label=False): def paths(folder, doses): not_52 = re.compile('/[^(52)]') assays = flatten(dose2locs[dose] for dose in doses) gen = flatten((Path(f'{folder}').glob( f'**/*{assay}*.pt')) for assay in assays) return [p for p in gen if not_52.search(str(p))] self.dose2id = {k: i for i, k in enumerate(doses)} self.f = d8 if train else (lambda x: x) super().__init__() self.folder = folder self.image_size = image_size self.label = label self.norm_f = norm_f or (lambda x: x) self.paths = paths(folder, doses) assert len(self.paths) > 0, f'No images were found in {folder} for training' #convert_image_fn = convert_transparent_to_rgb if not transparent else convert_rgb_to_transparent self.num_channels = 3 if not transparent else 5 self.num_channels = 1 if greyscale else self.num_channels self.transform = transforms.Compose([ transforms.Resize(image_size), transforms.RandomCrop(256), transforms.RandomPerspective(p=aug_prob), transforms.RandomErasing(p=aug_prob), # transforms.ColorJitter(saturation=.1, contrast=.1) # RandomApply(aug_prob, transforms.RandomResizedCrop(image_size, scale=(0.5, 1.0), ratio=(0.98, 1.02)), transforms.CenterCrop(image_size)), ]) def __len__(self): return len(self.paths) def __getitem__(self, index): path = self.paths[index] img = self.norm_f(torch.load(path)) if self.num_channels == 3: img = img[:3] elif self.num_channels == 1: img = img[1:2] if self.label: label = self.dose2id[loc2dose[str(path).split()[-2]]] return self.transform(self.f(img/255)), label return self.transform(self.f(img/255)) class MSNorm: def __init__(self, norm_path): self.mean, self.std = torch.load(norm_path, map_location='cpu') def __call__(self, img): return (img - self.mean) / self.std def invert(self, img): return img * self.std + self.mean def denorm_f(ms, device): mean, std = map(lambda x: torch.tensor(x, device=device)[None, :, None, None], ms) return lambda x: (x*std + mean).cpu() def d8(img): r = random() if r > .75: img = torch.rot90(img, 3, dims=(1,2)) elif r > .5: img = torch.rot90(img, 2, dims=(1,2)) elif r > .25: img = torch.rot90(img, 1, dims=(1,2)) if random()>.5: img = torch.flip(img, dims=(2,)) return img
import requests def call_api(city_name): url = "http://api.openweathermap.org/data/2.5/weather" api_key = "d14f9d7cc8a0c8af189d902e396458ea" params = {"appid" : api_key, "q" : city_name, "units" : "metric"} response = requests.get(url, params = params) response_in_json = response.json() weather_result = format_response(response_in_json) misc_result = misc_info(response_in_json) return weather_result, misc_result def format_response(response_json): try: City_name_0 = response_json['name'] City_Latitude = str(response_json['coord']['lat']) City_Longitude = str(response_json['coord']['lon']) Country = response_json['sys']['country'] City_overview = City_name_0 + ' -(Latitude: ' + City_Latitude + ', Longitude: ' + City_Longitude + ') ' + Country Clouds = str(response_json['weather'][0]['description']).capitalize() Temperature = str(response_json['main']['temp']) + '°C' final_str = '%s\nClouds: %s\nTemperature: %s' % (City_overview,Clouds,Temperature) except: final_str = "Name isn't Valid" return final_str def misc_info(response_json): try: temp_min = str(response_json['main']['temp_min']) + '°C' temp_max = str(response_json['main']['temp_max']) + '°C' pressure = str(response_json['main']['pressure']) + ' hPa' humidity = str(response_json['main']['humidity']) + ' %' wind_speed = str(response_json['wind']['speed']) + ' m/s' time_zone = str(response_json['timezone']) + ' UTC' miscellaneous_str = "Min Temp: %s\nMax Temp: %s\nPressure: %s\nHumidity: %s\nWind Speed: %s\nTimezone: %s" % (temp_min,temp_max,pressure,humidity,wind_speed,time_zone) except: miscellaneous_str = "Name isn't Valid" return miscellaneous_str city = input("Enter City Name: ") call_weather_result, call_misc_result = call_api(city) print(call_weather_result) if call_weather_result != "Name isn't Valid": further_info = input("Display Misc Information?\n[Y/N]\n") if further_info == "N": print("You're all set!") elif further_info == "Y": print(call_misc_result)
