code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowerCAmelCase_ ( snake_case_ ): if not isinstance(snake_case_,snake_case_ ): _A : Any = f'''Input value of [number={number}] must be an integer''' raise TypeError(snake_case_ ) if number < 0: return False _A : List[str] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = PhobertTokenizer _a = False def a__ ( self ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A : Optional[Any] = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""] _A : Optional[int] = dict(zip(_a , range(len(_a ) ) ) ) _A : str = ["""#version: 0.2""", """l à</w>"""] _A : Optional[int] = {"""unk_token""": """<unk>"""} _A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) def a__ ( self , **_a ) -> str: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_a ) def a__ ( self , _a ) -> Optional[Any]: _A : Optional[Any] = """Tôi là VinAI Research""" _A : Union[str, Any] = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>""" return input_text, output_text def a__ ( self ) -> Optional[int]: _A : Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A : Union[str, Any] = """Tôi là VinAI Research""" _A : Any = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split() _A : Union[str, Any] = tokenizer.tokenize(_a ) print(_a ) self.assertListEqual(_a , _a ) _A : List[Any] = tokens + [tokenizer.unk_token] _A : Union[str, Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCAmelCase_ ( snake_case_ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _A : int = model_type_to_module_name(snake_case_ ) _A : Tuple = importlib.import_module(f'''.{module_name}''',"""transformers.models""" ) try: return getattr(snake_case_,snake_case_ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(snake_case_,"""__name__""",snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _A : Dict = importlib.import_module("""transformers""" ) if hasattr(snake_case_,snake_case_ ): return getattr(snake_case_,snake_case_ ) return None def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = False,snake_case_ = False,snake_case_ = None,snake_case_ = None,snake_case_ = None,snake_case_ = False,**snake_case_,): _A : Optional[int] = get_file_from_repo( snake_case_,snake_case_,cache_dir=snake_case_,force_download=snake_case_,resume_download=snake_case_,proxies=snake_case_,use_auth_token=snake_case_,revision=snake_case_,local_files_only=snake_case_,) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(snake_case_,encoding="""utf-8""" ) as reader: return json.load(snake_case_ ) class lowercase : def __init__( self ) -> Any: raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""" ) @classmethod @replace_list_option_in_docstrings(_a ) def a__ ( cls , _a , **_a ) -> str: _A : Any = kwargs.pop("""config""" , _a ) _A : Tuple = kwargs.pop("""trust_remote_code""" , _a ) _A : Dict = True _A : List[str] = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) _A : str = config_dict.get("""feature_extractor_type""" , _a ) _A : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {} ): _A : Union[str, Any] = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): _A : str = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` _A : Dict = getattr(_a , """feature_extractor_type""" , _a ) if hasattr(_a , """auto_map""" ) and "AutoFeatureExtractor" in config.auto_map: _A : Optional[Any] = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _A : int = feature_extractor_class_from_name(_a ) _A : List[str] = feature_extractor_auto_map is not None _A : Dict = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING _A : Optional[int] = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: _A : str = get_class_from_dynamic_module( _a , _a , **_a ) _A : Dict = kwargs.pop("""code_revision""" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: _A : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def a__ ( _a , _a ) -> Any: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = {"vocab_file": "sentencepiece.bpe.model"} _snake_case = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } _snake_case = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = ["input_ids", "attention_mask"] def __init__( self , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a = None , **_a , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token _A : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) _A : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) _A : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _A : Tuple = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _A : Any = 1 _A : List[Any] = len(self.sp_model ) + self.fairseq_offset _A : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: _A : str = self.__dict__.copy() _A : int = None _A : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , _a ) -> int: _A : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : List[str] = {} _A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a__ ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] _A : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def a__ ( self , _a , _a = None ) -> List[int]: _A : Optional[Any] = [self.sep_token_id] _A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a__ ( self ) -> Dict: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def a__ ( self ) -> str: _A : Dict = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__ ( self , _a ) -> List[str]: return self.sp_model.encode(_a , out_type=_a ) def a__ ( self , _a ) -> Any: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _A : int = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__ ( self , _a ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__ ( self , _a ) -> Dict: _A : int = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : str = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: _A : Tuple = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _snake_case = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) _snake_case = dataset.iloc[:, 1:2].values _snake_case = dataset.iloc[:, 2].values _snake_case , _snake_case , _snake_case , _snake_case = train_test_split(X, y, test_size=0.2, random_state=0) _snake_case = PolynomialFeatures(degree=4) _snake_case = poly_reg.fit_transform(X) _snake_case = LinearRegression() pol_reg.fit(X_poly, y) def lowerCAmelCase_ ( ): plt.scatter(snake_case_,snake_case_,color="""red""" ) plt.plot(snake_case_,pol_reg.predict(poly_reg.fit_transform(snake_case_ ) ),color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed _snake_case = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) _snake_case = "sshleifer/student_marian_en_ro_6_1" _snake_case = "sshleifer/tiny-mbart" @require_torch class lowercase ( UpperCamelCase__ ): def a__ ( self , _a=False , _a=None , _a=True , _a=True , _a=True , _a=True , ) -> Tuple: _A : str = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_a , num_train_epochs=1 , distributed=_a , extra_args_str=_a , predict_with_generate=_a , do_train=_a , do_eval=_a , do_predict=_a , ) _A : Any = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history if not do_eval: return _A : Dict = [log for log in logs if """eval_loss""" in log.keys()] _A : int = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats _A : str = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , _a ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: self.run_seqaseq_quick() @require_torch_multi_gpu def a__ ( self ) -> Union[str, Any]: self.run_seqaseq_quick(distributed=_a ) @require_torch_multi_gpu def a__ ( self ) -> int: self.run_seqaseq_quick(distributed=_a ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def a__ ( self ) -> List[Any]: self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def a__ ( self ) -> Optional[Any]: self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def a__ ( self ) -> Optional[int]: self.run_seqaseq_quick(distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=_a ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def a__ ( self ) -> str: self.run_seqaseq_quick( distributed=_a , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=_a ) @require_apex @require_torch_gpu def a__ ( self ) -> Union[str, Any]: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_a , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def a__ ( self , _a ) -> Union[str, Any]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout _A : str = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } _A : Dict = experiments[experiment_id] _A : str = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} _A : List[str] = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**_a , extra_args_str=data["""extra_args_str"""] ) _A : List[Any] = len(re.findall(_a , cl.err ) ) self.assertEqual(_a , data["""n_matches"""] ) @slow def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_a , learning_rate=3e-4 , num_train_epochs=10 , distributed=_a , ) # Check metrics _A : str = TrainerState.load_from_json(os.path.join(_a , """trainer_state.json""" ) ).log_history _A : Union[str, Any] = [log for log in logs if """eval_loss""" in log.keys()] _A : int = eval_metrics[0] _A : Union[str, Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , _a ) # test if do_predict saves generations and metrics _A : Tuple = os.listdir(_a ) _A : Union[str, Any] = {os.path.basename(_a ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def a__ ( self ) -> Dict: from transformers.training_args import OptimizerNames def train_and_return_metrics(_a ) -> Tuple[int, float]: _A : Union[str, Any] = """--skip_memory_metrics 0""" _A : Tuple = self.run_trainer( max_len=128 , model_name=_a , learning_rate=3e-4 , num_train_epochs=1 , optim=_a , distributed=_a , extra_args_str=_a , do_eval=_a , do_predict=_a , n_gpus_to_use=1 , ) # Check metrics _A : Union[str, Any] = TrainerState.load_from_json(Path(_a , """trainer_state.json""" ) ).log_history _A : str = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) _A : str = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) _A : Dict = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss _A : Optional[int] = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) _A : Union[str, Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) _A : Union[str, Any] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb _A : List[str] = gpu_peak_mem_orig + gpu_alloc_mem_orig _A : Optional[Any] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb _A : Optional[Any] = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings _A : Optional[int] = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _a , _a , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( _a , _a , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( _a , _a , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def a__ ( self , _a , _a , _a , _a = 3e-3 , _a = "adafactor" , _a = False , _a = None , _a = 0 , _a = True , _a = True , _a = True , _a = True , _a = None , ) -> int: _A : Dict = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" _A : int = self.get_auto_remove_tmp_dir() _A : str = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(_a )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(_a )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() _A : List[Any] = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(_a )} '''.split() _A : List[str] = """ --do_predict """.split() _A : List[str] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: _A : Union[str, Any] = get_gpu_count() _A : List[str] = get_torch_dist_unique_port() _A : Optional[Any] = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() _A : Optional[Any] = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_a , env=self.get_env() ) else: _A : str = ["""run_translation.py"""] + args with patch.object(_a , """argv""" , _a ): main() return output_dir
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED _snake_case = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } _snake_case = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowerCAmelCase_ ( ): _A : Dict = ( list(range(ord("""!""" ),ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ),ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ),ord("""ÿ""" ) + 1 ) ) ) _A : Optional[int] = bs[:] _A : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case_ ) cs.append(2**8 + n ) n += 1 _A : int = [chr(snake_case_ ) for n in cs] return dict(zip(snake_case_,snake_case_ ) ) def lowerCAmelCase_ ( snake_case_ ): _A : Any = set() _A : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : int = char return pairs class lowercase ( UpperCamelCase__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ["input_ids", "attention_mask"] def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ) -> Any: _A : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token _A : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token _A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token _A : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token _A : Union[str, Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token _A : Any = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _A : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token super().__init__( errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , ) with open(_a , encoding="""utf-8""" ) as vocab_handle: _A : Optional[int] = json.load(_a ) _A : Optional[int] = {v: k for k, v in self.encoder.items()} _A : Tuple = errors # how to handle errors in decoding _A : Optional[Any] = bytes_to_unicode() _A : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_a , encoding="""utf-8""" ) as merges_handle: _A : List[str] = merges_handle.read().split("""\n""" )[1:-1] _A : Dict = [tuple(merge.split() ) for merge in bpe_merges] _A : Optional[Any] = dict(zip(_a , range(len(_a ) ) ) ) _A : Tuple = {} _A : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _A : List[str] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def a__ ( self ) -> Optional[int]: return len(self.encoder ) def a__ ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def a__ ( self , _a ) -> str: if token in self.cache: return self.cache[token] _A : Optional[Any] = tuple(_a ) _A : Dict = get_pairs(_a ) if not pairs: return token while True: _A : Tuple = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break _A : List[Any] = bigram _A : Tuple = [] _A : Tuple = 0 while i < len(_a ): try: _A : Optional[int] = word.index(_a , _a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A : List[Any] = j if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A : Any = tuple(_a ) _A : Optional[Any] = new_word if len(_a ) == 1: break else: _A : Optional[int] = get_pairs(_a ) _A : Dict = """ """.join(_a ) _A : str = word return word def a__ ( self , _a ) -> Union[str, Any]: _A : str = [] for token in re.findall(self.pat , _a ): _A : List[str] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(""" """ ) ) return bpe_tokens def a__ ( self , _a ) -> List[str]: return self.encoder.get(_a , self.encoder.get(self.unk_token ) ) def a__ ( self , _a ) -> Optional[Any]: return self.decoder.get(_a ) def a__ ( self , _a ) -> Optional[int]: _A : Tuple = """""".join(_a ) _A : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def a__ ( self , _a , _a = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A : str = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) _A : Any = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(_a , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + """\n""" ) _A : Dict = 0 with open(_a , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) _A : Any = token_index writer.write(""" """.join(_a ) + """\n""" ) index += 1 return vocab_file, merge_file def a__ ( self , _a , _a = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : Optional[Any] = [self.cls_token_id] _A : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a__ ( self , _a , _a = None , _a = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def a__ ( self , _a , _a = None ) -> List[int]: _A : Dict = [self.sep_token_id] _A : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a__ ( self , _a , _a=False , **_a ) -> Tuple: _A : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()): _A : str = """ """ + text return (text, kwargs) def a__ ( self , _a , _a = None , _a = PaddingStrategy.DO_NOT_PAD , _a = None , _a = None , ) -> dict: _A : int = super()._pad( encoded_inputs=_a , max_length=_a , padding_strategy=_a , pad_to_multiple_of=_a , return_attention_mask=_a , ) # Load from model defaults if return_attention_mask is None: _A : Any = """attention_mask""" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _A : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _A : Dict = len(encoded_inputs["""global_attention_mask"""] ) != len(_a ) if needs_to_be_padded: _A : Optional[int] = len(_a ) - len(encoded_inputs["""global_attention_mask"""] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _A : Dict = ( encoded_inputs["""global_attention_mask"""] + [-1] * difference ) elif self.padding_side == "left": _A : Union[str, Any] = [-1] * difference + encoded_inputs[ """global_attention_mask""" ] else: raise ValueError("""Invalid padding strategy:""" + str(self.padding_side ) ) return encoded_inputs
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ = None,snake_case_ = None ): if start is None: _A : List[str] = 0 if end is None: _A : List[str] = len(snake_case_ ) - 1 if start >= end: return _A : Optional[Any] = (start + end) // 2 slowsort(snake_case_,snake_case_,snake_case_ ) slowsort(snake_case_,mid + 1,snake_case_ ) if sequence[end] < sequence[mid]: _A : str = sequence[mid], sequence[end] slowsort(snake_case_,snake_case_,end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): _a = ["pixel_values"] def __init__( self , _a = True , _a = 1 / 255 , _a = True , _a = 8 , **_a , ): super().__init__(**_a ) _A : Tuple = do_rescale _A : Optional[int] = rescale_factor _A : Tuple = do_pad _A : Tuple = pad_size def a__ ( self , _a , _a , _a = None , **_a ): return rescale(_a , scale=_a , data_format=_a , **_a ) def a__ ( self , _a , _a , _a = None ): _A : Dict = get_image_size(_a ) _A : List[str] = (old_height // size + 1) * size - old_height _A : Dict = (old_width // size + 1) * size - old_width return pad(_a , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_a ) def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ): _A : List[str] = do_rescale if do_rescale is not None else self.do_rescale _A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _A : Optional[int] = do_pad if do_pad is not None else self.do_pad _A : Any = pad_size if pad_size is not None else self.pad_size _A : List[str] = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _A : str = [to_numpy_array(_a ) for image in images] if do_rescale: _A : Any = [self.rescale(image=_a , scale=_a ) for image in images] if do_pad: _A : Any = [self.pad(_a , size=_a ) for image in images] _A : Union[str, Any] = [to_channel_dimension_format(_a , _a ) for image in images] _A : Optional[Any] = {"""pixel_values""": images} return BatchFeature(data=_a , tensor_type=_a )
