content
stringlengths
5
1.05M
// AUTHOR: Devendra Patel //Python3 Concept: Palindrome // GITHUB: https://github.com/github-dev21 print("Enter the Number ") num = int(input()) temp = num reverse = 0 while(num>0): dig = num%10 reverse = reverse*10+dig num = num//10 print(reverse) if temp==reverse: print("Number is in Palindrome") else: print("Number is not in Palindrome")
#!/usr/bin/python3 """ In a given 2D binary array A, there are two islands. (An island is a 4-directionally connected group of 1s not connected to any other 1s.) Now, we may change 0s to 1s so as to connect the two islands together to form 1 island. Return the smallest number of 0s that must be flipped. (It is guaranteed that the answer is at least 1.) Example 1: Input: [[0,1],[1,0]] Output: 1 Example 2: Input: [[0,1,0],[0,0,0],[0,0,1]] Output: 2 Example 3: Input: [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]] Output: 1 Note: 1 <= A.length = A[0].length <= 100 A[i][j] == 0 or A[i][j] == 1 """ from typing import List dirs = ((0, -1), (0, 1), (-1, 0), (1, 0)) class Solution: def shortestBridge(self, A: List[List[int]]) -> int: """ market component 1 and component 2 iterate 0 and BFS, min(dist1 + dist2 - 1)? O(N * N) high complexity BFS grow from 1 component """ m, n = len(A), len(A[0]) # coloring colors = [[None for _ in range(n)] for _ in range(m)] color = 0 for i in range(m): for j in range(n): if A[i][j] == 1 and colors[i][j] is None: self.dfs(A, i, j, colors, color) color += 1 assert color == 2 # BFS step = 0 q = [] visited = [[False for _ in range(n)] for _ in range(m)] for i in range(m): for j in range(n): if colors[i][j] == 0: visited[i][j] = True q.append((i, j)) while q: cur_q = [] for i, j in q: for I, J in self.nbr(A, i, j): if not visited[I][J]: if colors[I][J] == None: visited[I][J] = True # pre-check, dedup cur_q.append((I, J)) elif colors[I][J] == 1: return step step += 1 q = cur_q raise def nbr(self, A, i, j): m, n = len(A), len(A[0]) for di, dj in dirs: I = i + di J = j + dj if 0 <= I < m and 0 <= J < n: yield I, J def dfs(self, A, i, j, colors, color): colors[i][j] = color for I, J in self.nbr(A, i, j): if colors[I][J] is None and A[I][J] == 1: self.dfs(A, I, J, colors, color) if __name__ == "__main__": assert Solution().shortestBridge([[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]) == 1
from random import choice import matplotlib.pyplot as plt class Randomwalk: """A class to generate random walks""" def __init__(self, num_points=5000): """initialize attributes of a walk""" self.num_points = num_points #All walks start at (0, 0) self.x_values = [0] self.y_values = [0] def fill_walk(self): """Calculate all the points in the walk""" # Keep taking steps until the walk reaches the desired length. while len(self.x_values) < self.num_points: # Decide which direction to go and how far to go in that direction x_direction = choice([1, -1]) x_distance = choice([0, 1, 2, 3, 4]) x_step = x_direction * x_distance y_direction = choice([1, -1]) y_distance = choice([0, 1, 2, 3, 4]) y_step = y_direction * y_distance # Reject moves that go nowhere if (x_step == 0) and (y_step == 0): continue # Calculate the new position. x = self.x_values[-1] + x_step y = self.y_values[-1] + y_step self.x_values.append(x) self.y_values.append(y) # Make a randomwalk rw = Randomwalk() rw.fill_walk() # Plot the points in the walk plt.style.use('classic') fig, ax = plt.subplots() ax.scatter(rw.x_values, rw.y_values, s=15) plt.show()
""" This script starts up our game """ from game_window import main if __name__ == "__main__": main()
import torch import torch.nn as nn import torch.nn.functional as F import random import math from .neural_blocks import ( SkipConnMLP, NNEncoder, FourierEncoder ) from .utils import ( autograd, eikonal_loss, dir_to_elev_azim, fat_sigmoid ) from .refl import ( LightAndRefl ) def load(args, shape, light_and_refl: LightAndRefl): assert(isinstance(light_and_refl, LightAndRefl)), "Need light and reflectance for integrator" if args.integrator_kind is None: return None elif args.integrator_kind == "direct": cons = Direct elif args.integrator_kind == "path": cons = Path else: raise NotImplementedError(f"load integrator: {args.integrator_kind}") ls = 0 if hasattr(shape, "latent_size"): ls = shape.latent_size elif hasattr(shape, "total_latent_size"): ls = shape.total_latent_size() occ = load_occlusion_kind(args.occ_kind, ls) integ = cons(shape=shape, refl=light_and_refl.refl, occlusion=occ) return integ def load_occlusion_kind(kind=None, latent_size:int=0): if kind is None: occ = lighting_wo_isect elif kind == "hard": occ = LightingWIsect() elif kind == "learned": occ = LearnedLighting(latent_size=latent_size) elif kind == "all-learned": occ = AllLearnedOcc(latent_size=latent_size) else: raise NotImplementedError(f"load occlusion: {args.occ_kind}") return occ # no shadow def lighting_wo_isect(pts, lights, isect_fn, latent=None, mask=None): dir, _, spectrum = lights(pts if mask is None else pts[mask], mask=mask) return dir, spectrum # hard shadow lighting class LightingWIsect(nn.Module): def __init__(self): super().__init__() def forward(self, pts, lights, isect_fn, latent=None, mask=None): pts = pts if mask is None else pts[mask] dir, dist, spectrum = lights(pts, mask=mask) far = dist.max().item() if mask.any() else 6 visible = isect_fn(pts, dir, near=0.1, far=far) spectrum = torch.where( visible[...,None], spectrum, torch.zeros_like(spectrum) ) return dir, spectrum class LearnedLighting(nn.Module): def __init__( self, latent_size:int=0, ): super().__init__() in_size=6 self.attenuation = SkipConnMLP( in_size=in_size, out=1, latent_size=latent_size, num_layers=5, hidden_size=128, enc=FourierEncoder(input_dims=in_size), xavier_init=True, ) def forward(self, pts, lights, isect_fn, latent=None, mask=None): pts = pts if mask is None else pts[mask] dir, dist, spectrum = lights(pts, mask=mask) far = dist.max().item() if mask.any() else 6 # TODO why doesn't this isect fn seem to work? visible = isect_fn(r_o=pts, r_d=dir, near=2e-3, far=3, eps=1e-3) att = self.attenuation(torch.cat([pts, dir], dim=-1), latent).sigmoid() spectrum = torch.where(visible.reshape_as(att), spectrum, spectrum * att) return dir, spectrum class AllLearnedOcc(nn.Module): def __init__( self, latent_size:int=0, ): super().__init__() in_size=6 self.attenuation = SkipConnMLP( in_size=in_size, out=1, latent_size=latent_size, enc=FourierEncoder(input_dims=in_size), num_layers=5, hidden_size=128, xavier_init=True, ) def forward(self, pts, lights, isect_fn, latent=None, mask=None): pts = pts if mask is None else pts[mask] dir, _, spectrum = lights(pts, mask=mask) att = self.attenuation(torch.cat([pts, dir], dim=-1), latent).sigmoid() return dir, spectrum * att class Renderer(nn.Module): def __init__( self, shape, refl, occlusion, ): super().__init__() self.shape = shape self.refl = refl self.occ = occlusion def forward(self, _rays): raise NotImplementedError() class Direct(Renderer): def __init__(self, **kwargs): super().__init__(**kwargs) @property def sdf(self): return self.shape def total_latent_size(self): return self.shape.latent_size def set_refl(self, refl): self.refl = refl def forward(self, rays): return direct(self.shape, self.refl, self.occ, rays, self.training) # Functional version of integration def direct(shape, refl, occ, rays, training=True): r_o, r_d = rays.split([3, 3], dim=-1) pts, hits, tput, n = shape.intersect_w_n(r_o, r_d) _, latent = shape.from_pts(pts[hits]) out = torch.zeros_like(r_d) for light in refl.light.iter(): light_dir, light_val = occ(pts, light, shape.intersect_mask, mask=hits, latent=latent) bsdf_val = refl(x=pts[hits], view=r_d[hits], normal=n[hits], light=light_dir, latent=latent) out[hits] = out[hits] + bsdf_val * light_val if training: out = torch.cat([out, tput], dim=-1) return out def path(shape, refl, occ, rays, training=True): r_o, r_d = rays.split([3, 3], dim=-1) pts, hits, tput, n = shape.intersect_w_n(r_o, r_d) _, latent = shape.from_pts(pts[hits]) out = torch.zeros_like(r_d) for light in refl.light.iter(): light_dir, light_val = occ(pts, light, shape.intersect_mask, mask=hits, latent=latent) bsdf_val = refl(x=pts[hits], view=r_d[hits], normal=n[hits], light=light_dir, latent=latent) out[hits] = out[hits] + bsdf_val * light_val # TODO this should just be a random sample of pts in some range? pts_2nd_ord = pts.reshape(-1, 3) pts_2nd_ord = pts[torch.randint(high=pts_2nd_ord.shape[0], size=32, device=pts.device), :] with torch.no_grad(): # compute light to set of points light_dir, light_val = occ(pts_2nd_ord, shape.intersect_mask, latent=latent) # compute dir from each of the 2nd order pts to the main points dirs = pts_2nd_ord - pts # TODO apply the learned occlusion here att = occ.attenuation(torch.cat([pts_2nd_ord, dirs], dim=-1), latent=latent) # TODO this should account for the BSDF when computing the reflected component out[hits] = out[hits] + att * light_val if training: out = torch.cat([out, tput], dim=-1) return out class Path(Renderer): def __init__( self, bounces:int=1, **kwargs, ): super().__init__(**kwargs) self.bounces = bounces def forward(self, rays): raise NotImplementedError()
#!/usr/bin/env python3 import os import bspump import bspump.ipc import bspump.common class EchoSink(bspump.Sink): def process(self, context, event): ''' Send the event back to the client socket. ''' print(event) sock = context['stream'] sock.send(event.encode('utf-8')) sock.send(b'\n') class EchoPipeline(bspump.Pipeline): ''' To test this pipeline, use: socat STDIO SSL:127.0.0.1:8082 ''' def __init__(self, app, pipeline_id): super().__init__(app, pipeline_id) mydir = os.path.dirname(os.path.realpath(__file__)) self.build( bspump.ipc.StreamServerSource(app, self, config={ 'address': ':: 8082', 'cert': os.path.join(mydir, './ssl/cert.pem'), 'key': os.path.join(mydir, './ssl/key.pem'), }), EchoSink(app, self) ) if __name__ == '__main__': app = bspump.BSPumpApplication() svc = app.get_service("bspump.PumpService") svc.add_pipeline(EchoPipeline(app, "EchoPipeline")) app.run()
import os import shutil import tensorflow as tf import matplotlib.pyplot as plt import logging import copy from collections import OrderedDict import signal from skopt import gp_minimize from skopt import dump as dump_result from skopt import load as load_result from skopt.space import Real, Categorical, Integer from skopt.plots import plot_convergence, plot_objective from skopt.plots import plot_objective, plot_evaluations from pyrocko.guts import Object, Int, Float, List, Tuple, String from .util import delete_if_exists, ensure_dir from .data import name_to_class try: from skopt.plots import plot_histogram _plot_histogram_error = False except ImportError as e: _plot_histogram_error = e logging.debug(e) def to_skopt_real(x, name, prior): return Real(low=x[0], high=x[1], prior=prior, name=name) class Param(Object): name = String.T() _type = None target_attribute = String.T(default='model', help='Which of models parameter should be modified (e.g. `config`)') def make_parameter(self): return self._type(low=self.low, high=self.high, name=self.name) class PCategorical(Param): prior = String.T(optional=True) categories = List.T(String.T()) default = String.T() _type = Categorical def make_parameter(self): return self._type(name=self.name, prior=self.prior, categories=self.categories) class PInteger(Param): low = Float.T() high = Float.T() default = Float.T() _type = Integer def make_parameter(self): return self._type(low=self.low, high=self.high, name=self.name) class PReal(Param): low = Float.T() high = Float.T() default = Float.T() prior = String.T(default='uniform') _type = Real def make_parameter(self): return self._type(low=self.low, high=self.high, name=self.name, prior=self.prior) class Optimizer(Object): n_calls = Int.T(default=50, help='number of test sets') path_out = String.T(default='optimizer-results', help='base path where to store results, plots and logs') params = List.T(Param.T(), default=[PReal(name='learning_rate', low=1e-6, high=1e-2, default=1e-4)]) def __init__(self, **kwargs): super().__init__(**kwargs) self.model = None self.result = None self.best_model_dir = self.extend_path('best-model') self.fn_result = self.extend_path('result.optmz') self.best_loss = 9e99 self.param_keys = [p.name for p in self.params] self.params_dict = OrderedDict() for p in self.params: self.params_dict[p.name] = p.make_parameter() self._config_operations = [p.name for p in self.params if p.target_attribute=='config'] self.optimizer_defaults = [(p.name, p.default) for p in self.params] self._ncalls = 0 signal.signal(signal.SIGINT, self.plot_results) def clear(self): '''delete former runs.''' shutil.rmtree(self.path_out) @property def dimensions(self): return [v for _, v in self.params_dict.items()] @property def optimizer_keys(self): return [k for (k, default) in self.optimizer_defaults] @property def optimizer_values(self): return [default for (k, default) in self.optimizer_defaults] @property def non_categorical_dimensions(self): '''Returns a list of non-categorical dimension names.''' return [dim.name for dim in self.dimensions if not \ isinstance(dim, Categorical)] def announce_test(self, params): '''Log a parameter test set. ''' logging.info('+' * 20) logging.info('evaluating next set of parameters:') base =' {}: {}\n' for kv in params.items(): logging.info(base.format(*kv)) def update_model(self, model, kwargs): '''Set config and model attributes by kwargs. Rather sloppy... ''' new_config = copy.deepcopy(model.config) self._ncalls += 1 model.name = 'opt_%s-' % self._ncalls + self.base_name for key, arg in kwargs.items(): # choose which object to modify (model or model.config) if 'config' in key: key = key.split('.')[-1] want_modifiy = new_config else: want_modifiy = model # If name is a ChunkOperation subclass, instatiate an object of # that class attribute = name_to_class.get(arg, False) if attribute: # chunk operation found attribute = attribute() else: attribute = arg if not getattr(want_modifiy, key): raise Exception('No such parameter: %s' % key) setattr(want_modifiy, key, attribute) model.config = new_config def save_model(self, model): '''copy the `model` to the `best_model` directory.''' shutil.rmtree(self.best_model_dir) shutil.copytree(model.outdir, self.best_model_dir) def evaluate(self, args): ''' wrapper to parse gp_minimize args to model.train''' kwargs = dict(zip(self.optimizer_keys, args)) self.announce_test(kwargs) self.update_model(self.model, kwargs) try: loss = self.model.train_and_evaluate()[0]['loss'] if loss < self.best_loss: print('found a better loss at %s' % loss) print('kwargs: ', kwargs) self.save_model(self.model) self.best_loss = loss else: self.model.clear_model() return loss except tf.errors.ResourceExhaustedError as e: logging.warn(e) logging.warn('Skipping this test, loss = 9e9') return 9e9 def set_model(self, model): logging.info('prefixing model output path to %s' % self.path_out) model.prefix = self.path_out self.model = model self.base_name = self.model.name def optimize(self, model): '''Calling this method to optimize a :py:class:`pinky.model.Model` instance. ''' self.set_model(model) ensure_dir(self.best_model_dir) self.result = gp_minimize( func=self.evaluate, dimensions=self.dimensions, acq_func='EI', n_calls=self.n_calls, x0=self.optimizer_values) self.evaluate_result() self.plot_results() def ensure_result(self): ''' Load and set minimizer result.''' if self.result is None: if self.fn_result is None: logging.warn( 'Cannot load results from filename: %s' % self.fn_result) self.result = load_result(self.fn_result) def extend_path(self, *path): '''Prepend `self.path_out` to `path`.''' return os.path.join(self.path_out, *path) def evaluate_result(self): self.ensure_result() # best = self.result.space.point_to_dict(self.result.x) best = self.result.x logging.info('Best parameter set:') logging.info(best) logging.info('Best parameter loss:') logging.info(self.result.fun) def plot_results(self, *args): '''Produce and save result plots. ''' # self.ensure_result() ensure_dir(self.extend_path('plots')) if _plot_histogram_error: logging.warn(_plot_histogram_error) else: for dim_name in self.optimizer_keys: fig, ax = plot_histogram(result=self.result) #, dimension_name=dim_name) fig.savefig(self.extend_path('plots/histogram_%s.pdf' % dim_name)) # ax = plot_objective(result=self.result,) # dimension_names=self.non_categorical_dimensions) # fig = plt.gcf() # fig.savefig(self.extend_path('plots/objectives.pdf')) ax = plot_evaluations( result=self.result,) # dimension_names=self.non_categorical_dimensions) fig = plt.gcf() fig.savefig(self.extend_path('plots/evaluations.pdf')) @classmethod def get_example(cls): '''Get an example instance of this class.''' return cls() if __name__ == '__main__': print(Optimizer.get_example())
import math a = int(input()) print(round(3 * a**2 * math.sqrt(5 * (5 + 2 * math.sqrt(5))), 2)) print(round(a**3 / 4 * (15 + 7 * math.sqrt(5)), 2))
""" Tests for BlockCountsTransformer. """ # pylint: disable=protected-access from openedx.core.djangoapps.content.block_structure.factory import BlockStructureFactory from xmodule.modulestore.tests.django_utils import ModuleStoreTestCase from xmodule.modulestore.tests.factories import SampleCourseFactory from ..block_counts import BlockCountsTransformer class TestBlockCountsTransformer(ModuleStoreTestCase): """ Test behavior of BlockCountsTransformer """ def setUp(self): super().setUp() self.course_key = SampleCourseFactory.create().id self.course_usage_key = self.store.make_course_usage_key(self.course_key) self.block_structure = BlockStructureFactory.create_from_modulestore(self.course_usage_key, self.store) def test_transform(self): # collect phase BlockCountsTransformer.collect(self.block_structure) self.block_structure._collect_requested_xblock_fields() # transform phase BlockCountsTransformer(['problem', 'chapter']).transform(usage_info=None, block_structure=self.block_structure) # block_counts chapter_x_key = self.course_key.make_usage_key('chapter', 'chapter_x') block_counts_for_chapter_x = self.block_structure.get_transformer_block_data( chapter_x_key, BlockCountsTransformer, ) block_counts_for_course = self.block_structure.get_transformer_block_data( self.course_usage_key, BlockCountsTransformer, ) # verify count of chapters assert block_counts_for_course.chapter == 2 # verify count of problems assert block_counts_for_course.problem == 6 assert block_counts_for_chapter_x.problem == 3 # verify other block types are not counted for block_type in ['course', 'html', 'video']: assert not hasattr(block_counts_for_course, block_type) assert not hasattr(block_counts_for_chapter_x, block_type)
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'loadingDialog.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import QSize, Qt from PyQt5.QtGui import QMovie from PyQt5.QtWidgets import QDialog, QMessageBox class LoadingDialog(QDialog): def __init__(self, parent=None): super(LoadingDialog, self).__init__(parent) self.setupUi() def setupUi(self): self.setObjectName("Dialog") self.resize(181, 141) self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) self.setModal(Qt.ApplicationModal) self.label = QtWidgets.QLabel(self) self.label.setGeometry(QtCore.QRect(0, 0, 181, 141)) self.gif = QMovie('loading2.gif') self.gif.setScaledSize(QSize(self.label.width(),self.label.height())) self.label.setMovie(self.gif) self.gif.start() self.label.setObjectName("label") self.retranslateUi(self) QtCore.QMetaObject.connectSlotsByName(self) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "加载中.."))
from itertools import islice from random import random import time import csv import os import numpy as np import matplotlib.pyplot as plt import pandas as pd import sys from matplotlib import interactive import datetime as dt import matplotlib.animation as animation from pylive import live_plotter interactive(True) from sklearn import preprocessing from sklearn.model_selection import train_test_split import seaborn as sns import matplotlib import config import timeSeries import DataStreamer as DS # the wrapper for the datastreamer ds = DS.DataStreamer() #update the graph def update_line(hl, new_data): hl.set_xdata(numpy.append(hl.get_xdata(), new_data)) hl.set_ydata(numpy.append(hl.get_ydata(), new_data)) plt.draw() def saveResults(data, filename=None): if filename == None: filename = time.strftime("%Y%m%d-%H%M%S") + '.csv' data.to_csv(config.resultsFilePath+filename, index=False) return filename # a better working implementation of the fit transform function available in the label encoder library. Adds in the features # I personally expected in it when I used it. #performs individual column label encoding. provides list of label encoders for reversing of the transformation at a later date. #copy is performed to not effect the original data passed in. #object only is the default state, set this to false to enable the label encode for all columns individually. def fit_transform_cols(data, object_only = True): if object_only == True: object_data = data.select_dtypes(include=['object']).copy() else: object_data = data.copy() # print(types.head()) output = pd.DataFrame(data).copy() le_list = {} for col in object_data: #print(np.sort(object_data[col].unique()) ) le = preprocessing.LabelEncoder() le.fit(object_data[col]) le_list[col] = le #print("classes of {} are:{}".format(col,np.sort(le.classes_))) output[col] = le.transform(object_data[col]) return output, le_list #reverses the fit_transform_cols. takes in the dataset and the dictionary of of the label encoders. # keys of the dictionary refer to the column names of the input dataframe that are to be transformed reversed. #can take single label encoder to run on entire dataframe. def transform_reverse_cols(data, le_list): output = data.copy() # if single label encoder is passed, use that for the entire dataframe. if isinstance(le_list,preprocessing.LabelEncoder): for col in output: output[col]= le_list.inverse_transform(output[col]) #print("classes of {} are:{}".format(key,np.sort(value.classes_))) else: output = pd.DataFrame(data).copy() for key, value in le_list.items(): print("value type:{}".format(type(value))) print("classes of {} are:{}".format(key,np.sort(value.classes_))) #print(key, type(value)) output[key]= value.inverse_transform(data[key]) return output def startDataStream(): count = 0 inputFile =[] labels =[] csv_start_time = time.monotonic() data = pd.read_csv(config.CSVfileName, header = config.HEADER, nrows = config.MAXROWS) labels = (data.iloc[:,41]) inputFile =data.drop([41], axis=1) le = preprocessing.LabelEncoder() le.fit(labels) print("classes of labels are:{}".format(le.classes_)) labels_encoded = le.transform(labels) inputFile, le_list = fit_transform_cols(inputFile) #inputFile = inputFile.apply(preprocessing.LabelEncoder().fit_transform) #print(inputFile) inputFile = inputFile.astype(str) inputFile = inputFile.values.tolist() labels = labels_encoded.astype(str) X_train, X_test, y_train, y_test = train_test_split(inputFile, labels, test_size=config.TESTSIZE, random_state=config.RANDOMSTATE) #print(type(labels)) labels = labels.tolist() if config.DEBUG: print("total set size:{}".format(len(inputFile))) print("train size: {}".format(len(X_train))) print("test size: {}".format(len(X_test))) start_time = time.monotonic() print("csv read in: {} seconds".format(start_time - csv_start_time)) #### defining the variable input rates #### ## pass through sin curve from 0 to 10. #vRate = np.linspace(0, 10, 1000) #vRate = np.sin(vRate) ## pass through cos curve from 0 to 10. #vRate = np.linspace(0, 10, 1000) #vRate = np.cos(vRate) ## pass through steady rate of 10 #vRate = 10 ## create line from 1 - 100 and then back to 1 #vRate=np.linspace(1,100,100) #vRate=np.append(vRate,np.linspace(100,1,100)) vRate=np.linspace(1,10,100) vRate = np.append(vRate, np.linspace(10,1,100)) vRate = np.append(vRate,np.linspace(1,10,100)) vRate = np.append(vRate,np.linspace(10,1,100)) vRate = np.append(vRate,np.linspace(1,10,100)) #vRate = np.append(vRate,np.linspace(10,1,100)) if config.DEBUG: print("vRate = {}".format(vRate)) ds.initialize(vRate) runStartTime = ds.process(X_train, y_train, X_test) #print("initReader: {} sent, {} recieved".format(len(inputFile),sent)) #print(cppProcess.checkComplete()) count =0 size = 100 x_vec = np.linspace(0,1,size+1)[0:-1] #y_vec = np.random.randn(len(x_vec)) #x_vec = np.zeros(shape=(1,1)) y_vec = np.zeros(shape=(100,1)) line1 = [] fig=plt.figure(figsize=(13,6)) while ds.checkComplete() != True: #print(ds.checkException()) #if config.DEBUG: # print('currently processed {} lines...\r'.format(ds.getResultsCount())) #y_vec[-1] = np.random.randn(1) y_vec[-1] = ds.getResultsCount() line1 = live_plotter(x_vec,y_vec,line1, figure=fig) y_vec = np.append(y_vec[1:],0.0) ## display results ## #results = cppProcess.getResults() ### Results ### results = ds.getResults() end_time = time.monotonic() print("results processed in: {} seconds".format(end_time - start_time)) print(type(results)) df_results = pd.DataFrame(results) #print(df_results.shape) #print(y_test.shape) # if the y_test array isn't full, initialize it to NAN values so it can be added to the output for consistency sake. if len(y_test) == 0: y_test = np.full(len(df_results.index), np.nan) df_results['label'] = y_test #print(df_results.head()) df_results = df_results.rename(columns={ df_results.columns[0]: "predicted",df_results.columns[1]: "readInTime",df_results.columns[2]: "processTime",df_results.columns[3]: "latency",df_results.columns[4]: "Label" }) #print("return results: {}".format(results)) print("return results: {} rows processed".format(len(df_results))) print(df_results.head()) print(DS.caclulateErr(df_results)) #print(DS.caclulateLatency(df_results, vRate)) fileName = saveResults(df_results) newVRate = DS.expandVRate(vRate, df_results) print(df_results.dtypes) DS.visualizeResults(newVRate, df_results, fileName) input() if __name__ == "__main__": startDataStream() print("program end!")