# -*- coding: utf-8 -*- """ Code is generated by ucloud-model, DO NOT EDIT IT. """ from ucloud.core.client import Client from ucloud.services.uhub.schemas import apis class UHubClient(Client): def __init__(self, config, transport=None, middleware=None, logger=None): super(UHubClient, self).__init__(config, transport, middleware, logger) def create_repo(self, req=None, **kwargs): """ CreateRepo - 创建镜像仓库 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **RepoName** (str) - (Required) 仓库名称,不可修改 - **Description** (str) - 仓库备注 - **IsShared** (bool) - 镜像仓库是否公开,公开为true、不公开为false;默认为false **Response** - **Message** (str) - 有错误时返回内容 """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.CreateRepoRequestSchema().dumps(d) kwargs["max_retries"] = 0 resp = self.invoke("CreateRepo", d, **kwargs) return apis.CreateRepoResponseSchema().loads(resp) def delete_repo(self, req=None, **kwargs): """ DeleteRepo - 删除镜像仓库 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **RepoName** (str) - (Required) 镜像仓库名称 **Response** """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.DeleteRepoRequestSchema().dumps(d) resp = self.invoke("DeleteRepo", d, **kwargs) return apis.DeleteRepoResponseSchema().loads(resp) def delete_repo_image(self, req=None, **kwargs): """ DeleteRepoImage - 删除镜像 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **ImageName** (str) - (Required) 镜像名称 - **RepoName** (str) - (Required) 镜像仓库名称 - **TagName** (str) - 不指定tag则删除全部tag **Response** """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.DeleteRepoImageRequestSchema().dumps(d) resp = self.invoke("DeleteRepoImage", d, **kwargs) return apis.DeleteRepoImageResponseSchema().loads(resp) def get_image_tag(self, req=None, **kwargs): """ GetImageTag - 获取镜像tag **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **ImageName** (str) - (Required) 镜像名称 - **RepoName** (str) - (Required) 镜像仓库名称 - **Limit** (int) - 每次获取数量,默认为20 - **Offset** (int) - 偏移量,默认0 - **TagName** (str) - 默认不写,如果填写,代表查询该tag,否则查全部tag **Response** - **TagSet** (list) - 见 **TagSet** 模型定义 - **TotalCount** (int) - tag总数 **Response Model** **TagSet** - **TagName** (str) - Tag名称 - **UpdateTime** (str) - 镜像更新时间 """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.GetImageTagRequestSchema().dumps(d) resp = self.invoke("GetImageTag", d, **kwargs) return apis.GetImageTagResponseSchema().loads(resp) def get_repo(self, req=None, **kwargs): """ GetRepo - 获取镜像仓库 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **Limit** (int) - 数量,默认20 - **Offset** (int) - 偏移量,默认0 - **Type** (str) - private私有仓库,public公共仓库,默认public **Response** - **RepoSet** (list) - 见 **RepoSet** 模型定义 - **TotalCount** (int) - 总的仓库数量 **Response Model** **RepoSet** - **CreateTime** (str) - 仓库创建时间 - **Description** (str) - 镜像仓库描述 - **IsOutSide** (str) - 镜像仓库是否外网可以访问,可以为ture,不可以为false - **IsShared** (str) - 镜像仓库类型,false为私有;true为公有 - **RepoName** (str) - 镜像仓库名称 - **UpdateTime** (str) - 仓库更新时间 """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.GetRepoRequestSchema().dumps(d) resp = self.invoke("GetRepo", d, **kwargs) return apis.GetRepoResponseSchema().loads(resp) def get_repo_image(self, req=None, **kwargs): """ GetRepoImage - 获取镜像仓库下的镜像 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **RepoName** (str) - (Required) 镜像仓库名称 - **Limit** (int) - 显示数量,默认为20 - **Offset** (int) - 偏移量,默认0 **Response** - **ImageSet** (list) - 见 **ImageSet** 模型定义 - **TotalCount** (int) - **Response Model** **ImageSet** - **CreateTime** (str) - 创建时间 - **ImageName** (str) - 镜像名称 - **LatestTag** (str) - 最新push的Tag - **PullCount** (int) - 镜像被下载次数 - **RepoName** (str) - 镜像仓库名称 - **UpdateTime** (str) - 修改时间 """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.GetRepoImageRequestSchema().dumps(d) resp = self.invoke("GetRepoImage", d, **kwargs) return apis.GetRepoImageResponseSchema().loads(resp) def update_repo(self, req=None, **kwargs): """ UpdateRepo - 更新镜像仓库 **Request** - **ProjectId** (str) - (Config) 项目ID。不填写为默认项目,子帐号必须填写。 请参考 `GetProjectList接口 <https://docs.ucloud.cn/api/summary/get_project_list.html>`_ - **RepoName** (str) - (Required) 镜像仓库名称,不可修改 - **Description** (str) - 备注 - **IsShared** (str) - false设置为私有;true设置为公有。默认false **Response** - **Message** (str) - 错误的时候返回 """ d = {"ProjectId": self.config.project_id} req and d.update(req) d = apis.UpdateRepoRequestSchema().dumps(d) resp = self.invoke("UpdateRepo", d, **kwargs) return apis.UpdateRepoResponseSchema().loads(resp)
# -*- coding:utf-8 -*- # Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the MIT License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # MIT License for more details. """Defined Configs.""" class PBAPolicyConfig(object): """PBA Policy Config.""" total_epochs = 81 config_count = 16 each_epochs = 3 total_rungs = 200 class PBAConfig(object): """PBA Config.""" policy = PBAPolicyConfig objective_keys = 'accuracy' transformers = dict(Cutout=True, Rotate=True, Translate_X=True, Translate_Y=True, Brightness=True, Color=True, Invert=True, Sharpness=True, Posterize=True, Shear_X=True, Solarize=True, Shear_Y=True, Equalize=True, AutoContrast=True, Contras=True)
from typing import Any, List from ..problem import ProblemPredicate, ProblemType from .base import Field, NonNullMixin class BoolField(NonNullMixin, Field): def validate(self, value: Any) -> List[ProblemPredicate]: problems = super().validate(value) if problems: return problems return self.check_type(value, bool, ProblemType.BOOLEAN)