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") _snake_case = logging.getLogger(__name__) @dataclass class lowercase : _a = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a = field( default=UpperCamelCase__,metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a = field( default=UpperCamelCase__,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a = field( default=UpperCamelCase__,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},) _a = field( default=UpperCamelCase__,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},) _a = field( default="main",metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},) _a = field( default=UpperCamelCase__,metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) },) @dataclass class lowercase : _a = field(default=UpperCamelCase__,metadata={"help": "The input training data file (a text file)."} ) _a = field( default=UpperCamelCase__,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},) _a = field( default=UpperCamelCase__,metadata={"help": "Overwrite the cached training and evaluation sets"} ) _a = field( default=UpperCamelCase__,metadata={"help": "The number of processes to use for the preprocessing."},) _a = field( default=UpperCamelCase__,metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) },) _a = field( default=UpperCamelCase__,metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) },) _a = field( default=UpperCamelCase__,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) },) _a = field( default=UpperCamelCase__,metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) },) def a__ ( self ) -> Dict: if self.train_file is not None: _A : List[str] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: _A : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase : _a = 4_2 _a = True _a = None _a = None def __call__( self , _a ) -> Optional[Any]: _A : Tuple = """label""" if """label""" in features[0].keys() else """labels""" _A : Any = [feature.pop(_a ) for feature in features] _A : List[str] = len(_a ) _A : Optional[int] = len(features[0]["""input_ids"""] ) _A : Tuple = [ [{k: v[i] for k, v in feature.items()} for i in range(_a )] for feature in features ] _A : str = list(chain(*_a ) ) _A : Optional[Any] = self.tokenizer.pad( _a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten _A : str = {k: v.view(_a , _a , -1 ) for k, v in batch.items()} # Add back labels _A : Union[str, Any] = torch.tensor(_a , dtype=torch.intaa ) return batch def lowerCAmelCase_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""",snake_case_,snake_case_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",datefmt="""%m/%d/%Y %H:%M:%S""",handlers=[logging.StreamHandler(sys.stdout )],) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A : Tuple = training_args.get_process_log_level() logger.setLevel(snake_case_ ) datasets.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: _A : Tuple = {} if data_args.train_file is not None: _A : Optional[int] = data_args.train_file if data_args.validation_file is not None: _A : Any = data_args.validation_file _A : Dict = data_args.train_file.split(""".""" )[-1] _A : Tuple = load_dataset( snake_case_,data_files=snake_case_,cache_dir=model_args.cache_dir,use_auth_token=True if model_args.use_auth_token else None,) else: # Downloading and loading the swag dataset from the hub. _A : Optional[Any] = load_dataset( """swag""","""regular""",cache_dir=model_args.cache_dir,use_auth_token=True if model_args.use_auth_token else None,) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) _A : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,use_fast=model_args.use_fast_tokenizer,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) _A : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ),config=snake_case_,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,) # When using your own dataset or a different dataset from swag, you will probably need to change this. _A : Dict = [f'''ending{i}''' for i in range(4 )] _A : Tuple = """sent1""" _A : Union[str, Any] = """sent2""" if data_args.max_seq_length is None: _A : Optional[Any] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) _A : Tuple = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) _A : List[Any] = min(data_args.max_seq_length,tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(snake_case_ ): _A : Optional[int] = [[context] * 4 for context in examples[context_name]] _A : Optional[Any] = examples[question_header_name] _A : Union[str, Any] = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(snake_case_ ) ] # Flatten out _A : Union[str, Any] = list(chain(*snake_case_ ) ) _A : Optional[Any] = list(chain(*snake_case_ ) ) # Tokenize _A : Union[str, Any] = tokenizer( snake_case_,snake_case_,truncation=snake_case_,max_length=snake_case_,padding="""max_length""" if data_args.pad_to_max_length else False,) # Un-flatten return {k: [v[i : i + 4] for i in range(0,len(snake_case_ ),4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) _A : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: _A : Tuple = min(len(snake_case_ ),data_args.max_train_samples ) _A : Any = train_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _A : Optional[Any] = train_dataset.map( snake_case_,batched=snake_case_,num_proc=data_args.preprocessing_num_workers,load_from_cache_file=not data_args.overwrite_cache,) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) _A : List[str] = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: _A : int = min(len(snake_case_ ),data_args.max_eval_samples ) _A : List[str] = eval_dataset.select(range(snake_case_ ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _A : Optional[int] = eval_dataset.map( snake_case_,batched=snake_case_,num_proc=data_args.preprocessing_num_workers,load_from_cache_file=not data_args.overwrite_cache,) # Data collator _A : int = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=snake_case_,pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(snake_case_ ): _A : Dict = eval_predictions _A : str = np.argmax(snake_case_,axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer _A : List[str] = Trainer( model=snake_case_,args=snake_case_,train_dataset=train_dataset if training_args.do_train else None,eval_dataset=eval_dataset if training_args.do_eval else None,tokenizer=snake_case_,data_collator=snake_case_,compute_metrics=snake_case_,) # Training if training_args.do_train: _A : Tuple = None if training_args.resume_from_checkpoint is not None: _A : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A : Dict = last_checkpoint _A : Optional[Any] = trainer.train(resume_from_checkpoint=snake_case_ ) trainer.save_model() # Saves the tokenizer too for easy upload _A : Optional[int] = train_result.metrics _A : Dict = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case_ ) ) _A : Tuple = min(snake_case_,len(snake_case_ ) ) trainer.log_metrics("""train""",snake_case_ ) trainer.save_metrics("""train""",snake_case_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _A : Any = trainer.evaluate() _A : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case_ ) _A : Dict = min(snake_case_,len(snake_case_ ) ) trainer.log_metrics("""eval""",snake_case_ ) trainer.save_metrics("""eval""",snake_case_ ) _A : Union[str, Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _A : Optional[int] = True # sum is not zero and set is empty then false for i in range(1,required_sum + 1 ): _A : Optional[int] = False for i in range(1,arr_len + 1 ): for j in range(1,required_sum + 1 ): if arr[i - 1] > j: _A : List[str] = subset[i - 1][j] if arr[i - 1] <= j: _A : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class lowercase ( UpperCamelCase__ ): _a = ["vqvae"] def __init__( self , _a , _a , _a , _a , ) -> Optional[int]: super().__init__() self.register_modules(unet=_a , scheduler=_a , mel=_a , vqvae=_a ) def a__ ( self ) -> int: return 50 if isinstance(self.scheduler , _a ) else 1000 @torch.no_grad() def __call__( self , _a = 1 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = 0 , _a = None , _a = None , _a=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: _A : List[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(_a ) _A : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _A : List[str] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _A : str = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_a , device=self.device , ) _A : Optional[int] = noise _A : Union[str, Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_a , _a ) _A : Dict = self.mel.audio_slice_to_image(_a ) _A : List[Any] = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _A : Union[str, Any] = (input_image / 255) * 2 - 1 _A : int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _A : int = self.vqvae.encode(torch.unsqueeze(_a , 0 ) ).latent_dist.sample( generator=_a )[0] _A : Dict = self.vqvae.config.scaling_factor * input_images if start_step > 0: _A : str = self.scheduler.add_noise(_a , _a , self.scheduler.timesteps[start_step - 1] ) _A : Optional[Any] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _A : Optional[Any] = int(mask_start_secs * pixels_per_second ) _A : Optional[int] = int(mask_end_secs * pixels_per_second ) _A : List[str] = self.scheduler.add_noise(_a , _a , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _a ): _A : Optional[int] = self.unet(_a , _a , _a )["""sample"""] else: _A : Any = self.unet(_a , _a )["""sample"""] if isinstance(self.scheduler , _a ): _A : int = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , eta=_a , generator=_a , )["""prev_sample"""] else: _A : Union[str, Any] = self.scheduler.step( model_output=_a , timestep=_a , sample=_a , generator=_a , )["""prev_sample"""] if mask is not None: if mask_start > 0: _A : Optional[Any] = mask[:, step, :, :mask_start] if mask_end > 0: _A : List[Any] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _A : str = 1 / self.vqvae.config.scaling_factor * images _A : Union[str, Any] = self.vqvae.decode(_a )["""sample"""] _A : int = (images / 2 + 0.5).clamp(0 , 1 ) _A : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _A : Dict = (images * 255).round().astype("""uint8""" ) _A : Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_a , mode="""RGB""" ).convert("""L""" ) for _ in images) ) _A : Optional[Any] = [self.mel.image_to_audio(_a ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_a )[:, np.newaxis, :] ) , **ImagePipelineOutput(_a ) ) @torch.no_grad() def a__ ( self , _a , _a = 50 ) -> np.ndarray: assert isinstance(self.scheduler , _a ) self.scheduler.set_timesteps(_a ) _A : str = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _A : str = (sample / 255) * 2 - 1 _A : Dict = torch.Tensor(_a ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _A : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _A : str = self.scheduler.alphas_cumprod[t] _A : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _A : List[str] = 1 - alpha_prod_t _A : Any = self.unet(_a , _a )["""sample"""] _A : Tuple = (1 - alpha_prod_t_prev) ** 0.5 * model_output _A : List[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _A : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _a , _a , _a ) -> torch.Tensor: _A : Union[str, Any] = acos(torch.dot(torch.flatten(_a ) , torch.flatten(_a ) ) / torch.norm(_a ) / torch.norm(_a ) ) return sin((1 - alpha) * theta ) * xa / sin(_a ) + sin(alpha * theta ) * xa / sin(_a )
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" from __future__ import annotations _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowercase : def __init__( self , _a , _a , _a , _a , _a , _a , ) -> Dict: _A : Union[str, Any] = pos_x _A : Optional[int] = pos_y _A : str = (pos_y, pos_x) _A : int = goal_x _A : str = goal_y _A : Optional[Any] = g_cost _A : Any = parent _A : List[Any] = self.calculate_heuristic() def a__ ( self ) -> float: _A : int = abs(self.pos_x - self.goal_x ) _A : List[str] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ) -> bool: return self.f_cost < other.f_cost class lowercase : def __init__( self , _a , _a ) -> int: _A : Dict = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) _A : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , _a ) _A : List[Any] = [self.start] _A : list[Node] = [] _A : List[Any] = False def a__ ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _A : Tuple = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _A : List[Any] = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) _A : Any = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path _A : int = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def a__ ( self , _a ) -> list[Node]: _A : Tuple = [] for action in delta: _A : Tuple = parent.pos_x + action[1] _A : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def a__ ( self , _a ) -> Path: _A : Any = node _A : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _A : List[str] = current_node.parent path.reverse() return path if __name__ == "__main__": _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _snake_case = GreedyBestFirst(init, goal) _snake_case = greedy_bf.search() if path: for pos_x, pos_y in path: _snake_case = 2 for elem in grid: print(elem)
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=4 , ) -> List[str]: _A : Any = parent _A : Dict = batch_size _A : Optional[int] = seq_length _A : int = is_training _A : List[str] = use_attention_mask _A : List[str] = use_token_type_ids _A : Optional[Any] = use_labels _A : Optional[int] = vocab_size _A : Optional[Any] = hidden_size _A : Optional[Any] = num_hidden_layers _A : Optional[int] = num_attention_heads _A : Dict = intermediate_size _A : List[str] = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Tuple = max_position_embeddings _A : Tuple = type_vocab_size _A : List[Any] = type_sequence_label_size _A : Union[str, Any] = initializer_range _A : Tuple = num_choices def a__ ( self ) -> Optional[int]: _A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : List[str] = None if self.use_attention_mask: _A : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) _A : str = None if self.use_token_type_ids: _A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> int: _A : Union[str, Any] = self.prepare_config_and_inputs() _A : List[str] = config_and_inputs _A : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def a__ ( self ) -> int: _A : Tuple = self.prepare_config_and_inputs() _A : int = config_and_inputs _A : Dict = True _A : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _A : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = True _a = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Union[str, Any]: _A : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def a__ ( self ) -> List[Any]: for model_class_name in self.all_model_classes: _A : Union[str, Any] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_a ) _A : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_a ) @require_flax class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> List[str]: _A : Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_a ) _A : Union[str, Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _A : int = model(_a )[0] _A : Tuple = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _a ) # compare the actual values for a slice. _A : str = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def a__ ( self ) -> Optional[Any]: _A : str = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_a ) _A : Tuple = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) _A : Dict = model(_a )[0] # compare the actual values for a slice. _A : Dict = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _a , atol=1e-4 ) )
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["OwlViTFeatureExtractor"] _snake_case = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
_snake_case = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("""Invalid inputs. Enter positive value.""" ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
def lowerCAmelCase_ ( ): return [ a * b * (1000 - a - b) for a in range(1,999 ) for b in range(snake_case_,999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = LDMTextToImagePipeline _a = TEXT_TO_IMAGE_PARAMS - { "negative_prompt", "negative_prompt_embeds", "cross_attention_kwargs", "prompt_embeds", } _a = PipelineTesterMixin.required_optional_params - { "num_images_per_prompt", "callback", "callback_steps", } _a = TEXT_TO_IMAGE_BATCH_PARAMS _a = False def a__ ( self ) -> Optional[int]: torch.manual_seed(0 ) _A : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _A : List[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Any = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("""DownEncoderBlock2D""", """DownEncoderBlock2D""") , up_block_types=("""UpDecoderBlock2D""", """UpDecoderBlock2D""") , latent_channels=4 , ) torch.manual_seed(0 ) _A : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _A : List[Any] = CLIPTextModel(_a ) _A : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : Tuple = { """unet""": unet, """scheduler""": scheduler, """vqvae""": vae, """bert""": text_encoder, """tokenizer""": tokenizer, } return components def a__ ( self , _a , _a=0 ) -> Union[str, Any]: if str(_a ).startswith("""mps""" ): _A : Optional[int] = torch.manual_seed(_a ) else: _A : Any = torch.Generator(device=_a ).manual_seed(_a ) _A : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Optional[int]: _A : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[int] = self.get_dummy_components() _A : Tuple = LDMTextToImagePipeline(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : Dict = pipe(**_a ).images _A : int = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) _A : Optional[Any] = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a , _a=torch.floataa , _a=0 ) -> Optional[Any]: _A : Any = torch.manual_seed(_a ) _A : List[Any] = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) _A : Optional[int] = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _A : List[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> Tuple: _A : Optional[Any] = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[int] = self.get_inputs(_a ) _A : str = pipe(**_a ).images _A : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) _A : Tuple = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) _A : List[Any] = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> int: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a , _a=torch.floataa , _a=0 ) -> Any: _A : List[Any] = torch.manual_seed(_a ) _A : Dict = np.random.RandomState(_a ).standard_normal((1, 4, 32, 32) ) _A : Optional[Any] = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _A : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> List[Any]: _A : str = LDMTextToImagePipeline.from_pretrained("""CompVis/ldm-text2im-large-256""" ).to(_a ) pipe.set_progress_bar_config(disable=_a ) _A : Dict = self.get_inputs(_a ) _A : List[Any] = pipe(**_a ).images[0] _A : Tuple = load_numpy( """https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy""" ) _A : List[Any] = np.abs(expected_image - image ).max() assert max_diff < 1e-3