#brew install wxpython #sudo apt install linuxbrew-wrapper #sudo apt install python-pip #pip install SpeechRecognition #sudo apt-get install python-pyaudio python3-pyaudio #pip install --allow-unverified=pyaudio pyaudio #sudo apt-get install python-wxtools #sudo pip install pyttsx #sudo pip install wikipedia #IF MEMORYERROR = run as sudo pip --no-cache-dir install SpeechRecognition ''' Holmes: The Know-It-All Encyclopedia who will assist you in your search for knowledge. Copyright (c) 2017 Revekka Kostoeva ''' #Imports import wx import wikipedia import pyttsx import pyaudio import feedparser import random #Define engine for speech, set properties (rate, accent) engine = pyttsx.init() engine.setProperty('rate', 115) engine.setProperty('voice', "en-scottish") #List of RSS feeds for news sources newsurls = { 'googlenews': 'http://news.google.com/?output=rss', 'cnn': 'http://rss.cnn.com/rss/cnn_topstories.rss', 'wired': 'https://www.wired.com/feed/', 'scientific american': 'http://rss.sciam.com/sciam/biology' } #Fetch rss feed and return parsed RSS def parseRSS(rss_url): return feedparser.parse(rss_url) #Fetch RSS feed headlines (titles), return them as String def getHeadlines(rss_url): headlines = [] feed = parseRSS(rss_url) for newsitem in feed['items']: headlines.append(newsitem['title']) return headlines #Create frame (GUI) class MyFrame(wx.Frame): def __init__(self): #GUI Constructor wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size = wx.Size(450, 100), style = wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION | wx.CLOSE_BOX | wx.CLIP_CHILDREN, title = "Holmes") panel = wx.Panel(self) my_sizer = wx.BoxSizer(wx.VERTICAL) lbl = wx.StaticText(panel, label = "Hello. How may my superior mind assist you today?") my_sizer.Add(lbl, 0, wx.ALL, 5) self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400,30)) self.txt.SetFocus() self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter) my_sizer.Add(self.txt, 0, wx.ALL, 5) panel.SetSizer(my_sizer) self.Show() engine.say("Hello. How may my superior mind assist you today?") engine.runAndWait() #Define boolean variable self.beginning = True #List to hold all headlines self.allHeadlines = [] #Define function to invoke when the engine event fires def fire(word): print(word) #Define OnEnter click event def OnEnter(self, event): input = self.txt.GetValue() input = input.lower() self.txt.Clear() engine = pyttsx.init() engine.setProperty('rate', 120) engine.setProperty('voice', "en-scottish") if self.beginning == True: engine.runAndWait() self.beginning = False #Define engine for speech, set properties (rate, accent) if input == '': phrases = ["You look marvelous today", "Ahh, to be friends with a mind as superior as my own", "That was a curios incident", "They were the footprints of a gigantic hound!", "I make a point of never having any prejudices, and of following docilely where fact may lead me", "It is a capital mistake to theorize in advance of the facts. Insensibly one begins to twist facts to suit theories instead of theories to suit facts", "It is my business to know what other people do not know", "Scotland Yard feels lonely without me, and it causes an unhealthy excitement among the criminal classes", "No man lives or has ever lived who has brought the same amount of study and of natural talent to the detection of crime which I have done", "Never trust to general impressions, my boy, but concentrate yourself upon details", "The chief proof of man's real greatness lies in his perception of his own smallness", "There is nothing more stimulating than a case where everything goes against you", ] engine.say(random.choice(phrases)) return if "i am bored" in input or "suprise me" in input: phrases = ["When you have eliminated the impossible, whatever remains, however improbably, must be the truth", "There is no one who knows the higher criminal world of London so well as I do", "Boredom is only a state of mind and it is not permanent", "The world is full of obvious things which nobody by any chance ever observes", "I trust that age doth not wither nor custom stale my infinite variety", "The work is its own reward", "Mediocrity knows nothing higher than itself; but talent instantly recognizes genius", "Where there is no imagination there is no horror", "The game is afoot", "You say that we go round the sun. If we went round the moon it would not make a pennyworth of difference to me or to my work", ] engine.say(random.choice(phrases)) return if "hi" in input or "hello" in input: engine.say("Hello, dear") return elif "news" in input or "headlines" in input or "headline" in input: for key, url in newsurls.items(): self.allHeadlines.extend(getHeadlines(url)) for headline in self.allHeadlines: engine.say(headline) elif ("print" in input) and ("more" in input): input =input.replace("print", "") input =input.replace("more", "") print wikipedia.summary(input) elif "print" in input: input = input.replace('print', '') print wikipedia.summary(input, sentences = 2) elif "more" in input: input = input.replace("more", "") engine.say(wikipedia.summary(input)) elif ("who" in input or "what" in input) and ("more" in input) and ("print" in input): input = input.replace("print", "") input = input.replace("more", "") print wikipedia.summary(input) elif ("who" in input or "what" in input) and ("more" in input): input = input = input.split(' ') input = input = " ".join(input[2:]) engine.say(wikipedia.summary(input)) elif ("who" in input or "what" in input) and ("print" in input): input = input.replace("print", "") print wikipedia.summary(input, sentences = 2) elif "who" in input or "what" in input: input = input.split(' ') input = " ".join(input[2:]) engine.say(wikipedia.summary(input, sentences = 2)) else: engine.say(wikipedia.summary(input, sentences = 2)) #Main if __name__ == "__main__": app = wx.App(True) frame = MyFrame() app.MainLoop()
import hashlib from six.moves.urllib.request import urlopen # noqa from six.moves.urllib.parse import urlencode # noqa class Message: ''' @init ''' def __init__(self, message_configs): self.sign_type = 'normal' self.message_configs = message_configs self.signature = '' ''' @createSignature ''' def __create_signature(self, request): if self.sign_type == 'normal': self.signature = self.message_configs['appkey'] else: self.__build_signature(request) ''' @buildSignature ''' def __build_signature(self, request): appid = self.message_configs['appid'] appkey = self.message_configs['appkey'] para_keys = request.keys(); para_keys.sort() sign_str = '' for key in para_keys: sign_str += "%s=%s&"%(key,request[key]) sign_str = appid+appkey+sign_str[:-1]+appid+appkey if self.sign_type == 'md5': hash=hashlib.md5() hash.update(sign_str) self.signature = hash.hexdigest() elif self.sign_type == 'sha1': hash=hashlib.sha1() hash.update(sign_str) self.signature = hash.hexdigest() def __http_get(self,url): return eval(urlopen(url = url).read()) def __http_post(self, url, para): data = urlencode(para) resp = urlopen(url=url,data = data.encode()).read() return eval(resp) ''' @getTimestamp ''' def get_timestamp(self): api = 'https://api.submail.cn/service/timestamp.json' resp = self.__http_get(api) return resp['timestamp'] ''' @Send ''' def send(self,request): ''' @setup API httpRequest URI ''' api = 'https://api.submail.cn/message/send.json' ''' create final API post query Start ''' request['appid'] = self.message_configs['appid'] ''' @get timestamp from server ''' request['timestamp'] = self.get_timestamp() ''' @setup sign_type ''' sign_type_state = ['normal','md5','sha1'] if 'sign_type' not in self.message_configs: self.sign_type = 'normal' elif self.message_configs['sign_type'] not in sign_type_state: self.sign_type = 'normal' else: self.sign_type = self.mail_config['sign_type'] request['sign_type'] = self.mail_config['sign_type'] ''' @create signature ''' self.__create_signature(request) request['signature'] = self.signature ''' create final API post query End ''' ''' @send request ''' return self.__http_post(api, request) ''' @xsend ''' def xsend(self, request): ''' @setup API httpRequest URI ''' api = 'https://api.submail.cn/message/xsend.json' ''' create final API post query Start ''' request['appid'] = self.message_configs['appid'] ''' @get timestamp from server ''' request['timestamp'] = self.get_timestamp() ''' @setup sign_type ''' sign_type_state = ['normal','md5','sha1'] if 'sign_type' not in self.message_configs: self.sign_type = 'normal' elif self.message_configs['sign_type'] not in sign_type_state: self.sign_type = 'normal' else: self.sign_type = self.message_configs['sign_type'] request['sign_type'] = self.message_configs['sign_type'] ''' @create signature ''' self.__create_signature(request) request['signature'] = self.signature ''' create final API post query End ''' ''' @send request ''' return self.__http_post(api, request) ''' @addressbook/message/subscribe ''' def subscribe(self,request): ''' @setup API httpRequest URI ''' api='https://api.submail.cn/addressbook/message/subscribe.json' ''' create final API post query Start ''' request['appid'] = self.message_configs['appid'] ''' @get timestamp from server ''' request['timestamp'] = self.get_timestamp() ''' @setup sign_type ''' sign_type_state = ['normal','md5','sha1'] if 'sign_type' not in self.message_configs: self.sign_type = 'normal' elif self.message_configs['sign_type'] not in sign_type_state: self.sign_type = 'normal' else: self.sign_type = self.message_configs['sign_type'] request['sign_type'] = self.message_configs['sign_type'] ''' @create signature ''' self.__create_signature(request) request['signature'] = self.signature ''' create final API post query End ''' ''' @subscribe request ''' return self.__http_post(api, request) ''' @addressbook/message/unsubscribe ''' def unsubscribe(self,request): ''' @setup API httpRequest URI ''' api='https://api.submail.cn/addressbook/message/unsubscribe.json' ''' create final API post query Start ''' request['appid'] = self.message_configs['appid'] ''' @get timestamp from server ''' request['timestamp'] = self.get_timestamp() ''' @setup sign_type ''' sign_type_state = ['normal','md5','sha1'] if 'sign_type' not in self.message_configs: self.sign_type = 'normal' elif self.message_configs['sign_type'] not in sign_type_state: self.sign_type = 'normal' else: self.sign_type = self.message_configs['sign_type'] request['sign_type'] = self.message_configs['sign_type'] ''' @create signature ''' self.__create_signature(request) request['signature'] = self.signature ''' create final API post query End ''' ''' @unsubscribe request ''' return self.__http_post(api, request)
from __future__ import unicode_literals from . import ValidationTestCase from .models import ModelToValidate class TestModelsWithValidators(ValidationTestCase): def test_custom_validator_passes_for_correct_value(self): mtv = ModelToValidate(number=10, name='Some Name', f_with_custom_validator=42, f_with_iterable_of_validators=42) self.assertIsNone(mtv.full_clean()) def test_custom_validator_raises_error_for_incorrect_value(self): mtv = ModelToValidate(number=10, name='Some Name', f_with_custom_validator=12, f_with_iterable_of_validators=42) self.assertFailsValidation(mtv.full_clean, ['f_with_custom_validator']) self.assertFieldFailsValidationWithMessage( mtv.full_clean, 'f_with_custom_validator', ['This is not the answer to life, universe and everything!'] ) def test_field_validators_can_be_any_iterable(self): mtv = ModelToValidate(number=10, name='Some Name', f_with_custom_validator=42, f_with_iterable_of_validators=12) self.assertFailsValidation(mtv.full_clean, ['f_with_iterable_of_validators']) self.assertFieldFailsValidationWithMessage( mtv.full_clean, 'f_with_iterable_of_validators', ['This is not the answer to life, universe and everything!'] )
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PyQt5.QtCore import Qt from PyQt5.QtGui import QPen from src.Figure import Figure from utils import midpoint class LineSegment(Figure): def __init__(self, start_point=None, end_point=None, border_color=None): location = midpoint(start_point, end_point) Figure.__init__(self, location, border_color) self.start_point = start_point self.end_point = end_point @staticmethod def name(): return 'Segment' def render(self, qp): qp.setPen(self.get_pen()) qp.drawLine(self.get_start_point(), self.get_end_point()) def get_start_point(self): return self.start_point def set_start_point(self, value): self.start_point = value def get_end_point(self): return self.end_point def set_end_point(self, value): self.end_point = value
''' introduction to multi-threading with python ''' import threading, time def take_a_nap(): time.sleep(5) print('wake up!') print('start of program') thread_obj = threading.Thread(target=take_a_nap) thread_obj.start() print('end of program')
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from typing import List, Optional from io import BufferedIOBase from pathlib import Path from .exceptions import MissingEnv, CreateDirectoryException from redis import Redis from redis.exceptions import ConnectionError from datetime import datetime, timedelta import time from glob import glob import json import traceback from urllib.parse import urlparse from datetime import datetime, timedelta from bs4 import BeautifulSoup # type: ignore try: import cloudscraper # type: ignore HAS_CF = True except ImportError: HAS_CF = False def get_homedir() -> Path: if not os.environ.get('LOOKYLOO_HOME'): # Try to open a .env file in the home directory if it exists. if (Path(__file__).resolve().parent.parent / '.env').exists(): with (Path(__file__).resolve().parent.parent / '.env').open() as f: for line in f: key, value = line.strip().split('=', 1) if value[0] in ['"', "'"]: value = value[1:-1] os.environ[key] = value if not os.environ.get('LOOKYLOO_HOME'): guessed_home = Path(__file__).resolve().parent.parent raise MissingEnv(f"LOOKYLOO_HOME is missing. \ Run the following command (assuming you run the code from the clonned repository):\ export LOOKYLOO_HOME='{guessed_home}'") return Path(os.environ['LOOKYLOO_HOME']) def safe_create_dir(to_create: Path): if to_create.exists() and not to_create.is_dir(): raise CreateDirectoryException(f'The path {to_create} already exists and is not a directory') os.makedirs(to_create, exist_ok=True) def set_running(name: str) -> None: r = Redis(unix_socket_path=get_socket_path('cache'), db=1, decode_responses=True) r.hset('running', name, 1) def unset_running(name: str) -> None: r = Redis(unix_socket_path=get_socket_path('cache'), db=1, decode_responses=True) r.hdel('running', name) def is_running() -> dict: r = Redis(unix_socket_path=get_socket_path('cache'), db=1, decode_responses=True) return r.hgetall('running') def get_socket_path(name: str) -> str: mapping = { 'cache': Path('cache', 'cache.sock'), 'storage': Path('storage', 'storage.sock'), } return str(get_homedir() / mapping[name]) def check_running(name: str) -> bool: socket_path = get_socket_path(name) try: r = Redis(unix_socket_path=socket_path) return True if r.ping() else False except ConnectionError: return False def shutdown_requested() -> bool: try: r = Redis(unix_socket_path=get_socket_path('cache'), db=1, decode_responses=True) return True if r.exists('shutdown') else False except ConnectionRefusedError: return True except ConnectionError: return True def long_sleep(sleep_in_sec: int, shutdown_check: int=10) -> bool: if shutdown_check > sleep_in_sec: shutdown_check = sleep_in_sec sleep_until = datetime.now() + timedelta(seconds=sleep_in_sec) while sleep_until > datetime.now(): time.sleep(shutdown_check) if shutdown_requested(): return False return True def update_user_agents(): if not HAS_CF: # The website with the UAs is behind Cloudflare's anti-bot page, we need cloudscraper return today = datetime.now() ua_path = get_homedir() / 'user_agents' / str(today.year) / f'{today.month:02}' safe_create_dir(ua_path) ua_file_name = ua_path / f'{today.date().isoformat()}.json' if ua_file_name.exists(): # Already have a UA for that day. return try: s = cloudscraper.create_scraper() r = s.get('https://techblog.willshouse.com/2012/01/03/most-common-user-agents/') except Exception as e: traceback.print_exc() return soup = BeautifulSoup(r.text, 'html.parser') uas = soup.find_all('textarea')[1].text to_store = {'by_frequency': []} for ua in json.loads(uas): os = ua['system'].split(' ')[-1] if os not in to_store: to_store[os] = {} browser = ' '.join(ua['system'].split(' ')[:-1]) if browser not in to_store[os]: to_store[os][browser] = [] to_store[os][browser].append(ua['useragent']) to_store['by_frequency'].append({'os': os, 'browser': browser, 'useragent': ua['useragent']}) with open(ua_file_name, 'w') as f: json.dump(to_store, f, indent=2) def get_user_agents() -> dict: ua_files_path = str(get_homedir() / 'user_agents' / '*' / '*' / '*.json') paths = sorted(glob(ua_files_path), reverse=True) if not paths: update_user_agents() paths = sorted(glob(ua_files_path), reverse=True) with open(paths[0]) as f: return json.load(f) def load_cookies(cookie_pseudofile: Optional[BufferedIOBase]=None) -> List[dict]: if cookie_pseudofile: cookies = json.load(cookie_pseudofile) else: if not (get_homedir() / 'cookies.json').exists(): return [] with (get_homedir() / 'cookies.json').open() as f: cookies = json.load(f) to_return = [] try: for cookie in cookies: u = urlparse(cookie['Host raw']).netloc.split(':', 1)[0] to_add = {'path': cookie['Path raw'], 'name': cookie['Name raw'], 'httpOnly': cookie['HTTP only raw'] == 'true', 'secure': cookie['Send for'] == 'Encrypted connections only', 'expires': (datetime.now() + timedelta(days=10)).strftime('%Y-%m-%dT%H:%M:%S') + 'Z', 'domain': u, 'value': cookie['Content raw'] } to_return.append(to_add) except Exception as e: print(f'Unable to load the cookie file: {e}') return to_return
# Copyright 2017 Conchylicultor. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Image preprocessing utilities """ import tensorflow as tf def center_scale(img): # Finally, rescale to [-1,1] instead of [0, 1) with tf.name_scope('center_scale'): img = img - 0.5 img = img * 2.0 # The centered scaled image is directly compatible with tf.summary return img def _img_transformation(self, img): """ Apply some random transformations to the tensor image. Use the same transformations that the official inception code Warning: The input image should range from [0-1] Return the new image """ with tf.name_scope('image_transform'): # TODO: If modifying the orientation, also need to modify the labels accordingly #img = tf.image.random_flip_left_right(img) #img = tf.image.random_flip_up_down(img) choice = tf.random_uniform(shape=(), minval=0, maxval=2, dtype=tf.int32) # Generate a number inside [0,1] choice = tf.cast(choice, tf.bool) brightness = functools.partial(tf.image.random_brightness, max_delta=32/255) # imgnet: 32. / 255. ? Ciffar: 63 TODO: Tune contrast = functools.partial(tf.image.random_contrast, lower=0.5, upper=1.5) # imgnet: lower=0.5, upper=1.5 #hue = functools.partial(tf.image.random_hue, max_delta=0.2) saturation = functools.partial(tf.image.random_saturation, lower=0.5, upper=1.5) choices = [ [brightness, saturation, contrast], [brightness, contrast, saturation], ] def transform(input_img, n=None): for fct in choices[n]: input_img = fct(input_img) return input_img # Randomly apply transform order 1 or 2 transform1 = functools.partial(transform, img, n=0) transform2 = functools.partial(transform, img, n=1) img = tf.cond(choice, transform1, transform2) # The random_* ops do not necessarily clamp. img = tf.clip_by_value(img, 0.0, 1.0) return img def get_t_jpg(filename, preprocessing=None): """ Return a float tensor image in range [-1.0 ; 1.0] preprocessing is a transformation function Preprocessing is done with float32 images in range [0.0, 1.0] """ # TODO: Difference between tf.read_file() and tf.WholeFileReader() ? # TODO: Add summary ? t_image = tf.read_file(filename) t_image = tf.image.decode_jpeg(t_image, channels=3) # [0-255], RGB t_image = tf.image.convert_image_dtype(t_image, dtype=tf.float32) # Range: [0-1] # Should normalize images ? How to compute mean-std on the # training set (randomly sample 10000 images from the training set # Would this bias the result ? Should we just perform a simple # linear scaling), use per_image_standardization ? # tf code for inception only call convert_image_dtype and at the end ( # after image preprocessing, scale to [-1.0;1.0]) if preprocessing is not None: t_image = preprocessing(t_image) t_image = center_scale(t_image) # Finally, rescale to [-1,1] instead of [0, 1) return t_image
import os import requests import unittest from riptide.engine import loader as riptide_engine_loader from riptide.tests.integration.project_loader import load from riptide.tests.integration.testcase_engine import EngineTest class EngineStartStopTest(EngineTest): def test_engine_loading(self): for project_ctx in load(self, ['integration_all.yml', 'integration_some.yml', 'integration_no_command.yml', 'integration_no_service.yml'], ['.']): with project_ctx as loaded: loaded_engine = riptide_engine_loader.load_engine(loaded.engine_name) self.assertIsInstance(loaded_engine, loaded.engine.__class__, 'The engine loader has to return the correct AbstractEngine instance of the engine') def test_start_stop(self): pass # XXX: PyCharm has a problem with docstrings in tests with subtests """Full start/stop check for all different scenarios""" for project_ctx in load(self, ['integration_all.yml', 'integration_no_command.yml', 'integration_no_service.yml'], ['.', 'src']): with project_ctx as loaded: project = loaded.config["project"] services = project["app"]["services"].keys() if "services" in project["app"] else [] # Create src folder os.makedirs(os.path.join(loaded.temp_dir, loaded.src), exist_ok=True) # START self.run_start_test(loaded.engine, project, services, loaded.engine_tester) # STOP self.run_stop_test(loaded.engine, project, services, loaded.engine_tester) def test_start_stop_subset(self): pass # XXX: PyCharm has a problem with docstrings in tests with subtests """Start some services, stop some again, assert that the rest is still running and then stop the rest.""" for project_ctx in load(self, ['integration_all.yml'], ['.']): with project_ctx as loaded: project = loaded.config["project"] services_to_start_first = ["simple", "simple_with_src", "custom_command", "configs"] services_to_stop_first = ["custom_command", "simple_with_src"] still_running_after_first = ["configs", "simple"] services_to_start_end = project["app"]["services"].keys() if "services" in project["app"] else [] # Create src folder os.makedirs(os.path.join(loaded.temp_dir, loaded.src), exist_ok=True) # START first self.run_start_test(loaded.engine, project, services_to_start_first, loaded.engine_tester) # STOP first self.run_stop_test(loaded.engine, project, services_to_stop_first, loaded.engine_tester) # Assert the rest is still running self.assert_running(loaded.engine, project, still_running_after_first, loaded.engine_tester) # START end self.run_start_test(loaded.engine, project, services_to_start_end, loaded.engine_tester) # STOP end self.run_stop_test(loaded.engine, project, services_to_start_end, loaded.engine_tester) def test_simple_result(self): pass # XXX: PyCharm has a problem with docstrings in tests with subtests """Starts only the simple test service and checks it's http response""" for project_ctx in load(self, ['integration_all.yml'], ['.']): with project_ctx as loaded: project = loaded.config["project"] services = ["simple"] # START self.run_start_test(loaded.engine, project, services, loaded.engine_tester) # Check response self.assert_response(b'hello riptide\n', loaded.engine, project, "simple") # STOP self.run_stop_test(loaded.engine, project, services, loaded.engine_tester)
#!/usr/bin/python import random import sys import time def overlap(start1, end1, start2, end2): # using this routine to check if two lines overlap. Essential if they # intersect and are on the same row (horizontal) or column (vertical) # then they overlap return (end1 >= start2) and (end2 >= start1) def coord(): # auto generate random coordinates, length and function # function means horizontal, vertical or diagonal number search x = random.randint(0,16) # row y = random.randint(0,16) # column f = random.randint(1,3) # function l = random.randint(5,9) # length if f == 1: # horizontal mode if (y+l >= 17): d = 2 elif (y-l < 0): d = 1 else: d = random.randint(1,2) elif f == 2: # vertical mode if (x+l >= 17): d = 2 elif (x-l < 0): d = 1 else: d = random.randint(1,2) elif f == 3: # diagonal mode if (x+l >= 17) and (y-l < 0): # need to search up-right d = 1 elif (x+l >= 17) and (y+l >= 17): # need to search up-left d = 2 elif (x-l < 0) and (y-l < 0): # need to search down-right d = 3 elif (x-l < 0) and (y+l >= 17): # need to search down-left d = 4 elif (x+l <= 16 and x-l >=0) and (y-l < 0): d = random.choice([1,3]) elif (x+l <= 16 and x-l >=0) and (y+l >= 17): d = random.choice([2,4]) elif (x-l < 0) and (y+l <= 16 and y-l >=0): d = random.choice([3,4]) elif (x+l >= 17) and (y+l <= 16 and y-l >=0): d = random.choice([1,2]) else: d = random.randint(1,4) else: pass return x,y,f,l,d def find_numb(m,x,y,f,l,d): # this routine finds the number search in the matrix and returns that number # based on d we know either horizontal, vertical, or diagonal # print ("%s %s %s %s %s" % (x,y,f,l,d)) n=[] for i in range (l): if f == 1 and d == 1: # horizontal mode n.append(m[x][y+i]) # right if f == 1 and d == 2: n.append(m[x][y-i]) # left if f == 2 and d == 1: # vertical mode n.append(m[x+i][y]) # down if f == 2 and d == 2: n.append(m[x-i][y]) # up if f == 3 and d == 1: # diagonal mode n.append(m[x-i][y+i]) # up-right elif f == 3 and d == 2: n.append(m[x-i][y-i]) # up-left elif f == 3 and d == 3: n.append(m[x+i][y+i]) # down-right elif f == 3 and d == 4: n.append(m[x+i][y-i]) # dowb-left else: pass return n # html_file is the output html file html_file = "number_search_puzzle.html" matrix, result, dup_list, items, numb =([] for i in range (5)) hd1,hd2,vd1,vd2,dd1,dd2,dd3,dd4=([] for i in range(8)) matrix_puzz="" numbers_puzz="" position_from_top = 80 # for display in the html file. regen_coord = 1 number_of_puzzles = 1 if len(sys.argv) > 1: number_of_puzzles = sys.argv[1] # the html_content string html_content = """<HTML> <!doctype html public "-//w3c//dtd html 3.2//en"> <head> <style> .container { width: 800px; position: relative; } .left-element { display: inline-block; position: relative; outline: #2eb7ed solid medium; padding: 10px; font-family: arial; font-weight: bold; font-size: 25; letter-spacing: 4px; left: 20; top: 40; margin-left: 20px; } .left_under { display: inline-block; position: absolute; font-family: arial; font-weight: bold; padding-top: 570px; vertical-align: middle; font-size: 15; left: 230; } .right-element { display: inline-block; position: absolute; font-family: arial; font-weight: bold; font-size: 25; letter-spacing: 4px; right: 0; } .pagebreak { page-break-after: always; position: relative; } </style> </head> <body bgcolor="ffffff" text="000000" link="0000ff" vlink="800080" alink="ff0000"> """ for repeat in range (int(number_of_puzzles)): # Need to produce the number matrix. Below implemented as 17x17 for y in range (17): row=[] for x in range (17): row.append(random.randint(0,9)) matrix.append(row) # Next part takes each line from them matrix, saves to a variable and then adds to the html # file using the variable html_content. This probably can be combined with the loop that produced # the matrix list. But decided to keep it separate to keep it easier to understand html_content += """<div class="container"> <div class="left-element"> """ for n in range (17): matrix_puzz = " ".join([str(x) for x in matrix[n]]) #html_content += """<div1>""" html_content += matrix_puzz html_content += """<br>""" html_content += """</div>""" html_content += """<div class="left_under">""" html_content += """Puzzle Number: """ html_content += str(repeat+1) html_content += """</div>""" #position_from_top += 29 # Next part creates multiple random coordinates to look for the numbers in the puzzle html_content += """<div class="right-element"> """ # pos_from_top_numbers = 80 # need to reinit the position from top for the numbers # displayed on the right side of the puzzle # The next part is generating 21 numbers. ie numbers to search. for p in range (21): row, column, func, length, direction = coord() while (regen_coord): # Need to look for overlapping numbers in the puzzle. Lists hd1, hd2, # vd1, vd2, and dd1-4 act as history buffer to compare against if (func == 1 and direction == 1): #right if hd1 and not dup_list: dup_list = [items for items in hd1 if ((overlap (items[1], (items[1]+items[2]), column, (column+length)) and (items[0] == row)))] if hd2 and not dup_list: dup_list = [items for items in hd2 if ((overlap ((items[1]-items[2]), items[1], column, (column+length)) and (items[0] == row)))] elif (func == 1 and direction == 2): # left if hd2 and not dup_list: dup_list = [items for items in hd2 if ((overlap ((items[1]-items[2]), items[1], (column-length), column) and (items[0] == row)))] if hd1 and not dup_list: dup_list = [items for items in hd1 if ((overlap (items[1], (items[1]+items[2]), (column-length), column) and (items[0] == row)))] elif (func == 2 and direction == 1): # down if vd1 and not dup_list: dup_list = [items for items in vd1 if ((overlap (items[0], (items[0]+items[2]), row, (row+length)) and (items[1] == column)))] if vd2 and not dup_list: dup_list = [items for items in vd2 if ((overlap ((items[0]-items[2]), items[0], row, (row+length)) and (items[1] == column)))] elif (func == 2 and direction == 2): # up if vd2 and not dup_list: dup_list = [items for items in vd2 if ((overlap ((items[0]-items[2]), items[0], (row-length), row) and (items[1] == column)))] if vd1 and not dup_list: dup_list = [items for items in vd1 if ((overlap (items[0], (items[0]+items[2]), (row-length), row) and (items[1] == column)))] elif (func == 3 and (direction == 1 or direction == 4)): # up-right or dup_list = [items for items in dd1 if # down-left (((items[0]+items[1]) == (row+column)) and dd1)] if not dup_list: dup_list = [items for items in dd4 if (((items[0]+items[1]) == (row+column)) and dd4)] elif (func == 3 and (direction == 2 or direction == 3)): # up-left or dup_list = [items for items in dd2 if # down-right (((items[0]-items[1]) == (row-column)) and dd2)] if not dup_list: dup_list = [items for items in dd3 if (((items[0]-items[1]) == (row-column)) and dd3)] if not dup_list: result = [row, column, length] if (func == 1 and direction == 1): hd1.append(result) elif (func == 1 and direction == 2): hd2.append(result) elif (func == 2 and direction == 1): vd1.append(result) elif (func == 2 and direction == 2): vd2.append(result) elif (func == 3 and direction == 1): dd1.append(result) elif (func == 3 and direction == 2): dd2.append(result) elif (func == 3 and direction == 3): dd3.append(result) elif (func == 3 and direction == 4): dd4.append(result) regen_coord = 0 elif dup_list: # print dup_list row, column, func, length, direction = coord() #print "dedup" del dup_list[:] regen_coord = 1 # Now that we have the random coordinates we pass that to the routine to generate # the actual number numb=find_numb(matrix,row,column,func,length,direction) # option to print the coordinates of each number in the matrix... #print ("row=%s, column=%s, func=%s, length=%s, direction=%s" % (row+1, column+1, # func, length, direction)) numbers_puzz = "".join([str(x) for x in numb]) # we get the number back from the routine then append to the html file we will write # at the end #html_content += """<DIV style="display:inline-block Right; font-family: arial; font-style: italic; # font-variant:small-caps; font-weight:bold;letter-spacing: 4px; font-size:25; # width: 250px; left: 650px; height: 25px">""" html_content += """<span>""" html_content += numbers_puzz html_content += """</span>""" html_content += """<br>""" html_content += """</div>""" #position_from_top += 29 if number_of_puzzles > 1: html_content += """ <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <br> <div class="pagebreak"> </div> """ y = 0 matrix = [] #time.sleep(0.5) hd1,hd2,vd1,vd2,dd1,dd2,dd3,dd4=([] for i in range(8)) # Now complete the trailing part of the html file html_content += """ </body> </html> """ # write to the html and properly close it out_file = open(html_file, "w") out_file.write(html_content) out_file.close()