import datetime, time from io import StringIO import typing import aiohttp from aiohttp.client import ClientSession import discord from discord import message from discord import file from discord.components import SelectOption from discord.enums import DefaultAvatar from discord.ext import commands from discord.ext.commands.core import Command, Group, guild_only from discord.ext.commands.errors import BadArgument, MemberNotFound from discord.http import Route from discord.ui import view from discord.ui.select import Select from convertors import HTTPConvertors from utils import MessageUtils, MathUtils from views.help import HelpView from inspect import Parameter import re import os DISCORD_API_ENDPOINT = "https://discord.com/api/v9" URL_REGEX = re.compile( "(https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|www\.[a-zA-Z0-9][a-zA-Z0-9-]+[a-zA-Z0-9]\.[^\s]{2,}|https?:\/\/(?:www\.|(?!www))[a-zA-Z0-9]+\.[^\s]{2,}|www\.[a-zA-Z0-9]+\.[^\s]{2,})" ) WHITELIST = [ DISCORD_API_ENDPOINT + "/users/@me", "https://httpbin.org/get", "https://httpbin.org/put", "https://httpbin.org/delete", "https://httpbin.org/post", "https://httpbin.org/patch", ] BLACKLIST = ["https://www.google.com/"] def will_send(url: str) -> bool: if url in WHITELIST: return True if url in BLACKLIST: return False return True class Basic(commands.Cog): def __init__(self, client) -> None: super().__init__() self.client: commands.Bot = client self.client.help_command = Help() self.session = aiohttp.ClientSession @commands.command(name="about") async def about(self, ctx: commands.Context): uptime = ( datetime.datetime.utcnow().replace(tzinfo=datetime.timezone.utc) - self.client.start_time ) hours, remainder = divmod(int(uptime.total_seconds()), 3600) days, hours = divmod(hours, 24) minutes, seconds = divmod(remainder, 60) total = str(sum(len(guild.members) for guild in self.client.guilds)) unique = str(len(self.client.users)) description = f"Stats for shard 0\nI've been up for {days} days, {hours} hours, {minutes} minutes, {seconds} seconds\nI've recieved {self.client.user_messages} user messages, {self.client.bot_messages} bot messages ({self.client.self_messages} were mine)\nI'm serving {total} users ({unique} unique)" embed = discord.Embed( description=description, colour=0x00CEA2, timestamp=datetime.datetime.utcfromtimestamp(time.time()).replace( tzinfo=datetime.timezone.utc ), ) await ctx.send(embed=embed) @commands.command( name="userinfo", aliases=["user", "whois", "user_info", "user_profile"] ) @commands.guild_only() async def userinfo( self, ctx: commands.Context, target: typing.Union[discord.Member, discord.User] = None, ): await ctx.send( embed=MessageUtils.build(type="user_info", member=target, issuer=ctx.author) ) @userinfo.error async def userinfo_error(self, ctx, error): if isinstance(error, commands.MemberNotFound): await ctx.send("I can't find that member") return @commands.group(name="math") async def mathtools(self, ctx: commands.Context): """Root command for math tools""" if ctx.invoked_subcommand is None: await ctx.send_help("math") @mathtools.command(name="fib") async def fib(self, ctx: commands.Context, *, n: str = None): """Compute the nth Fibbonaci term""" if n is None: await ctx.send_help("math fib") else: try: n = int(n.replace(" ", "").replace(",", "")) if n == 0: await ctx.send_help("math fib") elif n < 0: raise BadArgument() else: try: start_time = time.time() fib = MathUtils.fib(n) end_time = time.time() await ctx.send( f"The {n}th number in the classic Fibonnaci sequence is\n```{fib}\n```" ) except RecursionError: await ctx.send( f"The number supplied ({n}) is greater then my threshold" ) except ValueError: raise BadArgument() @mathtools.command(name="tri") async def tri(self, ctx: commands.Context, *, n: str = None): """Compute the nth triangular number""" if n is None: await