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case = get_tests_dir("fixtures") _snake_case = get_tests_dir("fixtures/dummy_feature_extractor_config.json") _snake_case = get_tests_dir("fixtures/dummy-config.json") class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: _A : Optional[int] = 0 def a__ ( self ) -> List[str]: _A : int = AutoFeatureExtractor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(_a , _a ) def a__ ( self ) -> Tuple: _A : Dict = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def a__ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _A : Tuple = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally _A : str = AutoFeatureExtractor.from_pretrained(_a ).to_dict() config_dict.pop("""feature_extractor_type""" ) _A : Optional[int] = WavaVecaFeatureExtractor(**_a ) # save in new folder model_config.save_pretrained(_a ) config.save_pretrained(_a ) _A : Optional[Any] = AutoFeatureExtractor.from_pretrained(_a ) # make sure private variable is not incorrectly saved _A : List[str] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_a , _a ) def a__ ( self ) -> Optional[Any]: _A : int = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) def a__ ( self ) -> int: with self.assertRaisesRegex( _a , """bert-base is not a local folder and is not a valid model identifier""" ): _A : Optional[Any] = AutoFeatureExtractor.from_pretrained("""bert-base""" ) def a__ ( self ) -> str: with self.assertRaisesRegex( _a , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _A : Tuple = AutoFeatureExtractor.from_pretrained(_a , revision="""aaaaaa""" ) def a__ ( self ) -> Any: with self.assertRaisesRegex( _a , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): _A : int = AutoFeatureExtractor.from_pretrained("""hf-internal-testing/config-no-model""" ) def a__ ( self ) -> Any: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_a ): _A : Tuple = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_a ): _A : Dict = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_a ) _A : Dict = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) _A : List[str] = AutoFeatureExtractor.from_pretrained(_a , trust_remote_code=_a ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) def a__ ( self ) -> List[Any]: try: AutoConfig.register("""custom""" , _a ) AutoFeatureExtractor.register(_a , _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): AutoFeatureExtractor.register(_a , _a ) # Now that the config is registered, it can be used as any other config with the auto-API _A : List[str] = CustomFeatureExtractor.from_pretrained(_a ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_a ) _A : List[Any] = AutoFeatureExtractor.from_pretrained(_a ) self.assertIsInstance(_a , _a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def a__ ( self ) -> List[Any]: class lowercase ( UpperCamelCase__ ): _a = True try: AutoConfig.register("""custom""" , _a ) AutoFeatureExtractor.register(_a , _a ) # If remote code is not set, the default is to use local _A : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. _A : List[str] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub _A : List[Any] = AutoFeatureExtractor.from_pretrained( """hf-internal-testing/test_dynamic_feature_extractor""" , trust_remote_code=_a ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) self.assertTrue(not hasattr(_a , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: _A : List[str] = mf_knapsack(i - 1,snake_case_,snake_case_,snake_case_ ) else: _A : List[str] = max( mf_knapsack(i - 1,snake_case_,snake_case_,snake_case_ ),mf_knapsack(i - 1,snake_case_,snake_case_,j - wt[i - 1] ) + val[i - 1],) _A : Optional[Any] = val return f[i][j] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1,n + 1 ): for w_ in range(1,w + 1 ): if wt[i - 1] <= w_: _A : Dict = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]],dp[i - 1][w_] ) else: _A : List[Any] = dp[i - 1][w_] return dp[n][w_], dp def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): if not (isinstance(snake_case_,(list, tuple) ) and isinstance(snake_case_,(list, tuple) )): raise ValueError( """Both the weights and values vectors must be either lists or tuples""" ) _A : int = len(snake_case_ ) if num_items != len(snake_case_ ): _A : int = ( """The number of weights must be the same as the number of values.\n""" f'''But got {num_items} weights and {len(snake_case_ )} values''' ) raise ValueError(snake_case_ ) for i in range(snake_case_ ): if not isinstance(wt[i],snake_case_ ): _A : List[str] = ( """All weights must be integers but got weight of """ f'''type {type(wt[i] )} at index {i}''' ) raise TypeError(snake_case_ ) _A : List[Any] = knapsack(snake_case_,snake_case_,snake_case_,snake_case_ ) _A : set = set() _construct_solution(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ) return optimal_val, example_optional_set def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case_,snake_case_,i - 1,snake_case_,snake_case_ ) else: optimal_set.add(snake_case_ ) _construct_solution(snake_case_,snake_case_,i - 1,j - wt[i - 1],snake_case_ ) if __name__ == "__main__": _snake_case = [3, 2, 4, 4] _snake_case = [4, 3, 2, 3] _snake_case = 4 _snake_case = 6 _snake_case = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _snake_case , _snake_case = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _snake_case , _snake_case = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _snake_case = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None ): if rng is None: _A : List[str] = random.Random() _A : Optional[Any] = 1 for dim in shape: total_dims *= dim _A : Optional[Any] = [] for _ in range(snake_case_ ): values.append(rng.randint(0,vocab_size - 1 ) ) _A : int = np.array(snake_case_,dtype=jnp.intaa ).reshape(snake_case_ ) return output def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = ids_tensor(snake_case_,vocab_size=2,rng=snake_case_ ) # make sure that at least one token is attended to for each batch _A : Optional[int] = 1 return attn_mask @require_flax class lowercase : _a = None _a = () def a__ ( self ) -> Optional[int]: _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _A : int = 2 _A : Dict = inputs["""input_ids"""].shape[-1] // 2 _A : Optional[int] = inputs["""input_ids"""][:max_batch_size, :sequence_length] _A : str = jnp.ones_like(_a ) _A : Any = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _A : Union[str, Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _A : Optional[Any] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__ ( self ) -> Optional[Any]: _A : Optional[int] = self._get_input_ids_and_config() _A : int = False _A : Any = max_length _A : Optional[Any] = 0 for model_class in self.all_generative_model_classes: _A : Optional[int] = model_class(_a ) _A : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _A : Dict = getattr(_a , _a ) _A : List[str] = pt_model_class(_a ).eval() _A : Tuple = load_flax_weights_in_pytorch_model(_a , flax_model.params ) _A : Optional[int] = flax_model.generate(_a ).sequences _A : str = pt_model.generate(torch.tensor(_a , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _A : Dict = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def a__ ( self ) -> Union[str, Any]: _A : Tuple = self._get_input_ids_and_config() _A : Dict = False _A : Any = max_length for model_class in self.all_generative_model_classes: _A : Optional[Any] = model_class(_a ) _A : Optional[Any] = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : List[Any] = jit(model.generate ) _A : Union[str, Any] = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> Union[str, Any]: _A : Tuple = self._get_input_ids_and_config() _A : List[str] = True _A : List[Any] = max_length for model_class in self.all_generative_model_classes: _A : Union[str, Any] = model_class(_a ) _A : Dict = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : str = jit(model.generate ) _A : int = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[int]: _A : Optional[int] = self._get_input_ids_and_config() _A : List[Any] = False _A : str = max_length _A : List[Any] = 2 for model_class in self.all_generative_model_classes: _A : Dict = model_class(_a ) _A : Dict = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : Dict = jit(model.generate ) _A : List[Any] = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> List[Any]: _A : List[str] = self._get_input_ids_and_config() _A : int = False _A : Optional[Any] = max_length _A : Optional[Any] = 2 _A : Optional[Any] = 2 for model_class in self.all_generative_model_classes: _A : Dict = model_class(_a ) _A : Any = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def a__ ( self ) -> List[str]: _A : Optional[Any] = self._get_input_ids_and_config() _A : List[Any] = True _A : List[Any] = max_length _A : List[str] = 0.8 _A : Optional[Any] = 10 _A : List[str] = 0.3 _A : Optional[Any] = 1 _A : Any = 8 _A : Tuple = 9 for model_class in self.all_generative_model_classes: _A : Tuple = model_class(_a ) _A : int = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : Optional[Any] = jit(model.generate ) _A : str = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> List[str]: _A : Optional[int] = self._get_input_ids_and_config() _A : Union[str, Any] = max_length _A : List[Any] = 1 _A : Optional[Any] = 8 _A : Any = 9 for model_class in self.all_generative_model_classes: _A : Any = model_class(_a ) _A : int = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : int = jit(model.generate ) _A : List[Any] = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> List[str]: _A : str = self._get_input_ids_and_config() _A : Any = max_length _A : Dict = 2 _A : Tuple = 1 _A : List[Any] = 8 _A : Tuple = 9 for model_class in self.all_generative_model_classes: _A : int = model_class(_a ) _A : Tuple = model.generate(_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : int = jit(model.generate ) _A : int = jit_generate(_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> Any: _A : int = self._get_input_ids_and_config() # pad attention mask on the left _A : List[Any] = attention_mask.at[(0, 0)].set(0 ) _A : Dict = False _A : int = max_length for model_class in self.all_generative_model_classes: _A : Optional[int] = model_class(_a ) _A : List[str] = model.generate(_a , attention_mask=_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : List[str] = jit(model.generate ) _A : str = jit_generate(_a , attention_mask=_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[Any]: _A : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left _A : List[str] = attention_mask.at[(0, 0)].set(0 ) _A : Optional[Any] = True _A : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _A : Dict = model_class(_a ) _A : Tuple = model.generate(_a , attention_mask=_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : List[Any] = jit(model.generate ) _A : Any = jit_generate(_a , attention_mask=_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def a__ ( self ) -> str: _A : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left _A : List[str] = attention_mask.at[(0, 0)].set(0 ) _A : str = 2 _A : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _A : Optional[Any] = model_class(_a ) _A : Optional[Any] = model.generate(_a , attention_mask=_a ).sequences self.assertEqual(generation_outputs.shape[-1] , _a ) _A : Any = jit(model.generate ) _A : Any = jit_generate(_a , attention_mask=_a ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[Any]: _A : int = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" ) _A : List[Any] = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" ) _A : Tuple = """Hello world""" _A : List[Any] = tokenizer(_a , return_tensors="""np""" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_a , """do_samples""" ): model.generate(_a , do_samples=_a ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_a , """foo""" ): _A : Union[str, Any] = {"""foo""": """bar"""} model.generate(_a , **_a )
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" import numpy as np class lowercase : def __init__( self ) -> Optional[int]: _A : List[str] = (0, 0) _A : Union[str, Any] = None _A : Optional[Any] = 0 _A : Any = 0 _A : str = 0 def __eq__( self , _a ) -> Tuple: return self.position == cell.position def a__ ( self ) -> Any: print(self.position ) class lowercase : def __init__( self , _a=(5, 5) ) -> int: _A : Optional[Any] = np.zeros(_a ) _A : Union[str, Any] = world_size[0] _A : str = world_size[1] def a__ ( self ) -> str: print(self.w ) def a__ ( self , _a ) -> Optional[int]: _A : List[str] = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] _A : str = cell.position[0] _A : str = cell.position[1] _A : List[Any] = [] for n in neughbour_cord: _A : str = current_x + n[0] _A : Dict = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: _A : int = Cell() _A : Union[str, Any] = (x, y) _A : Optional[int] = cell neighbours.append(_a ) return neighbours def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = [] _A : str = [] _open.append(snake_case_ ) while _open: _A : List[str] = np.argmin([n.f for n in _open] ) _A : Optional[Any] = _open[min_f] _closed.append(_open.pop(snake_case_ ) ) if current == goal: break for n in world.get_neigbours(snake_case_ ): for c in _closed: if c == n: continue _A : Optional[Any] = current.g + 1 _A : str = n.position _A : Any = goal.position _A : Optional[Any] = (ya - ya) ** 2 + (xa - xa) ** 2 _A : Dict = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case_ ) _A : Union[str, Any] = [] while current.parent is not None: path.append(current.position ) _A : str = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _snake_case = Gridworld() # Start position and goal _snake_case = Cell() _snake_case = (0, 0) _snake_case = Cell() _snake_case = (4, 4) print(f"""path from {start.position} to {goal.position}""") _snake_case = astar(world, start, goal) # Just for visual reasons. for i in s: _snake_case = 1 print(world.w)
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> None: warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): """simple docstring""" _a = BertJapaneseTokenizer _a = False _a = True def a__ ( self ) -> Any: super().setUp() _A : Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self , _a ) -> Dict: _A : Optional[Any] = """こんにちは、世界。 \nこんばんは、世界。""" _A : Optional[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def a__ ( self , _a ) -> Union[str, Any]: _A : List[str] = self.get_input_output_texts(_a ) _A : Optional[Any] = tokenizer.encode(_a , add_special_tokens=_a ) _A : int = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def a__ ( self ) -> int: pass # TODO add if relevant def a__ ( self ) -> List[str]: pass # TODO add if relevant def a__ ( self ) -> Optional[Any]: pass # TODO add if relevant def a__ ( self ) -> Optional[int]: _A : int = self.tokenizer_class(self.vocab_file ) _A : List[str] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(_a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def a__ ( self ) -> Optional[Any]: _A : List[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(_a ) _A : Tuple = """こんにちは、世界。\nこんばんは、世界。""" _A : Union[str, Any] = tokenizer.tokenize(_a ) self.assertListEqual(_a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _A : str = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_a , """wb""" ) as handle: pickle.dump(_a , _a ) with open(_a , """rb""" ) as handle: _A : List[str] = pickle.load(_a ) _A : str = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) def a__ ( self ) -> List[Any]: _A : str = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a__ ( self ) -> Tuple: try: _A : str = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a__ ( self ) -> List[Any]: try: _A : Any = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a__ ( self ) -> Optional[int]: _A : List[Any] = MecabTokenizer(do_lower_case=_a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def a__ ( self ) -> Optional[Any]: try: _A : List[Any] = MecabTokenizer( do_lower_case=_a , normalize_text=_a , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def a__ ( self ) -> Optional[Any]: _A : Dict = MecabTokenizer(normalize_text=_a , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def a__ ( self ) -> List[str]: _A : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(_a ) _A : List[str] = """こんにちは、世界。\nこんばんは、世界。""" _A : Dict = tokenizer.tokenize(_a ) self.assertListEqual(_a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _A : List[str] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_a , """wb""" ) as handle: pickle.dump(_a , _a ) with open(_a , """rb""" ) as handle: _A : Any = pickle.load(_a ) _A : int = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_sudachi def a__ ( self ) -> Optional[int]: _A : Optional[int] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def a__ ( self ) -> List[Any]: _A : int = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def a__ ( self ) -> Optional[Any]: _A : Optional[int] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def a__ ( self ) -> Tuple: _A : str = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def a__ ( self ) -> Optional[Any]: _A : str = SudachiTokenizer(do_lower_case=_a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def a__ ( self ) -> Optional[int]: _A : Tuple = SudachiTokenizer(normalize_text=_a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def a__ ( self ) -> List[str]: _A : List[Any] = SudachiTokenizer(trim_whitespace=_a , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def a__ ( self ) -> Tuple: _A : Dict = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(_a ) _A : List[Any] = """こんにちは、世界。