from bs4 import BeautifulSoup as bs import pandas as pd from splinter import Browser from splinter.exceptions import ElementDoesNotExist import time import re import ast import seaborn as sns import matplotlib.pyplot as plt import matplotlib import datetime matplotlib.use('Agg') def init_browser(): """start chrome browser """ executable_path = {'executable_path': '/usr/local/bin/chromedriver'} return Browser('chrome', **executable_path, headless=True) def visit_browser(url:str): """use splinter to visit browser """ browser = init_browser() try: browser.visit(url) time.sleep(2) html = browser.html soup = bs(html, "html5lib") except: print("Error in visiting the page----") return soup def scrape_cards_info(html_str:str, name:str, html_tag:str, html_class:str, order_num:int): """scrape homecard information """ if name in ["beds","baths","area"]: try: output = html_str.find(html_tag,html_class).find_all("div","stats")[order_num].text except: print(f"error in finding {name} variable-------") output = "" elif name in ["link"]: output = html_str.a["href"] elif name in ["price"]: try: output = html_str.find(html_tag, html_class).text except: output = "" print(f"error in finding {name} variable------") else: try: output = html_str.find(html_tag,html_class).span.text except: output = "" print(f"error in finding {name} variable------") return output def scraper(): """scrape redfin hourse information """ # define url and visit main_url = "https://www.redfin.com/county/321/CA/Los-Angeles-County" soup = visit_browser(main_url) # find out number of pages last_page = int(soup.find_all("div","PagingControls")[0].find_all("a")[-1].text) homecard_list = [] for i in range(last_page): url = f"https://www.redfin.com/county/321/CA/Los-Angeles-County/Page-{i+1}" # visit each page soup = visit_browser(url) # find out number of cards homecards = soup.find_all("div","bottomV2") # loop thought each homecard for homecard in homecards: sub_dict= {} # store values into sub_dict sub_dict["beds"] = scrape_cards_info(homecard, "beds","div","HomeStatsV2",0) sub_dict["baths"] = scrape_cards_info(homecard, "baths","div","HomeStatsV2",1) sub_dict["area"] = scrape_cards_info(homecard, "area","div","HomeStatsV2",2) sub_dict["price"] = scrape_cards_info(homecard, "price","span","homecardV2Price",1) sub_dict["address"] = scrape_cards_info(homecard, "address","div","homeAddressV2",1) sub_dict["link"] = "https://www.redfin.com"+scrape_cards_info(homecard, "link","","",1) sub_dict["time"] = datetime.datetime.utcnow() try: sub_dict["city"] = ast.literal_eval(homecard.find_all("script")[0].text)[0]["address"]["addressLocality"].strip() except: sub_dict["city"] = "No Information Available" # append dict to list homecard_list.append(sub_dict) return homecard_list def data_cleaner(list_of_dict)->pd.core.frame.DataFrame: """takes input from scraper function convert list of dict into dataframe and clean up. """ dataframe = pd.DataFrame(columns = ["beds","baths","area","price","address", "link","city","time"], data = list_of_dict) # clean up data dataframe["beds"] = [re.split("\s", bed)[0] if re.split("\s", bed)[0].isnumeric() else "" for bed in dataframe["beds"]] dataframe["baths"] = [re.split("\s", bed)[0] if re.split("\s", bed)[0].isnumeric() else "" for bed in dataframe["baths"]] dataframe["price"] = [int(p.replace("$","").replace(",","")) for p in dataframe["price"]] # dataframe["area"] = [re.split("\s", a)[0].replace(",","") for a in dataframe["area"]] dataframe = dataframe.sort_values("city",ascending = False) return dataframe def summary(dataframe)->dict: """summarize dataframe from scraper function """ summary_info = {} summary_info["avg_price"] = "${:,.0f}".format(round(dataframe["price"].describe()[1],0)) # average price summary_info["median_price"] = "${:,.0f}".format(round(dataframe["price"].describe()[5],0)) # median price summary_info["max_price"] = "${:,.0f}".format(round(dataframe["price"].describe()[-1],0)) # max price summary_info["html_table"] = dataframe.to_html(index=False) return summary_info def plot_data(dataframe)->None: """export a png plot """ pt = dataframe.groupby("city").agg(price = ("price","median")).sort_values("price", ascending = False).reset_index() plt.figure(figsize= (20,25)) plt.title("Median House Price In LA County Area", fontsize = 30) plot = sns.barplot(x = "price", y = "city", data = pt) plot_figure = plot.get_figure() plot_figure.savefig("static/plot.png") return None
""" codeeval.py A utility for setting up codeeval challenges. Usage: codeeval.py <challenge index> """ import sys import requests import os from bs4 import BeautifulSoup URL = "https://www.codeeval.com/browse/{}/".format index = sys.argv[1] FILE_CONTENTS = """\"\"\" {url} {title} Challenge Description: {challenge} Input Sample: {input_desc} Output Sample: {output_desc} \"\"\" """ INPUT_CONTENTS = """ ###### IO Boilerplate ###### import sys if len(sys.argv) < 2: input_file_name = "{}" else: input_file_name = sys.argv[1] with open(input_file_name) as input_file: input_lines = map(lambda x: x.strip(), filter(lambda x: x != '', input_file.readlines())) ###### /IO Boilerplate ###### """ DEFAULT_CODE = """ def main(): pass if __name__ == '__main__': main() """ def format_example(ex): output = "" for line in ex.split('\n'): output += "\n {}".format(line) output += "\n" return output def main(): os.chdir('challenges') generated_url = URL(index) request = requests.get(generated_url) soup = BeautifulSoup(request.text) content = soup.find(id='requisition') tags = content.find_all(['p', 'pre']) def pop_tag(tags): return tags.pop(0).text description = pop_tag(tags) input_desc = pop_tag(tags) input_ex = "" if tags[0].name == "pre": input_ex = pop_tag(tags) input_desc += format_example(input_ex) output_desc = pop_tag(tags) if tags[0].name == "pre": output_desc += format_example(pop_tag(tags)) title = content.h2.text stripped_name = title.strip().lower().replace(' ', '') files = os.listdir('.') valid_files = [] for fname in files: try: fname_prefix = fname[:fname.index('-')] except ValueError: continue if fname_prefix.isdigit(): valid_files.append(int(fname_prefix)) prefix = max(valid_files) + 1 prefix = str(prefix).zfill(3) file_name = "{}-{}.py".format(prefix, stripped_name) if input_ex: input_ex_file_name = "{}-{}-in.txt".format(prefix, stripped_name) with open(file_name, 'w') as open_file: open_file.write(FILE_CONTENTS.format(url=generated_url, title=title, challenge=description, input_desc=input_desc, output_desc=output_desc)) if input_ex: open_file.write(INPUT_CONTENTS.format(input_ex_file_name)) open_file.write(DEFAULT_CODE) if input_ex: with open(input_ex_file_name, 'w') as input_file: input_file.write(input_ex.strip()) if __name__ == '__main__': main()
from setuptools import find_packages, setup with open("./README.md") as readme_file: readme = readme_file.read() with open("./requirements.txt") as req_file: requirements = req_file.read() setup( name='qubot', version='0.0.13', python_requires=">=3.7", packages=find_packages(exclude=["tests", "examples", "docs"]), url='https://github.com/anthonykrivonos/qubot', include_package_data=True, license='MIT', author='anthonykrivonos, kenkenchuen', author_email='[email protected], [email protected]', description='Qubot automated testing framework.', install_requires=requirements, setup_requires=[], long_description=readme, long_description_content_type="text/markdown", zip_safe=False, entry_points={ "console_scripts": [ "qubot=qubot.main:main" ] } )
# coding: utf-8 """ Wavefront REST API Documentation <p>The Wavefront REST API enables you to interact with Wavefront servers using standard REST API tools. You can use the REST API to automate commonly executed operations such as automatically tagging sources.</p><p>When you make REST API calls outside the Wavefront REST API documentation you must add the header \"Authorization: Bearer &lt;&lt;API-TOKEN&gt;&gt;\" to your HTTP requests.</p> # noqa: E501 OpenAPI spec version: v2 Contact: [email protected] Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from wavefront_api_client.configuration import Configuration class Module(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'annotations': 'list[Annotation]', 'class_loader': 'ClassLoader', 'declared_annotations': 'list[Annotation]', 'descriptor': 'ModuleDescriptor', 'layer': 'ModuleLayer', 'name': 'str', 'named': 'bool', 'packages': 'list[str]' } attribute_map = { 'annotations': 'annotations', 'class_loader': 'classLoader', 'declared_annotations': 'declaredAnnotations', 'descriptor': 'descriptor', 'layer': 'layer', 'name': 'name', 'named': 'named', 'packages': 'packages' } def __init__(self, annotations=None, class_loader=None, declared_annotations=None, descriptor=None, layer=None, name=None, named=None, packages=None, _configuration=None): # noqa: E501 """Module - a model defined in Swagger""" # noqa: E501 if _configuration is None: _configuration = Configuration() self._configuration = _configuration self._annotations = None self._class_loader = None self._declared_annotations = None self._descriptor = None self._layer = None self._name = None self._named = None self._packages = None self.discriminator = None if annotations is not None: self.annotations = annotations if class_loader is not None: self.class_loader = class_loader if declared_annotations is not None: self.declared_annotations = declared_annotations if descriptor is not None: self.descriptor = descriptor if layer is not None: self.layer = layer if name is not None: self.name = name if named is not None: self.named = named if packages is not None: self.packages = packages @property def annotations(self): """Gets the annotations of this Module. # noqa: E501 :return: The annotations of this Module. # noqa: E501 :rtype: list[Annotation] """ return self._annotations @annotations.setter def annotations(self, annotations): """Sets the annotations of this Module. :param annotations: The annotations of this Module. # noqa: E501 :type: list[Annotation] """ self._annotations = annotations @property def class_loader(self): """Gets the class_loader of this Module. # noqa: E501 :return: The class_loader of this Module. # noqa: E501 :rtype: ClassLoader """ return self._class_loader @class_loader.setter def class_loader(self, class_loader): """Sets the class_loader of this Module. :param class_loader: The class_loader of this Module. # noqa: E501 :type: ClassLoader """ self._class_loader = class_loader @property def declared_annotations(self): """Gets the declared_annotations of this Module. # noqa: E501 :return: The declared_annotations of this Module. # noqa: E501 :rtype: list[Annotation] """ return self._declared_annotations @declared_annotations.setter def declared_annotations(self, declared_annotations): """Sets the declared_annotations of this Module. :param declared_annotations: The declared_annotations of this Module. # noqa: E501 :type: list[Annotation] """ self._declared_annotations = declared_annotations @property def descriptor(self): """Gets the descriptor of this Module. # noqa: E501 :return: The descriptor of this Module. # noqa: E501 :rtype: ModuleDescriptor """ return self._descriptor @descriptor.setter def descriptor(self, descriptor): """Sets the descriptor of this Module. :param descriptor: The descriptor of this Module. # noqa: E501 :type: ModuleDescriptor """ self._descriptor = descriptor @property def layer(self): """Gets the layer of this Module. # noqa: E501 :return: The layer of this Module. # noqa: E501 :rtype: ModuleLayer """ return self._layer @layer.setter def layer(self, layer): """Sets the layer of this Module. :param layer: The layer of this Module. # noqa: E501 :type: ModuleLayer """ self._layer = layer @property def name(self): """Gets the name of this Module. # noqa: E501 :return: The name of this Module. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this Module. :param name: The name of this Module. # noqa: E501 :type: str """ self._name = name @property def named(self): """Gets the named of this Module. # noqa: E501 :return: The named of this Module. # noqa: E501 :rtype: bool """ return self._named @named.setter def named(self, named): """Sets the named of this Module. :param named: The named of this Module. # noqa: E501 :type: bool """ self._named = named @property def packages(self): """Gets the packages of this Module. # noqa: E501 :return: The packages of this Module. # noqa: E501 :rtype: list[str] """ return self._packages @packages.setter def packages(self, packages): """Sets the packages of this Module. :param packages: The packages of this Module. # noqa: E501 :type: list[str] """ self._packages = packages def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(Module, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Module): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, Module): return True return self.to_dict() != other.to_dict()
class BaseRetryStorage(object): """Plugable interface for retry queue storage""" fields = ['operation', 'target_host', 'source_host', 'filename'] def count(self): """Returs total retry count""" raise NotImplementedError def all(self): """Returns all retries in queue""" raise NotImplementedError def create(self, **kwargs): """Creates new retry object in queue""" raise NotImplementedError def delete(self, retry): """Deletes given retry object from queue""" raise NotImplementedError def filter_by_filename(self, filename): """Returns retry objects for given file name""" raise NotImplementedError
from __future__ import unicode_literals # Django from django.contrib import admin from django.contrib.auth import get_user_model from django.contrib.auth.admin import UserAdmin as DjangoUserAdmin # 3rd Party from grapevine.admin.base import BaseModelAdmin, SendableInline from grapevine.emails.admin import EmailableAdminMixin # Local Apps from .models import WelcomeEmail class WelcomeEmailInline(SendableInline): model = WelcomeEmail class UserAdmin(DjangoUserAdmin): inlines = [WelcomeEmailInline] class WelcomeEmailAdmin(EmailableAdminMixin, BaseModelAdmin): raw_id_fields = ["user"] list_display = ["id", "user", "admin_message"] PREVIEW_HEIGHT = 200 fieldsets = ( ('Main', {"fields": ("user",)},), ('Message', {"fields": ("admin_message", "scheduled_send_time",)},), ) admin.site.unregister(get_user_model()) admin.site.register(get_user_model(), UserAdmin) admin.site.register(WelcomeEmail, WelcomeEmailAdmin)
import discum bot = discum.Client(token="ur token") @bot.gateway.command def example(resp): if resp.raw[ "t"] == "MESSAGE_CREATE": # if you want to play with the raw response print("Detected a message") bot.gateway.removeCommand( example ) # this works because bot.gateway.command returns the inputted function after adding the function to the command list bot.gateway.run(auto_reconnect=True)
import unittest import numpy as np import galsim from desc.imsim.atmPSF import AtmosphericPSF class AtmPSF(unittest.TestCase): def test_r0_500(self): """Test that inversion of the Tokovinin fitting formula for r0_500 works.""" np.random.seed(57721) for _ in range(100): airmass = np.random.uniform(1.001, 1.5) rawSeeing = np.random.uniform(0.5, 1.5) band = 'ugrizy'[np.random.randint(6)] rng = galsim.BaseDeviate(np.random.randint(2**32)) atmPSF = AtmosphericPSF(airmass, rawSeeing, band, rng, screen_size=6.4) wlen = dict(u=365.49, g=480.03, r=622.20, i=754.06, z=868.21, y=991.66)[band] targetFWHM = rawSeeing * airmass**0.6 * (wlen/500)**(-0.3) r0_500 = atmPSF.atm.r0_500_effective L0 = atmPSF.atm[0].L0 vkFWHM = AtmosphericPSF._vkSeeing(r0_500, wlen, L0) np.testing.assert_allclose(targetFWHM, vkFWHM, atol=1e-3, rtol=0) if __name__ == '__main__': unittest.main()
# DESAFIO - 005 - ANTECESSOR E SUCESSOR: # Escreva um código em que peça um número ao usuário e retorne esse número # mais o seu antecessor e seu sucessor: numero = int(input("Digite um número: ")) antecessor = numero - 1 sucessor = numero + 1 print(f"Você digitou {numero} , seu antecessor é {antecessor} e seu sucessor é {sucessor} ! ") n = int(input("Digite um número: ")) print(f"Você digitou {n} , seu antecessor é {n - 1} e seu sucessor é {n + 1} ! ")
input = """ p(X) | -p(Y) :- a(X,Y). a(1,2). a(2,1). """ output = """ p(X) | -p(Y) :- a(X,Y). a(1,2). a(2,1). """
# -*- coding: utf-8 -*- """IPv6 Destination Options and Hop-by-Hop Options""" import collections import csv import re from pcapkit.vendor.default import Vendor __all__ = ['Option'] #: IPv6 option registry. DATA = { # [RFC 8200] 0 0x00: ('pad', 'Pad1'), 0x01: ('padn', 'PadN'), # [RFC 8200] # [RFC 2473] 1 0x04: ('tun', 'Tunnel Encapsulation Limit'), # [RFC 2711] 2 0x05: ('ra', 'Router Alert'), 0x07: ('calipso', 'Common Architecture Label IPv6 Security Option'), # [RFC 5570] 0x08: ('smf_dpd', 'Simplified Multicast Forwarding'), # [RFC 6621] # [RFC 8250] 10 0x0F: ('pdm', 'Performance and Diagnostic Metrics'), # [RFC 4782][RFC Errata 2034] 6 0x26: ('qs', 'Quick-Start'), 0x63: ('rpl', 'Routing Protocol for Low-Power and Lossy Networks'), # [RFC 6553] 0x6D: ('mpl', 'Multicast Protocol for Low-Power and Lossy Networks'), # [RFC 7731] 0x8B: ('ilnp', 'Identifier-Locator Network Protocol Nonce'), # [RFC 6744] 0x8C: ('lio', 'Line-Identification Option'), # [RFC 6788] 0xC2: ('jumbo', 'Jumbo Payload'), # [RFC 2675] 0xC9: ('home', 'Home Address'), # [RFC 6275] 0xEE: ('ip_dff', 'Depth-First Forwarding'), # [RFC 6971] } class Option(Vendor): """Destination Options and Hop-by-Hop Options""" #: Value limit checker. FLAG = 'isinstance(value, int) and 0x00 <= value <= 0xFF' #: Link to registry. LINK = 'https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters-2.csv' def count(self, data): """Count field records. Args: data (List[str]): CSV data. Returns: Counter: Field recordings. """ reader = csv.reader(data) next(reader) # header return collections.Counter(map(lambda item: self.safe_name(item[4]), reader)) # pylint: disable=map-builtin-not-iterating def process(self, data): """Process CSV data. Args: data (List[str]): CSV data. Returns: List[str]: Enumeration fields. List[str]: Missing fields. """ reader = csv.reader(data) next(reader) # header enum = list() miss = [ "extend_enum(cls, 'Unassigned_0x%s' % hex(value)[2:].upper().zfill(2), value)", 'return cls(value)' ] for item in reader: if not item[0]: continue code = item[0] dscp = item[4] rfcs = item[5] temp = list() for rfc in filter(None, re.split(r'\[|\]', rfcs)): if re.match(r'\d+', rfc): continue if 'RFC' in rfc and re.match(r'\d+', rfc[3:]): #temp.append(f'[{rfc[:3]} {rfc[3:]}]') temp.append(f'[:rfc:`{rfc[3:]}`]') else: temp.append(f'[{rfc}]'.replace('_', ' ')) tmp1 = f" {''.join(temp)}" if rfcs else '' splt = re.split(r' \[\d+\]', dscp)[0] subn = re.sub(r'.* \((.*)\)', r'\1', splt) name = DATA.get(int(code, base=16), (str(),))[0].upper() or subn desc = self.wrap_comment(re.sub(r'\r*\n', ' ', f'{name}{tmp1}', re.MULTILINE)) renm = self.rename(name or 'Unassigned', code, original=dscp) pres = f"{renm} = {code}" sufs = f'#: {desc}' #if len(pres) > 74: # sufs = f"\n{' '*80}{sufs}" #enum.append(f'{pres.ljust(76)}{sufs}') enum.append(f'{sufs}\n {pres}') return enum, miss if __name__ == "__main__": Option()
import time from datetime import timedelta from multiprocessing import Value, Manager # Each column is 20 chars wide, plus the separator COL_WIDTH = 12 COLUMNS = ["CURRENT", "TOTAL", "PERCENTAGE", "RUNTIME", "RATE", "EXPECTED"] COL_SEPARATOR = "|" ROW_SEPARATOR = "-" TIME_FORMAT = "%H:%M:%S" class SyncedCrawlingProgress: def __init__(self, total_count=1000, update_every=100000): # Variables that need to be synced across Threads self.count = Value('i', 0) self.last_time = Value('d', time.time()) self.last_count = Value('i', 0) self.start_time = time.time() self.update_every = update_every self.total_count = total_count print(self.row_string(COLUMNS)) print(ROW_SEPARATOR * (len(COLUMNS) * COL_WIDTH + len(COLUMNS) - 1)) def row_string(self, values): string = "" for value in values[0:-1]: string += str(value).center(COL_WIDTH) + COL_SEPARATOR string += str(values[-1]).center(COL_WIDTH) return string def inc(self, by=1): with self.count.get_lock(): self.count.value += by if self.count.value - self.last_count.value >= self.update_every: # Print update self.print_update() # Then update relevant variables with self.last_time.get_lock(), self.last_count.get_lock(): self.last_count.value = self.count.value self.last_time.value = time.time() def print_update(self): # Prints current number, total number, percentage, runtime, increase per second, expected remaining runtime percentage = self.count.value / self.total_count * 100 runtime = time.time() - self.start_time increases_per_second = (self.count.value - self.last_count.value) / (time.time() - self.last_time.value) expected_remaining_runtime = (self.total_count - self.count.value) / increases_per_second print(self.row_string([self.count.value, self.total_count, "%02.0d%%" % percentage, self.time_str(runtime), "%.02f" % increases_per_second, self.time_str(expected_remaining_runtime) ])) def time_str(self, seconds): return '%02d:%02d:%02d' % (seconds / 3600, seconds / 60 % 60, seconds % 60) def set_total_count(self, total_count): self.total_count = total_count class TablePrinter: def __init__(self, header=None): if header is None: header = ["Col 1", "Col 2", "Col 3"] print(self.row_string(header)) print(ROW_SEPARATOR * (len(COLUMNS) * COL_WIDTH + len(COLUMNS) - 1)) def print_row(self, row=None): if row is None: row = ["El1", "El2", "El3"] print(self.row_string(row)) def row_string(self, values): string = "" for value in values[0:-1]: string += str(value).center(COL_WIDTH) + COL_SEPARATOR string += str(values[-1]).center(COL_WIDTH) return string class StatusVisualization: def __init__(self, total_count=1000, update_every=100000): # Variables that need to be synced across Threads self.count = 0 self.last_time = time.time() self.last_count = 0 self.start_time = time.time() self.update_every = update_every self.total_count = total_count print(self.row_string(COLUMNS)) print(ROW_SEPARATOR * (len(COLUMNS) * COL_WIDTH + len(COLUMNS) - 1)) def row_string(self, values): string = "" for value in values[0:-1]: string += str(value).center(COL_WIDTH) + COL_SEPARATOR string += str(values[-1]).center(COL_WIDTH) return string def inc(self, by=1): self.count += by if self.count - self.last_count >= self.update_every: # Print update self.print_update() # Then update relevant variables self.last_count = self.count self.last_time = time.time() def print_update(self): # Prints current number, total number, percentage, runtime, increase per second, expected remaining runtime percentage = self.count / self.total_count * 100 runtime = time.time() - self.start_time increases_per_second = (self.count - self.last_count) / (time.time() - self.last_time) expected_remaining_runtime = (self.total_count - self.count) / increases_per_second print(self.row_string([self.count, self.total_count, "%02.0d%%" % percentage, self.time_str(runtime), "%.02f" % increases_per_second, self.time_str(expected_remaining_runtime) ])) def time_str(self, seconds): return '%02d:%02d:%02d' % (seconds / 3600, seconds / 60 % 60, seconds % 60) def set_total_count(self, total_count): self.total_count = total_count
class StorageException(Exception): """Base class for all storage exceptions""" class PathExistsException(StorageException): """The given path already exists""" class StorageNotSupported(StorageException): """Storage type not supported""" class InvalidStoragePath(StorageException): """Invalid storage path given"""
# "Lorenz-95" (or 96) model. # # A summary for the purpose of DA is provided in # section 3.5 of thesis found at # ora.ox.ac.uk/objects/uuid:9f9961f0-6906-4147-a8a9-ca9f2d0e4a12 # # A more detailed summary is given in Chapter 11 of # Majda, Harlim: Filtering Complex Turbulent Systems" # # Note: implementation is ndim-agnostic. # # Note: the model integration is unstable (--> infinity) # in the presence of large peaks in amplitude, # Example: x = [0,-30,0,30]; step(x,dt=0.05,recursion=4). # This may be occasioned by the Kalman analysis update, # especially if the system is only partially observed. # Is this effectively a CFL condition? Could be addressed by: # - post-processing, # - modifying the step() function, e.g.: # - crop amplitude # - or lowering dt # - using an implicit time stepping scheme instead of rk4 import numpy as np from scipy.linalg import circulant try: from tools.math import rk4, integrate_TLM, is1d except: from DAPPER.tools.math import rk4, integrate_TLM, is1d Force = 8.0 prevent_blow_up = False def dxdt(x): a = x.ndim-1 s = lambda x,n: np.roll(x,-n,axis=a) return (s(x,1)-s(x,-2))*s(x,-1) - x + Force def step(x0, t, dt): #if prevent_blow_up: #clip = abs(x0)>30 #x0[clip] *= 0.1 return rk4(lambda t,x: dxdt(x), x0, np.nan, dt) def TLM(x): """Tangent linear model""" assert is1d(x) m = len(x) TLM = np.zeros((m,m)) md = lambda i: np.mod(i,m) for i in range(m): TLM[i,i] = -1.0 TLM[i, i-2 ] = -x[i-1] TLM[i,md(i+1)] = +x[i-1] TLM[i, i-1 ] = x[md(i+1)]-x[i-2] return TLM def dfdx(x,t,dt): """Integral of TLM. Jacobian of step.""" # method='analytic' is a substantial upgrade for Lor95 return integrate_TLM(TLM(x),dt,method='analytic') def typical_init_params(m): """ Approximate (3 degrees of acf of) climatology. Obtained for F=8, m=40. NB: Should not be used for X0 because it's like starting the filter from a state of divergence, which might be too challenging to particle filters. The code has been left here for legacy reasons. """ mu0 = 2.34*np.ones(m) # Auto-cov-function acf = lambda i: 0.0 + 14*(i==0) + 0.9*(i==1) - 4.7*(i==2) - 1.2*(i==3) P0 = circulant(acf(periodic_distance_range(m))) return mu0, P0 def periodic_distance_range(m): return np.minimum(np.arange(m),np.arange(m,0,-1)) #return np.roll(np.abs(np.arange(m) - m//2), (m+1)//2) #return np.concatenate((range((m+1)//2), range(m//2,0,-1)))
from jinja2 import Environment, FileSystemLoader import json import pytest import os import copy from em_stitch.montage.montage_solver import ( MontageSolver, get_transform) from tempfile import TemporaryDirectory import glob import shutil from marshmallow import ValidationError test_files_dir = os.path.join(os.path.dirname(__file__), 'test_files') example_env = Environment(loader=FileSystemLoader(test_files_dir)) def json_template(env, template_file, **kwargs): template = env.get_template(template_file) d = json.loads(template.render(**kwargs)) return d @pytest.fixture(scope='module') def solver_input_args(): data_dir = os.path.join(test_files_dir, "montage_example") with TemporaryDirectory() as output_dir: yield json_template( example_env, "montage_solver_example.json", data_dir=data_dir, output_dir=output_dir, template_dir=test_files_dir) def test_read_from(solver_input_args): meta = glob.glob(os.path.join( solver_input_args['data_dir'], '_metadata*.json'))[0] tf0 = get_transform(meta, '', {}, 'metafile') with TemporaryDirectory() as output_dir: tfp = os.path.join(output_dir, 'ref.json') with open(tfp, 'w') as f: json.dump(tf0.to_dict(), f) tf1 = get_transform('', tfp, {}, 'reffile') tf2 = get_transform('', '', tf0.to_dict(), 'dict') assert tf0 == tf1 == tf2 def test_solver(solver_input_args): local_args = copy.deepcopy(solver_input_args) with TemporaryDirectory() as output_dir: local_args['output_dir'] = output_dir ms = MontageSolver(input_data=local_args, args=[]) ms.run() assert os.path.isfile(ms.args['output_json']) with open(ms.args['output_json'], 'r') as f: j = json.load(f) assert len(j) == 2 for ij in j: assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['output'])) assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['collection'])) for k in ['x', 'y', 'mag']: assert ij[k]['mean'] < 2.0 assert ij[k]['stdev'] < 2.0 def test_solver_no_output_dir(solver_input_args): local_args = copy.deepcopy(solver_input_args) with TemporaryDirectory() as output_dir: meta = glob.glob(os.path.join( local_args['data_dir'], '_metadata*.json'))[0] newmeta = os.path.join( output_dir, os.path.basename(meta)) shutil.copy(meta, newmeta) local_args['data_dir'] = output_dir local_args.pop('output_dir') ms = MontageSolver(input_data=local_args, args=[]) ms.run() assert os.path.isfile(ms.args['output_json']) with open(ms.args['output_json'], 'r') as f: j = json.load(f) assert len(j) == 2 for ij in j: assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['output'])) assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['collection'])) for k in ['x', 'y', 'mag']: assert ij[k]['mean'] < 2.0 assert ij[k]['stdev'] < 2.0 def test_solver_metafile_specify(solver_input_args): local_args = copy.deepcopy(solver_input_args) with TemporaryDirectory() as output_dir: local_args['output_dir'] = output_dir local_args['metafile'] = glob.glob( os.path.join( local_args['data_dir'], '_metadata*.json'))[0] local_args.pop('data_dir') ms = MontageSolver(input_data=local_args, args=[]) ms.run() assert os.path.isfile(ms.args['output_json']) with open(ms.args['output_json'], 'r') as f: j = json.load(f) assert len(j) == 2 for ij in j: assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['output'])) assert os.path.isfile( os.path.join( ms.args['output_dir'], ij['collection'])) for k in ['x', 'y', 'mag']: assert ij[k]['mean'] < 2.0 assert ij[k]['stdev'] < 2.0 def test_solver_schema_errors(solver_input_args): local_args = copy.deepcopy(solver_input_args) with TemporaryDirectory() as output_dir: local_args['output_dir'] = output_dir local_args['solver_templates'][0] = os.path.join( os.path.dirname(local_args['solver_templates'][0]), 'file_does_not_exist.json') with pytest.raises(ValidationError): MontageSolver(input_data=local_args, args=[]) local_args = copy.deepcopy(solver_input_args) local_args['output_dir'] = output_dir local_args.pop('data_dir') with pytest.raises(ValidationError): MontageSolver(input_data=local_args, args=[])