ctx.send_help("math tri") else: try: n = int(n.replace(" ", "").replace(",", "")) if n == 0: await ctx.send_help("math tri") elif n < 0: raise BadArgument() else: start_time = time.time() tri = MathUtils.tri(n) end_time = time.time() await ctx.send(f"The {n}th triangular number is\n```{tri}\n```") except ValueError: raise BadArgument() @commands.command(name="serverinfo", aliases=["server"]) @commands.guild_only() async def server_info(self, ctx: commands.Context): guild = ctx.guild guild_features = ", ".join(guild.features) if guild_features == "": guild_features = None guild_made = guild.created_at.strftime("%d-%m-%Y") embed = discord.Embed( color=guild.roles[-1].color, timestamp=datetime.datetime.utcfromtimestamp(time.time()).replace( tzinfo=datetime.timezone.utc ), ) if guild.icon is not None: embed.set_thumbnail(url=guild.icon.url) embed.add_field(name="Name", value=guild.name, inline=True) embed.add_field(name="ID", value=guild.id, inline=True) embed.add_field(name="Owner", value=guild.owner, inline=True) embed.add_field(name="Members", value=guild.member_count, inline=True) embed.add_field( name="Channels", value=f"📚 Categories: {str(len(guild.categories))}\n📝 Text channels: {str(len(guild.text_channels))}\n:microphone2: Voice channels: {str(len(guild.voice_channels))}\nTotal channels: {str(len(guild.text_channels) + len(guild.voice_channels))}", inline=True, ) embed.add_field( name="Created at", value=f"{guild_made} ({(datetime.datetime.utcfromtimestamp(time.time()).replace(tzinfo=datetime.timezone.utc) - guild.created_at).days} days ago)", inline=True, ) embed.add_field(name="VIP features", value=guild_features, inline=True) if guild.icon is not None: embed.add_field( name="Server icon", value=f"[Server icon]({guild.icon.url})", inline=True, ) roles = ", ".join(role.name for role in guild.roles) embed.add_field( name="Roles", value=roles if len(roles) < 1024 else f"{len(guild.roles)} roles", inline=False, ) if guild.emojis: emoji = "".join(str(e) for e in guild.emojis) embed.add_field( name="Server emoji", value=emoji if len(emoji) < 1024 else f"{len(guild.emojis)} emoji", ) if guild.splash is not None: embed.set_image(url=guild.splash.url) if guild.banner is not None: embed.set_image(url=guild.banner.url) embed.set_footer( text=f"Requested by {ctx.author.name}", icon_url=ctx.author.avatar.url ) await ctx.send(embed=embed) class Help(commands.HelpCommand): """Custom help command""" def __init__(self): super().__init__() def is_group(self, command: Command): return "\n ↪" if isinstance(command, Group) else "" async def send_bot_help(self, mapping): message = await MessageUtils.gen_bot_help(self, mapping) view = HelpView(self, self.context.bot) await self.get_destination().send(content=message, view=view) async def send_cog_help(self, cog: commands.Cog): message = await MessageUtils.gen_cog_help(self, cog) view = HelpView(self, self.context.bot) await self.get_destination().send( content=message, view=view.set_default(cog.qualified_name) ) async def send_group_help(self, group: commands.Group): message = await MessageUtils.gen_group_help(self, group) view = HelpView(self, self.context.bot) await self.get_destination().send( content=message, view=view.set_default(group.cog_name) ) async def send_command_help(self, command: commands.Command): message = await MessageUtils.gen_command_help(self, command) view = HelpView(self, self.context.bot) await self.get_destination().send( content=message, view=view.set_default(command.cog_name) ) async def command_not_found(self, string): return f"I can't seem to find any cog or command named {string}" def setup(client): client.add_cog(Basic(client=client))
"""Annotate with UCSC Genome Browser or other sql RefGene database.""" __author__ = "Martin Haagmans (https://github.com/zaag)" __license__ = "MIT" import os import pymysql import pybedtools class Annotation: """Annotate gene or region with RefGene. Method to query genomic intervals returns list of genenames. Method to query gene names returns list of genomic intervals. """ def __init__(self, host=None, user=None, passwd=None, db=None, genefile=None, genes=None): """Establish database connection.""" if host is None and user is None and passwd is None: host = 'genome-mysql.cse.ucsc.edu' user = 'genome' if passwd is None: passwd = '' if db is None: db = 'hg19' self.host = host self.user = user self.db = db self.passwd = passwd self.conn = pymysql.connect(host=self.host, user=self.user, passwd=self.passwd, db=self.db) self.c = self.conn.cursor() self.genes = None def _parse_ucsc_output(self, out): """Read database output into list and return list.""" if len(out) == 1: return [out[0][0]] elif len(out) > 1: return [tup[0] for tup in out] elif len(out) == [0]: ['NOGENE'] def get_genename(self, chromosome, start=None, end=None, tx=True, cds=False): """Read locus or interval and return gene(s). Format locus/interval can be chr1:123456/chr1:123456-123789 or chromosome, start and (optional) end. Return a list with any gene(s) in the interval. """ if cds: tx = False if start is None and end is None: if ':' not in chromosome: raise IOError('Geen chromosoom en start opgegeven') chromosome, region = chromosome.split(':') if '-' in region: start, end = region.split('-') else: start = region basetxsql = '''SELECT DISTINCT name2 FROM refGene WHERE ((chrom='{c}') AND '''.format(c=chromosome) basecdssql = '''SELECT DISTINCT name2 FROM refGene WHERE ((chrom='{c}') AND '''.format(c=chromosome) if end is not None: txsql = '''(('{s}'<txEnd AND '{s}'>txStart) AND ('{e}'<txEnd AND '{e}'>txStart))) '''.format(s=start, e=end) cdssql = '''(('{s}'<cdsEnd AND '{s}'>cdsStart) AND ('{e}'<cdsEnd AND '{e}'>cdsStart))) '''.format(s=start, e=end) txsql = basetxsql + txsql cdssql = basecdssql + cdssql elif end is None: txsql = '''('{s}'<txEnd AND '{s}'>txStart)) '''.format(s=start) cdssql = '''('{s}'<cdsEnd AND '{s}'>cdsStart))Locus can be '''.format(s=start) txsql = basetxsql + txsql cdssql = basecdssql + cdssql if tx and not cds: self.c.execute(txsql) elif cds and not tx: self.c.execute(cdssql) if self.c.rowcount != 0: return self._parse_ucsc_output(self.c.fetchall()) elif self.c.rowcount == 0: if end is not None: txsql = '''(('{s}'<txEnd AND '{s}'>txStart) OR ('{e}'<txEnd AND '{e}'>txStart))) '''.format(s=start, e=end) cdssql = '''(('{s}'<cdsEnd AND '{s}'>cdsStart) OR ('{e}'<cdsEnd AND '{e}'>cdsStart))) '''.format(s=start, e=end) txsql = basetxsql + txsql cdssql = basecdssql + cdssql if tx and not cds: self.c.execute(txsql) elif cds and not tx: self.c.execute(cdssql) if self.c.rowcount == 0: return ['NOGENE'] else: return self._parse_ucsc_output(self.c.fetchall()) elif end is None: return 'NOGENE' def get_region(self, gene, tx=True, cds=False): """Read gene name2 and return list of tuples. Parse gene name2 and return list of tuples with coding (cds) or transcription (tx) region for all NM-numbers of that gene. """ if cds: tx = False txsql = """SELECT DISTINCT chrom, txStart, txEnd FROM refGene WHERE name2='{g}' """.format(g=gene) cdssql = """SELECT DISTINCT chrom, cdsStart, cdsEnd FROM refGene WHERE name2='{g}' """.format(g=gene) if tx and not cds: self.c.execute(txsql) elif cds and not tx: self.c.execute(cdssql) generegions = list() for i in self.c.fetchall(): region = i[0], i[1], i[2] generegions.append(region) return generegions class TargetAnnotation(Annotation): """Read BED file and optional (file with) list of genes. Method to annotate BED with gene names via RefSeq database Method to compare requested gene(s) with gene(s) in BED """ def __init__(self, bedfile, genes=None, skip=25, **kwds): """Establish connection with database and parse BED-file and genelist. Raise IOerror if genes is not a file or list. """ super().__init__(**kwds) self.skip = skip self.bedlocation = bedfile self.is_annotated = self._is_annotated() self.bed = self._parse_bed() if genes is None: self.genes = list() elif genes is not None: if isinstance(genes, list): genes = set(genes) self.genes = [gene for gene in genes] elif os.path.isfile(genes): self.genes = self._parse_genefile(genes) else: raise IOError("Can't understand genes. Should be list or file") def _is_annotated(self): """Check if there are >3 columns in BED. Return boolean.""" with open(self.bedlocation, 'r') as f: cols = len(next(f).split()) if cols == 3: return False elif cols > 3: return True def _parse_bed(self): """Read BED. Return list of lists.""" bed = list() with open(self.bedlocation, 'r') as f: lines = [line.rstrip().split() for line in f] lines = list(line for line in lines if line) lines = sorted(lines, key=lambda x: (x[0], int(x[1]), int(x[2]))) if not self.is_annotated: for line in lines: chromosome, start, end = line bed.append([chromosome, start, end]) elif self.is_annotated: for line in lines: chromosome, start, end, gene = line[:4] bed.append([chromosome, start, end, gene]) return bed def _parse_genefile(self, gf): """Read