\nこんばんは、世界。""" _A : str = tokenizer.tokenize(_a ) self.assertListEqual(_a , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) _A : Optional[Any] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(_a , """wb""" ) as handle: pickle.dump(_a , _a ) with open(_a , """rb""" ) as handle: _A : Any = pickle.load(_a ) _A : Dict = tokenizer_new.tokenize(_a ) self.assertListEqual(_a , _a ) @require_jumanpp def a__ ( self ) -> Optional[Any]: _A : List[str] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a__ ( self ) -> Optional[int]: _A : Union[str, Any] = JumanppTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a__ ( self ) -> List[str]: _A : str = JumanppTokenizer(normalize_text=_a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def a__ ( self ) -> Optional[Any]: _A : Union[str, Any] = JumanppTokenizer(trim_whitespace=_a ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def a__ ( self ) -> str: _A : Tuple = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def a__ ( self ) -> Optional[Any]: _A : Dict = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _A : int = {} for i, token in enumerate(_a ): _A : List[Any] = i _A : Any = WordpieceTokenizer(vocab=_a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def a__ ( self ) -> List[Any]: _A : Tuple = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) _A : str = tokenizer.subword_tokenizer _A : Any = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(_a , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) _A : Dict = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(_a , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def a__ ( self ) -> Dict: _A : str = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) _A : Optional[Any] = tokenizer.encode("""ありがとう。""" , add_special_tokens=_a ) _A : str = tokenizer.encode("""どういたしまして。""" , add_special_tokens=_a ) _A : List[Any] = tokenizer.build_inputs_with_special_tokens(_a ) _A : Tuple = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase ( UpperCamelCase__,unittest.TestCase ): """simple docstring""" _a = BertJapaneseTokenizer _a = False def a__ ( self ) -> Any: super().setUp() _A : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def a__ ( self , **_a ) -> Optional[int]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **_a ) def a__ ( self , _a ) -> int: _A : str = """こんにちは、世界。 \nこんばんは、世界。""" _A : int = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def a__ ( self ) -> Tuple: pass # TODO add if relevant def a__ ( self ) -> Tuple: pass # TODO add if relevant def a__ ( self ) -> str: pass # TODO add if relevant def a__ ( self ) -> Any: _A : List[str] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) _A : List[str] = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( _a , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def a__ ( self ) -> Tuple: _A : List[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _A : Dict = {} for i, token in enumerate(_a ): _A : Tuple = i _A : int = CharacterTokenizer(vocab=_a , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def a__ ( self ) -> Dict: _A : int = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) _A : int = tokenizer.encode("""ありがとう。""" , add_special_tokens=_a ) _A : Optional[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=_a ) _A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_a ) _A : int = tokenizer.build_inputs_with_special_tokens(_a , _a ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class lowercase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: _A : List[Any] = """cl-tohoku/bert-base-japanese""" _A : List[str] = AutoTokenizer.from_pretrained(_a ) self.assertIsInstance(_a , _a ) class lowercase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: _A : Dict = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) _A : str = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(_a ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case_ ): _A : str = DPTConfig() if "large" in checkpoint_url: _A : List[Any] = 1024 _A : Union[str, Any] = 4096 _A : Tuple = 24 _A : Tuple = 16 _A : int = [5, 11, 17, 23] _A : List[str] = [256, 512, 1024, 1024] _A : Optional[Any] = (1, 384, 384) if "ade" in checkpoint_url: _A : Optional[Any] = True _A : Union[str, Any] = 150 _A : Dict = """huggingface/label-files""" _A : Any = """ade20k-id2label.json""" _A : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case_,snake_case_,repo_type="""dataset""" ) ),"""r""" ) ) _A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()} _A : Optional[int] = idalabel _A : int = {v: k for k, v in idalabel.items()} _A : int = [1, 150, 480, 480] return config, expected_shape def lowerCAmelCase_ ( snake_case_ ): _A : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(snake_case_,snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _A : Dict = name.replace("""pretrained.model""","""dpt.encoder""" ) if "pretrained.model" in name: _A : Any = name.replace("""pretrained.model""","""dpt.embeddings""" ) if "patch_embed" in name: _A : List[Any] = name.replace("""patch_embed""","""patch_embeddings""" ) if "pos_embed" in name: _A : str = name.replace("""pos_embed""","""position_embeddings""" ) if "attn.proj" in name: _A : Optional[int] = name.replace("""attn.proj""","""attention.output.dense""" ) if "proj" in name and "project" not in name: _A : int = name.replace("""proj""","""projection""" ) if "blocks" in name: _A : str = name.replace("""blocks""","""layer""" ) if "mlp.fc1" in name: _A : int = name.replace("""mlp.fc1""","""intermediate.dense""" ) if "mlp.fc2" in name: _A : Any = name.replace("""mlp.fc2""","""output.dense""" ) if "norm1" in name: _A : Tuple = name.replace("""norm1""","""layernorm_before""" ) if "norm2" in name: _A : Optional[Any] = name.replace("""norm2""","""layernorm_after""" ) if "scratch.output_conv" in name: _A : List[str] = name.replace("""scratch.output_conv""","""head""" ) if "scratch" in name: _A : Dict = name.replace("""scratch""","""neck""" ) if "layer1_rn" in name: _A : Dict = name.replace("""layer1_rn""","""convs.0""" ) if "layer2_rn" in name: _A : List[Any] = name.replace("""layer2_rn""","""convs.1""" ) if "layer3_rn" in name: _A : str = name.replace("""layer3_rn""","""convs.2""" ) if "layer4_rn" in name: _A : Any = name.replace("""layer4_rn""","""convs.3""" ) if "refinenet" in name: _A : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _A : List[str] = name.replace(f'''refinenet{layer_idx}''',f'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _A : Tuple = name.replace("""out_conv""","""projection""" ) if "resConfUnit1" in name: _A : Optional[Any] = name.replace("""resConfUnit1""","""residual_layer1""" ) if "resConfUnit2" in name: _A : List[str] = name.replace("""resConfUnit2""","""residual_layer2""" ) if "conv1" in name: _A : Union[str, Any] = name.replace("""conv1""","""convolution1""" ) if "conv2" in name: _A : List[Any] = name.replace("""conv2""","""convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _A : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""","""neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: _A : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""","""neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: _A : Union[str, Any] = name.replace("""pretrained.act_postprocess3.0.project.0""","""neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: _A : Dict = name.replace("""pretrained.act_postprocess4.0.project.0""","""neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _A : int = name.replace("""pretrained.act_postprocess1.3""","""neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: _A : Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""","""neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: _A : str = name.replace("""pretrained.act_postprocess2.3""","""neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: _A : Any = name.replace("""pretrained.act_postprocess2.4""","""neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: _A : List[str] = name.replace("""pretrained.act_postprocess3.3""","""neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: _A : str = name.replace("""pretrained.act_postprocess4.3""","""neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: _A : List[Any] = name.replace("""pretrained.act_postprocess4.4""","""neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: _A : int = name.replace("""pretrained""","""dpt""" ) if "bn" in name: _A : Any = name.replace("""bn""","""batch_norm""" ) if "head" in name: _A : List[str] = name.replace("""head""","""head.head""" ) if "encoder.norm" in name: _A : int = name.replace("""encoder.norm""","""layernorm""" ) if "auxlayer" in name: _A : Any = name.replace("""auxlayer""","""auxiliary_head.head""" ) return name def lowerCAmelCase_ ( snake_case_,snake_case_ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _A : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A : Optional[int] = in_proj_weight[: config.hidden_size, :] _A : List[str] = in_proj_bias[: config.hidden_size] _A : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] _A : Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( ): _A : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = get_dpt_config(snake_case_ ) # load original state_dict from URL _A : Tuple = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(snake_case_ ) # rename keys for key in state_dict.copy().keys(): _A : Dict = state_dict.pop(snake_case_ ) _A : List[Any] = val # read in qkv matrices read_in_q_k_v(snake_case_,snake_case_ ) # load HuggingFace model _A : Optional[int] = DPTForSemanticSegmentation(snake_case_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # Check outputs on an image _A : Optional[Any] = 480 if """ade""" in checkpoint_url else 384 _A : str = DPTImageProcessor(size=snake_case_ ) _A : Any = prepare_img() _A : Union[str, Any] = image_processor(snake_case_,return_tensors="""pt""" ) # forward pass _A : List[str] = model(**snake_case_ ).logits if """ade""" in checkpoint_url else model(**snake_case_ ).predicted_depth # Assert logits _A : Optional[Any] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] ) if "ade" in checkpoint_url: _A : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] ) assert outputs.shape == torch.Size(snake_case_ ) assert ( torch.allclose(outputs[0, 0, :3, :3],snake_case_,atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3],snake_case_ ) ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add model""",use_temp_dir=snake_case_,) image_processor.push_to_hub( repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add image processor""",use_temp_dir=snake_case_,) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) _snake_case = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
350
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json", } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "resnet" _a = ["basic", "bottleneck"] def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int: super().__init__(**_a ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _A : Optional[Any] = num_channels _A : List[Any] = embedding_size _A : int = hidden_sizes _A : Union[str, Any] = depths _A : Optional[int] = layer_type _A : Any = hidden_act _A : List[Any] = downsample_in_first_stage _A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A , _A : str = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-3
343
0
import numpy as np def lowerCAmelCase_ ( snake_case_ ): return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( snake_case_ ): return vector * sigmoid(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
351
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_ ): # Load checkpoint _A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" ) _A : Any = chkpt["""model"""] # We have the base model one level deeper than the original XLM repository _A : Any = {} for k, v in state_dict.items(): if "pred_layer" in k: _A : Tuple = v else: _A : Dict = v _A : Optional[Any] = chkpt["""params"""] _A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )} _A : str = chkpt["""dico_word2id"""] _A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()} # Save pytorch-model _A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME _A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME _A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(snake_case_,snake_case_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(snake_case_,"""w""",encoding="""utf-8""" ) as f: f.write(json.dumps(snake_case_,indent=2 ) + """\n""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
343
0
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowercase ( UpperCamelCase__,unittest.TestCase ): _a = AudioLDMPipeline _a = TEXT_TO_AUDIO_PARAMS _a = TEXT_TO_AUDIO_BATCH_PARAMS _a = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def a__ ( self ): torch.manual_seed(0 ) _A : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=_a , ) _A : Tuple = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , ) torch.manual_seed(0 ) _A : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) _A : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _A : Optional[int] = ClapTextModelWithProjection(_a ) _A : Union[str, Any] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77 ) _A : int = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=_a , ) _A : Optional[int] = SpeechTaHifiGan(_a ) _A : Optional[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def a__ ( self , _a , _a=0 ): if str(_a ).startswith("""mps""" ): _A : int = torch.manual_seed(_a ) else: _A : List[Any] = torch.Generator(device=_a ).manual_seed(_a ) _A : str = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def a__ ( self ): _A : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Tuple = self.get_dummy_components() _A : List[Any] = AudioLDMPipeline(**_a ) _A : Any = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : List[str] = audioldm_pipe(**_a ) _A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _A : Tuple = audio[:10] _A : Union[str, Any] = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a__ ( self ): _A : List[str] = self.get_dummy_components() _A : int = AudioLDMPipeline(**_a ) _A : List[Any] = audioldm_pipe.to(_a ) _A : Any = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : List[Any] = self.get_dummy_inputs(_a ) _A : Any = 3 * [inputs["""prompt"""]] # forward _A : Tuple = audioldm_pipe(**_a ) _A : Optional[int] = output.audios[0] _A : Union[str, Any] = self.get_dummy_inputs(_a ) _A : Optional[int] = 3 * [inputs.pop("""prompt""" )] _A : Tuple = audioldm_pipe.tokenizer( _a , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""pt""" , ) _A : List[Any] = text_inputs["""input_ids"""].to(_a ) _A : Dict = audioldm_pipe.text_encoder( _a , ) _A : str = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _A : Optional[int] = F.normalize(_a , dim=-1 ) _A : List[Any] = prompt_embeds # forward _A : Dict = audioldm_pipe(**_a ) _A : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a__ ( self ): _A : int = self.get_dummy_components() _A : Union[str, Any] = AudioLDMPipeline(**_a ) _A : int = audioldm_pipe.to(_a ) _A : Optional[int] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : str = 3 * ["""this is a negative prompt"""] _A : List[str] = negative_prompt _A : Any = 3 * [inputs["""prompt"""]] # forward _A : Union[str, Any] = audioldm_pipe(**_a ) _A : Union[str, Any] = output.audios[0] _A : str = self.get_dummy_inputs(_a ) _A : Dict = 3 * [inputs.pop("""prompt""" )] _A : Any = [] for p in [prompt, negative_prompt]: _A : Optional[int] = audioldm_pipe.tokenizer( _a , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=_a , return_tensors="""pt""" , ) _A : Dict = text_inputs["""input_ids"""].to(_a ) _A : str = audioldm_pipe.text_encoder( _a , ) _A : List[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _A : int = F.normalize(_a , dim=-1 ) embeds.append(_a ) _A : str = embeds # forward _A : Dict = audioldm_pipe(**_a ) _A : Dict = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1e-2 def a__ ( self ): _A : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Tuple = self.get_dummy_components() _A : Tuple = PNDMScheduler(skip_prk_steps=_a ) _A : List[Any] = AudioLDMPipeline(**_a ) _A : int = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : List[str] = """egg cracking""" _A : Dict = audioldm_pipe(**_a , negative_prompt=_a ) _A : Tuple = output.audios[0] assert audio.ndim == 1 assert len(_a ) == 256 _A : Tuple = audio[:10] _A : Union[str, Any] = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1e-2 def a__ ( self ): _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : List[str] = self.get_dummy_components() _A : Any = PNDMScheduler(skip_prk_steps=_a ) _A : Tuple = AudioLDMPipeline(**_a ) _A : List[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _A : Tuple = audioldm_pipe(_a , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _A : int = 2 _A : str = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _A : Union[str, Any] = 2 _A : str = audioldm_pipe(_a , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _A : List[Any] = 2 _A : Optional[int] = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=_a ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a__ ( self ): _A : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : List[str] = AudioLDMPipeline(**_a ) _A : Optional[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = audioldm_pipe.vocoder.config.sampling_rate _A : Optional[Any] = self.get_dummy_inputs(_a ) _A : Tuple = audioldm_pipe(audio_length_in_s=0.016 , **_a ) _A : List[str] = output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.016 _A : Union[str, Any] = audioldm_pipe(audio_length_in_s=0.032 , **_a ) _A : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(_a ) / vocoder_sampling_rate == 0.032 def a__ ( self ): _A : List[Any] = self.get_dummy_components() _A : Optional[Any] = AudioLDMPipeline(**_a ) _A : Union[str, Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : str = ["""hey"""] _A : Union[str, Any] = audioldm_pipe(_a , num_inference_steps=1 ) _A : Optional[int] = output.audios.shape assert audio_shape == (1, 256) _A : Tuple = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _A : Dict = SpeechTaHifiGan(_a ).to(_a ) _A : Tuple = audioldm_pipe(_a , num_inference_steps=1 ) _A : Tuple = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a__ ( self ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_a ) def a__ ( self ): self._test_inference_batch_single_identical(test_mean_pixel_difference=_a ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def a__ ( self ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_a ) @slow class lowercase ( unittest.TestCase ): def a__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self , _a , _a="cpu" , _a=torch.floataa , _a=0 ): _A : str = torch.Generator(device=_a ).manual_seed(_a ) _A : Any = np.random.RandomState(_a ).standard_normal((1, 8, 128, 16) ) _A : Dict = torch.from_numpy(_a ).to(device=_a , dtype=_a ) _A : List[str] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def a__ ( self ): _A : List[Any] = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _A : Tuple = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Union[str, Any] = self.get_inputs(_a ) _A : Dict = 25 _A : Union[str, Any] = audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _A : int = audio[7_7230:7_7240] _A : Dict = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) _A : Union[str, Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1e-2 def a__ ( self ): _A : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""" ) _A : Union[str, Any] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) _A : List[Any] = audioldm_pipe.to(_a ) audioldm_pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = self.get_inputs(_a ) _A : Optional[int] = audioldm_pipe(**_a ).audios[0] assert audio.ndim == 1 assert len(_a ) == 8_1920 _A : Any = audio[2_7780:2_7790] _A : int = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) _A : Optional[Any] = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3e-2