""" Copyright (c) 2014, Austin R. Benson, David F. Gleich, Purdue University, and Stanford University. All rights reserved. This file is part of MRNMF and is under the BSD 2-Clause License, which can be found at http://opensource.org/licenses/BSD-2-Clause Copyright (c) 2015, Mariano Tepper, Duke University. All rights reserved. Mariano Tepper made the following changes to this file: - modified names and line lengths to adhere more closely to PEP8 - changed docstrings - some numpy operations are more numpy-ish now. - small edits, refactoring, and cleanups - removed some code """ import numpy as np from scipy.optimize import nnls def spa(data, r, colnorms): """ Successive projection algorithm (SPA) for NMF. This algorithm computes the column indices. :param data: The data matrix. :type data: numpy.ndarray :param r: The target separation rank. :type r: int :param colnorms: The column L1 norms. :type colnorms: numpy.ndarray :return: A list of r columns chosen by SPA. :rtype: list of int """ idx = np.nonzero(colnorms) x = np.copy(data) if colnorms is not None: x[:, idx] /= colnorms[idx] cols = [] m, n = x.shape for _ in xrange(r): #col_norms = np.linalg.norm(x, ord='fro', axis=0) col_norms = np.linalg.norm(x,axis=0) #col_norms = np.linalg.norm(x, ord=2, axis=0) #col_norms[cols] = -1 col_ind = np.argmax(col_norms) cols.append(col_ind) col = np.atleast_2d(x[:, col_ind]) # col is a row vector x = np.dot(np.eye(m) - np.dot(col.T, col) / col_norms[col_ind], x) return cols def xray(x, r): """ X-ray algorithm for NMF. This algorithm computes the column indices. :param x: The data matrix. :type x: numpy.ndarray :param r: The target separation rank. :type r: int :return: A list of r columns chosen by X-ray. :rtype: list of int """ cols = [] R = np.copy(x) while len(cols) < r: # Loop until we choose a column that has not been selected. while True: p = np.random.random((1, x.shape[0])) #scores = np.linalg.norm(np.dot(R.T, x), ord='fro', axis=0) scores = np.linalg.norm(np.dot(R.T, x), axis=0) scores /= np.reshape(np.dot(p, x),len(scores)) #scores = np.linalg.norm(np.dot(R.T, x), ord=2, axis=0) #scores /= np.squeeze(np.dot(p, x)) scores[cols] = -1 # IMPORTANT best_col = np.argmax(scores) if best_col in cols: # Re-try continue else: cols.append(best_col) H, rel_res = nnls_frob(x, cols) R = x - np.dot(x[:, cols], H) break return cols def nnls_frob(x, cols): """ Compute H, the coefficient matrix, by nonnegative least squares to minimize the Frobenius norm. Given the data matrix X and the columns cols, H is .. math:: \arg\min_{Y \ge 0} \| X - X(:, cols) H \|_F. :param X: The data matrix. :type X: numpy.ndarray :param cols: The column indices. :type cols: list of int :return: The matrix H and the relative residual. """ ncols = x.shape[1] x_sel = x[:, cols] H = np.zeros((len(cols), ncols)) for i in xrange(ncols): sol, res = nnls(x_sel, x[:, i]) H[:, i] = sol rel_res = np.linalg.norm(x - np.dot(x_sel, H), 'fro') rel_res /= np.linalg.norm(x, 'fro') return H, rel_res def select_columns(data, alg, r, colnorms=None): """ Compute an approximate separable NMF of the matrix data. By compute, we mean choose r columns and a best fitting coefficient matrix H. The r columns are selected by the 'alg' option, which is one of 'SPA' or 'XRAY'. The coefficient matrix H is the one that produces the smallest Frobenius norm error. :param data: The data matrix. :type data: numpy.ndarray :param alg: Choice of algorithm for computing the columns. One of 'SPA' or 'XRAY'. :type alg: string :param r: The target separation rank. :type r: int :param colnorms: The column L1 norms, needed only by SPA. :type colnorms: numpy.ndarray :return The selected columns, the matrix H, and the relative residual. """ if alg == 'XRAY': cols = xray(data, r) elif alg == 'SPA': cols = spa(data, r, colnorms) else: raise Exception('Unknown algorithm: {0}'.format(alg)) return cols
"""An example of sending and receiving cookies.""" import logging from typing import Dict from urllib.parse import parse_qsl from bareasgi import ( Application, Scope, Info, RouteMatches, Content, HttpResponse, text_reader, text_writer ) import bareutils.header as header logging.basicConfig(level=logging.DEBUG) FORM_HTML = """ <!DOCTYPE html> <html> <body> <h2>HTML Form</h2> <form action="/post_form" method="post"> First name:<br> <input type="text" name="first_name" value="{first_name}"> <br> Last name:<br> <input type="text" name="last_name" value="{last_name}"> <br><br> <input type="submit" value="Submit"> </form> <h2>Cookies</h2> {cookies} </body> </html> """ async def index( _scope: Scope, _info: Info, _matches: RouteMatches, _content: Content ) -> HttpResponse: """Redirect to the test page""" return 303, [(b'Location', b'/get_form')] async def get_form( scope: Scope, _info: Info, _matches: RouteMatches, _content: Content ) -> HttpResponse: """A response handler which returns a form and sets some cookies""" cookies = header.cookie(scope['headers']) first_name = cookies.get(b'first_name', [b'Micky'])[0] last_name = cookies.get(b'last_name', [b'Mouse'])[0] html_list = '<dl>' for name, values in cookies.items(): for value in values: html_list += f'<dt>{name.decode()}</dt><dd>{value.decode()}</dd>' html_list += '</dl>' html = FORM_HTML.format( first_name=first_name.decode(), last_name=last_name.decode(), cookies=html_list ) headers = [ (b'content-type', b'text/html'), ] return 200, headers, text_writer(html) async def post_form( scope: Scope, _info: Info, _matches: RouteMatches, content: Content ) -> HttpResponse: """A response handler that reads the cookies from a posted form.""" content_type = header.find(b'content-type', scope['headers']) if content_type != b'application/x-www-form-urlencoded': return 500 variables = await text_reader(content) values: Dict[str, str] = dict(parse_qsl(variables)) first_name = values['first_name'] last_name = values['last_name'] headers = [ (b'location', b'/get_form'), (b'set-cookie', f'first_name={first_name}'.encode()), (b'set-cookie', f'last_name={last_name}'.encode()), ] return 303, headers if __name__ == "__main__": import uvicorn app = Application() app.http_router.add({'GET'}, '/', index) app.http_router.add({'GET'}, '/get_form', get_form) app.http_router.add({'POST'}, '/post_form', post_form) uvicorn.run(app, port=9009)
from datetime import datetime import pytest import pytest_mock import book2 def test_book_b4_begin_time(mocker): fake_time = begin_date_time = datetime(2021, 6, 14, 7, 59) mocker.patch('book2._get_now', return_value=fake_time) result = book2.book_vaccine() assert result == "2021-06-14 08:00 才能預約" def test_book_after_begin_time(mocker): fake_time = begin_date_time = datetime(2021, 6, 14, 8, 10) mocker.patch('book2._get_now', return_value=fake_time) result = book2.book_vaccine() assert result == "開始預約"
# The prime factors of 13195 are 5, 7, 13 and 29. # # What is the largest prime factor of the number 600851475143 ? # This is a naive approach that only works for small numbers. def is_prime(current, primes): # Search if current value already exists in primes or is a multiple of known primes for prime in primes: # If equal to the prime exit if current == prime: return False # If multiple of the prime exit if current % prime == 0: return False # Current is prime primes.add(current) return current def find_primes(num): primes = set([2]) # Start with 2 current = 2 count = 0 while True: if is_prime(current, primes): count += 1 # Exit when enough if count == num: return primes # Try the next number current += 1 def bin(s): return str(s) if s <= 1 else bin(s >> 1) + str(s & 1) def check_key_combo_for_target(keys, mask, target): total = 1 product = set() for mask_idx in range(0, len(keys)): bit_set = (2 ** mask_idx) & mask >= 1 if bit_set: total *= keys[mask_idx] product.add(keys[mask_idx]) if total == target: print("Found target value!") return product return False # This is horribly wasteful because we spend half of each pass checking # combinations we already tested on earlier passes. def inc_bit_mask(keys, target): min_key = 1 max_key = 2 ** len(keys) for mask in range(min_key, max_key): product = check_key_combo_for_target(keys, mask, target) if product: print("Target is product of primes: ", product) return True return False # This needlessly regenerates the list of primes each pass instead of just # adding the next largest prime to the set. def search(target, min_search_range, max_search_range): for search_range in range(min_search_range, max_search_range): primes = list(find_primes(search_range)) print("Primes: ", primes) # Check if possible for target to be product of primes. total = 1 for prime in primes: total *= prime if total < target: print("Skipping set because product", total, "is too small.") continue if inc_bit_mask(primes, target): return print("Failed to find product") search((2 * 11 * 19 * 3), 1, 10) # [11, 19, 2, 3] search(13195, 1, 20) # [29, 13, 5, 7] #search(600851475143, 1, 100) # Takes forever :-(
# -*- coding: utf-8 -*- # Copyright 2013-2021 CERN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: # - Vincent Garonne <[email protected]>, 2013-2018 # - Martin Barisits <[email protected]>, 2013-2019 # - Cedric Serfon <[email protected]>, 2013-2020 # - Ralph Vigne <[email protected]>, 2013 # - Mario Lassnig <[email protected]>, 2013-2019 # - Yun-Pin Sun <[email protected]>, 2013 # - Thomas Beermann <[email protected]>, 2013-2018 # - Joaquin Bogado <[email protected]>, 2014-2015 # - Wen Guan <[email protected]>, 2015 # - Hannes Hansen <[email protected]>, 2018-2019 # - Tobias Wegner <[email protected]>, 2019 # - Andrew Lister <[email protected]>, 2019 # - Ruturaj Gujar, <[email protected]>, 2019 # - Brandon White, <[email protected]>, 2019 # - Aristeidis Fkiaras <[email protected]>, 2020 # - Benedikt Ziemons <[email protected]>, 2020-2021 # - Rizart Dona <[email protected]>, 2021 import json as json_lib from six import iteritems from sqlalchemy import String, cast, type_coerce, JSON from sqlalchemy.orm.exc import NoResultFound from sqlalchemy.sql.expression import text from rucio.common import exception from rucio.core.did_meta_plugins.did_meta_plugin_interface import DidMetaPlugin from rucio.db.sqla import models from rucio.db.sqla.session import read_session, transactional_session, stream_session from rucio.db.sqla.util import json_implemented class JSONDidMeta(DidMetaPlugin): """ A plugin to store DID metadata on a table on the relational database, using JSON blobs """ def __init__(self): super(JSONDidMeta, self).__init__() self.plugin_name = "JSON" @read_session def get_metadata(self, scope, name, session=None): """ Get data identifier metadata (JSON) :param scope: The scope name. :param name: The data identifier name. :param session: The database session in use. """ if not json_implemented(session=session): raise NotImplementedError try: row = session.query(models.DidMeta).filter_by(scope=scope, name=name).one() meta = getattr(row, 'meta') return json_lib.loads(meta) if session.bind.dialect.name in ['oracle', 'sqlite'] else meta except NoResultFound: raise exception.DataIdentifierNotFound("No generic metadata found for '%(scope)s:%(name)s'" % locals()) def set_metadata(self, scope, name, key, value, recursive=False, session=None): self.set_metadata_bulk(scope=scope, name=name, meta={key: value}, recursive=recursive, session=session) @transactional_session def set_metadata_bulk(self, scope, name, meta, recursive=False, session=None): if not json_implemented(session=session): raise NotImplementedError if session.query(models.DataIdentifier).filter_by(scope=scope, name=name).one_or_none() is None: raise exception.DataIdentifierNotFound("Data identifier '%s:%s' not found" % (scope, name)) row_did_meta = session.query(models.DidMeta).filter_by(scope=scope, name=name).scalar() if row_did_meta is None: # Add metadata column to new table (if not already present) row_did_meta = models.DidMeta(scope=scope, name=name) row_did_meta.save(session=session, flush=False) existing_meta = {} if hasattr(row_did_meta, 'meta'): if row_did_meta.meta: existing_meta = row_did_meta.meta # Oracle returns a string instead of a dict if session.bind.dialect.name in ['oracle', 'sqlite'] and existing_meta: existing_meta = json_lib.loads(existing_meta) for key, value in meta.items(): existing_meta[key] = value row_did_meta.meta = None session.flush() # Oracle insert takes a string as input if session.bind.dialect.name in ['oracle', 'sqlite']: existing_meta = json_lib.dumps(existing_meta) row_did_meta.meta = existing_meta row_did_meta.save(session=session, flush=True) @transactional_session def delete_metadata(self, scope, name, key, session=None): """ Delete a key from the metadata column :param scope: the scope of did :param name: the name of the did :param key: the key to be deleted """ if not json_implemented(session=session): raise NotImplementedError try: row = session.query(models.DidMeta).filter_by(scope=scope, name=name).one() existing_meta = getattr(row, 'meta') # Oracle returns a string instead of a dict if session.bind.dialect.name in ['oracle', 'sqlite'] and existing_meta is not None: existing_meta = json_lib.loads(existing_meta) if key not in existing_meta: raise exception.KeyNotFound(key) existing_meta.pop(key, None) row.meta = None session.flush() # Oracle insert takes a string as input if session.bind.dialect.name in ['oracle', 'sqlite']: existing_meta = json_lib.dumps(existing_meta) row.meta = existing_meta except NoResultFound: raise exception.DataIdentifierNotFound("Key not found for data identifier '%(scope)s:%(name)s'" % locals()) @stream_session def list_dids(self, scope, filters, did_type='collection', ignore_case=False, limit=None, offset=None, long=False, recursive=False, session=None): # Currently for sqlite only add, get and delete is implemented. if not json_implemented(session=session): raise NotImplementedError query = session.query(models.DidMeta) if scope is not None: query = query.filter(models.DidMeta.scope == scope) filters.pop('name', None) for k, v in iteritems(filters): if session.bind.dialect.name == 'oracle': query = query.filter(text("json_exists(meta,'$?(@.{} == \"{}\")')".format(k, v))) else: query = query.filter(cast(models.DidMeta.meta[k], String) == type_coerce(v, JSON)) if long: for row in query.yield_per(5): yield { 'scope': row.scope, 'name': row.name, 'did_type': 'Info not available in JSON Plugin', 'bytes': 'Info not available in JSON Plugin', 'length': 'Info not available in JSON Plugin' } else: for row in query.yield_per(5): yield row.name @read_session def manages_key(self, key, session=None): return json_implemented(session=session) def get_plugin_name(self): """ Returns Plugins Name. This can then be used when listing the metadata of did to only provide dids from this plugin. """ return self.plugin_name
from os import environ import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from logger import Logger class Mailer: def __init__(self): self.email = environ.get('email_address') self.password = environ.get('email_password') self.server = environ.get('email_server') self.port = environ.get('email_port') if not self.email: raise Exception('Email address missing in .env!') if not self.password: raise Exception('Email password missing in .env!') if not self.server: raise Exception('Email server missing in .env!') if not self.port: raise Exception('Email port missing in .env!') def send(self, subject, message, email_to): msg = MIMEMultipart() msg.set_unixfrom('author') msg['From'] = self.email msg['To'] = email_to msg['Subject'] = subject message = message msg.attach(MIMEText(message)) Logger.log('Creating connection') mailserver = smtplib.SMTP_SSL(self.server, self.port) Logger.log('Ehlo') mailserver.ehlo() Logger.log('Logging in') mailserver.login(self.email, self.password) Logger.log('Sending email') response = mailserver.sendmail(self.email, email_to, msg.as_string()) Logger.log(f'Message sent to {email_to}') mailserver.quit()
#! /usr/bin/env python # encoding: utf-8 # WARNING! Do not edit! https://waf.io/book/index.html#_obtaining_the_waf_file from waflib import Utils,Task,Options,Errors from waflib.TaskGen import before_method,after_method,feature from waflib.Tools import ccroot from waflib.Configure import conf ccroot.USELIB_VARS['cs']=set(['CSFLAGS','ASSEMBLIES','RESOURCES']) ccroot.lib_patterns['csshlib']=['%s'] @feature('cs') @before_method('process_source') def apply_cs(self): cs_nodes=[] no_nodes=[] for x in self.to_nodes(self.source): if x.name.endswith('.cs'): cs_nodes.append(x) else: no_nodes.append(x) self.source=no_nodes bintype=getattr(self,'bintype',self.gen.endswith('.dll')and'library'or'exe') self.cs_task=tsk=self.create_task('mcs',cs_nodes,self.path.find_or_declare(self.gen)) tsk.env.CSTYPE='/target:%s'%bintype tsk.env.OUT='/out:%s'%tsk.outputs[0].abspath() self.env.append_value('CSFLAGS','/platform:%s'%getattr(self,'platform','anycpu')) inst_to=getattr(self,'install_path',bintype=='exe'and'${BINDIR}'or'${LIBDIR}') if inst_to: mod=getattr(self,'chmod',bintype=='exe'and Utils.O755 or Utils.O644) self.install_task=self.add_install_files(install_to=inst_to,install_from=self.cs_task.outputs[:],chmod=mod) @feature('cs') @after_method('apply_cs') def use_cs(self): names=self.to_list(getattr(self,'use',[])) get=self.bld.get_tgen_by_name for x in names: try: y=get(x) except Errors.WafError: self.env.append_value('CSFLAGS','/reference:%s'%x) continue y.post() tsk=getattr(y,'cs_task',None)or getattr(y,'link_task',None) if not tsk: self.bld.fatal('cs task has no link task for use %r'%self) self.cs_task.dep_nodes.extend(tsk.outputs) self.cs_task.set_run_after(tsk) self.env.append_value('CSFLAGS','/reference:%s'%tsk.outputs[0].abspath()) @feature('cs') @after_method('apply_cs','use_cs') def debug_cs(self): csdebug=getattr(self,'csdebug',self.env.CSDEBUG) if not csdebug: return node=self.cs_task.outputs[0] if self.env.CS_NAME=='mono': out=node.parent.find_or_declare(node.name+'.mdb') else: out=node.change_ext('.pdb') self.cs_task.outputs.append(out) if getattr(self,'install_task',None): self.pdb_install_task=self.add_install_files(install_to=self.install_task.install_to,install_from=out) if csdebug=='pdbonly': val=['/debug+','/debug:pdbonly'] elif csdebug=='full': val=['/debug+','/debug:full'] else: val=['/debug-'] self.env.append_value('CSFLAGS',val) @feature('cs') @after_method('debug_cs') def doc_cs(self): csdoc=getattr(self,'csdoc',self.env.CSDOC) if not csdoc: return node=self.cs_task.outputs[0] out=node.change_ext('.xml') self.cs_task.outputs.append(out) if getattr(self,'install_task',None): self.doc_install_task=self.add_install_files(install_to=self.install_task.install_to,install_from=out) self.env.append_value('CSFLAGS','/doc:%s'%out.abspath()) class mcs(Task.Task): color='YELLOW' run_str='${MCS} ${CSTYPE} ${CSFLAGS} ${ASS_ST:ASSEMBLIES} ${RES_ST:RESOURCES} ${OUT} ${SRC}' def split_argfile(self,cmd): inline=[cmd[0]] infile=[] for x in cmd[1:]: if x.lower()=='/noconfig': inline.append(x) else: infile.append(self.quote_flag(x)) return(inline,infile) def configure(conf): csc=getattr(Options.options,'cscbinary',None) if csc: conf.env.MCS=csc conf.find_program(['csc','mcs','gmcs'],var='MCS') conf.env.ASS_ST='/r:%s' conf.env.RES_ST='/resource:%s' conf.env.CS_NAME='csc' if str(conf.env.MCS).lower().find('mcs')>-1: conf.env.CS_NAME='mono' def options(opt): opt.add_option('--with-csc-binary',type='string',dest='cscbinary') class fake_csshlib(Task.Task): color='YELLOW' inst_to=None def runnable_status(self): return Task.SKIP_ME @conf def read_csshlib(self,name,paths=[]): return self(name=name,features='fake_lib',lib_paths=paths,lib_type='csshlib')
from autofunc.get_match_factor import match from autofunc.get_top_results import get_top_results from autofunc.find_associations import find_associations from autofunc.get_data import get_data import os.path import numpy as np def test_1(): """ Tests that the match factor for a known learning set and test case is close to the known value """ script_dir = os.path.dirname(__file__) file1 = os.path.join(script_dir, '../assets/bladeCombined.csv') store_data, records = get_data(file1) conf_results, results = find_associations(store_data, records, support=0.0003, confidence=0.01, lift=0.1) thresh_results = get_top_results(conf_results, 0.7) test_file = os.path.join(script_dir, '../assets/jigsawQuery.csv') test_data, test_records = get_data(test_file) learned_dict, matched, overmatched, unmatched, match_factor = match(thresh_results, test_records) assert np.allclose(0.82051, match_factor)
from factory.declarations import LazyAttribute, Sequence, SubFactory from factory.django import DjangoModelFactory from roster.factories import StudentFactory from exams.models import ExamAttempt, PracticeExam class ExamFactory(DjangoModelFactory): class Meta: model = PracticeExam family = 'Waltz' number = Sequence(lambda n: n + 1) is_test = False class ExamAttemptFactory(DjangoModelFactory): class Meta: model = ExamAttempt student = SubFactory(StudentFactory) quiz = SubFactory(ExamFactory) score = 0 guess1 = LazyAttribute(lambda o: o.quiz.answer1) guess2 = LazyAttribute(lambda o: o.quiz.answer2) guess3 = LazyAttribute(lambda o: o.quiz.answer3) guess4 = LazyAttribute(lambda o: o.quiz.answer4) guess5 = LazyAttribute(lambda o: o.quiz.answer5)
import asyncio from aiofsk.transport import AFSKTransport async def text_console(modem): def _text_console(): while True: text = input(">> ") if 'quit' in text: return modem.write(text.encode()) try: return await asyncio.get_event_loop().run_in_executor(None, _text_console) finally: modem.stop() async def main(): # modem = AFSKTransport(baud=300, loopback=False, modulator='nrzi') modem = AFSKTransport(baud=300, loopback=False, modulator='standard') terminal_task = asyncio.create_task(text_console(modem)) try: await modem.connect_and_run_forever() finally: if not terminal_task.done(): terminal_task.cancel() if __name__ == '__main__': asyncio.run(main())
from sklearn.model_selection import train_test_split from sklearn import datasets from keras.optimizers import SGD from keras.utils import np_utils import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf import cv2 import os from glob import glob import random import shutil class Load_data : def load_data_files(base_dir): folder_name = "dataset" RAW_DATASET = os.path.join(base_dir, folder_name) abs_dir = os.path.join(os.getcwd(), folder_name) sub_dir = os.listdir(abs_dir) data_dic = {} for class_name in sub_dir: imgs = glob(os.path.join(RAW_DATASET,class_name,"*.jpg")) data_dic[class_name] = imgs print("Class: {}".format(class_name)) print("Number of images: {} \n".format(len(imgs))) return data_dic, len(imgs) def copy_files_to_directory(files, directory): if not os.path.exists(directory): os.makedirs(directory) print("Created directory: {}".format(directory)) for f in files: shutil.copy(f, directory) print("Copied {} files.\n".format(len(files))) def train_validation_split(base_dir, data_dic, split_ratio=0.2): DATASET = os.path.join(base_dir,"split_dataset") if not os.path.exists(DATASET): os.makedirs(DATASET) for class_name, imgs in data_dic.items(): idx_split = int(len(imgs) * split_ratio) random.shuffle(imgs) validation = imgs[:idx_split] train = imgs[idx_split:] Load_data.copy_files_to_directory(train, os.path.join(DATASET,"train",class_name)) Load_data.copy_files_to_directory(validation, os.path.join(DATASET,"validation",class_name))
import numpy as np import astropy.units as u __all__ = [ "energy_dispersion", ] def _normalize_hist(hist): # (N_E, N_MIGRA, N_FOV) # (N_E, N_FOV) norm = hist.sum(axis=1) h = np.swapaxes(hist, 0, 1) with np.errstate(invalid="ignore"): h /= norm h = np.swapaxes(h, 0, 1) return np.nan_to_num(h) def energy_dispersion( selected_events, true_energy_bins, fov_offset_bins, migration_bins, ): """ Calculate energy dispersion for the given DL2 event list. Energy dispersion is defined as the probability of finding an event at a given relative deviation ``(reco_energy / true_energy)`` for a given true energy. Parameters ---------- selected_events: astropy.table.QTable Table of the DL2 events. Required columns: ``reco_energy``, ``true_energy``, ``source_fov_offset``. true_energy_bins: astropy.units.Quantity[energy] Bin edges in true energy migration_bins: astropy.units.Quantity[energy] Bin edges in relative deviation, recommended range: [0.2, 5] fov_offset_bins: astropy.units.Quantity[angle] Bin edges in the field of view offset. For Point-Like IRFs, only giving a single bin is appropriate. Returns ------- energy_dispersion: numpy.ndarray Energy dispersion matrix with shape (n_true_energy_bins, n_migration_bins, n_fov_ofset_bins) """ mu = (selected_events["reco_energy"] / selected_events["true_energy"]).to_value( u.one ) energy_dispersion, _ = np.histogramdd( np.column_stack( [ selected_events["true_energy"].to_value(u.TeV), mu, selected_events["source_fov_offset"].to_value(u.deg), ] ), bins=[ true_energy_bins.to_value(u.TeV), migration_bins, fov_offset_bins.to_value(u.deg), ], ) n_events_per_energy = energy_dispersion.sum(axis=1) assert len(n_events_per_energy) == len(true_energy_bins) - 1 energy_dispersion = _normalize_hist(energy_dispersion) return energy_dispersion
import os from webdriverwrapper import unittest, Chrome, ChromeOptions from webdriverwrapper.decorators import * from webdriverwrapper.exceptions import ErrorMessagesException class TestCaseTest(unittest.WebdriverTestCase): instances_of_driver = unittest.ONE_INSTANCE_PER_TESTCASE def init(self): self.path = os.path.dirname(os.path.realpath(__file__)) def _get_driver(self): opt = ChromeOptions() opt.add_argument('--no-sandbox') opt.add_argument('--proxy-auto-detect') return Chrome(options=opt) # This test will be OK. Error in the middle Selenium do not see. def test_not_check_errors_in_middle_of_test(self): self.driver.get('file://%s/html/error_messages.html' % self.path) self.driver.get('file://%s/html/some_page.html' % self.path) # There is explicit call of check_errors, therefor this test fails. def test_check_errors_in_middle_of_test(self): self.driver.get('file://%s/html/error_messages.html' % self.path) try: self.check_errors() except ErrorMessagesException: pass # ok except Exception as exc: self.fail('Wrong exception! %s' % str(exc)) else: self.fail('Exception not raised!') self.driver.get('file://%s/html/some_page.html' % self.path) def test_make_screenshot(self): self.driver.get('file://%s/html/some_page.html' % self.path) self.make_screenshot('/tmp/test-screenshot.png')
from Jumpscale import j # as used in gec farms as standard rack def bom_calc(environment): from hardware.components.components_hpe import bom_populate environment.bom = bom_populate(environment.bom) # # see the bill of material sheet to define the devices # compute = environment.bom.device_get("hpe_compute_server") # storage = environment.bom.device_get("hpe_storage_server") # switch = environment.bom.device_get("switch_48") # # # an environment to simulate the overhead per node (eg. 1 switch per node) # environment.device_node_add("compute", compute, 11) # environment.device_node_add("storage", storage, 5) # environment.device_overhead_add("switch", switch, 2) environment.device_node_add("compute", template="hpe_compute_server", nr=11) environment.device_node_add("storage", template="hpe_storage_server", nr=5) environment.device_overhead_add("switch", template="switch_48", nr=2)
import re from . import basiciv from .helper import check_date from . import worksiv class Batch(basiciv.Queue): def __init__(self, **kwargs): super().__init__() self.que_tar = [ { 'illust_attrs': zip_[0], 'rank': zip_[1], 'yes_rank': zip_[2] } for zip_ in zip( kwargs['illust_attrs'], kwargs['rank'], kwargs['yes_rank'] ) ] class Daily(basiciv.BasicConfig, basiciv.LoadInfo, basiciv.Queue): name = 'daily' rank_url = 'https://www.pixiv.net/ranking.php' rank_total = 0 one_count = 0 current_page = None current_date = None def __init__(self, ymd=None, filters='complex', **kwargs): """ :param ymd: Example: ~~~~~~~ 20190101 '2019-01-01' '2019/01/01' '2019.01.01' :param filters: Optional: ~~~~~~~~ - complex - illust - ugoira (note: Unsupported view dynamic picture.) - manga default complex """ super(Daily, self).__init__( **kwargs ) self.params = { 'mode': self.name, 'date': '', 'p': 1, 'format': 'json' } if filters != 'complex': self.params.update({ 'content': filters, }) if ymd: reg = re.compile( r'[0-9]{4}[^a-zA-Z0-9]?[0-9]{2}[^a-zA-Z0-9]?[0-9]{2}' ) s = reg.fullmatch(str(ymd)) date = s.string date = date.replace('/', '')\ .replace('-', '')\ .replace('.', '') year = int(date[:4]) mouth = int(date[4:6]) day = int(date[6:]) check_date(year, mouth, day) self.params.update({ 'date': date, }) self.current_date = date self.__run__(params=self.params) def __run__(self, params): print(self.init_run) r = self.sess.get( self.rank_url, params=params, timeout=self.kvpair['timeout'] ) print(r.text) self.interface = r.json() if self.rank_total == 0: self.rank_total = self.interface['rank_total'] self.current_page = self.interface['page'] self.current_date = self.interface['date'] print(self.init_finished) self.init_run = 'Current batch_size: {}, rank total: {}\n' \ 'Loading date: {}, page: {} ...' \ .format( len(self.que_tar), self.rank_total, params['date'], params['p'] ) self.init_finished = 'Load finished!' def run(self, ymd=None): if ymd: self.__init__(ymd=ymd) return self def one(self): if self.one_count < 50: curr_one = { 'illust_attrs': worksiv.Works( self.interface['contents'][self.one_count]['illust_id'] ), 'rank': self.interface['contents'][self.one_count]['rank'], 'yes_rank': self.interface['contents'][self.one_count]['yes_rank'] } self.one_count += 1 self.que_tar.append(curr_one) return self.last() else: return self.next_page().one() def batch(self, nums=-1): if self.one_count < 50: list1, list2, list3 = [], [], [] if nums == -1: while self.one_count < 50: take = self.interface['contents'][self.one_count] list1.append(worksiv.Works(take['illust_id'])) list2.append(take['rank']) list3.append(take['yes_rank']) self.one_count += 1 else: for _ in range(nums): if self.one_count == 50: break take = self.interface['contents'][self.one_count] list1.append(worksiv.Works(take['illust_id'])) list2.append(take['rank']) list3.append(take['yes_rank']) self.one_count += 1 curr_batch = Batch( illust_attrs=list1, rank=list2, yes_rank=list3 ) self.que_tar += curr_batch.que_tar return self.curr() else: return self.next_page().batch(nums) def prev_date(self): if self.interface['prev_date']: self.rank_total = 0 self.step_number = 0 self.one_count = 0 self.que_tar.clear() self.params = { 'date': self.interface['prev_date'] } return self.run() def next_date(self): if self.interface['next_date']: self.rank_total = 0 self.step_number = 0 self.one_count = 0 self.que_tar.clear() self.params.update({ 'date': self.interface['next_date'] }) return self.run() def prev_page(self): if self.interface['prev']: self.one_count = 0 self.params.update({ 'p': self.interface['prev'] }) return self.run() def next_page(self): if self.interface['next']: self.one_count = 0 self.params.update({ 'p': self.interface['next'] }) return self.run() class Weekly(Daily): name = 'weekly' class Monthly(Daily): name = 'monthly' class Rookie(Daily): name = 'rookie' class Original(Daily): name = 'original' class Male(Daily): name = 'male' class Female(Daily): name = 'female' class DailyR(Daily): name = 'daily_r18' def __init__(self, ymd=None, filters='complex', **kwargs): super(DailyR, self).__init__( ymd=ymd, filters=filters, **kwargs ) class WeeklyR(DailyR): name = 'weekly_r18' class MaleR(DailyR): name = 'male_r18' class FemaleR(DailyR): name = 'female_r18'