genefile into list and return list.""" with open(gf, 'r') as f: lines = [line.rstrip() for line in f] lines = list(line for line in lines if line) return [l.split()[0] for l in lines] def _parse_annot_out(self, gl): if len(gl) == 1: return gl elif len(gl) > 1: return [_ for _ in gl] def annotate_bed(self): """Query RefSeq for every target in BED. Return list of lists.""" annotated_bed = list() for target in self.bed: chromosome, start, end = target[:3] genename = self.get_genename(chromosome, int(start) + self.skip, int(end) - self.skip) annotated_bed.append([chromosome, start, end, '/'.join(genename)]) self.is_annotated = True return annotated_bed def annotate_bed_and_filter_genes(self): """Annotate targets in BED and filter output with genelist. Query RefSeq for every target in BED, filter results with list of genes if the query returns >1 gene. Return list of lists. """ annotated_bed = list() for target in self.bed: chromosome, start, end = target[:3] genename = self.get_genename(chromosome, int(start) + self.skip, int(end) - self.skip) if len(genename) > 1: _ = [gn for gn in genename if gn in self.genes] if len(_) >= 1: genename = _ annotated_bed.append([chromosome, start, end, '/'.join(genename)]) self.is_annotated = True return annotated_bed def get_genes_in_bed(self): """Query RefSeq for every target in non-annotated BED into list and return list.""" genesout = set() if not self.is_annotated: for target in self.bed: chromosome, start, end = target genename = self.get_genename(chromosome, int(start) + self.skip, int(end) - self.skip) genesout.update(self._parse_annot_out(genename)) return list(genesout) elif self.is_annotated: return self.get_genes_in_annotated_bed(self.bed) def get_genes_in_annotated_bed(self, annotated_bed): """Collect genes from annotated BED into list and return list.""" genesout = set() for target in annotated_bed: _chromosome, _start, _end, gene = target genesout.update([i for i in gene.split('/')]) return list(genesout) def get_genes_not_found(self, bedgenes=None): """Compare genes in BED with genes requested into list and return list.""" if bedgenes is None: bedgenes = self.get_genes_in_bed() notfound = [gene for gene in self.genes if gene not in bedgenes] if len(notfound) > 0: notfound.sort() return notfound def get_genes_not_requested(self, genesout=None): """Compare genes requested with genes in BED into list and return list.""" if genesout is None: genesout = self.get_genes_in_bed() notrequested = [gene for gene in genesout if gene not in self.genes] return notrequested def report_genecomp(self): """Report differences between genes in BED and genes requested.""" if not self.is_annotated: annotated_bed = self.annotate_bed() elif self.is_annotated: annotated_bed = self.bed genes_in_bed = self.get_genes_in_annotated_bed(annotated_bed) genes_not_found = self.get_genes_not_found(bedgenes=genes_in_bed) genes_not_requested = self.get_genes_not_requested(genesout=genes_in_bed) return genes_not_found, genes_not_requested def annotate_bed(bedfile, output, genes=None, merge=True): """Merge and annotate bedfile. A file with genenames is optional and used to filter if needed. Write merged and annotated BED-file to output. """ if merge: bed = pybedtools.BedTool(bedfile) bed = bed.sort() bed_merged = bed.merge() bed_merged.saveas(bedfile) if genes: TA = TargetAnnotation(bedfile, genes=genes) bed_annotated = TA.annotate_bed_and_filter_genes() elif genes is None: TA = TargetAnnotation(bedfile) bed_annotated = TA.annotate_bed() with open(output, 'w') as f: for line in bed_annotated: chromosome, start, end, gene = line f.write('{}\t{}\t{}\t{}\n'.format(chromosome, start, end, gene))
import math def add_vectors(vector1, vector2): #Note the vectors are tuple (angle, magnitude) x = math.sin(vector1[0]) * vector1[1] + math.sin(vector2[0]) * vector2[1] y = math.cos(vector1[0]) * vector1[1] + math.cos(vector2[0]) * vector2[1] mag = math.hypot(x, y) angle = (math.pi/2) - math.atan2(y, x) return (angle, mag)