352
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( UpperCamelCase__ ): _a = ["image_processor", "tokenizer"] _a = "BlipImageProcessor" _a = ("BertTokenizer", "BertTokenizerFast") def __init__( self , _a , _a ) -> Any: _A : List[Any] = False super().__init__(_a , _a ) _A : Optional[int] = self.image_processor def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding: if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: _A : Dict = self.tokenizer _A : Dict = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) return text_encoding # add pixel_values _A : int = self.image_processor(_a , return_tensors=_a ) if text is not None: _A : List[Any] = self.tokenizer( text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) else: _A : int = None if text_encoding is not None: encoding_image_processor.update(_a ) return encoding_image_processor def a__ ( self , *_a , **_a ) -> Any: return self.tokenizer.batch_decode(*_a , **_a ) def a__ ( self , *_a , **_a ) -> List[str]: return self.tokenizer.decode(*_a , **_a ) @property def a__ ( self ) -> Optional[Any]: _A : Any = self.tokenizer.model_input_names _A : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
343
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
353
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) _snake_case = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) _snake_case = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) _snake_case = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) _snake_case = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) _snake_case = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) _snake_case = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) _snake_case = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) _snake_case = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) _snake_case = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) _snake_case = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) _snake_case = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) _snake_case = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _snake_case = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_MAPPING _snake_case = auto_class_update(FlaxAutoModel) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_PRETRAINING_MAPPING _snake_case = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _snake_case = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_MASKED_LM_MAPPING _snake_case = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _snake_case = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _snake_case = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _snake_case = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _snake_case = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowercase ( _BaseAutoModelClass ): _a = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _snake_case = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
354
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowercase ( UpperCamelCase__ ): _a = "audio-spectrogram-transformer" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]: super().__init__(**_a ) _A : Any = hidden_size _A : Tuple = num_hidden_layers _A : List[str] = num_attention_heads _A : Any = intermediate_size _A : Optional[Any] = hidden_act _A : Optional[Any] = hidden_dropout_prob _A : Any = attention_probs_dropout_prob _A : Optional[Any] = initializer_range _A : Optional[Any] = layer_norm_eps _A : str = patch_size _A : Tuple = qkv_bias _A : Dict = frequency_stride _A : Union[str, Any] = time_stride _A : Any = max_length _A : Tuple = num_mel_bins
343
0
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCAmelCase_ ( snake_case_ ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False def lowerCAmelCase_ ( snake_case_ ): # word like '180' or '身高' or '神' for char in word: _A : List[str] = ord(snake_case_ ) if not _is_chinese_char(snake_case_ ): return 0 return 1 def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = set() for token in tokens: _A : int = len(snake_case_ ) > 1 and is_chinese(snake_case_ ) if chinese_word: word_set.add(snake_case_ ) _A : int = list(snake_case_ ) return word_list def lowerCAmelCase_ ( snake_case_,snake_case_ ): if not chinese_word_set: return bert_tokens _A : Tuple = max([len(snake_case_ ) for w in chinese_word_set] ) _A : int = bert_tokens _A : List[str] = 0, len(snake_case_ ) while start < end: _A : int = True if is_chinese(bert_word[start] ): _A : List[Any] = min(end - start,snake_case_ ) for i in range(snake_case_,1,-1 ): _A : Any = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1,start + i ): _A : List[Any] = """##""" + bert_word[j] _A : Any = start + i _A : int = False break if single_word: start += 1 return bert_word def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Optional[Any] = [] for i in range(0,len(snake_case_ ),100 ): _A : Union[str, Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] _A : Optional[int] = [get_chinese_word(snake_case_ ) for r in res] ltp_res.extend(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) _A : Tuple = [] for i in range(0,len(snake_case_ ),100 ): _A : Optional[Any] = bert_tokenizer(lines[i : i + 100],add_special_tokens=snake_case_,truncation=snake_case_,max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(snake_case_ ) == len(snake_case_ ) _A : Optional[int] = [] for input_ids, chinese_word in zip(snake_case_,snake_case_ ): _A : int = [] for id in input_ids: _A : Any = bert_tokenizer._convert_id_to_token(snake_case_ ) input_tokens.append(snake_case_ ) _A : Optional[Any] = add_sub_symbol(snake_case_,snake_case_ ) _A : List[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(snake_case_ ): if token[:2] == "##": _A : Dict = token[2:] # save chinese tokens' pos if len(snake_case_ ) == 1 and _is_chinese_char(ord(snake_case_ ) ): ref_id.append(snake_case_ ) ref_ids.append(snake_case_ ) assert len(snake_case_ ) == len(snake_case_ ) return ref_ids def lowerCAmelCase_ ( snake_case_ ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name,"""r""",encoding="""utf-8""" ) as f: _A : str = f.readlines() _A : Optional[int] = [line.strip() for line in data if len(snake_case_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _A : Union[str, Any] = LTP(args.ltp ) # faster in GPU device _A : Optional[Any] = BertTokenizer.from_pretrained(args.bert ) _A : Tuple = prepare_ref(snake_case_,snake_case_,snake_case_ ) with open(args.save_path,"""w""",encoding="""utf-8""" ) as f: _A : Tuple = [json.dumps(snake_case_ ) + """\n""" for ref in ref_ids] f.writelines(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") _snake_case = parser.parse_args() main(args)
355
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def lowerCAmelCase_ ( ): _A : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) _A : Optional[Any] = parser.parse_args() return args.f class lowercase ( UpperCamelCase__ ): def a__ ( self ) -> None: _A : List[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(_a ) def a__ ( self , _a ) -> Dict: _A : Tuple = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(_a , """argv""" , _a ): _A : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_a , 0.666 ) @slow @require_torch_non_multi_gpu def a__ ( self ) -> Optional[int]: _A : Tuple = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(_a ) _A : Optional[Any] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a ) _A : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(_a )
343
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
357
def lowerCAmelCase_ ( snake_case_ = 1000 ): _A : List[Any] = 3 _A : Tuple = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"""{solution() = }""")
343
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
358
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]: _A : Tuple = parent _A : Any = batch_size _A : int = image_size _A : Tuple = num_channels _A : List[Any] = num_stages _A : Any = hidden_sizes _A : Union[str, Any] = depths _A : Union[str, Any] = is_training _A : Tuple = use_labels _A : Optional[Any] = intermediate_size _A : Union[str, Any] = hidden_act _A : Any = num_labels _A : List[str] = initializer_range _A : str = out_features _A : int = out_indices _A : List[Any] = scope def a__ ( self ) -> str: _A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : str = None if self.use_labels: _A : int = ids_tensor([self.batch_size] , self.num_labels ) _A : str = self.get_config() return config, pixel_values, labels def a__ ( self ) -> List[str]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a__ ( self , _a , _a , _a ) -> int: _A : int = ConvNextModel(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a__ ( self , _a , _a , _a ) -> List[Any]: _A : Union[str, Any] = ConvNextForImageClassification(_a ) model.to(_a ) model.eval() _A : List[Any] = model(_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self , _a , _a , _a ) -> str: _A : List[str] = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _A : Optional[Any] = None _A : str = ConvNextBackbone(config=_a ) model.to(_a ) model.eval() _A : int = model(_a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a__ ( self ) -> int: _A : int = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Any = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _a = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) _a = True _a = False _a = False _a = False _a = False def a__ ( self ) -> Dict: _A : int = ConvNextModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def a__ ( self ) -> Tuple: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> Optional[Any]: _A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[Any] = model_class(_a ) _A : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[Any] = [*signature.parameters.keys()] _A : int = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> Union[str, Any]: _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Tuple: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_a ) def a__ ( self ) -> Tuple: def check_hidden_states_output(_a , _a , _a ): _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Dict = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _A : Dict = self.model_tester.num_stages self.assertEqual(len(_a ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : List[Any] = True check_hidden_states_output(_a , _a , _a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True check_hidden_states_output(_a , _a , _a ) def a__ ( self ) -> int: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> Optional[int]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Optional[Any] = ConvNextModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> str: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[Any]: _A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a ) _A : List[str] = self.default_image_processor _A : int = prepare_img() _A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : Dict = model(**_a ) # verify the logits _A : Optional[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) ) @require_torch class lowercase ( unittest.TestCase,UpperCamelCase__ ): _a = (ConvNextBackbone,) if is_torch_available() else () _a = ConvNextConfig _a = False def a__ ( self ) -> List[str]: _A : Optional[int] = ConvNextModelTester(self )
343
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # Initialise PyTorch model _A : List[Any] = MobileBertConfig.from_json_file(snake_case_ ) print(f'''Building PyTorch model from configuration: {config}''' ) _A : Tuple = MobileBertForPreTraining(snake_case_ ) # Load weights from tf checkpoint _A : Tuple = load_tf_weights_in_mobilebert(snake_case_,snake_case_,snake_case_ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(),snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
343
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _snake_case = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowercase : def __init__( self , _a , _a=16 , _a=13 , _a=7 , _a=14 , _a=10 , _a=19 , _a=5 , _a=4 , _a=True , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=[1, 2, 3, 4, 5] , _a=25 , _a=5 , ) -> List[str]: _A : Any = d_model _A : List[str] = parent _A : Optional[Any] = batch_size _A : Optional[Any] = prediction_length _A : List[Any] = context_length _A : Tuple = cardinality _A : Union[str, Any] = num_time_features _A : Union[str, Any] = lags_sequence _A : List[str] = embedding_dimension _A : List[str] = is_training _A : Any = hidden_size _A : int = num_hidden_layers _A : Tuple = num_attention_heads _A : Optional[int] = intermediate_size _A : Any = hidden_act _A : Union[str, Any] = hidden_dropout_prob _A : List[str] = attention_probs_dropout_prob _A : List[str] = context_length _A : Optional[Any] = prediction_length + label_length _A : Optional[Any] = label_length _A : str = moving_average _A : str = autocorrelation_factor def a__ ( self ) -> Tuple: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ ( self , _a ) -> str: _A : int = config.context_length + max(config.lags_sequence ) _A : Dict = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A : Any = floats_tensor([self.batch_size, _past_length] ) _A : Tuple = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] ) _A : Any = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def a__ ( self ) -> List[str]: _A : Any = self.get_config() _A : Any = self.prepare_autoformer_inputs_dict(_a ) return config, inputs_dict def a__ ( self ) -> Tuple: _A : Any = self.prepare_config_and_inputs() return config, inputs_dict def a__ ( self , _a , _a ) -> Optional[int]: _A : Union[str, Any] = AutoformerModel(config=_a ).to(_a ).eval() _A : List[Any] = model(**_a ) _A : Any = outputs.encoder_last_hidden_state _A : Union[str, Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A : List[str] = model.get_encoder() encoder.save_pretrained(_a ) _A : Union[str, Any] = AutoformerEncoder.from_pretrained(_a ).to(_a ) _A : str = model.create_network_inputs(**_a ) _A : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A : Optional[Any] = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A : int = encoder(inputs_embeds=_a )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _A : Union[str, Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A : Any = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A : int = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A : int = model.get_decoder() decoder.save_pretrained(_a ) _A : str = AutoformerDecoder.from_pretrained(_a ).to(_a ) _A : List[Any] = decoder( trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _a = (AutoformerForPrediction,) if is_torch_available() else () _a = {"feature-extraction": AutoformerModel} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> int: _A : Tuple = AutoformerModelTester(self ) _A : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a ) def a__ ( self ) -> List[str]: self.config_tester.run_common_tests() def a__ ( self ) -> str: _A : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A : Any = model_class(_a ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_a ) _A : Any = model_class.from_pretrained(_a , output_loading_info=_a ) self.assertEqual(info["""missing_keys"""] , [] ) def a__ ( self ) -> str: _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_a ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def a__ ( self ) -> str: pass def a__ ( self ) -> Optional[Any]: _A : Tuple = inspect.signature(getattr(_a , """forward""" ) ) # The main input is the name of the argument after `self` _A : int = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _a ) def a__ ( self ) -> int: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Optional[int] = model_class(_a ) _A : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : List[str] = [*signature.parameters.keys()] _A : str = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(_a )] , _a ) def a__ ( self ) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _A : Tuple = True _A : Optional[Any] = getattr(self.model_tester , """seq_length""" , _a ) _A : Optional[Any] = getattr(self.model_tester , """decoder_seq_length""" , _a ) _A : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , _a ) _A : List[Any] = getattr(self.model_tester , """d_model""" , _a ) _A : Any = getattr(self.model_tester , """num_attention_heads""" , _a ) _A : List[str] = d_model // num_attention_heads for model_class in self.all_model_classes: _A : Optional[Any] = True _A : Dict = False _A : List[Any] = True _A : int = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Optional[Any] = model(**self._prepare_for_class(_a , _a ) ) _A : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A : Any = True _A : Tuple = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : List[Any] = model(**self._prepare_for_class(_a , _a ) ) _A : Optional[int] = outputs.encoder_attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A : Optional[int] = len(_a ) _A : Union[str, Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_a , _a ) # decoder attentions _A : Tuple = outputs.decoder_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A : str = outputs.cross_attentions self.assertIsInstance(_a , (list, tuple) ) self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A : Optional[Any] = True _A : Dict = True _A : List[Any] = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _A : Tuple = model(**self._prepare_for_class(_a , _a ) ) self.assertEqual(out_len + 2 , len(_a ) ) _A : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ ( self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase_ ( snake_case_="train-batch.pt" ): _A : Union[str, Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""",filename=snake_case_,repo_type="""dataset""" ) _A : Optional[int] = torch.load(snake_case_,map_location=snake_case_ ) return batch @require_torch @slow class lowercase ( unittest.TestCase ): def a__ ( self ) -> Dict: _A : str = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : Any = prepare_batch() with torch.no_grad(): _A : str = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _A : Union[str, Any] = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _a ) _A : str = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def a__ ( self ) -> Any: _A : Optional[int] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : int = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A : List[Any] = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _A : Dict = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _a ) _A : Dict = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=_a ) self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) ) def a__ ( self ) -> List[str]: _A : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a ) _A : Any = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _A : Optional[Any] = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _A : Union[str, Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _a ) _A : str = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=_a ) _A : Optional[Any] = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