from .base import * # noqa: F403 from .base import env MIDDLEWARE.append("api.middleware.RangesMiddleware") # noqa: F405 DJANGO_DRF_FILEPOND_STORAGES_BACKEND = "storages.backends.s3boto3.S3Boto3Storage" AWS_ACCESS_KEY_ID = env("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = env("AWS_SECRET_ACCESS_KEY") AWS_S3_REGION_NAME = env("REGION_NAME", "us-west-1") AWS_STORAGE_BUCKET_NAME = env("BUCKET_NAME", "doccano") AWS_DEFAULT_ACL = "private" AWS_BUCKET_ACL = "private" AWS_AUTO_CREATE_BUCKET = True
# Author: Payam Ghassemi, [email protected] # Sep 8, 2018 # Copyright 2018 Payam Ghassemi import numpy as np from matplotlib import pyplot as plt import scipy.io import pickle # Built-in python libraries import sys import os from urllib.request import urlretrieve # 3rd-party libraries I'll be using import matplotlib import pandas as pd import seaborn as sns from scipy import stats #matplotlib.rcParams['pdf.fonttype'] = 42 #matplotlib.rcParams['ps.fonttype'] = 42 matplotlib.rcParams['text.usetex'] = False matplotlib.rcParams['lines.markeredgewidth'] = 1 def set_style(): plt.style.use(['seaborn-white', 'seaborn-paper']) font = {'family' : 'serif', 'weight' : 'normal', 'size' : 12} font = {'family':'Times New Roman', 'weight' : 'normal', 'size' : 12} matplotlib.rc("font", **font) def set_size(fig, width=6, height=3): fig.set_size_inches(width, height) plt.tight_layout() def get_colors(): return np.array([ [0.1, 0.1, 0.1], # black [0.4, 0.4, 0.4], # very dark gray [0.7, 0.7, 0.7], # dark gray [0.9, 0.9, 0.9], # light gray [0.984375, 0.7265625, 0], # dark yellow [1, 1, 0.9] # light yellow ]) set_style() flatui = [ "#1C366A", "#106f96", "#1DABE6", "#2ecc71", "#C3CED0", "#E43034", "#3498db", "#e74c3c","#a65d42","#6e5200","#dcc4d2"] palette = sns.set_palette(flatui) # sns.color_palette("colorblind", 3) #"Set2" flatui = [ "#2ecc71", "#C3CED0", "#1DABE6", "#1C366A", "#106f96", "#E43034", "#3498db", "#e74c3c","#a65d42","#6e5200","#dcc4d2"] palette_B = sns.set_palette(flatui) # sns.color_palette("colorblind", 3) #"Set2"
#! /usr/bin/env python # -*- coding: UTF-8 -*- from __future__ import print_function import argparse from itertools import cycle class Calibrator(object): def __init__(self, start): self.start = start self.updates = [] self.current_frequency = start def load_input_file(self, file_name): lines = [] with open(file_name, "rb") as f: lines = f.readlines() for line in lines: self.updates.append(int(line)) def run_updates(self): for update in self.updates: self.current_frequency = self.current_frequency + update def reset(self): self.current_frequency = self.start self.updates = [] def search_for_twin_frequencies(self): seen_frequencies = [] for update in cycle(self.updates): self.current_frequency = self.current_frequency + update if self.current_frequency not in seen_frequencies: seen_frequencies.append(self.current_frequency) else: break def main(args): calibrator = Calibrator(args.start) calibrator.load_input_file(args.input) calibrator.run_updates() print("Frequency after 1 run : {0}".format(calibrator.current_frequency)) calibrator.reset() calibrator.load_input_file(args.input) calibrator.search_for_twin_frequencies() print("First twin frequency : {0}".format(calibrator.current_frequency)) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", dest="input", required=True) parser.add_argument("-s", "--start", dest="start", type=int, default=0) args = parser.parse_args() main(args)
#!/usr/bin/env python3 """ A tool for sorting text with human-readable byte sizes like "2.5 KiB" or "6TB" Example uses include sorting the output of "du -h" or "docker image ls". """ import argparse import re import sys # byte size multiples are hard. https://en.wikipedia.org/wiki/Kibibyte # fmt: off IEC_MULTIPLES = { # singular 'b': 1, 'B': 1, # decimal 'k': 1000, # kilobyte 'kB': 1000, 'M': 1000000, # megabyte (1000**2) 'MB': 1000000, 'G': 1000000000, # gigabyte (1000**3) 'GB': 1000000000, 'T': 1000000000000, # terabyte (1000**4) 'TB': 1000000000000, 'P': 1000000000000000, # petabyte (1000**5) 'PB': 1000000000000000, 'E': 1000000000000000000, # exabyte (1000**6) 'EB': 1000000000000000000, 'Z': 1000000000000000000000, # zettabyte (1000**7) 'ZB': 1000000000000000000000, 'Y': 1000000000000000000000000, # yottabyte (1000**8) 'YB': 1000000000000000000000000, # binary 'Ki': 1024, # kibibyte 'KiB': 1024, 'Mi': 1048576, # mebibyte (1024**2) 'MiB': 1048576, 'Gi': 1073741824, # gibibyte (1024**3) 'GiB': 1073741824, 'Ti': 1099511627776, # tebibyte (1024**4) 'TiB': 1099511627776, 'Pi': 1125899906842624, # pebibyte (1024**5) 'PiB': 1125899906842624, 'Ei': 1152921504606846976, # exbibyte (1024**6) 'EiB': 1152921504606846976, 'Zi': 1180591620717411303424, # zebibyte (1024**7) 'ZiB': 1180591620717411303424, 'Yi': 1208925819614629174706176, # yobibyte (1024**8) 'YiB': 1208925819614629174706176, } # without these, the default set doesn't recognize "K" nor "KB" IEC_KILO_PATCH = { "K": 1000, # kilobyte (NOT IEC) "KB": 1000, "Kb": 1000, } # JEDEC / Classic = powers of 1024 with metric labels CLASSIC_MULTIPLES = { 'B': 1, 'K': 1024, # kilobyte 'KB': 1024, 'M': 1048576, # megabyte (1024^2) 'MB': 1048576, 'G': 1073741824, # gigabyte (1024^3) 'GB': 1073741824, 'T': 1099511627776, # terabyte (1024^4) (not JEDEC) 'TB': 1099511627776, 'P': 1125899906842624, # petabyte (1024^5) (not JEDEC) 'PB': 1125899906842624, 'E': 1152921504606846976, # exabyte (1024^6) (not JEDEC) 'EB': 1152921504606846976, 'Z': 1180591620717411303424, # zettabyte (1024^7) (not JEDEC) 'ZB': 1180591620717411303424, 'Y': 1208925819614629174706176, # yottabyte (1024^8) (not JEDEC) 'YB': 1208925819614629174706176, } # fmt: on def main(): """command-line execution handler""" argp = argparse.ArgumentParser( description="tool for sorting text with human-readable byte sizes like '2.5 KiB' or '6TB'" ) argp.add_argument( "infile", nargs="*", type=argparse.FileType("r"), default=sys.stdin, help="the input file to read, defaults to stdin if this argument is omitted", ) argp.add_argument( "-r", "--reverse", action="store_true", help="print the output lines in reverse order", ) argp.add_argument( "-c", "--classic", action="store_true", help="override IEC 1000 byte multiples with JEDEC-ish 1024 byte multiples having metric labels", ) argp.add_argument( "-C", "--strict-classic", action="store_true", help="like --classic but also remove support for all IEC 1000 byte multiples", ) argp.add_argument( "-s", "--strict", action="store_true", help="do NOT suppliment the supported IEC multiples with unofficial 'K' and 'KB' (1000 bytes values)", ) argp.add_argument( "-m", "--only-matches", action="store_true", help="only print lines which contain a recognized data size expression", ) argp.add_argument( "-p", "--print-sizes", action="store_true", help="instead of sorting input lines, just print a report of the size multiples that would be used", ) args = argp.parse_args() # figure out what byte multiples to use multiples = IEC_MULTIPLES if not args.strict: multiples.update(IEC_KILO_PATCH) if args.classic: multiples.update(CLASSIC_MULTIPLES) if args.strict_classic: multiples = CLASSIC_MULTIPLES sorted_labels = sorted(multiples.keys(), key=multiples.__getitem__) if args.print_sizes: sys.stderr.write("LABEL\tBYTES\n") for label in sorted_labels: sys.stdout.write("{}\t{}\n".format(label, multiples[label])) sys.exit(0) # build the regex # returned match groups look like this: ('98.6', 'MB') or this ('228', 'K') # fmt: off regex = re.compile( ( r'\b' r'(\d+(?:\.\d+)?)' r'\s*' r'(' ) + '|'.join(sorted_labels) + ( r')' r'\b' ) ) # fmt: on # start processing input lines parsed = {} for line in args.infile: match = regex.search(line) if not match: if not args.only_matches: # this just bunches non-matched lines at the beginning # I think we can do better, but I don't know how yet parsed[line] = 0 continue size_str, multiple_str = match.groups() parsed[line] = float(size_str) * multiples[multiple_str] for line in sorted(parsed, key=parsed.__getitem__, reverse=args.reverse): sys.stdout.write(line) if __name__ == "__main__": main()
import prefect from prefect import task, Flow from prefect.storage import Docker @task def hello_task(): logger = prefect.context.get("logger") logger.info("Hello, Kubernetes!") with Flow("encoding-task", storage=Docker(registry_url="prefectdevacr.azurecr.io", python_dependencies=["vectorhub==1.2.3", "VecDB==0.5.8"], image_tag='latest') ) as flow: hello_task() if __name__ == '__main__': # flow.run() flow.register(project_name="AKS")
import filecmp import os def dirs_same_enough(dir1,dir2,report=False): ''' use os.walk and filecmp.cmpfiles to determine if two dirs are 'same enough'. Args: dir1, dir2: two directory paths report: if True, print the filecmp.dircmp(dir1,dir2).report_full_closure() before returning Returns: bool ''' # os walk: root, list(dirs), list(files) # those lists won't have consistent ordering, # os.walk also has no guaranteed ordering, so have to sort. walk1 = sorted(list(os.walk(dir1))) walk2 = sorted(list(os.walk(dir2))) def report_and_exit(report,bool_): if report: filecmp.dircmp(dir1,dir2).report_full_closure() return bool_ else: return bool_ if len(walk1) != len(walk2): comparison = filecmp.dircmp(dir1, dir2) return comparison.report_full_closure() # false_or_report(report) for (p1,d1,fl1),(p2,d2,fl2) in zip(walk1,walk2): d1,fl1, d2, fl2 = set(d1),set(fl1),set(d2),set(fl2) if d1 != d2 or fl1 != fl2: return report_and_exit(report,False) for f in fl1: same,diff,weird = filecmp.cmpfiles(p1,p2,fl1,shallow=False) if diff or weird: return report_and_exit(report,False) return report_and_exit(report,True) path_git=r'F:\work\svn2git\svn2git\test_data\GIT' path_svn=r'F:\work\svn2git\svn2git\test_data\SVN' dirs_same_enough(path_git,path_svn,report=True)
from operator import itemgetter from django.http import Http404 from django.shortcuts import redirect, render from django.urls import reverse_lazy from django.views.generic import TemplateView from exporter.applications.forms.countries import ( countries_form, choose_contract_type_form, contract_type_per_country_form, ) from exporter.applications.forms.locations import ( which_location_form, external_locations_form, add_external_location, Locations, sites_form, new_external_location_form, ) from exporter.applications.helpers.check_your_answers import is_application_oiel_of_type from exporter.applications.helpers.countries import prettify_country_data from exporter.applications.helpers.validators import ( validate_external_location_choice, validate_and_update_goods_location_choice, validate_contract_type_countries_choice, ) from exporter.applications.services import ( get_application, get_application_countries, post_application_countries, put_contract_type_for_country, get_application_countries_and_contract_types, ) from exporter.core.constants import CaseTypes, APPLICANT_EDITING from exporter.core.services import ( get_sites_on_draft, post_sites_on_draft, post_external_locations, get_external_locations_on_draft, post_external_locations_on_draft, delete_external_locations_from_draft, ) from lite_content.lite_exporter_frontend.applications import ContractTypes from lite_forms.views import SingleFormView, MultiFormView from core.auth.views import LoginRequiredMixin def get_locations_page(request, application_id, **kwargs): application = get_application(request, application_id) if not application["goods_locations"]: return redirect(reverse_lazy("applications:edit_location", kwargs={"pk": application_id})) context = { "application": application, "is_application_draft_or_major_edit": application["status"]["key"] in [APPLICANT_EDITING, "draft"], } if kwargs.get("errors"): context["errors"] = kwargs["errors"] return render( request, "applications/goods-locations/goods-locations.html", context, ) class GoodsLocation(LoginRequiredMixin, TemplateView): def get(self, request, **kwargs): return get_locations_page(request, application_id=kwargs["pk"]) class EditGoodsLocation(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] application = get_application(request, self.object_pk) self.form = which_location_form(self.object_pk, application.sub_type) self.action = validate_and_update_goods_location_choice self.data = {"choice": Locations.DEPARTED if application.get("have_goods_departed") else ""} if application.status == "submitted": if application["goods_locations"]: return reverse_lazy("applications:location", kwargs={"pk": self.object_pk}) elif application["sites"]: return reverse_lazy("applications:existing_sites", kwargs={"pk": self.object_pk}) def get_success_url(self): choice = self.get_validated_data()["choice"] if choice == Locations.EXTERNAL: return ( reverse_lazy("applications:select_add_external_location", kwargs={"pk": self.object_pk}) + "?return_to=" + self.request.get_full_path() ) elif choice == Locations.ORGANISATION: return reverse_lazy("applications:existing_sites", kwargs={"pk": self.object_pk}) elif choice == Locations.DEPARTED: return reverse_lazy("applications:task_list", kwargs={"pk": self.object_pk}) class SelectAddExternalLocation(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] self.form = add_external_location(request) self.action = validate_external_location_choice def get_success_url(self): choice = self.get_validated_data()["choice"] if choice == "new": return ( reverse_lazy("applications:add_external_location", kwargs={"pk": self.object_pk}) + "?return_to=" + self.request.get_full_path() ) else: return reverse_lazy("applications:add_preexisting_external_location", kwargs={"pk": self.object_pk}) class ExistingSites(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] application = get_application(request, self.object_pk) if application.status == "submitted" and not application["goods_locations"]["type"] == "sites": raise Http404 self.data, _ = get_sites_on_draft(request, self.object_pk) self.form = sites_form(request, application.type_reference) self.action = post_sites_on_draft self.success_url = reverse_lazy("applications:location", kwargs={"pk": self.object_pk}) class AddExternalLocation(LoginRequiredMixin, MultiFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] application = get_application(request, self.object_pk) location_type = request.POST.get("location_type", None) self.forms = new_external_location_form(request, application.type_reference, location_type) self.action = post_external_locations self.success_url = reverse_lazy("applications:location", kwargs={"pk": self.object_pk}) class RemoveExternalLocation(LoginRequiredMixin, TemplateView): def get(self, request, **kwargs): draft_id = str(kwargs["pk"]) ext_loc_id = str(kwargs["ext_loc_pk"]) data, _ = delete_external_locations_from_draft(request, draft_id, ext_loc_id) parameters = { "request": request, "application_id": draft_id, } if data.get("errors"): parameters["errors"] = data["errors"]["external_locations"] return get_locations_page(**parameters) class AddExistingExternalLocation(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] application = get_application(request, self.object_pk) self.data, _ = get_external_locations_on_draft(request, self.object_pk) self.form = external_locations_form(request, application.type_reference) self.action = post_external_locations_on_draft self.success_url = reverse_lazy("applications:location", kwargs={"pk": self.object_pk}) class Countries(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] self.data = { "countries": [ country_entry["country_id"] for country_entry in get_application_countries_and_contract_types(request, self.object_pk)["countries"] ] } self.form = countries_form(request, self.object_pk) self.action = post_application_countries def get_success_url(self): application = get_application(self.request, self.object_pk) # Only military OIELs and Open Trade Control Licences have contract types per destination if not (is_application_oiel_of_type("military", application) or application.type_reference == CaseTypes.OICL): return reverse_lazy("applications:task_list", kwargs={"pk": self.object_pk}) countries_without_contract_type = [ entry["country_id"] for entry in get_application_countries_and_contract_types(self.request, self.object_pk)["countries"] if not entry["contract_types"] ] if not countries_without_contract_type: return reverse_lazy("applications:countries_summary", kwargs={"pk": self.object_pk}) else: return reverse_lazy("applications:choose_contract_type", kwargs={"pk": self.object_pk}) class ChooseContractType(LoginRequiredMixin, SingleFormView): def init(self, request, **kwargs): self.object_pk = kwargs["pk"] self.form = choose_contract_type_form() self.action = validate_contract_type_countries_choice def get_success_url(self): choice = self.get_validated_data()["choice"] countries_without_contract_type = [ entry["country_id"] for entry in get_application_countries_and_contract_types(self.request, self.object_pk)["countries"] if not entry["contract_types"] ] if choice == ContractTypes.Variables.ALL_COUNTRIES_CHOSEN: return reverse_lazy( "applications:add_contract_type", kwargs={"pk": self.object_pk, "country": ContractTypes.Variables.ALL_COUNTRIES_CHOSEN}, ) if countries_without_contract_type: return reverse_lazy( "applications:add_contract_type", kwargs={"pk": self.object_pk, "country": countries_without_contract_type[0]}, ) else: # Redirect to the summary page if a country has been removed return reverse_lazy("applications:countries_summary", kwargs={"pk": self.object_pk}) class AddContractTypes(LoginRequiredMixin, SingleFormView): contract_types_and_countries = None def init(self, request, **kwargs): self.object_pk = kwargs["pk"] self.action = put_contract_type_for_country self.contract_types_and_countries = get_application_countries_and_contract_types(request, self.object_pk)[ "countries" ] current_country = self.kwargs["country"] selected_countries = [country_entry["country_id"] for country_entry in self.contract_types_and_countries] data_for_current_country = [ country_entry for country_entry in self.contract_types_and_countries if country_entry["country_id"] == current_country ] self.data = ( { "contract_types": data_for_current_country[0]["contract_types"].split(",") if data_for_current_country[0]["contract_types"] else None, "other_contract_type_text": data_for_current_country[0]["other_contract_type_text"], } if data_for_current_country else {} ) if current_country != ContractTypes.Variables.ALL_COUNTRIES_CHOSEN: if current_country == "UKCS": country_name = "UK Continental Shelf" else: country_name = data_for_current_country[0]["country__name"] if country_name not in str(self.contract_types_and_countries): return render(request, "404.html") self.form = contract_type_per_country_form([current_country], country_name) else: selected_countries_ids = selected_countries self.form = contract_type_per_country_form(selected_countries_ids, "all the countries") def get_success_url(self): # Go through all countries without contract types and render the form again if needed next_country = None if self.kwargs["country"] != ContractTypes.Variables.ALL_COUNTRIES_CHOSEN: for country_entry in self.contract_types_and_countries: # If a country has no contract types and it is not the current country (still empty as we do not do an additional call to the api) if not country_entry["contract_types"] and country_entry["country_id"] != self.kwargs["country"]: next_country = country_entry["country_id"] break if next_country: return reverse_lazy( "applications:add_contract_type", kwargs={"pk": self.object_pk, "country": next_country} ) else: return reverse_lazy("applications:countries_summary", kwargs={"pk": self.object_pk}) class CountriesAndContractTypesSummary(LoginRequiredMixin, TemplateView): def get(self, request, **kwargs): object_pk = kwargs["pk"] countries_data = get_application_countries_and_contract_types(request, object_pk) countries = [ { "country_id": country_entry["country_id"], "country_name": country_entry["country__name"], "contract_types": country_entry["contract_types"], "other_contract_type_text": country_entry["other_contract_type_text"], } for country_entry in countries_data["countries"] ] prettified_countries = prettify_country_data(sorted(countries, key=itemgetter("country_name"))) context = { "application_id": str(object_pk), "is_application_oiel_continental_shelf": len(countries) == 1 and countries[0]["country_id"] == "UKCS", "countries": prettified_countries, "is_application_draft_or_major_edit": countries_data["status"] in [APPLICANT_EDITING, "draft"], } return render(request, "applications/goods-locations/destinations-summary-list.html", context) class StaticDestinations(LoginRequiredMixin, TemplateView): # To be used for OIELs where all countries are preselected and non-modifiable by the user # The UKCS OIEL is a special case - this is the initial page displayed before prompting the user to select contract types def get(self, request, **kwargs): application_id = str(kwargs["pk"]) application = get_application(request, application_id) goodstype_category = None if application.get("goodstype_category"): goodstype_category = application.get("goodstype_category").get("key") goodstype_category_label = application.get("goodstype_category").get("value") context = { "application_id": application_id, "countries": get_application_countries(request, application_id), "goodstype_category": goodstype_category, "goodstype_category_label": goodstype_category_label, } return render(request, "applications/goods-locations/static-all-destinations.html", context)
#!/usr/bin/env python3 from __future__ import unicode_literals, print_function, division import sys sys.path.append('..') from io import open import os import matplotlib.pyplot as plt import matplotlib.patches as mpatches import argparse import json from model.settings import hparams import glob if __name__ == '__main__': #os.chdir('/' + '/'.join(sys.argv[0].split('/')[:-1])) parser = argparse.ArgumentParser(description='Plot some NMT values.') parser.add_argument('--files', help='File glob for plotting. Must be json files!!', nargs='+') parser.add_argument('--title', help='Graph title.') parser.add_argument('--label-x', help='X axis label.') parser.add_argument('--label-y', help='Y axis label.') args = parser.parse_args() args = vars(args) print(args) do_filelist = False do_title_graph = False if args['files'] is not None: do_filelist = True if args['title'] is not None: do_title_graph = True arg_filename = '/'.join( hparams['save_dir'].split('/')[1:]) + '/' + 'test*.json' arg_title = 'Loss and Accuracy vs. Steps' if do_filelist: arg_filename = str(','.join(args['files'])) if do_title_graph: arg_title = str(args['title']) arg_filelist = arg_filename.split(',') arg_glob_list = [] for i in arg_filelist: if not i.endswith('.pth') and not i.endswith('.txt'): print(i,'use for plot') arg_glob_list.extend(glob.glob(i)) print(arg_glob_list) arg_list = [] for i in arg_glob_list: if os.path.isfile(i): with open(i, 'r') as z: sublist = [] j = json.loads(z.read()) for k in j: sublist.append((int(k), float(j[k]))) sublist.sort(key=lambda tuple: tuple[0]) #print(sublist) arg_list.append(sublist) #print(arg_list) arg_plot_color = [ 'r', 'b', 'g', 'y','c','m'] fig, ax = plt.subplots() plt.ylabel('Accuracy') if args['label_y'] is not None: plt.ylabel(args['label_y']) plt.xlabel('Sentence Pairs') if args['label_x'] is not None: plt.xlabel(args['label_x']) plt.title(arg_title) handles = [] for i in range(len(arg_list)): ii = i % len(arg_plot_color) label_out = arg_glob_list[i].split('/')[-1] if label_out.endswith('.json'): label_out = label_out[: - len('.json')] pass color_patch = mpatches.Patch(color=arg_plot_color[ii], label=label_out) handles.append(color_patch) lst_x = [] lst_y = [] for k in arg_list[i]: lst_x.append(k[0]) lst_y.append(k[1]) ax.plot(lst_x, lst_y, arg_plot_color[ii] + '-') ax.legend(handles=handles) plt.show()
#!/usr/bin/python3 -m unittest # # basic inspection # import unittest import pymm import numpy as np import math import torch def colored(r, g, b, text): return "\033[38;2;{};{};{}m{} \033[38;2;255;255;255m".format(r, g, b, text) def log(*args): print(colored(0,255,255,*args)) shelf = pymm.shelf('myTransactionsShelf',pmem_path='/mnt/pmem0') class TestReveal(unittest.TestCase): def test_inspect(self): shelf.inspect(verbose=False) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # encoding: utf-8 import importlib import tensorflow as tf assert tf.__version__[0] == '2' # algorithms based on TF 2.x from typing import (Tuple, Callable, Dict) from rls.common.yaml_ops import load_yaml from rls.utils.display import colorize from rls.utils.logging_utils import get_logger logger = get_logger(__name__) class AlgoRegistry(object): def __init__(self): self.algo_specs = {} def register(self, name, **attrs): if name in self.algo_specs.keys(): raise Exception(f'Cannot re-register algorithms: {name}') self.algo_specs[name] = dict(attrs) def get_model_info(self, name): if name in self.algo_specs.keys(): return self.algo_specs[name] raise Exception(f'Cannot find algorithm: {name}') registry = AlgoRegistry() def register(name, **attrs): registry.register(name, **attrs) def get_model_info(name: str) -> Tuple[Callable, Dict, str, str]: ''' Args: name: name of algorithms Return: algo_class of the algorithm model named `name`. defaulf config of specified algorithm. policy_type of policy, `on-policy` or `off-policy` ''' algo_info = registry.get_model_info(name) class_name = algo_info['algo_class'] policy_mode = algo_info['policy_mode'] policy_type = algo_info['policy_type'] LOGO = algo_info.get('logo', '') logger.info(colorize(LOGO, color='green')) model = getattr( importlib.import_module(f'rls.algos.{policy_type}.{name}'), class_name) algo_config = {} algo_config.update( load_yaml(f'rls/algos/config.yaml')['general'] ) algo_config.update( load_yaml(f'rls/algos/config.yaml')[policy_mode.replace('-', '_')] ) algo_config.update( load_yaml(f'rls/algos/config.yaml')[name] ) return model, algo_config, policy_mode, policy_type
from format.util import * def visualize(file_before, file_after, file_diffs, file_output_name = None): """visualize the jpg diff, open with Tk window or save as file args: file_before (str) file_after (str) file_diffs (list) file_output_name (str) """ if file_output_name == None: visualize_image_as_window([file_before, file_diffs[0], file_diffs[1], file_after]) else: visualize_image_as_png(file_diffs[0], file_diffs[1], file_output_name)
class Electric_calculation: def __init__(self, datacase, resistance): try: self.datacase = datacase self.resistance = resistance self.datacaseinit = datacase except: self.datacase = int(input("테스트 케이스의 갯수를 입력하세요> ")) self.resistance = int(input("저항의 값을 입력하세요> ")) def intensity(self): self.amperelist = [] self.r_list = [] for voltage in range(self.datacase): self.r_list.append(voltage) ampere = voltage / self.resistance self.amperelist.append(ampere) return self.amperelist def voltage(self): self.voltagelist = [] for i in range(self.datacase): voltage = self.amperelist[i] * self.r_list[i] self.voltagelist.append(voltage) return self.voltagelist
def condition(row): ''' Args: row (int): Individual entry for specified column Returns: val (int): If number equals 0 returns Else return 1 ''' if row == 0: val = 0 else: val = 1 return val def roundup(row): ''' Args: row (int): values in row equal to specified numbers Return: row (int): If value meets criteria add .25 and return new value ''' if row == 0.75: row += .25 elif row == 1.25: row += .25 elif row == 1.75: row += .25 elif row == 2.25: row += .25 elif row == 2.75: row += .25 elif row == 3.25: row += .25 return row
import pandas as pd import os import argparse import re from Bio import SeqIO pd.set_option("display.max_columns",40) parser=argparse.ArgumentParser() parser.add_argument("-f1","--File1") parser.add_argument("-f2","--File2") args=parser.parse_args() f1=args.File1 f2=args.File2 f_1=pd.read_table(f1,header=0) f_1["coor"]=f_1["RefName_x"]+"_"+f_1["cluster"].apply(str) print(f_1.shape) print(f_1.drop_duplicates(["coor"],keep="first").shape) f_2=pd.read_table(f2,header=0) f_2["coor"]=f_2["RefName_x"]+"_"+f_2["cluster"].apply(str) print(f_2.shape) print(f_2.drop_duplicates(["coor"],keep="first").shape) f_1=f_1.loc[~f_1["coor"].isin(f_2["coor"])] print(f_1.shape) print(f_1.drop_duplicates(["coor"],keep="first").shape) f_1.to_csv(f1+"_rebg.tsv",index=None,sep="\t")
from aiohttp_admin.contrib import models from aiohttp_admin.backends.sa import PGResource from .main import schema from ..db import comment @schema.register class Comments(models.ModelAdmin): fields = ('id', 'post_id', 'created_at', 'body', ) class Meta: resource_type = PGResource table = comment