""" Generalized extreme value distribution -------------------------------------- Note that the parameter xi used here has the opposite sign of the corresponding shape parameter in `scipy.stats.genextreme`. """ import mpmath __all__ = ['pdf', 'logpdf', 'cdf', 'sf', 'mean', 'var'] def pdf(x, xi, mu=0, sigma=1): """ Generalized extreme value distribution probability density function. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) # Formula from wikipedia, which has a sign convention for xi that # is the opposite of scipy's shape parameter. z = (x - mu)/sigma if xi != 0: t = mpmath.power(1 + z*xi, -1/xi) else: t = mpmath.exp(-z) p = mpmath.power(t, xi+1) * mpmath.exp(-t) / sigma return p def logpdf(x, xi, mu=0, sigma=1): """ Natural logarithm of the PDF of the generalized extreme value distribution. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) # Formula from wikipedia, which has a sign convention for xi that # is the opposite of scipy's shape parameter. z = (x - mu)/sigma if xi != 0: t = mpmath.power(1 + z*xi, -1/xi) logt = -mpmath.log1p(z*xi)/xi else: t = mpmath.exp(-z) logt = -z p = (xi + 1)*logt - t - mpmath.log(sigma) return p def cdf(x, xi, mu=0, sigma=1): """ Generalized extreme value distribution cumulative density function. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) # Formula from wikipedia, which has a sign convention for xi that # is the opposite of scipy's shape parameter. if xi != 0: t = mpmath.power(1 + ((x - mu)/sigma)*xi, -1/xi) else: t = mpmath.exp(-(x - mu)/sigma) return mpmath.exp(-t) def sf(x, xi, mu=0, sigma=1): """ Generalized extreme value distribution survival function. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) # Formula from wikipedia, which has a sign convention for xi that # is the opposite of scipy's shape parameter. if xi != 0: t = mpmath.power(1 + ((x - mu)/sigma)*xi, -1/xi) else: t = mpmath.exp(-(x - mu)/sigma) return -mpmath.expm1(-t) def mean(xi, mu=0, sigma=1): """ Mean of the generalized extreme value distribution. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) if xi == 0: return mu + sigma * mpmath.euler elif xi < 1: g1 = mpmath.gamma(mpmath.mp.one - xi) return mu + sigma * (g1 - mpmath.mp.one)/xi else: return mpmath.inf def var(xi, mu=0, sigma=1): """ Variance of the generalized extreme value distribution. """ xi = mpmath.mpf(xi) mu = mpmath.mpf(mu) sigma = mpmath.mpf(sigma) if xi == 0: return sigma**2 * mpmath.pi**2 / 6 elif 2*xi < 1: g1 = mpmath.gamma(mpmath.mp.one - xi) g2 = mpmath.gamma(mpmath.mp.one - 2*xi) return sigma**2 * (g2 - g1**2) / xi**2 else: return mpmath.inf
from __future__ import unicode_literals from .models import ec2_backends from ..core.models import MockAWS ec2_backend = ec2_backends['us-east-1'] def mock_ec2(func=None): if func: return MockAWS(ec2_backends)(func) else: return MockAWS(ec2_backends)
class Vector2D: def __init__(self, vec: List[List[int]]): self.vec = [] self.i = 0 for A in vec: self.vec += A def next(self) -> int: ans = self.vec[self.i] self.i += 1 return ans def hasNext(self) -> bool: return self.i < len(self.vec)
import os serve_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "serve")) serve = {"__mpld3": serve_path} scripts = [ "/__mpld3/d3.placeholder.js", # will load faster for mpld3 "/__mpld3/d3.v5.min.js", # "/__mpld3/mpld3.v0.5.7.js", "/__mpld3/mpld3.v0.5.7.min.js", "/__mpld3/vue-mpld3.umd.min.js", ] vue_use = ["VueMatplotlib"]
# from python from pathlib import Path from typing import Union import textwrap # from pypi from bokeh.embed import autoload_static import bokeh.plotting import bokeh.resources import holoviews PathType = Union[str, Path] class EmbedBokeh: """Embed a bokeh figure Args: plot: a hvplot to embed folder_path: path to the folder to save the file file_name: name of the file to save the javascript in create_folder: if the folder doesn't exist create it make_parents: if creating a folder add the missing folders in the path """ def __init__(self, plot: holoviews.core.overlay.NdOverlay, file_name: str, folder_path: PathType, create_folder: bool=True, make_parents: bool=True) -> None: self.plot = plot self._figure = None self.create_folder = create_folder self.make_parents = make_parents self._folder_path = None self.folder_path = folder_path self._file_name = None self.file_name = file_name self._source = None self._javascript = None self._bokeh_source = None self._export_string = None return @property def folder_path(self) -> Path: """The path to the folder to store javascript""" return self._folder_path @folder_path.setter def folder_path(self, path: PathType) -> None: """Sets the path to the javascript folder""" self._folder_path = Path(path) if self.create_folder and not self._folder_path.is_dir(): self._folder_path.mkdir(parents=self.make_parents) return @property def file_name(self) -> str: """The name of the javascript file""" return self._file_name @file_name.setter def file_name(self, name: str) -> None: """Sets the filename Args: name: name to save the javascript (without the folder) """ name = Path(name) self._file_name = "{}.js".format(name.stem) return @property def figure(self) -> bokeh.plotting.Figure: """The Figure to plot""" if self._figure is None: self._figure = holoviews.render(self.plot) return self._figure @property def bokeh_source(self) -> bokeh.resources.Resources: """The javascript source """ if self._bokeh_source is None: self._bokeh_source = bokeh.resources.CDN return self._bokeh_source @property def source(self) -> str: """The HTML fragment to export""" if self._source is None: self._javascript, self._source = autoload_static(self.figure, self.bokeh_source, self.file_name) return self._source @property def javascript(self) -> str: """javascript to save""" if self._javascript is None: self._javascript, self._source = autoload_static(self.figure, self.bokeh_source, self.file_name) return self._javascript @property def export_string(self) -> str: """The string to embed the figure into org-mode""" if self._export_string is None: self._export_string = textwrap.dedent( """#+begin_export html{} #+end_export""".format(self.source)) return self._export_string def save_figure(self) -> None: """Saves the javascript file""" with open(self.folder_path.joinpath(self.file_name), "w") as writer: writer.write(self.javascript) return def __call__(self) -> None: """Creates the bokeh javascript and emits it""" self.save_figure() print(self.export_string) return def reset(self) -> None: """Sets the generated (bokeh) properties back to None""" self._export_string = None self._javascript = None self._source = None self._figure = None return
from logging import Filter, LogRecord from typing import Union from pydantic import BaseModel class GetData(BaseModel): """BaseModel that handles input data for the API which is treated as members for the class ``GetData``. >>> GetData See Also: - ``command``: Offline command sent via API which ``Jarvis`` has to perform. """ command: str native_audio: bool = False class GetText(BaseModel): """BaseModel that handles input data for the API which is treated as members for the class ``GetText``. >>> GetText See Also: - ``text``: Text to be processed with speech synthesis. - ``timeout``: Timeout for speech-synthesis API call. - ``quality``: Quality of speech synthesis. - ``voice``: Voice module to be used. """ text: str timeout: Union[int, float] = None quality: str = "high" voice: str = "en-us_northern_english_male-glow_tts" class InvestmentFilter(Filter): """Class to initiate ``/investment`` filter in logs while preserving other access logs. >>> InvestmentFilter See Also: - Overrides logging by implementing a subclass of ``logging.Filter`` - The method ``filter(record)``, that examines the log record and returns True to log it or False to discard it. """ def filter(self, record: LogRecord) -> bool: """Filter out logging at ``/investment?token=`` from log streams. Args: record: ``LogRecord`` represents an event which is created every time something is logged. Returns: bool: False flag for the endpoint that needs to be filtered. """ return record.getMessage().find("/investment?token=") == -1
import requests from requests.exceptions import HTTPError import pprint def get_json_dict(url: str) -> dict: try: headers = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:86.0) Gecko/20100101 Firefox/86.0", "Accept": "application/json, text/plain, */*", "Accept-Language": "en-US,en;q=0.5", "Accept-Encoding": "gzip, deflate, br", # "Referer": "https://www.oddschecker.com/us/basketball/nba", "X-Requested-With": "XMLHttpRequest", "Cache-Control": "no-store, no-cache, must-revalidate, max-age=0", "Expires": "Thu, 01 Jan 1970 00:00:00 GMT", "Pragma": "no-cache", "DNT": "1", "Connection": "keep-alive", "Sec-GPC": "1", "TE": "Trailers" } response = requests.get(url, headers=headers) # If the response was successful, no Exception will be raised # print(response.status_code) response.raise_for_status() return response.json() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') # Python 3.6 except Exception as err: print(f'Other error occurred: {err}') # Python 3.6 else: print("Success") # pp = pprint.PrettyPrinter(indent=4) # response = get_json_dict("https://www.oddschecker.com/us/basketball/nba?ajax=1") # response = get_json_dict("https://www.oddschecker.com/us/basketball/nba?ajax=1") # pp.pprint(response['data']['card']['matches'][0])