360
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowercase : _a = 42 # setable values _a = 42 _a = 42 _a = None @classmethod def a__ ( cls , _a , _a , _a ) -> Tuple: return cls(common=_a , init_noise_sigma=_a , timesteps=_a ) @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = [e.name for e in FlaxKarrasDiffusionSchedulers] _a = 42 @property def a__ ( self ) -> Dict: return True @register_to_config def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple: _A : Tuple = dtype def a__ ( self , _a = None ) -> DDPMSchedulerState: if common is None: _A : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype ) _A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=_a , init_noise_sigma=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray: return sample def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState: _A : Any = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_a , timesteps=_a , ) def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]: _A : Optional[Any] = state.common.alphas_cumprod[t] _A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _A : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _A : Optional[Any] = jnp.clip(_a , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) ) elif variance_type == "fixed_large": _A : Optional[Any] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _A : Tuple = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _A : str = variance _A : Union[str, Any] = state.common.betas[t] _A : Tuple = (predicted_variance + 1) / 2 _A : List[str] = frac * max_log + (1 - frac) * min_log return variance def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: _A : Dict = timestep if key is None: _A : int = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 ) else: _A : int = None # 1. compute alphas, betas _A : int = state.common.alphas_cumprod[t] _A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _A : Union[str, Any] = 1 - alpha_prod_t _A : Optional[int] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _A : Optional[int] = model_output elif self.config.prediction_type == "v_prediction": _A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' """ for the FlaxDDPMScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: _A : Union[str, Any] = jnp.clip(_a , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _A : Tuple = jax.random.split(_a , num=1 ) _A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise _A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _A : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return add_noise_common(state.common , _a , _a , _a ) def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray: return get_velocity_common(state.common , _a , _a , _a ) def __len__( self ) -> List[Any]: return self.config.num_train_timesteps
343
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
361
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): if len(snake_case_ ) != len(snake_case_ ): raise ValueError("""String lengths must match!""" ) _A : str = 0 for chara, chara in zip(snake_case_,snake_case_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
362
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _snake_case = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _snake_case = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _snake_case = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _snake_case = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase ( UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(UpperCamelCase__ ) class lowercase : def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding: if titles is None and texts is None: return super().__call__( _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) elif titles is None or texts is None: _A : Optional[Any] = titles if texts is None else texts return super().__call__( _a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , ) _A : Dict = titles if not isinstance(_a , _a ) else [titles] _A : Tuple = texts if not isinstance(_a , _a ) else [texts] _A : Any = len(_a ) _A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages if len(_a ) != len(_a ): raise ValueError( F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' ) _A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""] _A : Optional[int] = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_a , _a ) ] } if return_attention_mask is not False: _A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) _A : str = attention_mask return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a ) def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]: _A : Dict = reader_input["""input_ids"""] _A , _A , _A : Tuple = reader_output[:3] _A : List[str] = len(_a ) _A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ ) _A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: _A : Tuple = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence _A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: _A : Tuple = sequence_ids.index(self.pad_token_id ) else: _A : Tuple = len(_a ) _A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_a ) >= num_spans: break return nbest_spans_predictions[:num_spans] def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]: _A : Tuple = [] for start_index, start_score in enumerate(_a ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) _A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a ) _A : Union[str, Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' ) _A : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_a ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__ ) class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = VOCAB_FILES_NAMES _a = READER_PRETRAINED_VOCAB_FILES_MAP _a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a = READER_PRETRAINED_INIT_CONFIGURATION _a = ["input_ids", "attention_mask"]
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): def update_area_of_max_square(snake_case_,snake_case_ ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _A : Tuple = update_area_of_max_square(snake_case_,col + 1 ) _A : int = update_area_of_max_square(row + 1,col + 1 ) _A : int = update_area_of_max_square(row + 1,snake_case_ ) if mat[row][col]: _A : Tuple = 1 + min([right, diagonal, down] ) _A : Optional[int] = max(largest_square_area[0],snake_case_ ) return sub_problem_sol else: return 0 _A : List[str] = [0] update_area_of_max_square(0,0 ) return largest_square_area[0] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): def update_area_of_max_square_using_dp_array( snake_case_,snake_case_,snake_case_ ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _A : str = update_area_of_max_square_using_dp_array(snake_case_,col + 1,snake_case_ ) _A : Any = update_area_of_max_square_using_dp_array(row + 1,col + 1,snake_case_ ) _A : List[Any] = update_area_of_max_square_using_dp_array(row + 1,snake_case_,snake_case_ ) if mat[row][col]: _A : Dict = 1 + min([right, diagonal, down] ) _A : Optional[Any] = max(largest_square_area[0],snake_case_ ) _A : List[str] = sub_problem_sol return sub_problem_sol else: return 0 _A : Dict = [0] _A : Optional[int] = [[-1] * cols for _ in range(snake_case_ )] update_area_of_max_square_using_dp_array(0,0,snake_case_ ) return largest_square_area[0] def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] _A : Dict = 0 for row in range(rows - 1,-1,-1 ): for col in range(cols - 1,-1,-1 ): _A : Dict = dp_array[row][col + 1] _A : int = dp_array[row + 1][col + 1] _A : str = dp_array[row + 1][col] if mat[row][col] == 1: _A : Optional[Any] = 1 + min(snake_case_,snake_case_,snake_case_ ) _A : Optional[int] = max(dp_array[row][col],snake_case_ ) else: _A : List[Any] = 0 return largest_square_area def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : List[str] = [0] * (cols + 1) _A : List[str] = [0] * (cols + 1) _A : Any = 0 for row in range(rows - 1,-1,-1 ): for col in range(cols - 1,-1,-1 ): _A : int = current_row[col + 1] _A : Union[str, Any] = next_row[col + 1] _A : Union[str, Any] = next_row[col] if mat[row][col] == 1: _A : Optional[Any] = 1 + min(snake_case_,snake_case_,snake_case_ ) _A : Any = max(current_row[col],snake_case_ ) else: _A : Tuple = 0 _A : Union[str, Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
363
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowercase ( unittest.TestCase ): @property def a__ ( self ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a__ ( self ) -> List[Any]: _A : int = ort.SessionOptions() _A : Any = False return options def a__ ( self ) -> Union[str, Any]: _A : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) _A : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) _A : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default _A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) _A : Optional[Any] = """A red cat sitting on a park bench""" _A : Optional[Any] = np.random.RandomState(0 ) _A : Dict = pipe( prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , ) _A : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
343
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class lowercase ( UpperCamelCase__,UpperCamelCase__ ): _a = "swin" _a = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _a=224 , _a=4 , _a=3 , _a=96 , _a=[2, 2, 6, 2] , _a=[3, 6, 12, 24] , _a=7 , _a=4.0 , _a=True , _a=0.0 , _a=0.0 , _a=0.1 , _a="gelu" , _a=False , _a=0.02 , _a=1e-5 , _a=32 , _a=None , _a=None , **_a , ) -> Optional[Any]: super().__init__(**_a ) _A : Union[str, Any] = image_size _A : str = patch_size _A : Any = num_channels _A : str = embed_dim _A : Optional[int] = depths _A : Optional[int] = len(_a ) _A : Any = num_heads _A : Union[str, Any] = window_size _A : Optional[int] = mlp_ratio _A : Any = qkv_bias _A : Any = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : Optional[int] = drop_path_rate _A : List[str] = hidden_act _A : Any = use_absolute_embeddings _A : Dict = layer_norm_eps _A : List[Any] = initializer_range _A : Any = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _A : Optional[Any] = int(embed_dim * 2 ** (len(_a ) - 1) ) _A : Optional[int] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )] _A : List[str] = get_aligned_output_features_output_indices( out_features=_a , out_indices=_a , stage_names=self.stage_names ) class lowercase ( UpperCamelCase__ ): _a = version.parse("1.11" ) @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a__ ( self ) -> float: return 1e-4
364
from __future__ import annotations def lowerCAmelCase_ ( snake_case_ ): create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,): if index == len(snake_case_ ): print(snake_case_ ) return for i in range(len(snake_case_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _A : Optional[Any] = True create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ ) current_sequence.pop() _A : str = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
343
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case = logging.get_logger(__name__) class lowercase ( UpperCamelCase__ ): def __init__( self , *_a , **_a ) -> None: warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , _a , ) super().__init__(*_a , **_a )
365
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() ) _A : str = sum([np.prod(p.size() ) for p in model_parameters] ) return params _snake_case = logging.getLogger(__name__) def lowerCAmelCase_ ( snake_case_,snake_case_ ): if metric == "rouge2": _A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _A : Dict = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _A : List[str] = """{val_avg_em:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' """ function.""" ) _A : Optional[int] = ModelCheckpoint( dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,) return checkpoint_callback def lowerCAmelCase_ ( snake_case_,snake_case_ ): return EarlyStopping( monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,) class lowercase ( pl.Callback ): def a__ ( self , _a , _a ) -> Optional[Any]: _A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def a__ ( self , _a , _a , _a , _a=True ) -> None: logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _A : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} ) # Log results _A : Dict = Path(pl_module.hparams.output_dir ) if type_path == "test": _A : List[Any] = od / """test_results.txt""" _A : List[Any] = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , """a+""" ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _A : List[Any] = metrics[key] if isinstance(_a , torch.Tensor ): _A : str = val.item() _A : str = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _A : List[Any] = """\n""".join(metrics["""preds"""] ) generations_file.open("""w+""" ).write(_a ) @rank_zero_only def a__ ( self , _a , _a ) -> str: try: _A : int = pl_module.model.model.num_parameters() except AttributeError: _A : str = pl_module.model.num_parameters() _A : Optional[int] = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} ) @rank_zero_only def a__ ( self , _a , _a ) -> Optional[int]: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , """test""" ) @rank_zero_only def a__ ( self , _a , _a ) -> Tuple: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
343
0
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class lowercase : def __init__( self , _a = "cpu" , _a = "openai/clip-vit-large-patch14" ) -> None: _A : Optional[Any] = device _A : str = CLIPTokenizerFast.from_pretrained(_a ) _A : Dict = [0.48145466, 0.4578275, 0.40821073] _A : Optional[Any] = [0.26862954, 0.26130258, 0.27577711] _A : Any = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _A : List[Any] = torchvision.transforms.Resize(224 ) _A : str = torchvision.transforms.CenterCrop(224 ) def a__ ( self , _a ) -> List[Any]: _A : List[str] = self.resize(_a ) _A : Union[str, Any] = self.center_crop(_a ) _A : str = self.normalize(_a ) return images def __call__( self , _a=None , _a=None , **_a ) -> Dict: _A : List[str] = self.tokenizer(text=_a , **_a ) _A : List[str] = self.preprocess_img(_a ) _A : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class lowercase ( nn.Module ): def __init__( self , _a=10 , _a=0.01 , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=False , _a=True , _a="image" , _a=True , _a=False , _a=False , _a=False , ) -> None: super().__init__() _A : List[Any] = None _A : str = device if device else get_device() if vqgan: _A : List[Any] = vqgan else: _A : List[str] = load_vqgan(self.device , conf_path=_a , ckpt_path=_a ) self.vqgan.eval() if clip: _A : Optional[int] = clip else: _A : int = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _A : int = ProcessorGradientFlow(device=self.device ) _A : int = iterations _A : Dict = lr _A : Any = log _A : Tuple = make_grid _A : Union[str, Any] = return_val _A : str = quantize _A : Optional[Any] = self.vqgan.decoder.z_shape def a__ ( self , _a=None , _a=None , _a=5 , _a=True ) -> Union[str, Any]: _A : Any = [] if output_path is None: _A : Tuple = """./animation.gif""" if input_path is None: _A : List[Any] = self.save_path _A : Union[str, Any] = sorted(glob(input_path + """/*""" ) ) if not len(_a ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(_a ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _A : Any = total_duration / len(_a ) _A : Optional[int] = [frame_duration] * len(_a ) if extend_frames: _A : Union[str, Any] = 1.5 _A : Dict = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(_a ) ) imageio.mimsave(_a , _a , duration=_a ) print(F'''gif saved to {output_path}''' ) def a__ ( self , _a=None , _a=None ) -> Optional[int]: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _A : str = preprocess(Image.open(_a ) , target_image_size=256 ).to(self.device ) _A : Any = preprocess_vqgan(_a ) _A : Union[str, Any] = self.vqgan.encode(_a ) return z def a__ ( self , _a ) -> Optional[Any]: _A : int = self.latent.detach().requires_grad_() _A : str = base_latent + transform_vector if self.quantize: _A : Dict = self.vqgan.quantize(_a ) else: _A : int = trans_latent return self.vqgan.decode(_a ) def a__ ( self , _a , _a , _a=None ) -> List[str]: _A : List[Any] = self.clip_preprocessor(text=_a , images=_a , return_tensors="""pt""" , padding=_a ) _A : Tuple = self.clip(**_a ) _A : int = clip_outputs.logits_per_image if weights is not None: _A : Tuple = similarity_logits * weights return similarity_logits.sum() def a__ ( self , _a , _a , _a ) -> str: _A : Optional[int] = self._get_clip_similarity(pos_prompts["""prompts"""] , _a , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _A : List[Any] = self._get_clip_similarity(neg_prompts["""prompts"""] , _a , weights=neg_prompts["""weights"""] ) else: _A : List[str] = torch.tensor([1] , device=self.device ) _A : str = -torch.log(_a ) + torch.log(_a ) return loss def a__ ( self , _a , _a , _a ) -> Dict: _A : int = torch.randn_like(self.latent , requires_grad=_a , device=self.device ) _A : List[Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _A : Tuple = self._add_vector(_a ) _A : int = loop_post_process(_a ) _A : Dict = self._get_CLIP_loss(_a , _a , _a ) print("""CLIP loss""" , _a ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=_a ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def a__ ( self , _a , _a , _a ) -> int: wandb.init(reinit=_a , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _A : Optional[int] = Image.open(_a ) _A : Tuple = image.resize((256, 256) ) wandb.log("""Original Image""" , wandb.Image(_a ) ) def a__ ( self , _a ) -> Union[str, Any]: if not prompts: return [] _A : List[str] = [] _A : Optional[int] = [] if isinstance(_a , _a ): _A : Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(_a , (tuple, list) ): _A : List[str] = prompt[0] _A : int = float(prompt[1] ) elif ":" in prompt: _A : Optional[int] = prompt.split(""":""" ) _A : Any = float(_a ) else: _A : Any = prompt _A : Tuple = 1.0 processed_prompts.append(_a ) weights.append(_a ) return { "prompts": processed_prompts, "weights": torch.tensor(_a , device=self.device ), } def a__ ( self , _a , _a=None , _a=None , _a=True , _a=False , _a=True , _a=True , _a=None , ) -> List[Any]: if image_path: _A : List[str] = self._get_latent(_a ) else: _A : Optional[int] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(_a , _a , _a ) assert pos_prompts, "You must provide at least one positive prompt." _A : Optional[Any] = self.process_prompts(_a ) _A : Tuple = self.process_prompts(_a ) if save_final and save_path is None: _A : List[str] = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(_a ): os.makedirs(_a ) else: _A : Optional[int] = save_path + """_""" + get_timestamp() os.makedirs(_a ) _A : Any = save_path _A : Any = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(_a ) ) _A : Dict = loop_post_process(_a ) for iter, transformed_img in enumerate(self._optimize_CLIP(_a , _a , _a ) ): if show_intermediate: show_pil(_a ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(_a )} ) if show_final: show_pil(_a ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