""" Probabilistic multiple cracking model """ from typing import List, Any, Union import bmcs_utils.api as bu import traits.api as tr import numpy as np import warnings from bmcs_utils.trait_types import Float from scipy.optimize import newton warnings.filterwarnings("error", category=RuntimeWarning) class CrackBridgeModel(bu.Model): """ Record of all material parameters of the composite. The model components (PullOutModel, CrackBridgeRespSurf, PMCM) are all linked to the database record and access the parameters they require. Some parameters are shared across all three components (Em, Ef, vf), some are specific to a particular type of the PulloutModel. """ class CBMConstantBond(CrackBridgeModel): """ Return the matrix stress profile of a crack bridge for a given control slip at the loaded end """ Em = bu.Float(28000) Ef = bu.Float(180000) vf = bu.Float(0.01) T = bu.Float(8) ipw_view = bu.View( bu.Item('Em'), bu.Item('Ef'), bu.Item('vf'), bu.Item('T'), ) @property def Ec(self): return self.Em * (1 - self.vf) + self.Ef * self.vf # [MPa] mixture rule class CrackBridgeRespSurface(bu.Model): """ Crack bridge response surface that returns the values of matrix stress along ahead of a crack and crack opening for a specified remote stress and boundary conditions. """ cb = bu.Instance(CrackBridgeModel) def get_sig_m(self, z, sig_c): """Get the profile of matrix stress along the specimen :param z: np.ndarray :type sig_c: float """ cb = self.cb sig_m = np.minimum(z * cb.T * cb.vf / (1 - cb.vf), cb.Em * sig_c / (cb.vf * cb.Ef + (1 - cb.vf) * cb.Em)) return sig_m def get_eps_f(self, z, sig_c): cb = self.cb sig_m = self.get_sig_m(sig_c, z ) eps_f = (sig_c - sig_m * (1 - cb.vf)) / cb.vf / cb.Ef return eps_f sig_c_slider: float = bu.Float(1.0, BC=True) ipw_view = bu.View( bu.Item('sig_c_slider') ) @staticmethod def subplots(fig): ax = fig.subplots(1,1) ax1 = ax.twinx() return ax, ax1 def update_plot(self, axes): ax, ax1 = axes x_range = np.linspace(-1000,1000,1000) z_range = np.abs(x_range) sig_m_range = self.get_sig_m(self.sig_c_slider, z_range) eps_f_range = self.get_eps_f(self.sig_c_slider, z_range) sig_max = np.max(sig_m_range) eps_max = np.max(eps_f_range) ax.plot(x_range, sig_m_range, color='black') ax.fill_between(x_range, sig_m_range, color='gray', alpha=0.1) ax.set_ylim(ymin=-0.03*sig_max) ax1.plot(x_range, eps_f_range, color='blue') ax1.fill_between(x_range, eps_f_range, color='blue', alpha=0.1) ax1.set_ylim(ymin=-0.03*eps_max) class PMCMHist(bu.Model): pmcm = tr.WeakRef K = bu.Int(0) t = bu.Float(0) K_max = tr.Property(depends_on='state_changed') @tr.cached_property def _get_K_max(self): sig_c_K, eps_c_K, sig_mu_x, x, CS, sig_m_x_K, sig_m_x_K1 = self.pmcm.cracking_history K_max = len(sig_c_K) # ceil the index of current crack self.K = np.min([self.K, K_max]) return K_max ipw_view = bu.View( bu.Item('K', latex=r'\mathrm{state}', readonly=True), time_editor=bu.HistoryEditor( var='t', var_max='K_max' ) ) @staticmethod def subplots(fig): ax1, ax2 = fig.subplots(1,2) ax11 = ax1.twinx() return ax1, ax11, ax2 def update_plot(self, axes): ax, ax_cs, ax_sig_x = axes cr = int(self.t * (self.K_max-2)) self.K = cr self.pmcm.plot(axes) sig_c_K, eps_c_K, sig_mu_x, x, CS, sig_m_x_K, sig_m_x_K1 = self.pmcm.cracking_history ax_sig_x.plot(x,sig_m_x_K[cr]) ax_sig_x.plot(x,sig_m_x_K1[cr], linestyle='dashed') ax.plot(eps_c_K[cr],sig_c_K[cr],color='magenta',marker='o') class PMCM(bu.Model): name = "PMCM" """ Implement the global crack tracing algorithm based on a crack bridge response surface """ history = bu.Instance(PMCMHist) def _history_default(self): return PMCMHist(pmcm=self) cb = bu.Instance(CrackBridgeModel) def _cb_default(self): return CBMConstantBond() cb_rs = tr.Property#(depends_on="state_changed") @tr.cached_property def _get_cb_rs(self): return CrackBridgeRespSurface(cb=self.cb) tree = ['cb', 'cb_rs', 'history'] n_x = bu.Int(5000, ALG=True) L_x = bu.Float(500, GEO=True) sig_cu = bu.Float(20, MAT=True) sig_mu = bu.Float(10, MAT=True) m = bu.Float(4, MAT=True) ipw_view = bu.View( bu.Item('n_x'), bu.Item('L_x'), bu.Item('sig_cu'), bu.Item('sig_mu'), bu.Item('m'), ) def get_z_x(self, x, XK): # distance to the closest crack (*\label{get_z_x}*) """Specimen discretization """ z_grid = np.abs(x[:, np.newaxis] - np.array(XK)[np.newaxis, :]) return np.amin(z_grid, axis=1) def get_sig_c_z(self, sig_mu, z, sig_c_pre): """ :param sig_c_pre: :type sig_mu: float """ # crack initiating load at a material element #print('sig_mu', sig_mu) fun = lambda sig_c: sig_mu - self.cb_rs.get_sig_m(sig_c, z) try: # search for the local crack load level sig_c = newton(fun, sig_c_pre) #print('sig_c', sig_c) return sig_c except (RuntimeWarning, RuntimeError): # solution not found (shielded zone) return the ultimate composite strength return self.sig_cu def get_sig_c_K(self, z_x, x, sig_c_pre, sig_mu_x): # crack initiating loads over the whole specimen get_sig_c_x = np.vectorize(self.get_sig_c_z) sig_c_x = get_sig_c_x(sig_mu_x, z_x, sig_c_pre) #print('sig_c_x', z_x, x, sig_c_pre, sig_mu_x) #print('sig_c_x', sig_c_x) y_idx = np.argmin(sig_c_x) return sig_c_x[y_idx], x[y_idx] cracking_history = tr.Property(depends_on='state_changed') @tr.cached_property def _get_cracking_history(self): cb = self.cb L_x, n_x, sig_mu, sig_cu, m = self.L_x, self.n_x, self.sig_mu, self.sig_cu, self.m x = np.linspace(0, L_x, n_x) # specimen discretization sig_mu_x: np.ndarray[np.float_] = sig_mu * np.random.weibull( m, size=n_x) # matrix strength XK: List[float] = [] # recording the crack postions sig_c_K: List[float] = [0.] # recording the crack initiating loads eps_c_K: List[float] = [0.] # recording the composite strains CS: List[float] = [L_x, L_x / 2] # initial crack spacing sig_m_x_K1: List[float] = [np.zeros_like(x)] # stress profiles at crack states sig_m_x_K: List[float] = [np.zeros_like(x)] # stress profiles after crack states Ec: float = cb.Ec Em: float = cb.Em idx_0 = np.argmin(sig_mu_x) XK.append(x[idx_0]) # position of the first crack sig_c_0 = sig_mu_x[idx_0] * Ec / Em sig_m_x_K1.append(np.ones_like(x)*sig_mu_x[idx_0]) # matrix stress #print('sig_c_0', sig_c_0) sig_c_K.append(sig_c_0) eps_c_K.append(sig_mu_x[idx_0] / Em) while True: z_x = self.get_z_x(x, XK) # distances to the nearest crack sig_m_x_K.append(self.cb_rs.get_sig_m(sig_c_K[-1], z_x)) # matrix stress sig_c_k, y_i = self.get_sig_c_K(z_x, x, sig_c_K[-1], sig_mu_x) # identify next crack sig_m_x_K1.append(self.cb_rs.get_sig_m(sig_c_k, z_x)) # matrix stress if sig_c_k == sig_cu: break XK.append(y_i) # record crack position sig_c_K.append(sig_c_k) # corresponding composite stress eps_c_K.append( # composite strain - integrate the strain field np.trapz(self.cb_rs.get_eps_f(sig_c_k, self.get_z_x(x, XK)), x) / np.amax(x)) XK_arr = np.hstack([[0], np.sort(np.array(XK)), [L_x]]) CS.append(np.average(XK_arr[1:] - XK_arr[:-1])) # crack spacing sig_c_K.append(sig_cu) # the ultimate state eps_c_K.append(np.trapz(self.cb_rs.get_eps_f(sig_cu, self.get_z_x(x, XK) ), x) / np.amax(x)) CS.append(CS[-1]) return np.array(sig_c_K), np.array(eps_c_K), sig_mu_x, x, np.array(CS), np.array(sig_m_x_K), np.array(sig_m_x_K1) @staticmethod def subplots(fig): ax1, ax2 = fig.subplots(1,2) ax11 = ax1.twinx() return ax1, ax11, ax2 def plot(self, axes): ax, ax_cs, ax_sig_x = axes sig_c_K, eps_c_K, sig_mu_x, x, CS, sig_m_x_K, sig_m_x_K1 = self.cracking_history n_c = len(eps_c_K) - 2 # numer of cracks ax.plot(eps_c_K, sig_c_K, marker='o', label='%d cracks:' % n_c) ax.set_xlabel(r'$\varepsilon_\mathrm{c}$ [-]'); ax.set_ylabel(r'$\sigma_\mathrm{c}$ [MPa]') ax_sig_x.plot(x, sig_mu_x, color='orange') ax_sig_x.fill_between(x, sig_mu_x, 0, color='orange', alpha=0.1) ax_sig_x.set_xlabel(r'$x$ [mm]'); ax_sig_x.set_ylabel(r'$\sigma$ [MPa]') ax.legend() eps_c_KK = np.array([eps_c_K[:-1], eps_c_K[1:]]).T.flatten() CS_KK = np.array([CS[:-1], CS[:-1]]).T.flatten() ax_cs.plot(eps_c_KK, CS_KK, color='gray') ax_cs.fill_between(eps_c_KK, CS_KK, color='gray', alpha=0.2) ax_cs.set_ylabel(r'$\ell_\mathrm{cs}$ [mm]'); def update_plot(self, axes): self.plot(axes)
"""cv_detect_train.pu Multiplatform OpenCV (cv2) face detection and capture tool. The MIT License (MIT) Copyright (c) 2020 Román Ramírez Giménez (MIT License) Run this script to detect faces, save images and then be able to train models for different tools (for example, Magic Mirror 2 facial recognition ones). Usage: %s: -u <user> || --user=<user> (Note this is required for capture) -d <device_id> || --device_id=<device_id> (if not in Raspberry PI you must pass a device id as in the camera device located at /dev/video[id]) -o <output_directory> || --output=<output_directory> (where images will be stored, the format will be the directory passed with the username joined, for example "output/username/". There you will find several images: - <number>.jpg: the captured image. - <number>_boxed.jpg: the captured image with a red box around the detected face/s. - <number>_gray.jpg: the captured image in gray scale. Capture, Train and Identify requires -o or will default to BASE_CAPTURE_DIRECTORY if not passed in an explicit way. -l <limit> || --limit=<limit> (a limit for the number of images to save. By default 0 that means is unlimitted). -a <algorithm number> || --algorithm=<algorithm number> (the algorithm can be 1 to 3, corresponding to LBPH_RECOGNIZER, FISHER_RECOGNIZER and EIGEN_RECOGNIZER). -s || --silent (do not show the positive image on screen) -c || --capture (capture images to be trained. Remember to set device id if not in a Raspberry PI, -d 1 or so) -t || --train (train models from images in output_dir/images_dir and generate XML file with the trained model) -r || --recognize (identify people opening the camera -do not forget the device id if not in a Raspberry PI- and matching against the trained model) -n || --no-extra-images (this flag will limit the image generation just to what is useful to train the model, not creating color, grey, additional images). -h || --help """ import os import sys from engine.config import * from engine.globals import * from engine.capture import * from engine.train import * from engine.recognize import * if __name__ == "__main__": IS_RASPBIAN = False IS_ARM = False sysname, nodename, release, version, machine = os.uname() nodename = nodename.lower() if DEBUG is True: print('OS: %s' % os.name) print('Uname: sys[%s] node[%s] rel[%s] ver[%s] machine[%s]' % (sysname, nodename, release, version, machine)) if nodename == 'raspberrypi' or nodename == 'raspbian': IS_RASPBIAN = True if DEBUG is True: print('==> IS raspbian environment') else: if DEBUG is True: print('==> Not in raspbian environment') if 'arm' in machine.lower(): IS_ARM = True if DEBUG is True: print('==> IS ARM architecture') else: if DEBUG is True: print('==> Not in ARM architecture') if len(sys.argv) < 2: print('*: Please, check arguments passed') show_help(program_name=sys.argv[0]) sys.exit(ERROR_INVALID_ARGUMENT_COUNT) parsed_dict = parse_arguments(argv=sys.argv[1:], program_name=sys.argv[0]) images_status = open_images_status_file(base_images_dir=parsed_dict['output_dir']) if not images_status: print('CRITICAL: something critical happened reading images status file. EXIT.') sys.exit(-1) if parsed_dict['wanna_train'] is True: do_train(base_images_dir=parsed_dict['output_dir'], recognizer_algorithm=parsed_dict['algorithm']) elif parsed_dict['wanna_recognize'] is True: cv_recognize(images_dir=parsed_dict['output_dir'], device_id=parsed_dict['did'], recognizer_algorithm=parsed_dict['algorithm'], is_raspbian=IS_RASPBIAN, is_arm=IS_ARM) elif parsed_dict['wanna_capture'] is True: do_capture(user=parsed_dict['user'], device_id=parsed_dict['did'], is_raspbian=IS_RASPBIAN, is_arm=IS_ARM, silent_mode=parsed_dict['silent'], base_images_dir=parsed_dict['output_dir'], limit=parsed_dict['limit'], status=images_status, create_extra_images=parsed_dict['create_extra_images']) else: show_help(program_name=sys.argv[0]) sys.exit(ERROR_NO_ACTION_SELECTED)
import contextlib import logging import signal import sys LOGGER = logging.getLogger(__name__) class ApplicationState(object): LOAD = 0 MAIN_LOOP = 1 def __init__(self): self.state = self.LOAD self.running = True signal.signal(signal.SIGINT, self.signal_handler) def set_application_state(self, state): self.state = state def stop_main_loop(self): self.running = False def signal_handler(self, signal, frame): if self.state == self.LOAD: self._handle_signal_in_load_state() elif self.state == self.MAIN_LOOP: self._handle_signal_in_main_loop_state() else: raise RuntimeError("Invalid application state: {}".format(self.state)) @contextlib.contextmanager def suspend_signal_handling(self): current_handler = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, signal.SIG_IGN) yield signal.signal(signal.SIGINT, current_handler) def _handle_signal_in_load_state(self): LOGGER.debug("Handle SIGINT in 'load' state, do exit") sys.exit(1) def _handle_signal_in_main_loop_state(self): LOGGER.debug("Handle SIGINT in 'main loop' state, stop the main loop") self.stop_main_loop()
# Problem statement: Print all possible strings of length k that can be formed from a set of n charactersFor a length k ,set of size n n^k # strings can be formed ''' Approach is to start with a string which is empty/blank ,add all characters one by one to that empty string , for every character added print all possible string with current character by recursive calling''' def printAllStringsOfLengthk(set , k): # This method is mainly a wrapper over recursive function length_set = len(set) printAllStringsOfLengthkRec(set , " ", length_set, k) ''' The main recursive method''' def printAllStringsOfLengthkRec(set, prefix, length_set, k): if(k==0): #Base case where k is zero print prefix print(prefix) return for i in range(length_set): newPrefix = prefix + set[i] #In thiis line adding the next character of input printAllStringsOfLengthkRec(set , newPrefix ,length_set ,k - 1) # Driver code if __name__ == '__main__': print('First Sample Test') #Sample test 1 set1 = ['a', 'b','c'] k = 2 printAllStringsOfLengthk(set1 , k) print('\n Second Test') #For sample test 2 set2 = ['m','a','n','v','i'] k = 2 printAllStringsOfLengthk(set2 , k) # Code ends here
""" Example implementation of a UBXMessage file reader using the UBXReader iterator functions Created on 25 Oct 2020 @author: semuadmin """ from pyubx2.ubxreader import UBXReader import pyubx2.exceptions as ube class UBXStreamer: """ UBXStreamer class. """ def __init__(self, filename): """ Constructor. """ self._filename = filename self._stream = None self._ubxreader = None self._connected = False self._reading = False def __del__(self): """ Destructor. """ self.close() def open(self): """ Open file. """ self._connected = False try: self._stream = open(self._filename, "rb") self._connected = True except Exception as err: print(f"Error opening file {err}") return self._connected def close(self): """ Close file. """ if self._connected and self._stream: try: self._stream.close() except Exception as err: print(f"Error closing file {err}") self._connected = False return self._connected def reader(self, validate=False, mode=0): """ Reads and parses UBX message data from stream using UBXReader iterator method """ i = 0 self._ubxreader = UBXReader(self._stream, validate=validate, msgmode=mode) for msg in self._ubxreader: # invokes iterator method try: (raw_data, parsed_data) = msg # if raw_data: # print(raw_data) if parsed_data: print(parsed_data) i += 1 except (ube.UBXMessageError, ube.UBXTypeError, ube.UBXParseError) as err: print(f"Something went wrong {err}") continue print(f"\n\n{i} message{'' if i == 1 else 's'} read from {self._filename}.") if __name__ == "__main__": print("Enter fully qualified name of file containing binary UBX data: ", end="") filefqn = input().strip('"') print("Do you want to validate the data stream (y/n)? (n) ", end="") val = input() or "n" VALD = val in ("Y", "y", "YES,", "yes", "True") print("Message mode (0=GET (output), 1=SET (input), 2=POLL (poll)? (0) ", end="") mode = input() or "0" MODED = int(mode) print("Instantiating UBXStreamer class...") ubf = UBXStreamer(filefqn) print(f"Opening file {filefqn}...") if ubf.open(): print("Starting file reader") ubf.reader(VALD, MODED) print("\n\nClosing file...") ubf.close() print("Test Complete")
import os import bpy from .. import base from ... import particles_io def get_cache(socket): node = socket.node pos = node.outputs['Position'] vel = node.outputs['Velocity'] col = node.outputs['Hex Color'] mat = node.outputs['Material'] emt = node.outputs['Emitter'] size = node.outputs['Size'] folder = node.inputs['Folder'].get_value()[0] pos_key = '{0}.{1}'.format(node.name, pos.name) vel_key = '{0}.{1}'.format(node.name, vel.name) col_key = '{0}.{1}'.format(node.name, col.name) mat_key = '{0}.{1}'.format(node.name, mat.name) emt_key = '{0}.{1}'.format(node.name, emt.name) size_key = '{0}.{1}'.format(node.name, size.name) # scene scn = bpy.context.scene if not folder: scn.elements_sockets[pos_key] = () scn.elements_sockets[vel_key] = () scn.elements_sockets[col_key] = () scn.elements_sockets[mat_key] = () scn.elements_sockets[emt_key] = () scn.elements_sockets[size_key] = (1.0, ) # TODO return caches = {} # particles file name name = 'particles_{0:0>6}.bin'.format(scn.frame_current) # absolute particles file path path = bpy.path.abspath(os.path.join(folder, name)) if os.path.exists(path): particles_io.read_pars(path, caches, folder, socket.name) else: scn.elements_sockets[pos_key] = () scn.elements_sockets[vel_key] = () scn.elements_sockets[col_key] = () scn.elements_sockets[mat_key] = () scn.elements_sockets[emt_key] = () scn.elements_sockets[size_key] = (1.0, ) # TODO return scn.elements_sockets[pos_key] = caches[folder][particles_io.POS] scn.elements_sockets[vel_key] = caches[folder][particles_io.VEL] scn.elements_sockets[col_key] = caches[folder][particles_io.COL] scn.elements_sockets[mat_key] = caches[folder][particles_io.MAT] scn.elements_sockets[emt_key] = caches[folder][particles_io.EMT] scn.elements_sockets[size_key] = (1.0, ) # TODO class ElementsCacheNode(base.BaseNode): bl_idname = 'elements_cache_node' bl_label = 'Cache' required_nodes = {'Particles': ['elements_simulation_node', ], } get_value = { 'Position': get_cache, 'Velocity': get_cache, 'Hex Color': get_cache, 'Material': get_cache, 'Emitter': get_cache, 'Size': get_cache } category = base.COMPONENT def init(self, context): self.width = 200.0 pars = self.inputs.new('elements_struct_socket', 'Particles') pars.text = 'Particles' folder = self.inputs.new('elements_folder_socket', 'Folder') folder.text = 'Folder' # particle position pos = self.outputs.new('elements_vector_socket', 'Position') pos.text = 'Position' pos.hide_value = True # particle velocity vel = self.outputs.new('elements_vector_socket', 'Velocity') vel.text = 'Velocity' vel.hide_value = True # particle color col = self.outputs.new('elements_integer_socket', 'Hex Color') col.text = 'Hex Color' col.hide_value = True # particle material id mat = self.outputs.new('elements_integer_socket', 'Material') mat.text = 'Material' mat.hide_value = True # particle emitter id mat = self.outputs.new('elements_integer_socket', 'Emitter') mat.text = 'Emitter' mat.hide_value = True # particle size size = self.outputs.new('elements_float_socket', 'Size') size.text = 'Size' size.hide_value = True
import datetime from direct.directnotify import DirectNotifyGlobal from toontown.uberdog.ClientServicesManagerUD import executeHttpRequest from direct.fsm.FSM import FSM from direct.distributed.PyDatagram import PyDatagram from direct.distributed.MsgTypes import * from otp.ai.MagicWordGlobal import * from direct.showbase.DirectObject import DirectObject import threading import httplib class BanFSM(FSM): def __init__(self, air, avId): FSM.__init__(self, 'banFSM-%s' % avId) self.air = air self.avId = avId # Needed variables for the actual banning. self.DISLid = None self.accountId = None self.avName = None def performBan(self): # NO ALTIS API return httpReq = httplib.HTTPConnection('www.projectaltis.com') httpReq.request('GET', '/api/ban/441107756FCF9C3715A7E8EA84612924D288659243D5242BFC8C2E26FE2B0428/%s' % self.accountId) httpReq.getresponse().read() print(self.accountId) def ejectPlayer(self): av = self.air.doId2do.get(self.avId) if not av: return # Send the client a 'CLIENTAGENT_EJECT' with the players name. datagram = PyDatagram() datagram.addServerHeader( av.GetPuppetConnectionChannel(self.avId), self.air.ourChannel, CLIENTAGENT_EJECT) datagram.addUint16(152) datagram.addString(self.avName) simbase.air.send(datagram) def dbCallback(self, dclass, fields): if dclass != simbase.air.dclassesByName['AccountAI']: return self.accountId = fields.get('ACCOUNT_ID') if not self.accountId: return self.duration = None self.performBan() def getAvatarDetails(self): av = self.air.doId2do.get(self.avId) if not av: return self.DISLid = av.getDISLid() self.avName = av.getName() def log(self): simbase.air.writeServerEvent('ban', self.accountId) def cleanup(self): self.air = None self.avId = None self.DISLid = None self.avName = None self.accountId = None self.comment = None self.duration = None self = None def enterStart(self): self.getAvatarDetails() self.air.dbInterface.queryObject(self.air.dbId, self.DISLid, self.dbCallback) def exitStart(self): self.log() self.cleanup() def enterOff(self): pass def exitOff(self): pass class BanManagerAI(DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('BanManagerAI') def __init__(self, air): self.air = air self.banFSMs = {} def ban(self, avId, comment): self.banFSMs[avId] = BanFSM(self.air, avId) self.banFSMs[avId].request('Start') self.acceptOnce(self.air.getAvatarExitEvent(avId), self.banDone, [avId]) def banDone(self, avId): self.banFSMs[avId].request('Off') self.banFSMs[avId] = None @magicWord(category=CATEGORY_MODERATOR, types=[str]) def kick(reason='No reason specified'): """ Kick the target from the game server. """ target = spellbook.getTarget() if target == spellbook.getInvoker(): return "You can't kick yourself!" datagram = PyDatagram() datagram.addServerHeader( target.GetPuppetConnectionChannel(target.doId), simbase.air.ourChannel, CLIENTAGENT_EJECT) datagram.addUint16(155) datagram.addString('You were kicked by a moderator for the following reason: %s' % reason) simbase.air.send(datagram) return "Kicked %s from the game server!" % target.getName() @magicWord(category=CATEGORY_MODERATOR, types=[str]) def ban(reason): """ Ban and Kick the target from the game server. """ target = spellbook.getTarget() if target == spellbook.getInvoker(): return "You can't ban yourself!" simbase.air.banManager.ban(target.doId, reason) datagram = PyDatagram() datagram.addServerHeader( target.GetPuppetConnectionChannel(target.doId), simbase.air.ourChannel, CLIENTAGENT_EJECT) datagram.addUint16(155) datagram.addString('You were banned by a moderator for the following reason: %s' % reason) simbase.air.send(datagram) return "Kicked and Banned %s from the game server!" % target.getName()
# Generated by Django 3.0.2 on 2020-01-20 14:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('babybuddy', '0007_auto_20190607_1422'), ] operations = [ migrations.AlterField( model_name='settings', name='language', field=models.CharField(choices=[('en', 'English'), ('fr', 'French'), ('de', 'German'), ('es', 'Spanish'), ('sv', 'Swedish'), ('tr', 'Turkish')], default='en', max_length=255, verbose_name='Language'), ), ]
"""Responsys REST API Client.""" # used to issue CRUD requests, the meat and 'taters of this thing import requests # used with the login with certificate functions # import base64 as base64 # Interact API returns a lot of json-like text objects # we use this to bind them to python objects import json # used with the login with certificate functions # from random import choice # used with the login with certificate functions # from string import ascii_uppercase # our own rules for data objects. from .containers import rules # Helper functions for use with direct implementations of calls as below # # Helps with Login with username and certificates # def generate_client_challenge_value(length=16): # return base64.b64encode( # bytes(''.join(choice(ascii_uppercase) for i in range(16)), 'utf-8') # ) class Client: """The main client.""" def __init__(self, config, creds): """Initialize.""" self.config = config self.creds = creds """Internal methods.""" def _login(self, user_name, password, url): """Login with username and password.""" data = { "user_name": user_name, "password": password, "auth_type": "password" } headers = {'content-type': 'application/x-www-form-urlencoded'} return requests.post(url, data=data, headers=headers) def _login_with_username_and_certificates(self, url, user_name): """Login with username and certificates.""" # # TODO: Implement # # Step 1 - Authenticate server by sending the following REST request # data = { # "user_name" : user_name, # "auth_type" : "server", # "client_challenge" : client_challenge_value # } # service_url = 'auth/token' # url = url + service_url # client_challenge_value = generate_client_challenge_value() # # Step 2 - Get response from the server and decrypt with RSA and # # Public Key Certificate (downloaded from Interact interface) # response = requests.post(url, data=data, headers=headers) # # TODO: Implement parse response # # Expect: # # { # # "authToken" : "<TEMP_AUTH_TOKEN>", # # "serverChallenge" : "<BASE_64_ENCODED_SERVER_CHALLENGE>", # # "clientChallenge" : "<ENCRYPTED_AND_THEN_BASE_64_ENCODED_CLIENT_CHALLENGE>" # # } # response = parse_response() # # TODO: Implement import certificate # certificate = import_local_public_key_certificate(file) # # TODO: Implement RSA decryption # response = decrypt(response) # # TODO: Implement authorize call # response = login_with_username_and_certificate_authorization( # user_name, # auth_type=client, # server_challenge=encrypt(response["serverChallenge"]) # ) # return response raise(NotImplementedError) def _get_context(self): """ Return the login response as context. Used with each individual call to Responsys API. """ context = json.loads( self._login( self.creds.user_name, self.creds.password, self.config.login_url ).text ) context['api_url'] = self.config.api_url return context def _refresh_token(self, token): """Refresh the token. Called when it's expired.""" # # TODO: Implement # # Refresh token # def refresh_token(url, old_auth_token): # service_url = 'auth/token' # url = url + service_url # data = {'auth_type' : 'token'} # headers = {'Authorization' : auth_token} # response = requests.post(url, data=data, headers=headers) # return response """Internal helper methods.""" def _list_child(self, child, from_type): if type(child) is from_type: parent = [] parent.append(child) return parent else: return child def _nonstr_to_str(self, data): # Quietly convert bytes to strings... I'm uneasy about this if type(data) is bytes: data = data.decode('utf-8') # Convert other types to strings because Responsys ignores most of them if type(data) in [int, float, bool, dict, list, set, tuple, type(None)]: data = str(data) return data def _post(self, service_url, data, **kwargs): context = self._get_context() data = json.dumps(data) headers = { 'Authorization': context["authToken"], 'Content-Type': 'application/json' } endpoint = '{e}/{a}/{s}'.format( e=context["endPoint"], a=context["api_url"], s=service_url) response = requests.post(data=data, headers=headers, url=endpoint) try: response = json.loads(response.text) except: pass return response def _delete(self, service_url): context = self._get_context() headers = {'Authorization': context["authToken"]} endpoint = '{e}/{a}/{s}'.format( e=context["endPoint"], a=context["api_url"], s=service_url) response = requests.delete(url=endpoint, headers=headers) try: response = json.loads(response.text) except: pass return response def _trim_path(self, path): # chop trailing slash try: if path[-1] == '/': path = path[:-1] # chop leading slash if path[0] == '/': path = path[1:] except: pass return path def _prep_doc_and_path( self, document, local_path=None, remote_path=None ): if local_path is None: local_path = self.config.local_content_library_folder local_path = self._trim_path(local_path) if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) document_data = open(f'{local_path}/{document}', 'r').read() # just use the filename, omit the path document_name = document.split('/')[-1] if document_name.endswith('.html'): raise ValueError(""" .html is not allowed in Responsys Interact. It would silently rename your .html files to .htm on upload. Instead the Responsys Interact Python wrapper library doesn't allow it. Rename your .html files to .htm before you upload them. This will prevent mismatches and chaos. You will be happy you did. """) data = { 'documentPath': '/contentlibrary/{p}/{d}'.format( p=remote_path, d=document_name), 'content': document_data } return {'data': data, 'document_name': document_name, 'remote_path': remote_path} """Direct implentations of calls from Responsys Interact REST API documentation https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCEB/OMCEB.pdf All comment descriptions are directly from the v1.3 REST API documentation, except some English-language grammar and syntax inconsistencies are modified from their documentation and code-comment style to match PEP-8. """ """Main functions.""" def get_profile_lists(self): """Retrieving all profile lists for an account.""" return self._get('lists') def update_profile_list(self, list_name, fields, records, html_value='H', optin_value='I', text_value='T', insert_on_no_match=True, insert_on_match='REPLACE_ALL', match_column_name1='RIID_', match_column_name2=None, match_operator='NONE', opt_out_value='O', reject_records_if_channel_empty=None, default_permission_status='OPTIN'): """Merge or update members in a profile list table.""" # Fields, records to lists to accept str arg for single record updates fields = self._list_child(fields, str) records = self._list_child(records, str) # Clean non string objects from fields if self.config.caste_nonstr_to_str == True: try: fields = [self._nonstr_to_str(f) for f in fields] except: pass # Clean non string from records try: records = [self._nonstr_to_str(r) for r in records] except: pass data = { 'recordData': { 'fieldNames': fields, 'records': [ records ], 'mapTemplateName': None }, 'mergeRule': { 'htmlValue': html_value, 'optinValue': optin_value, 'textValue': text_value, 'insertOnNoMatch': insert_on_no_match, 'updateOnMatch': insert_on_match, 'matchColumnName1': match_column_name1, 'matchColumnName2': match_column_name2, 'matchOperator': match_operator, 'optoutValue': opt_out_value, 'rejectRecordIfChannelEmpty': reject_records_if_channel_empty, 'defaultPermissionStatus': default_permission_status } } service_url = 'lists/{list_name}/members'.format(list_name=list_name) return self._post(service_url, data) # raise(NotImplementedError) def _get(self, service_url, **kwargs): """General purpose build for GET requests to Interact API.""" context = self._get_context() endpoint = '{e}/{a}/{s}'.format( e=context["endPoint"], a=context["api_url"], s=service_url) headers = kwargs.get('headers', {'Authorization': context['authToken']}) # use parameters if we got them if "parameters" in kwargs: parameters = kwargs.get('parameters', None) endpoint = '{e}?{p}'.format(e=endpoint, p=parameters) response = requests.get(url=endpoint, headers=headers) try: response = json.loads(response.text) except: pass return response def get_campaigns(self): """Get all EMD email campaigns.""" return self._get('campaigns') def get_push_campaigns(self): """Get all Push campaigns.""" return self._get('campaigns?type=push') def get_member_of_list_by_riid( self, list_name, riid, fields_to_return=['all'] ): """Retrieve a member of a profile list using RIID.""" service_url = 'lists/{l}/members/{id}'.format(l=list_name, id=riid) parameters = 'fs={fs}'.format(fs=",".join(fields_to_return)) return self._get(service_url, parameters=parameters) def get_member_of_list_by_attribute( self, list_name, record_id, query_attribute='c', fields_to_return=['all'] ): """Retrieve a member of a profile list based on query attribute.""" service_url = 'lists/{l}/members'.format(l=list_name) parameters = 'fs={fs}&qa={qa}&id={id}'.format( fs=",".join(fields_to_return), qa=query_attribute, id=record_id) return self._get(service_url, parameters=parameters) def get_profile_extensions_for_list(self, list_name): """Retrieve all profile extensions of a profile list.""" return self._get('lists/{l}/listExtensions'.format(l=list_name)) def get_member_of_profile_extension_by_riid( self, list_name, pet_name, riid, fields_to_return=['all'] ): """Retrieve a member of a profile extension table based on RIID.""" service_url = 'lists/{l}/listExtensions/{p}/members/{id}'.format( l=list_name, p=pet_name, id=riid) parameters = 'fs={fs}'.format(fs=",".join(fields_to_return)) return self._get(service_url, parameters=parameters) def get_member_of_profile_extension_by_attribute( self, list_name, pet_name, record_id, query_attribute='c', fields_to_return=['all'] ): """Retrieve a member of a profile extension table based on a query attribute.""" service_url = 'lists/{l}/listExtensions/{p}/members'.format( l=list_name, p=pet_name) parameters = 'fs={fs}&qa={qa}&id={id}'.format( fs=",".join(fields_to_return), qa=query_attribute, id=record_id) return self._get(service_url, parameters=parameters) def get_lists_for_record(self, riid): """Find what lists a record is in by RIID.""" all_lists = [list_name["name"] for list_name in self.get_profile_lists()] # container list member_of = [] for profile_list in all_lists: response = self.get_member_of_list_by_riid( self, profile_list, riid) # if the member (by riid) is in the profile list # add it to the list of all profile lists if "recordData" in response: member_of.append(profile_list) return member_of def send_email_message( self, recipients, folder_name, campaign_name, optional_data={}): """Trigger email message.""" # Accept a string for one recipient but work with a list either way. recipients = self._list_child(recipients, str) if type(recipients) is not list: raise TypeError( 'Recipients data must be a string of one recipient or a list.') # Accept a dict for one recipient's optional data # but work with a list either way. optional_data = self._list_child(optional_data, dict) optional_data = [ { self._nonstr_to_str(k):self._nonstr_to_str(v) for k,v in d.items() } for d in optional_data ] # then if there's no optional data extend it out so we can zip it up if optional_data == [{}] and len(recipients) > 1: optional_data = optional_data * len(recipients) if type(optional_data) is not list: raise TypeError( 'Recipients data must be a dictionary of key/value pairs for\n'+ 'one recipient or a list of dictionaries for multiple recipients') if len(recipients) != len(optional_data): raise ValueError( 'Recipients list must be same length as optional data list') zipped = zip(recipients, optional_data) data = { "recipientData" : [ { "recipient" : { "customerId" : None, "emailAddress" : recipient[0], "listName" : { "folderName" : folder_name, "objectName" : campaign_name }, "recipientId" : None, "mobileNumber" : None, "emailFormat" : "HTML_FORMAT" }, "optionalData" : [ {} if len(d.items()) is 0 else { "name": list(d.keys())[0], "value": list(d.values())[0] } for d in self._list_child(recipient[1], dict) ] } for recipient in zipped ] } service_url = 'campaigns/{c}/email'.format(c=campaign_name) return self._post(service_url, data) def delete_from_profile_list(self, list_name, riid): """Delete Profile List Recipients based on RIID.""" service_url = 'lists/{l}/members/{id}'.format(l=list_name, id=riid) return self._delete(service_url) def delete_member_of_profile_extension_by_riid( self, list_name, pet_name, riid ): """Delete a member of a profile extension table based on RIID.""" service_url = 'lists/{l}/listExtensions/{p}/members/{id}'.format( l=list_name, p=pet_name, id=riid) return self._delete(service_url) def create_supplemental_table( self, supplemental_table_name, folder_name='', fields='', default_field_type='STR500', data_extraction_key=None, primary_key=None ): """Create a new supplemental table.""" if type(fields) == str: raise TypeError('Fields must be a list.') if folder_name == '': folder_name = self.config.api_folder service_url = 'folders/{f}/suppData'.format(f=folder_name) if primary_key is None: try: primary_key = fields[0] except ValueError: raise ValueError( """Cannot create supplemental table with no fields. Primary key field is required.""") data = { # TODO: Use field types per field "table": {"objectName": supplemental_table_name}, "fields": [ { "fieldName": field, "fieldType": default_field_type, "dataExtractionKey": False } for field in fields ], "primaryKeys": [primary_key] } return self._post(service_url, data) def list_folder( self, remote_path=None, object_type='all' ): """List the contents of a folder.""" valid_types = ['all', 'folders', 'docs', 'items'] if object_type not in valid_types: raise ValueError( """Object type must be one of {v}.""".format( v=str(valid_types)[1:-1]) ) if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clFolders/contentlibrary/{f}?type={o}'.format( f=remote_path, o=object_type) return self._get(service_url) def create_folder( self, remote_path=None ): """Create a new folder in /contentlibrary/.""" if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clFolders' data = { "folderPath": '/contentlibrary/{f}'.format(f=remote_path) } return self._post(service_url, data) def create_document( self, document, local_path=None, remote_path=None ): """Create a document in /contentlibrary/.""" if local_path is None: local_path = self.config.local_content_library_folder, local_path = self._trim_path(local_path) if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clDocs' data = self._prep_doc_and_path( document, local_path, remote_path)['data'] return self._post(service_url, data) def get_document( self, document, remote_path=None ): """Get a document from /contentlibrary/.""" if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clDocs/contentlibrary/{rfp}/{d}'.format( rfp=remote_path, d=document) return self._get(service_url) def update_document( self, document, local_path=None, remote_path=None ): """Update a document that's already in /contentlibrary/.""" if local_path is None: local_path = self.config.local_content_library_folder, local_path = self._trim_path(local_path) if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clDocs/contentlibrary/{rfp}/{d}'.format( rfp=remote_path, d=document) prepped = self._prep_doc_and_path( document, local_path, remote_path) return self._post(service_url, prepped['data']) def delete_document(self, document, remote_path=None): """Delete a document in /contentlibrary/'.""" # # First try to get the document before we delete it! # self.get_document(document, remote_path) if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) service_url = 'clDocs/contentlibrary/{p}/{d}'.format( p=remote_path, d=document) return self._delete(service_url) def delete_folder(self, remote_path=None): """Delete a folder in /contentlibrary/.""" if remote_path is None: remote_path = self.config.remote_content_library_folder remote_path = self._trim_path(remote_path) remote_path = self._trim_path(remote_path) service_url = 'clFolders/contentlibrary/{f}'.format(f=remote_path) return self._delete(service_url) # NOT IMPLEMENTED GROUP def create_profile_extension(self, profile_extension_name, records): """Create a profile extension table.""" def update_profile_extension(self, profile_extension_name, records): """Update a profile extension table.""" raise(NotImplementedError) def update_supplemental_table(self, supplemental_table_name, records): """Update a supplemental table.""" raise(NotImplementedError) def get_record_from_supplemental_table(self, supplemental_table_name, record): """Get a record from a supplemental table.""" raise(NotImplementedError) def delete_record_from_supplemental_table(self, supplemental_table_name, record): """Delete a record from a supplemental table.""" raise(NotImplementedError) def update_list_and_send_email_message( self, list, recipients, campaign_name ): """Update a list and then send an email message.""" raise(NotImplementedError) def update_list_and_send_email_message_with_attachments( self, list, recipeints, campaign_name, attachments ): """Update a list and send an email message.""" raise(NotImplementedError) def update_list_and_send_sms(self, list, recipients, campaign_name): """Update a list and send an sms.""" raise(NotImplementedError) def send_push_message(self, campaign_name, recipient_id): """Send a push message.""" raise(NotImplementedError) def trigger_custom_event(self, event_name): """Trigger a custom event.""" raise(NotImplementedError) def schedule_campaign(self, campaign_name, schedule): """Schedule a campaign.""" raise(NotImplementedError) def get_schedules_for_campaign(self, campaign_name): """Get the schedule IDs for a campaign.""" raise(NotImplementedError) def get_campaign_schedule(self, campaign_name): """Get the schedule for a campaign.""" raise(NotImplementedError) def update_campaign_schedule(self, campaign_name): """Update a campaign schedule.""" raise(NotImplementedError) def unschedule_campaign(self, campaign_name): """Unschedule a campaign.""" raise(NotImplementedError) def create_media_file(self, path_to_media_file, media_file): """Create a media file.""" raise(NotImplementedError) def get_media_file(self, path_to_media_file): """Get a media file.""" raise(NotImplementedError) def update_media_file(self, path_to_old_media_file, new_media_file): """Update a media file.""" raise(NotImplementedError) def delete_media_file(self, path_to_media_file): """Delete a media file.""" raise(NotImplementedError) def copy_media_file(self, path_to_media_file, new_name=None): """Copy a media file.""" raise(NotImplementedError) def set_images_in_document(self, path_to_interact_document, images): """Set the image data for media that are referenced in a document.""" raise(NotImplementedError) def get_images_in_document(self, path_to_interact_document): """Get the image data for media that are referenced in a document.""" raise(NotImplementedError)
""" usuario table Revision ID: 375f0af244b6 Revises: 2f9a3ba45b00 Create Date: 2018-09-08 03:19:22.000647 """ # revision identifiers, used by Alembic. revision = '375f0af244b6' down_revision = '2f9a3ba45b00' from alembic import op import sqlalchemy as sa def upgrade(): """ Executa as seguintes tarefas no banco de dados """ op.create_table( 'usuarios', sa.Column('cod_usuario', sa.Integer(), nullable=False), sa.Column('cod_grupo', sa.Integer(), nullable=True), sa.Column('usuario', sa.String(length=64), nullable=True), sa.Column('email', sa.String(length=64), unique=True), sa.Column('senha_hash', sa.String(length=128), nullable=False), sa.Column('questoes_acertadas', sa.Integer(), nullable=False), sa.Column('numero_jogos', sa.Integer(), nullable=False), sa.Column('membro_desde', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['cod_grupo'], ['grupos.cod_grupo'],), sa.PrimaryKeyConstraint('cod_usuario') ) op.create_index('ix_usuarios_usuario', 'usuarios', ['usuario'], unique=True) op.create_index('ix_usuarios_email', 'usuarios', ['email'], unique=True) def downgrade(): """ Executa as seguintes tarefas no banco de dados """ op.drop_index('ix_usuarios_usuario', 'usuarios') op.drop_index('ix_usuarios_email', 'usuarios') op.drop_table('usuarios')
import os class Config(object): DEVELOPMENT = True TEMPLATES_AUTO_RELOAD = True SECRET_KEY = os.environ.get('SECRET_KEY')
def interversion(s): return " ".join(list(reversed(s.split(" ")))) print(interversion("Marc Barthet"))
import copy import contextlib import StringIO import unittest from view import viewfile def _make_simple_entry(name, branch='master', revision='HEAD'): return viewfile.ViewFileEntry(name, 'git://{0}/{0}'.format(name), 'GIT', branch, revision) class TestViewFileEntryMethods(unittest.TestCase): def test_has_revision(self): unversioned_entry = _make_simple_entry('foo') versioned_entry = _make_simple_entry( 'foo', revision='7783ac32d05162f328bba0d64e56b80a9f15bb17') self.assertFalse(unversioned_entry.has_revision()) self.assertTrue(versioned_entry.has_revision()) def test_eq(self): self.assertTrue(_make_simple_entry('foo') == _make_simple_entry('foo')) self.assertFalse(_make_simple_entry('foo') == _make_simple_entry('bar')) class TestViewFileMethods(unittest.TestCase): def test_dump(self): view = viewfile.ViewFile() view.entries.append(_make_simple_entry('foo')) with contextlib.closing(StringIO.StringIO()) as f: view.dump(f) contents = f.getvalue() self.assertEqual(contents, 'foo git://foo/foo GIT master HEAD\n') def test_eq(self): foo1 = viewfile.ViewFile([_make_simple_entry('foo')]) foo2 = viewfile.ViewFile([_make_simple_entry('foo')]) bar = viewfile.ViewFile([_make_simple_entry('bar')]) self.assertTrue(foo1 == foo2) self.assertFalse(foo1 == bar) class TestViewFileParse(unittest.TestCase): def test_valid(self): contents = \ ''' # Comments and whitespace only lines should be ignored foo git://foo/foo GIT master HEAD ''' with contextlib.closing(StringIO.StringIO(contents)) as f: view = viewfile.parse(f) expected = viewfile.ViewFile([_make_simple_entry('foo')]) self.assertEqual(view, expected) def test_invalid(self): invalid_views = [ 'foo git://foo/foo GIT master', 'foo git://foo/foo GIT master HEAD extra' ] for s in invalid_views: with contextlib.closing(StringIO.StringIO(s)) as f: with self.assertRaises(viewfile.ParseError): viewfile.parse(f) class TestViewFileDiff(unittest.TestCase): def setUp(self): self.foo_entry = _make_simple_entry('foo') self.bar_entry = _make_simple_entry('bar') self.foo_dev_entry = _make_simple_entry('foo', branch='dev') self.empty_view = viewfile.ViewFile() self.foo_view = viewfile.ViewFile([copy.copy(self.foo_entry)]) self.bar_view = viewfile.ViewFile([copy.copy(self.bar_entry)]) self.foobar_view = viewfile.ViewFile([copy.copy(self.foo_entry), copy.copy(self.bar_entry)]) self.foo_dev_view = viewfile.ViewFile([copy.copy(self.foo_dev_entry)]) def test_no_changes(self): diff = viewfile.diff(self.empty_view, self.empty_view) self.assertEqual(diff, {}) diff = viewfile.diff(self.foo_view, self.foo_view) self.assertEqual(diff, {}) def test_added(self): diff = viewfile.diff(self.empty_view, self.foo_view) self.assertEqual(diff, {'foo': (None, self.foo_entry)}) diff = viewfile.diff(self.empty_view, self.foobar_view) self.assertEqual(diff, {'bar': (None, self.bar_entry), 'foo': (None, self.foo_entry)}) diff = viewfile.diff(self.foo_view, self.foobar_view) self.assertEqual(diff, {'bar': (None, self.bar_entry)}) def test_removed(self): diff = viewfile.diff(self.foo_view, self.empty_view) self.assertEqual(diff, {'foo': (self.foo_entry, None)}) diff = viewfile.diff(self.foobar_view, self.empty_view) self.assertEqual(diff, {'bar': (self.bar_entry, None), 'foo': (self.foo_entry, None)}) diff = viewfile.diff(self.foobar_view, self.foo_view) self.assertEqual(diff, {'bar': (self.bar_entry, None)}) def test_changed(self): diff = viewfile.diff(self.foo_view, self.foo_dev_view) self.assertEqual(diff, {'foo': (self.foo_entry, self.foo_dev_entry)}) def test_complex(self): diff = viewfile.diff(self.foobar_view, self.foo_dev_view) self.assertEqual(diff, {'foo': (self.foo_entry, self.foo_dev_entry), 'bar': (self.bar_entry, None)})
#!/usr/bin/python # -*- coding: UTF-8 -*- import sys import subprocess import time """Takes a textfile with ip-adresses and their frequency as input, performs whois-request using the Linux-Bash and produces a csv-output showing the ip-address and the correspondign frequency, the countrycode and the owner of the ip-address""" # the file which contains the ip-addresses and number of occurance must be # specified when calling the script. if not, there is a little error- # message and the script terminates try: inputfile = sys.argv[1] except: print(""" Error! You must provide a file as input like this: python3 whois-helper.py addresses.txt The script will be terminated now. """) sys.exit() # create and open a file to write the results in outputfile = open("results.csv", "w") # declare needed variables for later countrycode = None description = None # writing a headline in the file for the results outputfile.write("\"frequency\",\"IP-address\",\"countrycode\",\"description\"\n") with open(inputfile) as source: for line in source: line = line.strip() cc_tmp_list = [] desc_tmp_list = [] # split the frequency and ip-address pieces = line.split(' ') # the command to execute command = subprocess.Popen(['whois', pieces[1]], stdout = subprocess.PIPE) # print-statement for the user print("whois-query for:", pieces[1]) # write the number of occurance and the ip-address in the file for the results outputfile.write("\"{}\",\"{}\",".format(pieces[0], pieces[1])) # looping through the result of the whois-query for line in command.stdout: line = line.strip().decode('UTF-8') if line.startswith("country:") or line.startswith("Country:"): parts = line.strip().split(":") cc_tmp_list.append(parts[1].strip()) if line.startswith("descr:") or line.startswith("OrgName") or line.startswith("owner:"): parts = line.strip().split(":") desc_tmp_list.append(parts[1].strip()) # usually there is more than one line matching the current # pattern, but I want only the first ones countrycode = cc_tmp_list[0] description = desc_tmp_list[0] # write countrycode and description to the file for the results outputfile.write("\"{}\",\"{}\"\n".format(countrycode, description)) # Setting the variables to "None" again, in case an incorrect ip-address is queried # otherwise the data of the previous ip-address would be written again countrycode = None description = None # wait for 3 seconds in order not to get blocked - hopefully time.sleep(3) # close the file for the results outputfile.close()
# ---------------------------------------------------------------------- # Author: [email protected] # ---------------------------------------------------------------------- import os, subprocess aliases_path = os.path.expanduser('~/.bash_aliases') my_alias = "alias camera='" + os.getcwd() + "/start_camera.sh'\n" if os.path.exists(aliases_path): print('bash_aliases existing, modifying') with open(aliases_path, 'r') as f: current_file = f.readlines() need_to_add_alias = True for ind, line in enumerate(current_file): if 'camera' in line: need_to_add_alias = False current_file[ind] = my_alias break if need_to_add_alias: current_file.append(my_alias) with open(aliases_path, 'w') as f: f.writelines(current_file) print('bash_aliases edited')
import pytest from src.root.search.binary import binary_search def test_binary(): array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] target = 6 index = 6 assert binary_search(array, target) == index def test_binary_not_found(): array = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] target = 100 index = -1 assert binary_search(array, target) == index
from __future__ import print_function from tensorflow.python.keras.models import Model, load_model from tensorflow.python.keras.layers import Input, LSTM, Dense, Embedding import numpy as np from src.utils import one_hot_encode, add_n class Seq2Seq: def __init__(self, num_encoder_tokens, num_decoder_tokens, start_token, end_token, latent_dim=256, projection='one_hot', emb_dim=64, restore_path=None): self.num_encoder_tokens = num_encoder_tokens self.num_decoder_tokens = num_decoder_tokens self.start_token = start_token self.end_token = end_token if restore_path: self.train_model = load_model(restore_path + '/train_model.s2s.h5') self.encoder_model = load_model(restore_path + '/encoder_model.s2s.h5') self.decoder_model = load_model(restore_path + '/decoder_model.s2s.h5') return # Define an input sequence and process it. encoder_inputs = Input(shape=(None,), name='encoder_input') if projection == 'one_hot': embedding = Embedding( num_encoder_tokens+1, num_encoder_tokens, weights=[np.concatenate((np.zeros(shape=(1, num_encoder_tokens)), np.identity(num_encoder_tokens)))], trainable=False, mask_zero=True, name='encoder_embedding' ) elif projection == 'word2vec': embedding = Embedding( num_encoder_tokens + 1, emb_dim, mask_zero=True, name='encoder_embedding' ) else: raise Exception("projection method not recognized") encoder_emb = embedding(encoder_inputs) encoder = LSTM(latent_dim, return_state=True, name='encoder_lstm') encoder_outputs, state_h, state_c = encoder(encoder_emb) # We discard `encoder_outputs` and only keep the states. encoder_states = [state_h, state_c] # Set up the decoder, using `encoder_states` as initial state. decoder_inputs = Input(shape=(None,), name='decoder_input') if projection == 'one_hot': embedding = Embedding( num_decoder_tokens+1, num_decoder_tokens, weights=[np.concatenate((np.zeros(shape=(1, num_decoder_tokens)), np.identity(num_decoder_tokens)))], trainable=False, mask_zero=True, name='decoder_embedding' ) elif projection == 'word2vec': embedding = Embedding( num_decoder_tokens+1, emb_dim, mask_zero=True, name='decoder_embedding' ) else: raise Exception("projection method not recognized") decoder_emb = embedding(decoder_inputs) # We set up our decoder to return full output sequences, # and to return internal states as well. We don't use the # return states in the training model, but we will use them in inference. decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True, name='decoder_lstm') decoder_outputs, _, _ = decoder_lstm(decoder_emb, initial_state=encoder_states) decoder_dense = Dense(self.num_decoder_tokens, activation='softmax', name='decoder_softmax') decoder_outputs = decoder_dense(decoder_outputs) # Define the model that will turn # `encoder_input_data` & `decoder_input_data` into `decoder_target_data` self.train_model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # Define sampling models self.encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,), name='decoder_state_input_h') decoder_state_input_c = Input(shape=(latent_dim,), name='decoder_state_input_c') decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_emb, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) self.decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) def pre_process_encoder_input(self, input): # return one_hot_encode(input, self.max_encoder_seq_length, self.num_encoder_tokens) return add_n(input, self.max_encoder_seq_length, 1) def pre_process_decoder_input(self, input): # return one_hot_encode(input, self.max_decoder_seq_length, self.num_decoder_tokens) return add_n(input, self.max_decoder_seq_length, 1) def pre_process_decoder_target(self, input): # return one_hot_encode(input, self.max_decoder_seq_length, self.num_decoder_tokens) return add_n(input, self.max_decoder_seq_length, 0) def train(self, encoder_input_seqs, decoder_input_seqs, decoder_target_seqs, batch_size=64, epochs=100): # Run training self.max_encoder_seq_length = max([len(seq) for seq in encoder_input_seqs]) self.max_decoder_seq_length = max([len(seq) for seq in decoder_input_seqs]) encoder_input_data = self.pre_process_encoder_input(encoder_input_seqs) print('encoder_input_data.shape: ', encoder_input_data.shape) decoder_input_data = self.pre_process_decoder_input(decoder_input_seqs) print('decoder_input_data.shape: ', decoder_input_data.shape) decoder_target_data = self.pre_process_decoder_target(decoder_target_seqs) print('decoder_target_data.shape: ', decoder_target_data.shape) self.train_model.compile(optimizer='rmsprop', loss='sparse_categorical_crossentropy') self.train_model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2) # Save model self.train_model.save('train_model.s2s.h5') self.encoder_model.save('encoder_model.s2s.h5') self.decoder_model.save('decoder_model.s2s.h5') def encode(self, input_seq): # encoder_input_data = one_hot_encode(input_seq, self.max_encoder_seq_length, self.num_encoder_tokens) encoder_input_data = self.pre_process_encoder_input(input_seq) return self.encoder_model.predict(encoder_input_data) def decode(self, states_value): # Generate empty target sequence of length 1. # target_seq = np.zeros((1, 1, self.num_decoder_tokens)) # Populate the first token of target sequence with the start token. # target_seq[0, 0, self.start_token] = 1. target_seq = np.zeros((1, 1)) target_seq[0, 0] = self.start_token + 1 # Sampling loop for a batch of sequences # (to simplify, here we assume a batch of size 1). stop_condition = False decoded_seq = [] while not stop_condition: output_tokens, h, c = self.decoder_model.predict( [target_seq] + states_value) # Sample a token sampled_token_index = np.argmax(output_tokens[0, -1, :]) decoded_seq += [sampled_token_index] # Exit condition: either hit max length # or find stop token. if (sampled_token_index == self.end_token or len(decoded_seq) > self.max_decoder_seq_length): stop_condition = True # Update the target sequence (of length 1). # target_seq = np.zeros((1, 1, self.num_decoder_tokens)) # target_seq[0, 0, sampled_token_index] = 1. target_seq = np.zeros((1, 1)) target_seq[0, 0] = sampled_token_index + 1 # Update states states_value = [h, c] return decoded_seq def predict(self, input_seq): # Encode the input as state vectors. states_value = self.encode(input_seq) prediction = self.decode(states_value) return prediction
import inspect from django.contrib.auth.models import User from rest_framework import permissions class PermissionFix(object): """ This class addresses a shortcoming in permissions.BasePermission. Use as a mixin, to ensure that a Permission class defaults to the has_permission method when there is no special object permission method. Should be the first parent class. """ def has_object_permission(self, request, view, obj): return self.has_permission(request, view) class IsAdminUser(PermissionFix, permissions.IsAdminUser): """ Fixed version of IsAdminUser. """ pass class IsOwner(permissions.IsAuthenticated): """ Object-level permission to only allow owners of an object. Assumes the model instance has a `get_owner` method, or is a User. Unauthenticated users cannot be owners. """ def has_object_permission(self, request, view, obj): if hasattr(obj, 'get_owner'): return obj.get_owner() == request.user elif type(obj) == User: return obj == request.user raise TypeError('No way to determine owner for {} model'.format(type(obj).__name__)) class ReadOnly(PermissionFix, permissions.BasePermission): """ Always allow read operations, never allow modifying operations. """ def has_permission(self, request, view): return request.method in permissions.SAFE_METHODS class IsAnonCreate(PermissionFix, permissions.BasePermission): """ Allow creation for unauthenticated users. """ def has_permission(self, request, view): if request.user.is_authenticated(): return False if request.method == "POST": return True return False class IsAuthenticated(PermissionFix, permissions.IsAuthenticated): """ Fixed version of IsAuthenticated. """ pass # Logic below was inspired on # https://github.com/caxap/rest_condition/blob/7d0f251ce24a5869f63317b2945643d03ab0c221/rest_condition/permissions.py def _is_factory(obj): return inspect.isclass(obj) or inspect.isfunction(obj) class Or(permissions.BasePermission): """ Provides a simple way to define composite permissions where only one of the operands needs to accept. Example of usage: >>> composed = Or(Perm1, Perm2, Perm3) """ def __init__(self, *perms): self.perms = [perm() if _is_factory(perm) else perm for perm in perms] def evaluate_permissions(self, method, *args, **kwargs): return any((getattr(p, method)(*args, **kwargs) for p in self.perms)) def has_object_permission(self, request, view, obj): return self.evaluate_permissions( 'has_object_permission', request, view, obj, ) def has_permission(self, request, view): return self.evaluate_permissions('has_permission', request, view) def __call__(self): return self
import cocotb from cocotb.clock import Clock from cocotb.triggers import RisingEdge, FallingEdge, ClockCycles from frequency_counter.test.test_seven_segment import read_segments @cocotb.test() async def test_wrapper(dut): clock = Clock(dut.wb_clk_i, 10, units="ns") cocotb.fork(clock.start()) # reset but project is inactive dut.wb_rst_i <= 1 await ClockCycles(dut.wb_clk_i, 5) dut.wb_rst_i <= 0 dut.la_data_in <= 0 # pause await ClockCycles(dut.wb_clk_i, 100) # activate project dut.active <= 1 # reset it dut.la_data_in <= 1 << 0 await ClockCycles(dut.wb_clk_i, 1) dut.la_data_in <= 0 << 0 await ClockCycles(dut.wb_clk_i, 1) await ClockCycles(dut.wb_clk_i, 100)
#!/usr/bin/python3 ''' decode a CID (Content IDentifier) as used in IPFS see https://github.com/multiformats/cid To decode a CID, follow the following algorithm: 1. * If it's a string (ASCII/UTF-8): * If it is 46 characters long and starts with Qm..., it's a CIDv0. Decode it as base58btc and continue to step 2. * Otherwise, decode it according to the multibase spec and: * If the first decoded byte is 0x12, return an error. CIDv0 CIDs may not be multibase encoded and there will be no CIDv18 (0x12 = 18) to prevent ambiguity with decoded CIDv0s. * Otherwise, you now have a binary CID. Continue to step 2. 2. Given a (binary) CID (cid): * If it's 34 bytes long with the leading bytes [0x12, 0x20, ...], it's a CIDv0. * The CID's multihash is cid. * The CID's multicodec is DagProtobuf * The CID's version is 0. * Otherwise, let N be the first varint in cid. This is the CID's version. * If N == 0x01 (CIDv1): * The CID's multicodec is the second varint in cid * The CID's multihash is the rest of the cid (after the second varint). * The CID's version is 1. * If N == 0x02 (CIDv2), or N == 0x03 (CIDv3), the CID version is reserved. * If N is equal to some other multicodec, the CID is malformed. for multicodecs, see //github.com/multiformats/multicodec/blob/master/table.csv some immediately useful ones: 0: "identity", raw binary 0x55 ('U'): "raw", raw binary 0x70 ('p'): "dag-pb" (DagProtobuf), MerkleDAG protobuf, used by CIDv0 the final hash is a representation of the contents of the Merkle DAG of the data. from looking at several files under ~/.ipfs/blocks, it seems to be of the form: 0x0a <size of remainder of block (past this size varint)> 0x08 0x02 0x12 <size of data itself> <data itself> 0x18 <size of data itself> for example, .ipfs/blocks/OO/CIQBT4N7PS5IZ5IG2ZOUGKFK27IE33WKGJNDW2TY3LSBNQ34R6OVOOQ starts with (in hex) 0a 92 09 08 02 12 8a 09 <data follows>, which after decoding the varints is: 10, 1170, 8, 2, 18, 1162. following the data we find: 18 8a 09, which decodes to 24, 1162. the file itself, with the header and trailer bytes removed, is from https://github.com/ipfs/go-ipfs/blob/master/assets/init-doc/security-notes, and has 1162 bytes. The corresponding CID is QmQ5vhrL7uv6tuoN9KeVBwd4PwfQkXdVVmDLUZuTNxqgvm. It has 1173 bytes total (the 1170 above plus the initial 3 bytes 0a 92 08). let's take a much smaller example. the text 'ipfs' has a Merkle DAG of 0a 0a 08 02 12 04 69 70 66 73 18 04, which decodes to 10, 10, 8, 2, 18, 4, 'ipfs', 24, 4. That's file type 10 (0a), the size (10), the usual bytes 8, 2, and 18, followed by the actual data size (4), the actual data 'ipfs', followed by the end marker byte 24 and the final size varint, again 4. ''' import sys, logging, json, base64 # pylint: disable=multiple-imports from hashlib import sha256 from subprocess import check_output import base58 logging.basicConfig(level=logging.DEBUG if __debug__ else logging.INFO) def decode_cid(cid): r''' decode a CID according to given specification # ubuntu-20.04.1-desktop-amd64.iso # see //docs.ipfs.io/concepts/hashing/ >>> decode_cid(b'QmPK1s3pNYLi9ERiq3BDxKa4XosgWwFRQUydHUtz4YgpqB') '0e7071c59df3b9454d1d18a15270aa36d54f89606a576dc621757afd44ad1d2e' # empty file # see https://docs.ipfs.io/reference/cli/ (ipfs add example.jpg) >>> decode_cid(b'QmbFMke1KXqnYyBBWxB74N4c5SBnJMVAiMNRcGu6x1AwQH') 'bfccda787baba32b59c78450ac3d20b633360b43992c77289f9ed46d843561e6' # file containing just 'ipfs' >>> cid = 'QmejvEPop4D7YUadeGqYWmZxHhLc4JBUCzJJHWMzdcMe2y' >>> decode_cid(cid.encode()) 'f3b0e682d79b8b7a2c216d62ace28c5746a548218c77b556ec932f3a64b914b6' ''' logging.debug('CID: %r', cid) bcid, encoded, hashed = b'', b'', b'' if len(cid) == 46 and cid.startswith(b'Qm'): logging.debug('we appear to have a valid CIDv0') bcid = base58.b58decode(cid) else: raise NotImplementedError('Multibase not yet implemented') logging.debug('binary CID: %r', bcid) if len(bcid) == 34 and bcid.startswith(b'\x12\x20'): logging.debug('multicodec: DagProtobuf, multihash: %r', bcid) encoded = bcid else: cid_version, encoded = decode_varint(bcid) logging.debug('cid_version: %s', cid_version) if cid_version == 1: multicodec, encoded = decode_varint(encoded) logging.debug('multicodec: %s, multihash: %r', multicodec, encoded) elif cid_version in [2, 3]: raise NotImplementedError('Reserved version %d' % cid_version) else: raise NotImplementedError('Malformed CID') multihash, multihashed = decode_varint(encoded) if multihash != 0x12: raise NotImplementedError('Only sha256 is currently supported') hashed_size, hashed = decode_varint(multihashed) if hashed_size != 32: # 0x20 (space) raise NotImplementedError('Only 32 bytes (sha256) is supported') return hashed.hex() def decode_varint(bytestring): r''' decode a variable-length unsigned integer return the integer and the remainder of the bytestring see https://github.com/multiformats/unsigned-varint >>> decode_varint(bytes([0b00000001])) (1, b'') >>> decode_varint(bytes([0b01111111])) (127, b'') >>> decode_varint(bytes([0b10000000, 0b00000001])) (128, b'') >>> decode_varint(bytes([0b11111111, 0b00000001])) (255, b'') >>> decode_varint(bytes([0b10101100, 0b00000010])) (300, b'') >>> decode_varint(bytes([0b10000000, 0b10000000, 0b00000001])) (16384, b'') >>> decode_varint(b'\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01') Traceback (most recent call last): ... ValueError: Given bytestring exceeds maximum length 9 ''' result = 0 varint = [] index = 0 for index, byte in enumerate(bytestring): varint.append(byte) if not byte & 0b10000000: break if len(varint) > 9: raise ValueError('Given bytestring exceeds maximum length 9') for byte in varint[::-1]: result <<= 7 result |= byte & 0b01111111 return result, bytestring[index + 1:] def encode_varint(unsigned_integer): ''' return varint for given integer >>> list(map(bin, encode_varint(0))) ['0b0'] >>> list(map(bin, encode_varint(1))) # Kenobi's first name? ['0b1'] >>> list(map(bin, encode_varint(127))) ['0b1111111'] >>> list(map(bin, encode_varint(128))) ['0b10000000', '0b1'] >>> list(map(bin, encode_varint(255))) ['0b11111111', '0b1'] >>> list(map(bin, encode_varint(300))) ['0b10101100', '0b10'] >>> list(map(bin, encode_varint(16384))) ['0b10000000', '0b10000000', '0b1'] >>> encode_varint(-1) Traceback (most recent call last): ... ValueError: Only unsigned integers allowed >>> encode_varint(1 << 64) Traceback (most recent call last): ... ValueError: Given integer exceeds maximum of 2^63 ''' if unsigned_integer > 1 << 63: raise ValueError('Given integer exceeds maximum of 2^63') elif unsigned_integer < 0: raise ValueError('Only unsigned integers allowed') result = [] while unsigned_integer or not result: result.append((unsigned_integer & 0b01111111) | 0b10000000) unsigned_integer >>= 7 result[-1] ^= 0b10000000 # final byte lacks a continuation return result def verify(cid, command=None): ''' Check that the hash output of decode_cid() matches Data field of object This is only likely to work with very small data blocks # empty file >>> verify('QmbFMke1KXqnYyBBWxB74N4c5SBnJMVAiMNRcGu6x1AwQH') True # the string 'ipfs' >>> verify('QmejvEPop4D7YUadeGqYWmZxHhLc4JBUCzJJHWMzdcMe2y') True # IPFS alpha security notes >>> verify('QmQ5vhrL7uv6tuoN9KeVBwd4PwfQkXdVVmDLUZuTNxqgvm') True ''' hashed = decode_cid(cid.encode()) command = command or ['ipfs', 'object', 'get', cid] use_base64 = '--data-encoding=base64' json_obj = check_output(command) if command[-2] == use_base64: data = base64.b64decode(json.loads(json_obj)['Data']) else: data = json.loads(json_obj)['Data'].encode() data = bytes([0x0a, *encode_varint(len(data))]) + data logging.debug('verify data: %r', data) result = sha256(data).hexdigest() == hashed # if it failed, we try again using base64 # https://github.com/ipfs/go-ipfs/issues/1582 if command[-2] != use_base64: command.insert(-1, use_base64) return verify(cid, command=command) return result if __name__ == '__main__': print(decode_cid(*(arg.encode() for arg in sys.argv[1:])))