366
from __future__ import annotations from collections.abc import Callable _snake_case = list[list[float | int]] def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )] _A : int _A : int _A : int _A : int _A : int _A : float for row in range(snake_case_ ): for col in range(snake_case_ ): _A : Dict = matrix[row][col] _A : List[Any] = vector[row][0] _A : List[Any] = 0 _A : Optional[Any] = 0 while row < size and col < size: # pivoting _A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _A , _A : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1,snake_case_ ): _A : str = augmented[rowa][col] / augmented[row][col] _A : List[Any] = 0 for cola in range(col + 1,size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1,snake_case_ ): for row in range(snake_case_ ): _A : int = augmented[row][col] / augmented[col][col] for cola in range(snake_case_,size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ ) ] def lowerCAmelCase_ ( snake_case_ ): _A : int = len(snake_case_ ) _A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )] _A : Matrix = [[0] for _ in range(snake_case_ )] _A : Matrix _A : int _A : int _A : int for x_val, y_val in enumerate(snake_case_ ): for col in range(snake_case_ ): _A : str = (x_val + 1) ** (size - col - 1) _A : List[str] = y_val _A : Any = solve(snake_case_,snake_case_ ) def interpolated_func(snake_case_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(snake_case_ ) ) return interpolated_func def lowerCAmelCase_ ( snake_case_ ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ): _A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )] _A : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 ) ] _A : int = 0 _A : Callable[[int], int] _A : int for poly in polynomials: _A : Optional[int] = 1 while func(snake_case_ ) == poly(snake_case_ ): x_val += 1 ret += poly(snake_case_ ) return ret if __name__ == "__main__": print(f"""{solution() = }""")
343
0
def lowerCAmelCase_ ( snake_case_,snake_case_ = " " ): _A : List[Any] = [] _A : Optional[Any] = 0 for index, char in enumerate(snake_case_ ): if char == separator: split_words.append(string[last_index:index] ) _A : str = index + 1 elif index + 1 == len(snake_case_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
367
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowerCAmelCase_ ( snake_case_ = "mumbai" ): _A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ): _A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() _A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
343
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _snake_case = logging.get_logger(__name__) _snake_case = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowercase ( UpperCamelCase__ ): _a = "dpt" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=384 , _a=16 , _a=3 , _a=False , _a=True , _a=[2, 5, 8, 11] , _a="project" , _a=[4, 2, 1, 0.5] , _a=[96, 192, 384, 768] , _a=256 , _a=-1 , _a=False , _a=True , _a=0.4 , _a=255 , _a=0.1 , _a=[1, 1024, 24, 24] , _a=[0, 1] , _a=None , **_a , ) -> Dict: super().__init__(**_a ) _A : List[str] = hidden_size _A : Tuple = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _A : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _A : str = BitConfig(**_a ) elif isinstance(_a , _a ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _A : Union[str, Any] = BitConfig(**_a ) elif isinstance(_a , _a ): _A : Optional[Any] = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _A : int = backbone_featmap_shape _A : List[Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _A : Tuple = None _A : Optional[int] = None _A : Any = [] _A : Union[str, Any] = num_hidden_layers _A : Optional[int] = num_attention_heads _A : Optional[int] = intermediate_size _A : str = hidden_act _A : List[str] = hidden_dropout_prob _A : Union[str, Any] = attention_probs_dropout_prob _A : Any = initializer_range _A : Union[str, Any] = layer_norm_eps _A : Any = image_size _A : List[Any] = patch_size _A : Tuple = num_channels _A : int = qkv_bias _A : str = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _A : str = readout_type _A : int = reassemble_factors _A : Optional[int] = neck_hidden_sizes _A : Tuple = fusion_hidden_size _A : Optional[int] = head_in_index _A : int = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A : str = use_auxiliary_head _A : Optional[int] = auxiliary_loss_weight _A : Optional[int] = semantic_loss_ignore_index _A : Dict = semantic_classifier_dropout def a__ ( self ) -> Optional[Any]: _A : str = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _A : List[Any] = self.backbone_config.to_dict() _A : str = self.__class__.model_type return output
368
from __future__ import annotations from decimal import Decimal from numpy import array def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _A : List[Any] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements _A : Tuple = [[0.0, 0.0], [0.0, 0.0]] _A , _A : List[str] = matrix[1][1], matrix[0][0] _A , _A : List[str] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _A : List[str] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix _A : List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _A : Optional[Any] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _A : List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _A : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _A : List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _A : List[Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): _A : List[str] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _A : Union[str, Any] = array(snake_case_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case_ ) # Calculate the inverse of the matrix return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
343
0
"""simple docstring""" from __future__ import annotations def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = sorted(numsa + numsa ) _A : Optional[int] = divmod(len(snake_case_ ),2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = [float(x) for x in input("Enter the elements of first array: ").split()] _snake_case = [float(x) for x in input("Enter the elements of second array: ").split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
369
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowercase ( UpperCamelCase__ ): _a = 42 class lowercase ( UpperCamelCase__,UpperCamelCase__ ): @register_to_config def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any: super().__init__() _A : int = num_attention_heads _A : Union[str, Any] = attention_head_dim _A : Tuple = num_attention_heads * attention_head_dim _A : Any = additional_embeddings _A : Any = time_embed_dim or inner_dim _A : List[str] = embedding_proj_dim or embedding_dim _A : Optional[int] = clip_embed_dim or embedding_dim _A : Union[str, Any] = Timesteps(_a , _a , 0 ) _A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a ) _A : Dict = nn.Linear(_a , _a ) if embedding_proj_norm_type is None: _A : int = None elif embedding_proj_norm_type == "layer": _A : Optional[Any] = nn.LayerNorm(_a ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) _A : Optional[Any] = nn.Linear(_a , _a ) if encoder_hid_proj_type is None: _A : Union[str, Any] = None elif encoder_hid_proj_type == "linear": _A : Tuple = nn.Linear(_a , _a ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) _A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) ) if added_emb_type == "prd": _A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) ) elif added_emb_type is None: _A : Union[str, Any] = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) _A : int = nn.ModuleList( [ BasicTransformerBlock( _a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , ) for d in range(_a ) ] ) if norm_in_type == "layer": _A : Union[str, Any] = nn.LayerNorm(_a ) elif norm_in_type is None: _A : Tuple = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) _A : int = nn.LayerNorm(_a ) _A : str = nn.Linear(_a , _a ) _A : Any = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 ) causal_attention_mask.triu_(1 ) _A : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("""causal_attention_mask""" , _a , persistent=_a ) _A : Tuple = nn.Parameter(torch.zeros(1 , _a ) ) _A : Dict = nn.Parameter(torch.zeros(1 , _a ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def a__ ( self ) -> Dict[str, AttentionProcessor]: _A : List[str] = {} def fn_recursive_add_processors(_a , _a , _a ): if hasattr(_a , """set_processor""" ): _A : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_a , _a , _a ) return processors def a__ ( self , _a ) -> List[str]: _A : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_a , _a ) and len(_a ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_a , _a , _a ): if hasattr(_a , """set_processor""" ): if not isinstance(_a , _a ): module.set_processor(_a ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a ) for name, module in self.named_children(): fn_recursive_attn_processor(_a , _a , _a ) def a__ ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]: _A : Tuple = hidden_states.shape[0] _A : List[Any] = timestep if not torch.is_tensor(_a ): _A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0: _A : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device ) _A : Dict = self.time_proj(_a ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _A : Tuple = timesteps_projected.to(dtype=self.dtype ) _A : List[Any] = self.time_embedding(_a ) if self.embedding_proj_norm is not None: _A : Dict = self.embedding_proj_norm(_a ) _A : List[Any] = self.embedding_proj(_a ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _A : List[Any] = self.encoder_hidden_states_proj(_a ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" ) _A : Optional[int] = self.proj_in(_a ) _A : Optional[int] = self.positional_embedding.to(hidden_states.dtype ) _A : Union[str, Any] = [] _A : List[str] = 0 if encoder_hidden_states is not None: additional_embeds.append(_a ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _A : List[str] = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _A : List[str] = hidden_states[:, None, :] _A : Dict = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 ) additional_embeds.append(_a ) _A : str = torch.cat( _a , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _A : Union[str, Any] = F.pad( _a , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _A : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0 _A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 ) _A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _A : str = self.norm_in(_a ) for block in self.transformer_blocks: _A : List[Any] = block(_a , attention_mask=_a ) _A : Any = self.norm_out(_a ) if self.prd_embedding is not None: _A : int = hidden_states[:, -1] else: _A : Any = hidden_states[:, additional_embeddings_len:] _A : Union[str, Any] = self.proj_to_clip_embeddings(_a ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_a ) def a__ ( self , _a ) -> Tuple: _A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
343
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _snake_case = {"UserAgent": UserAgent().random} def lowerCAmelCase_ ( snake_case_ ): _A : Tuple = script.contents[0] _A : Tuple = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase : def __init__( self , _a ) -> Union[str, Any]: _A : Optional[int] = F'''https://www.instagram.com/{username}/''' _A : Union[str, Any] = self.get_json() def a__ ( self ) -> dict: _A : Tuple = requests.get(self.url , headers=_a ).text _A : Dict = BeautifulSoup(_a , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ) -> str: return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def a__ ( self ) -> str: return self.user_data["username"] @property def a__ ( self ) -> str: return self.user_data["full_name"] @property def a__ ( self ) -> str: return self.user_data["biography"] @property def a__ ( self ) -> str: return self.user_data["business_email"] @property def a__ ( self ) -> str: return self.user_data["external_url"] @property def a__ ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def a__ ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def a__ ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def a__ ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def a__ ( self ) -> bool: return self.user_data["is_verified"] @property def a__ ( self ) -> bool: return self.user_data["is_private"] def lowerCAmelCase_ ( snake_case_ = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions _A : Tuple = InstagramUser(snake_case_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data,snake_case_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _snake_case = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
370
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Any = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' _A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : str = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _A : int = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : int = None if token is not None: _A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' _A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json() _A : Any = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(snake_case_ ): _A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : Dict = None if token is not None: _A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''} _A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ ) _A : Tuple = result.headers["""Location"""] _A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ ) _A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' ) with open(snake_case_,"""wb""" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : List[str] = [] _A : int = [] _A : Tuple = None with zipfile.ZipFile(snake_case_ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case_ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(snake_case_ ) as f: for line in f: _A : Any = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _A : Dict = line[: line.index(""": """ )] _A : Dict = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _A : List[str] = line[len("""FAILED """ ) :] failed_tests.append(snake_case_ ) elif filename == "job_name.txt": _A : Optional[int] = line if len(snake_case_ ) != len(snake_case_ ): raise ValueError( f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` ''' f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' """ problem.""" ) _A : Any = None if job_name and job_links: _A : Dict = job_links.get(snake_case_,snake_case_ ) # A list with elements of the form (line of error, error, failed test) _A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )] return result def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = [] _A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) ) return errors def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : Dict = Counter() counter.update([x[1] for x in logs] ) _A : Tuple = counter.most_common() _A : Tuple = {} for error, count in counts: if error_filter is None or error not in error_filter: _A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Union[str, Any] = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _A : Dict = test.split("""/""" )[2] else: _A : str = None return test def lowerCAmelCase_ ( snake_case_,snake_case_=None ): _A : str = [(x[0], x[1], get_model(x[2] )) for x in logs] _A : Union[str, Any] = [x for x in logs if x[2] is not None] _A : Optional[Any] = {x[2] for x in logs} _A : List[Any] = {} for test in tests: _A : Any = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _A : Union[str, Any] = counter.most_common() _A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _A : str = sum(error_counts.values() ) if n_errors > 0: _A : Optional[int] = {"""count""": n_errors, """errors""": error_counts} _A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) ) return r def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = """| no. | error | status |""" _A : List[Any] = """|-:|:-|:-|""" _A : List[Any] = [header, sep] for error in reduced_by_error: _A : List[str] = reduced_by_error[error]["""count"""] _A : List[Any] = f'''| {count} | {error[:100]} | |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) def lowerCAmelCase_ ( snake_case_ ): _A : List[Any] = """| model | no. of errors | major error | count |""" _A : Optional[Any] = """|-:|-:|-:|-:|""" _A : Union[str, Any] = [header, sep] for model in reduced_by_model: _A : Dict = reduced_by_model[model]["""count"""] _A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0] _A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(snake_case_ ) return "\n".join(snake_case_ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") _snake_case = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _snake_case = get_job_links(args.workflow_run_id, token=args.token) _snake_case = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _snake_case = k.find(" / ") _snake_case = k[index + len(" / ") :] _snake_case = v with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _snake_case = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _snake_case = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _snake_case = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _snake_case = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _snake_case = reduce_by_error(errors) _snake_case = reduce_by_model(errors) _snake_case = make_github_table(reduced_by_error) _snake_case = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp: fp.write(sa) with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp: fp.write(sa)