import sys import cv2 import numpy # ------------------------------ # stdin = sys.stdin.buffer.read() # array = numpy.frombuffer(stdin, dtype='uint8') # img = cv2.imdecode(array, 1) # cv2.imshow("window", img) # cv2.waitKey()
"""empty message Revision ID: 7349ce2f6db4 Revises: Create Date: 2020-07-10 18:57:58.357627 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '7349ce2f6db4' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('codenames_players', sa.Column('id', sa.String(length=64), nullable=False), sa.Column('sid', sa.String(length=36), nullable=True), sa.Column('team_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['id'], ['user_data.id'], ), sa.ForeignKeyConstraint(['team_id'], ['codenames_teams.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('codenames_teams', sa.Column('id', sa.Integer(), nullable=False), sa.Column('room_id', sa.String(length=10), nullable=True), sa.Column('team_name', sa.String(length=10), nullable=True), sa.Column('score', sa.Integer(), nullable=True), sa.Column('spymaster', sa.String(length=64), nullable=True), sa.ForeignKeyConstraint(['room_id'], ['codenames_rooms.id'], ), sa.ForeignKeyConstraint(['spymaster'], ['codenames_players.id'], ), sa.PrimaryKeyConstraint('id') ) with op.batch_alter_table('codenames_teams', schema=None) as batch_op: batch_op.create_index(batch_op.f('ix_codenames_teams_room_id'), ['room_id'], unique=False) op.create_table('room_data', sa.Column('id', sa.String(length=10), nullable=False), sa.Column('admin_id', sa.String(length=64), nullable=True), sa.Column('game', sa.String(length=20), nullable=True), sa.ForeignKeyConstraint(['admin_id'], ['user_data.id'], ), sa.PrimaryKeyConstraint('id') ) op.create_table('user_data', sa.Column('id', sa.String(length=64), nullable=False), sa.Column('username', sa.String(length=64), nullable=True), sa.Column('room_id', sa.String(length=10), nullable=True), sa.ForeignKeyConstraint(['room_id'], ['room_data.id'], ), sa.PrimaryKeyConstraint('id') ) with op.batch_alter_table('user_data', schema=None) as batch_op: batch_op.create_index(batch_op.f('ix_user_data_room_id'), ['room_id'], unique=False) batch_op.create_index(batch_op.f('ix_user_data_username'), ['username'], unique=False) op.create_table('codenames_rooms', sa.Column('id', sa.String(length=10), nullable=False), sa.Column('state', sa.String(), nullable=True), sa.Column('grid', sa.String(length=25), nullable=True), sa.ForeignKeyConstraint(['id'], ['room_data.id'], ), sa.PrimaryKeyConstraint('id') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('codenames_rooms') with op.batch_alter_table('user_data', schema=None) as batch_op: batch_op.drop_index(batch_op.f('ix_user_data_username')) batch_op.drop_index(batch_op.f('ix_user_data_room_id')) op.drop_table('user_data') op.drop_table('room_data') with op.batch_alter_table('codenames_teams', schema=None) as batch_op: batch_op.drop_index(batch_op.f('ix_codenames_teams_room_id')) op.drop_table('codenames_teams') op.drop_table('codenames_players') # ### end Alembic commands ###
from src.tabular.policies import * from src.tabular.TD import QLearning
from cougar.graphs.backbone import vgg import torch def test_vgg(): size = 300 input = torch.randn(1, 3, size, size) model = vgg(size) output = model(input) assert len(output) == 6 assert output[0].shape[2] == 38 assert output[5].shape[2] == 1
import torch import argparse import glob import logging import os import time from data import load_dataset from models import StyleTransformer, Discriminator, BartSystem from train import train from transformer_base import add_generic_args, add_generic_args, generic_train class Config(): data_path = './data/chatbot/' log_dir = 'runs/exp' save_path = './save' pretrained_embed_path = './embedding/' device = torch.device('cuda' if True and torch.cuda.is_available() else 'cpu') # device = torch.device('cpu') discriminator_method = 'Multi' # 'Multi' or 'Cond' load_pretrained_embed = False min_freq = 3 max_length = 1024 # max_source_length # embed_size = 256 d_model = 256 h = 4 num_styles = 2 num_classes = num_styles + 1 if discriminator_method == 'Multi' else 2 num_layers = 4 # batch_size = 64 lr_F = 0.0001 lr_D = 0.0001 L2 = 0 iter_D = 10 iter_F = 5 F_pretrain_iter = 1 log_steps = 5 eval_steps = 25 learned_pos_embed = True dropout = 0 drop_rate_config = [(1, 0)] temperature_config = [(1, 0)] slf_factor = 0.25 cyc_factor = 0.5 adv_factor = 1 inp_shuffle_len = 0 inp_unk_drop_fac = 0 inp_rand_drop_fac = 0 inp_drop_prob = 0 ### Bart system output_dir='feedback_sum' do_predict=True max_source_length=1024 max_target_length=56 data_dir="feedback" def main(): config = Config() parser = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) parser = BartSystem.add_model_specific_args(parser, os.getcwd()) args = parser.parse_args() # if not args.output_dir: # args.output_dir = os.path.join("./results", f"{args.task}_{args.model_type}_{time.strftime('%Y%m%d_%H%M%S')}",) # os.makedirs(args.output_dir) args.do_train = False model_F = BartSystem(args).to(config.device) trainer = generic_train(model_F, args) if args.output_dir: try: checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "checkpointepoch=*.ckpt"), recursive=True))) if checkpoints[-1]: BartSystem.load_from_checkpoint(checkpoints[-1]) except: print("Failed to load checkpoint!") # train_iters, dev_iters, test_iters, vocab = load_dataset(config) train_iters, dev_iters, test_iters = model_F.train_dataloader(), model_F.val_dataloader(), model_F.test_dataloader() model_D = Discriminator(config, model_F.tokenizer).to(config.device) print(config.discriminator_method) train(config, model_F, model_D, train_iters, dev_iters, test_iters) if __name__ == '__main__': main()
""" Maps each :mod:`Reading <snsary.models.reading>` to a new one with the name altered as specified. This can be useful to distinguish the same :mod:`Readings <snsary.models.reading>` being aggregated in different ways. Supported alterations include: - ``to`` - replaces the name of the reading with the one specified. - ``append`` - adds to the new or existing name of the reading. """ from .function import Function class Rename(Function): def __init__(self, append='', to=None): self.__append = append self.__to = to def __call__(self, reading): new_name = self.__to if self.__to else reading.name new_name += self.__append return [reading.dup(name=new_name)]
import functools from flask import session, url_for, redirect def needs_auth(f): @functools.wraps(f) def wrapper(*args, **kwargs): if "api_key" not in session: return redirect(url_for("root.root")) return f(*args, **kwargs) return wrapper def allowed_file(filename, extensions): return "." in filename and filename.rsplit(".", 1)[1].lower() in extensions
import SimpleITK as sitk import matplotlib.pyplot as plt import numpy as np import cv2 from scipy.signal import convolve import skimage from skimage import util def random_noise(image,noise_num): img_noise = image rows, cols = img_noise.shape for i in range(noise_num): x = np.random.randint(0, rows) y = np.random.randint(0, cols) img_noise[x, y] = 255 return img_noise def get_conv_ker(img, img_Noise): f_image = np.fft.fftshift(np.fft.fft2(img)) f_Nimage = np.fft.fftshift(np.fft.fft2(img_Noise)) f_conv_ker = f_Nimage/f_image print(f_conv_ker.shape) img_ker = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(f_conv_ker))) return img_ker def read_img(case_path): itkimage = sitk.ReadImage(case_path) OR = itkimage.GetOrigin() SP = itkimage.GetSpacing() img_array = sitk.GetArrayFromImage(itkimage) return img_array, OR, SP def articraft(img): x, y = img.shape[0], img.shape[1] for i in range(x): if i % 10==0: for j in range(y): img[i, j] = -3.02e+03 return img def p_noise(img): image = np.copy(img) img_noise=util.random_noise(image, mode='Poisson', seed=1) return img_noise def g_noise(img): image = np.copy(img) img_noise=util.random_noise(image, mode='gaussian') return img_noise if __name__ == '__main__': case_path = './1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059.mhd' img_array, OR, SP = read_img(case_path) img = np.copy(img_array[68, :, :]) img2 = np.copy(img_array[68, :, :]) img3 = np.copy(img_array[68, :, :]) img_noise = g_noise(img) img_p_ker = get_conv_ker(img, p_noise(img3)) img_noise = p_noise(img3) print(np.std(img_noise, ddof=1)) plt.show()
from .gos import * __all__ = ["World", "Globe", "Agent"] __title__ = 'globalopensimulator' __version__ = '0.0.0a'
# Generated by Django 2.2.7 on 2021-10-31 14:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ugc', '0004_berries_customers_decors_forms_levels_orders_orderstatuses_topping'), ] operations = [ migrations.AlterField( model_name='orders', name='delivery_date', field=models.TextField(verbose_name='Дата доставки'), ), ]
''' ================================================ ## VOICEBOOK REPOSITORY ## ================================================ repository name: voicebook repository version: 1.0 repository link: https://github.com/jim-schwoebel/voicebook author: Jim Schwoebel author contact: [email protected] description: a book and repo to get you started programming voice applications in Python - 10 chapters and 200+ scripts. license category: opensource license: Apache 2.0 license organization name: NeuroLex Laboratories, Inc. location: Seattle, WA website: https://neurolex.ai release date: 2018-09-28 This code (voicebook) is hereby released under a Apache 2.0 license license. For more information, check out the license terms below. ================================================ ## LICENSE TERMS ## ================================================ Copyright 2018 NeuroLex Laboratories, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ================================================ ## SERVICE STATEMENT ## ================================================ If you are using the code written for a larger project, we are happy to consult with you and help you with deployment. Our team has >10 world experts in Kafka distributed architectures, microservices built on top of Node.js / Python / Docker, and applying machine learning to model speech and text data. We have helped a wide variety of enterprises - small businesses, researchers, enterprises, and/or independent developers. If you would like to work with us let us know @ [email protected]. ================================================ ## SOX_FEATURES.PY ## ================================================ Get features using SoX library Workaround by outputting CLI in txt file and use function to extract these features. ''' import os import numpy as np def clean_text(text): text=text.lower() chars=['a','b','c','d','e','f','g','h','i','j','k','l','m', 'o','p','q','r','s','t','u','v','w','x','y','z',' ', ':', '(',')','-','=',"'.'"] for i in range(len(chars)): text=text.replace(chars[i],'') text=text.split('\n') new_text=list() # now get new text for i in range(len(text)): try: new_text.append(float(text[i].replace('\n','').replace('n',''))) except: pass #print(text[i].replace('\n','').replace('n','')) return new_text def sox_featurize(filename): # soxi and stats files soxifile=filename[0:-4]+'_soxi.txt' statfile=filename[0:-4]+'_stats.txt' os.system('soxi %s > %s'%(filename, soxifile)) os.system('sox %s -n stat > %s 2>&1'%(filename, statfile)) # get basic info s1=open(soxifile).read() s1_labels=['channels','samplerate','precision', 'filesize','bitrate','sample encoding'] s1=clean_text(s1) s2=open(statfile).read() s2_labels=['samples read','length','scaled by','maximum amplitude', 'minimum amplitude','midline amplitude','mean norm','mean amplitude', 'rms amplitude','max delta','min delta','mean delta', 'rms delta','rough freq','vol adj'] s2=clean_text(s2) labels=s1_labels+s2_labels features=np.array(s1+s2) return features,labels # features, labels = sox_featurize('test.wav')
import logging from collections import OrderedDict from operator import itemgetter import networkx as nx import torch from torch import nn from torch.utils.data import DataLoader from src.models.samplers.arch_sampler import ArchSampler from src.models.samplers.conditional_softmax_sampler import \ CondiSoftmaxArchGenerator from src.models.samplers.softmax_sampler import SoftmaxArchGenerator from src.models.samplers.static_sampler import StaticArchGenerator from src.models.utils import graph_arch_details from src.train.utils import strat_split_from_y, RoundRobinDataloader logger = logging.getLogger(__name__) class SSNWrapper(nn.Module): _SAMPLERS = dict(static=StaticArchGenerator, layer_softmax=SoftmaxArchGenerator, node_softmax=SoftmaxArchGenerator, conditional_softmax=CondiSoftmaxArchGenerator) def __init__(self, ssn_model, initial_p, deter_eval, arch_loss_coef, entropy_coef, split_training, t_id, all_same=False, arch_sampler=None): super().__init__() self.ssn = ssn_model self.weight_mask = torch.zeros(len(self.ssn.stochastic_node_ids)) for node, pos in self.ssn.stochastic_node_ids.items(): if node[0] == t_id: # print('OUIOUIOUI ', node) self.weight_mask[pos] = 1 # else: # print('NONNONNON', node) # self.distrib_gen = ConstantDistribGenerator(n_vars, p=0.7) self.all_same = all_same self.initial_p = initial_p self.arch_cost_coef = arch_loss_coef self.entropy_coef = entropy_coef self.split_training = split_training self.cur_split = None self.frozen_arch = False # frozen model is a list to prevent it from appearing in the state_dict self.frozen_model = [] self.t_id = t_id if isinstance(arch_sampler, str): self.arch_sampler = self.get_distrib_gen(deter_eval, arch_sampler) elif isinstance(arch_sampler, ArchSampler): self.arch_sampler = arch_sampler else: raise ValueError('Unknown arch sampler type: {}' .format(type(arch_sampler))) weights = self.arch_sampler().squeeze() # model.arch_sampler.freeze() nodes = list(self.ssn.stochastic_node_ids.keys()) assert len(nodes) == weights.size(0) and weights.dim() == 1 def get_distrib_gen(self, deter_eval, arch_sampler): n_vars = self.ssn.n_sampling_params if n_vars == 0: logger.warning('No sotchastic nodes are detected.') # logger.warning(f'Replacing {arch_sampler} with static sampler') # arch_sampler = 'static' var_names = list(self.ssn.stochastic_node_ids.keys()) if arch_sampler == 'layer_softmax': groups = [name[1] for name in var_names] elif arch_sampler in ['node_softmax', 'conditional_softmax']: groups = [] for var in var_names: preds = list(self.ssn.graph.predecessors(var)) assert len(preds) == 1 groups.append(preds[0]) else: groups = None samp_cls = self._SAMPLERS[arch_sampler] return samp_cls(distrib_dim=n_vars, initial_p=self.initial_p, groups=groups, deter_eval=deter_eval, all_same=self.all_same, var_names=var_names, graph=self.ssn.graph) def forward(self, inputs, splits=None): if splits is None: assert not (self.split_training and self.training) or \ self.arch_sampler.is_deterministic() self.cur_split = None elif self.frozen_arch: self.cur_split = 0 else: self.cur_split = splits.unique().item() if self.cur_split == 0: self.arch_sampler.eval() elif self.cur_split == 1: self.ssn.eval() if self.frozen_arch: return self.frozen_model[0](inputs) self.arch_sampler.start_new_sequence() arch_probas = self.arch_sampler() # Case of multiple input nodes where input is a list: b_size = inputs[0].size(0) if isinstance(inputs, list) \ else inputs.size(0) arch_samplings = self.arch_sampler.sample_archs(b_size, arch_probas) self.ssn.samplings = arch_samplings # self.ssn.start_new_sequence() # self.ssn.set_probas() # print('Arch_ent: {} ({}), Train={}, split={}'.format(self.arch_sampler.distrib_entropies[0].mean(), # self.frozen_arch, # self.training, # self.cur_split)) # self.check_arch_freezing() return self.ssn(inputs) def check_arch_freezing(self, *args, ent=None, epoch=None): # print('called with epoch={}'.format(epoch)) if ent is None: ent = self.arch_sampler.distrib_entropies[0].mean() # print('CALLED WITHOUT ENT') else: ent = ent # print('CALLED WITH ENT') # print('ENT={}, weights={}'.format(ent, weights)) if ent < 0.001 or epoch > 0.5: self.freeze_arch() def get_frozen_model(self): if not self.frozen_arch: self.freeze_arch() return self.frozen_model[0] def freeze_arch(self): # print('FREEEEEZE') if self.frozen_arch: return self.frozen_arch = True weights = self.arch_sampler() arch_samplings = self.arch_sampler.sample_archs(1, weights).squeeze() self.frozen_model.append(self.ssn.get_pruned_model(arch_samplings)) def requires_grad(self): if self.frozen_arch: req = self.frozen_model[0].requires_grad() # print('REQ:{}'.format(req)) return req return True def loss_wrapper(self, loss_fn): def loss(*args, **kwargs): task_loss = loss_fn(*args, **kwargs) reward = -task_loss.detach() # samp = self.ssn.samplings # samp_size = samp.size() # a = self.weight_mask # print(samp_size) # print(a) # if self.frozen_arch: if self.frozen_arch or len(self.arch_sampler.log_probas) == 0: arch_loss = torch.zeros(1).to(task_loss.device) entropy_loss = torch.zeros(1).to(task_loss.device) else: arch_costs = self.ssn.samplings * self.weight_mask.to(self.ssn.samplings.device) arch_costs = arch_costs.sum(-1) reward -= self.arch_cost_coef * arch_costs reward -= reward.mean() log_p = self.arch_sampler.log_probas assert len(log_p) == 1 log_p = log_p[0] assert task_loss.dim() == 1 assert task_loss.size(0) == log_p.size(0) or log_p.size(0) == 1 arch_loss = -(reward.unsqueeze(-1) * log_p).mean(1) assert arch_loss.dim() == 1 entropy_loss = -self.entropy_coef * self.arch_sampler.entropy().mean() # ent_1 = self.arch_sampler.entropy() # ent_2 = [e.size() for e in self.arch_sampler.distrib_entropies] # ent_3 = [e.mean() for e in self.arch_sampler.distrib_entropies] # print(ent_1) # print(ent_2) # print(ent_3) # print() # if self.cur_split is None: losses = {'task all_loss': task_loss, 'arch all_loss': arch_loss, 'entropy all_loss': entropy_loss} return sum(losses.values()), losses # elif self.cur_split == 0: # and self.t_id == 0: # return task_loss # else: # return arch_loss + entropy_loss return loss @property def in_node(self): return self.ssn.in_nodes[0] @property def out_node(self): return self.ssn.out_nodes[0] def nodes_to_prune(self, *args, **kwargs): return self.arch_sampler.nodes_to_prune(*args, **kwargs) def get_weights(self): return self.arch_sampler().squeeze() def get_stoch_nodes(self): return list(self.ssn.stochastic_node_ids.keys()) def get_graph(self): return self.ssn.graph def sampled_entropy(self): if self.frozen_arch or len(self.arch_sampler.distrib_entropies) == 0: return torch.zeros(1) else: assert len(self.arch_sampler.distrib_entropies) == 1 return self.arch_sampler.distrib_entropies[0].mean() def global_entropy(self): return self.arch_sampler.entropy().mean() def train_loader_wrapper(self, train_loader): if not self.split_training or self.arch_sampler.is_deterministic(): return train_loader ds = train_loader.dataset splits = strat_split_from_y(ds) new_loaders = [DataLoader(split, train_loader.batch_size, shuffle=True, num_workers=train_loader.num_workers) for split in splits] return RoundRobinDataloader(new_loaders) def param_groups(self, *args, **kwargs): return [ {'params': self.ssn.parameters(*args, **kwargs)}, {'params': self.arch_sampler.parameters(*args, **kwargs)} ] def set_h_params(self, arch_loss_coef, entropy_coef, split_training): self.arch_cost_coef = arch_loss_coef self.entropy_coef = entropy_coef self.split_training = split_training def get_top_archs(self, n=1): weights = self.get_weights() res = [] for path in nx.all_simple_paths(self.ssn.graph, self.ssn.in_nodes[0], self.ssn.out_nodes[0]): p = 1 for node in path: if node in self.ssn.stochastic_node_ids: p *= weights[self.ssn.stochastic_node_ids[node]] res.append((tuple(path), p.item())) res = sorted(res, key=itemgetter(1), reverse=True) return OrderedDict(res[:n]) def arch_repr(self): return graph_arch_details(self.ssn.graph)
import numpy as np import os import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.cm import get_cmap import sklearn from sklearn.datasets import make_blobs from sklearn.cluster import AgglomerativeClustering ################################################## ### Agglomerative clustering on random dataset ### ################################################## ### Prepare random dataset with blob distribution ################################################################################################## X, y = make_blobs(n_samples=1000, random_state=1) ### Agglomertiave Clustering Preparation ########################################################################################################### agg = AgglomerativeClustering(n_clusters=3) # Agglomerative clusterer with 3 clusters cluster = agg.fit_predict(X) # Fit agglomerative clusterer with current random dataset ### Plot clustering results of agglomerative clustering on given random dataset ##################################################################### cmap = get_cmap('Pastel1') # Prepare color map / Each cluster uses an distinctive color legend = [] for label in range(agg.n_clusters_): # Plot only the points that correspond to certain cluster label using X[cluster==label] # Assign the color to the points in the dataset according to their labels plt.scatter(X[cluster==label][:, 0], X[cluster==label][:, 1], c=cmap.colors[label], label='Cluster '+ str(label)) legend.append('Cluster '+ str(label)) plt.legend(legend, loc='best') plt.title('Agglomertiave Clustering with 3 Clusters') plt.show()
#!/usr/bin/env python import sys import os # put this module at the front of the path sys.path.insert(0, os.path.abspath(os.path.join(os.path.split(__file__)[0], "../../"))) from hcp_prep.interfaces import * out_file = os.path.join(os.path.split(__file__)[0], "interface_docs.txt") ints = [HCDcm2nii, DicomInfo, NiiWrangler, HCPCommand, PreFS, FS, PostFS, VolumeProcessing, SurfaceProcessing] with open(out_file, 'w') as f: for c in ints: print >>f, "%s\n%s\n%s" % (c.__name__, "="*len(c.__name__), c.help(returnhelp=True))
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import numpy as np from tvm import topi import tvm.topi.testing import tvm from tvm import te from tvm import relay from tvm.relay.testing import check_grad, run_infer_type from tvm.relay.transform import gradient import tvm.testing def verify_max_pool2d_grad(x_shape, pool_size, strides, padding, ceil_mode): x = relay.var("x", relay.TensorType(x_shape, "float32")) y = tvm.relay.nn.max_pool2d( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode ) fwd_func = relay.Function([x], y) fwd_func = run_infer_type(fwd_func) bwd_func = run_infer_type(gradient(fwd_func)) data = np.random.rand(*x_shape).astype("float32") ph, pw = padding y_shape = topi.utils.get_const_tuple(fwd_func.ret_type.shape) out_grad = np.ones(shape=y_shape) ref_grad = tvm.topi.testing.pool_grad_nchw( data, out_grad, pool_size=pool_size, strides=strides, padding=[ph, pw, ph, pw], pool_type="max", ceil_mode=ceil_mode, ) for target, ctx in tvm.testing.enabled_targets(): intrp = relay.create_executor(ctx=ctx, target=target) op_res, (op_grad,) = intrp.evaluate(bwd_func)(data) np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01) @tvm.testing.uses_gpu def test_max_pool2d_grad(): verify_max_pool2d_grad( (1, 4, 16, 16), pool_size=(2, 2), strides=(2, 2), padding=(0, 0), ceil_mode=False ) verify_max_pool2d_grad( (1, 4, 16, 16), pool_size=(1, 1), strides=(1, 1), padding=(1, 1), ceil_mode=False ) def verify_avg_pool2d_grad( x_shape, pool_size, strides, padding, ceil_mode, count_include_pad, dtype="float32" ): for shape_dtype in ["int32", "int64"]: x = relay.var("x", shape=[tvm.tir.IntImm(shape_dtype, x) for x in x_shape], dtype=dtype) y = tvm.relay.nn.avg_pool2d( x, pool_size=pool_size, strides=strides, padding=padding, ceil_mode=ceil_mode, count_include_pad=count_include_pad, ) fwd_func = relay.Function([x], y) fwd_func = run_infer_type(fwd_func) bwd_func = run_infer_type(gradient(fwd_func)) data = np.random.rand(*x_shape).astype(dtype) ph, pw = padding y_shape = topi.utils.get_const_tuple(fwd_func.ret_type.shape) out_grad = np.ones(shape=y_shape) ref_grad = tvm.topi.testing.pool_grad_nchw( data, out_grad, pool_size=pool_size, strides=strides, padding=[ph, pw, ph, pw], pool_type="avg", ceil_mode=ceil_mode, ) for target, ctx in tvm.testing.enabled_targets(): intrp = relay.create_executor(ctx=ctx, target=target) op_res, (op_grad,) = intrp.evaluate(bwd_func)(data) np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01) @tvm.testing.uses_gpu def test_avg_pool2d_grad(): verify_avg_pool2d_grad( (1, 4, 16, 16), pool_size=(2, 2), strides=(2, 2), padding=(0, 0), ceil_mode=False, count_include_pad=True, ) verify_avg_pool2d_grad( (1, 4, 16, 16), pool_size=(1, 1), strides=(1, 1), padding=(1, 1), ceil_mode=False, count_include_pad=False, ) verify_avg_pool2d_grad( (1, 4, 16, 16), pool_size=(1, 1), strides=(1, 1), padding=(1, 1), ceil_mode=False, count_include_pad=False, dtype="int32", ) def verify_global_avg_pool2d_grad(x_shape): x = relay.var("x", relay.TensorType(x_shape, "float32")) y = tvm.relay.nn.global_avg_pool2d(x) fwd_func = relay.Function([x], y) fwd_func = run_infer_type(fwd_func) bwd_func = run_infer_type(gradient(fwd_func)) data = np.random.rand(*x_shape).astype("float32") y_shape = topi.utils.get_const_tuple(fwd_func.ret_type.shape) out_grad = np.ones(shape=y_shape) ref_grad = tvm.topi.testing.pool_grad_nchw( data, out_grad, pool_size=(x_shape[2], x_shape[3]), strides=(1, 1), padding=[0, 0, 0, 0], pool_type="avg", ceil_mode=False, ) for target, ctx in tvm.testing.enabled_targets(): intrp = relay.create_executor(ctx=ctx, target=target) op_res, (op_grad,) = intrp.evaluate(bwd_func)(data) np.testing.assert_allclose(op_grad.asnumpy(), ref_grad, rtol=0.01) @tvm.testing.uses_gpu def test_global_avg_pool2d_grad(): verify_global_avg_pool2d_grad((1, 4, 16, 16)) verify_global_avg_pool2d_grad((1, 8, 8, 24)) def verify_conv2d_grad(dshape, wshape, strides, padding, dilation, groups=1, mode="higher_order"): dtype = "float32" data = relay.var("data", shape=dshape, dtype=dtype) weight = relay.var("weight", shape=wshape, dtype=dtype) conv = relay.nn.conv2d( data, weight, strides=strides, padding=padding, dilation=dilation, groups=groups ) fwd_func = relay.Function([data, weight], conv) check_grad(fwd_func, mode=mode) @tvm.testing.uses_gpu def test_conv2d_grad(): verify_conv2d_grad((1, 4, 16, 16), (16, 4, 3, 3), [1, 1], [1, 1], [1, 1]) verify_conv2d_grad((1, 4, 16, 16), (16, 4, 1, 1), [1, 1], [0, 0], [1, 1]) verify_conv2d_grad((1, 4, 16, 16), (16, 4, 1, 1), [2, 2], [0, 0], [1, 1]) verify_conv2d_grad((1, 4, 16, 16), (16, 4, 3, 3), [1, 1], [1, 1], [1, 1], mode="first_order") def verify_dense_grad(d_shape, w_shape): data = relay.var("data", relay.TensorType(d_shape, "float32")) weight = relay.var("weight", relay.TensorType(w_shape, "float32")) fwd_func = relay.Function([data, weight], relay.nn.dense(data, weight)) check_grad(fwd_func) def test_dense_grad(): verify_dense_grad((1, 8), (16, 8)) verify_dense_grad((1, 4), (3, 4)) verify_dense_grad((5, 4), (3, 4)) def verify_batch_flatten_grad(d_shape): data = relay.var("data", relay.TensorType(d_shape, "float32")) fwd_func = relay.Function([data], relay.nn.batch_flatten(data)) check_grad(fwd_func) def test_batch_flatten_grad(): verify_batch_flatten_grad((1, 2, 3, 4)) verify_batch_flatten_grad((1, 8)) if __name__ == "__main__": test_max_pool2d_grad() test_avg_pool2d_grad() test_global_avg_pool2d_grad() test_conv2d_grad() test_dense_grad() test_batch_flatten_grad()