343
0
import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowercase ( UpperCamelCase__ ): """simple docstring""" _a = "M-CLIP" def __init__( self , _a=1024 , _a=768 , **_a ) -> Optional[int]: _A : str = transformerDimSize _A : Any = imageDimSize super().__init__(**_a ) class lowercase ( UpperCamelCase__ ): """simple docstring""" _a = MCLIPConfig def __init__( self , _a , *_a , **_a ) -> str: super().__init__(_a , *_a , **_a ) _A : Optional[int] = XLMRobertaModel(_a ) _A : int = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def a__ ( self , _a , _a ) -> int: _A : Optional[Any] = self.transformer(input_ids=_a , attention_mask=_a )[0] _A : Dict = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_a ), embs
371
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> List[str]: debug_launcher(test_script.main ) def a__ ( self ) -> Any: debug_launcher(test_ops.main )
343
0
import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =XLNetTokenizer UpperCamelCase__ : List[str] =XLNetTokenizerFast UpperCamelCase__ : Tuple =True UpperCamelCase__ : Dict =True def __a ( self :List[str]) -> Dict: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = XLNetTokenizer(_lowercase , keep_accents=_lowercase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> Dict: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''<eod>''') self.assertEqual(len(_lowercase) , 1006) def __a ( self :Union[str, Any]) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :int) -> List[str]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual(_lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __a ( self :Tuple) -> List[str]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , do_lower_case=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''') , ['''▁he''', '''ll''', '''o''']) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = XLNetTokenizer(_lowercase , do_lower_case=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def __a ( self :Any) -> str: UpperCAmelCase_ = XLNetTokenizer.from_pretrained('''xlnet-base-cased''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def __a ( self :str) -> int: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[17, 21442, 270, 17, 10, 14645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 22018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 14431, 13, 5500, 11, 1176, 580, 13, 16819, 4797, 23, 17, 10, 17135, 658, 19, 457, 7932, 13, 184, 19, 3154, 17135, 6468, 19, 1404, 12269, 19, 4229, 5356, 16264, 46, 19, 17, 20545, 10395, 9, 9, 9, 11, 28, 6421, 9531, 20729, 17, 10, 353, 17022, 11, 21, 6421, 9531, 16949, 17, 10, 11509, 753, 11, 33, 95, 2421, 7385, 956, 14431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 24738, 19, 13203, 658, 218, 787, 21, 430, 18482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 22178, 27, 1064, 22, 956, 13, 11101, 1429, 5854, 24313, 18953, 40, 422, 24366, 68, 1758, 37, 10483, 14257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 13894, 3380, 23, 95, 18, 17634, 2288, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class a_ ( _snake_case ): UpperCamelCase__ : List[Any] ="van" def __init__( self :Any , _lowercase :Union[str, Any]=224 , _lowercase :int=3 , _lowercase :List[Any]=[7, 3, 3, 3] , _lowercase :Optional[Any]=[4, 2, 2, 2] , _lowercase :Optional[int]=[64, 128, 320, 512] , _lowercase :Optional[Any]=[3, 3, 12, 3] , _lowercase :Dict=[8, 8, 4, 4] , _lowercase :Optional[int]="gelu" , _lowercase :str=0.02 , _lowercase :Optional[int]=1E-6 , _lowercase :Optional[Any]=1E-2 , _lowercase :Union[str, Any]=0.0 , _lowercase :Tuple=0.0 , **_lowercase :List[Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = patch_sizes UpperCAmelCase_ = strides UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = depths UpperCAmelCase_ = mlp_ratios UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = layer_scale_init_value UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = dropout_rate
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class a_ ( _snake_case ): UpperCamelCase__ : Tuple ="EncodecFeatureExtractor" UpperCamelCase__ : List[Any] =("T5Tokenizer", "T5TokenizerFast") def __init__( self :Optional[Any] , _lowercase :Optional[Any] , _lowercase :Union[str, Any]) -> List[Any]: super().__init__(_lowercase , _lowercase) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False def __a ( self :Tuple , _lowercase :List[str]=None , _lowercase :Union[str, Any]=None , _lowercase :Dict=True) -> str: return self.tokenizer.get_decoder_prompt_ids(task=_lowercase , language=_lowercase , no_timestamps=_lowercase) def __call__( self :Optional[int] , *_lowercase :Any , **_lowercase :List[str]) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase) UpperCAmelCase_ = kwargs.pop('''audio''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''text''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if text is not None: UpperCAmelCase_ = self.tokenizer(_lowercase , **_lowercase) if audio is not None: UpperCAmelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase_ = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: UpperCAmelCase_ = audio_inputs['''padding_mask'''] return inputs def __a ( self :int , *_lowercase :Dict , **_lowercase :List[str]) -> Optional[int]: UpperCAmelCase_ = kwargs.pop('''audio''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''padding_mask''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio_values is not None: return self._decode_audio(_lowercase , padding_mask=_lowercase) else: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __a ( self :Tuple , *_lowercase :Tuple , **_lowercase :int) -> Optional[int]: return self.tokenizer.decode(*_lowercase , **_lowercase) def __a ( self :Union[str, Any] , _lowercase :Tuple , _lowercase :Optional = None) -> List[np.ndarray]: UpperCAmelCase_ = to_numpy(_lowercase) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = audio_values.shape if padding_mask is None: return list(_lowercase) UpperCAmelCase_ = to_numpy(_lowercase) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase_ = seq_len - padding_mask.shape[-1] UpperCAmelCase_ = 1 - self.feature_extractor.padding_value UpperCAmelCase_ = np.pad(_lowercase , ((0, 0), (0, difference)) , '''constant''' , constant_values=_lowercase) UpperCAmelCase_ = audio_values.tolist() for i in range(_lowercase): UpperCAmelCase_ = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase_ = sliced_audio.reshape(_lowercase , -1) return audio_values
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_timesformer": ["TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimesformerConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase_ = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case ): UpperCamelCase__ : Any ="mask2former" UpperCamelCase__ : Dict =["swin"] UpperCamelCase__ : Optional[int] ={"hidden_size": "hidden_dim"} def __init__( self :List[str] , _lowercase :Optional[Dict] = None , _lowercase :int = 256 , _lowercase :int = 256 , _lowercase :int = 256 , _lowercase :int = 1024 , _lowercase :str = "relu" , _lowercase :int = 6 , _lowercase :int = 10 , _lowercase :int = 8 , _lowercase :float = 0.0 , _lowercase :int = 2048 , _lowercase :bool = False , _lowercase :bool = False , _lowercase :int = 4 , _lowercase :int = 255 , _lowercase :int = 100 , _lowercase :float = 0.1 , _lowercase :float = 2.0 , _lowercase :float = 5.0 , _lowercase :float = 5.0 , _lowercase :int = 12544 , _lowercase :float = 3.0 , _lowercase :float = 0.75 , _lowercase :float = 0.02 , _lowercase :float = 1.0 , _lowercase :bool = True , _lowercase :List[int] = [4, 8, 16, 32] , _lowercase :bool = None , **_lowercase :Tuple , ) -> Optional[Any]: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') UpperCAmelCase_ = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = backbone_config.pop('''model_type''') UpperCAmelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ = config_class.from_dict(_lowercase) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported)}") UpperCAmelCase_ = backbone_config UpperCAmelCase_ = feature_size UpperCAmelCase_ = mask_feature_size UpperCAmelCase_ = hidden_dim UpperCAmelCase_ = encoder_feedforward_dim UpperCAmelCase_ = activation_function UpperCAmelCase_ = encoder_layers UpperCAmelCase_ = decoder_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = dropout UpperCAmelCase_ = dim_feedforward UpperCAmelCase_ = pre_norm UpperCAmelCase_ = enforce_input_projection UpperCAmelCase_ = common_stride UpperCAmelCase_ = ignore_value UpperCAmelCase_ = num_queries UpperCAmelCase_ = no_object_weight UpperCAmelCase_ = class_weight UpperCAmelCase_ = mask_weight UpperCAmelCase_ = dice_weight UpperCAmelCase_ = train_num_points UpperCAmelCase_ = oversample_ratio UpperCAmelCase_ = importance_sample_ratio UpperCAmelCase_ = init_std UpperCAmelCase_ = init_xavier_std UpperCAmelCase_ = use_auxiliary_loss UpperCAmelCase_ = feature_strides UpperCAmelCase_ = output_auxiliary_logits UpperCAmelCase_ = decoder_layers super().__init__(**_lowercase) @classmethod def __a ( cls :Optional[Any] , _lowercase :PretrainedConfig , **_lowercase :str) -> Dict: return cls( backbone_config=_lowercase , **_lowercase , ) def __a ( self :Any) -> Dict[str, any]: UpperCAmelCase_ = copy.deepcopy(self.__dict__) UpperCAmelCase_ = self.backbone_config.to_dict() UpperCAmelCase_ = self.__class__.model_type return output
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) UpperCAmelCase_ = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": UpperCamelCase_ = input("Enter a string ").strip() UpperCamelCase_ = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCamelCase_ = int(input("Enter number: ").strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class a_ ( _snake_case ): def __lt__( self :Any , _lowercase :List[Any]) -> List[Any]: return self[-1] < other[-1] def __eq__( self :Any , _lowercase :List[Any]) -> Optional[Any]: return self[-1] == other[-1] def A ( __UpperCAmelCase ) -> list: '''simple docstring''' UpperCAmelCase_ = [] # sort into stacks for element in collection: UpperCAmelCase_ = Stack([element] ) UpperCAmelCase_ = bisect_left(__UpperCAmelCase , __UpperCAmelCase ) if i != len(__UpperCAmelCase ): stacks[i].append(__UpperCAmelCase ) else: stacks.append(__UpperCAmelCase ) # use a heap-based merge to merge stack efficiently UpperCAmelCase_ = merge(*(reversed(__UpperCAmelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase_ = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
def A ( __UpperCAmelCase ) -> Dict: '''simple docstring''' stooge(__UpperCAmelCase , 0 , len(__UpperCAmelCase ) - 1 ) return arr def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCAmelCase_ , UpperCAmelCase_ = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCAmelCase_ = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase , __UpperCAmelCase , (h - t) ) # Recursively sort last 2/3 elements stooge(__UpperCAmelCase , i + t , (__UpperCAmelCase) ) # Recursively sort first 2/3 elements stooge(__UpperCAmelCase , __UpperCAmelCase , (h - t) ) if __name__ == "__main__": UpperCamelCase_ = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase_ = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
UpperCamelCase_ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = [False] * len(__UpperCAmelCase ) UpperCAmelCase_ = [s] UpperCAmelCase_ = True while queue: UpperCAmelCase_ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__UpperCAmelCase ) UpperCAmelCase_ = True UpperCAmelCase_ = u return visited[t] def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [-1] * (len(__UpperCAmelCase )) UpperCAmelCase_ = 0 UpperCAmelCase_ = [] UpperCAmelCase_ = [i[:] for i in graph] # Record original cut, copy. while bfs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = float('''Inf''' ) UpperCAmelCase_ = sink while s != source: # Find the minimum value in select path UpperCAmelCase_ = min(__UpperCAmelCase , graph[parent[s]][s] ) UpperCAmelCase_ = parent[s] max_flow += path_flow UpperCAmelCase_ = sink while v != source: UpperCAmelCase_ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCAmelCase_ = parent[v] for i in range(len(__UpperCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { "configuration_informer": [ "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "InformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a_ ( _snake_case ): UpperCamelCase__ : Any ="Wav2Vec2FeatureExtractor" UpperCamelCase__ : Optional[Any] ="AutoTokenizer" def __init__( self :Dict , _lowercase :Any , _lowercase :Optional[Any]) -> Any: super().__init__(_lowercase , _lowercase) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def __a ( cls :List[str] , _lowercase :str , **_lowercase :List[str]) -> List[Any]: try: return super().from_pretrained(_lowercase , **_lowercase) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowercase , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase) return cls(feature_extractor=_lowercase , tokenizer=_lowercase) def __call__( self :Tuple , *_lowercase :Optional[Any] , **_lowercase :Optional[int]) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') UpperCAmelCase_ = kwargs.pop('''raw_speech''') else: UpperCAmelCase_ = kwargs.pop('''audio''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''text''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: UpperCAmelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase) if text is not None: UpperCAmelCase_ = self.tokenizer(_lowercase , **_lowercase) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings['''input_ids'''] return inputs def __a ( self :int , *_lowercase :Tuple , **_lowercase :int) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase) UpperCAmelCase_ = kwargs.pop('''input_features''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''labels''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(_lowercase , **_lowercase) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels['''input_ids'''] return input_features def __a ( self :Union[str, Any] , *_lowercase :Optional[int] , **_lowercase :List[Any]) -> Tuple: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __a ( self :Dict , *_lowercase :int , **_lowercase :Optional[Any]) -> Any: return self.tokenizer.decode(*_lowercase , **_lowercase) @contextmanager def __a ( self :Any) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
UpperCamelCase_ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0217_6634e-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.35_58_18, } def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ = ( f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" f"Valid values are: {', '.join(__UpperCAmelCase )}" ) raise ValueError(__UpperCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class a_ ( _snake_case ): def __init__( self :int , _lowercase :Dict , _lowercase :List[str]=None , _lowercase :Any=True , _lowercase :Tuple=None , **_lowercase :List[Any]) -> Tuple: UpperCAmelCase_ = parent UpperCAmelCase_ = config_class UpperCAmelCase_ = has_text_modality UpperCAmelCase_ = kwargs UpperCAmelCase_ = common_properties def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = self.config_class(**self.inputs_dict) UpperCAmelCase_ = ( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size''']) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowercase , _lowercase) , msg=f"`{prop}` does not exist") # Test that config has the common properties as setter for idx, name in enumerate(_lowercase): try: setattr(_lowercase , _lowercase , _lowercase) self.parent.assertEqual( getattr(_lowercase , _lowercase) , _lowercase , msg=f"`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase)}") except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowercase): try: UpperCAmelCase_ = self.config_class(**{name: idx}) self.parent.assertEqual( getattr(_lowercase , _lowercase) , _lowercase , msg=f"`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase)}") except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.config_class(**self.inputs_dict) UpperCAmelCase_ = json.loads(config.to_json_string()) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowercase) def __a ( self :Optional[Any]) -> Tuple: UpperCAmelCase_ = self.config_class(**self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = os.path.join(_lowercase , '''config.json''') config_first.to_json_file(_lowercase) UpperCAmelCase_ = self.config_class.from_json_file(_lowercase) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict()) def __a ( self :Dict) -> List[str]: UpperCAmelCase_ = self.config_class(**self.inputs_dict) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowercase) UpperCAmelCase_ = self.config_class.from_pretrained(_lowercase) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict()) def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = self.config_class(**self.inputs_dict) UpperCAmelCase_ = '''test''' with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase_ = os.path.join(_lowercase , _lowercase) config_first.save_pretrained(_lowercase) UpperCAmelCase_ = self.config_class.from_pretrained(_lowercase , subfolder=_lowercase) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict()) def __a ( self :List[Any]) -> Any: UpperCAmelCase_ = self.config_class(**self.inputs_dict , num_labels=5) self.parent.assertEqual(len(config.idalabel) , 5) self.parent.assertEqual(len(config.labelaid) , 5) UpperCAmelCase_ = 3 self.parent.assertEqual(len(config.idalabel) , 3) self.parent.assertEqual(len(config.labelaid) , 3) def __a ( self :Optional[Any]) -> Any: if self.config_class.is_composition: return UpperCAmelCase_ = self.config_class() self.parent.assertIsNotNone(_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = copy.deepcopy(_lowercase) UpperCAmelCase_ = self.config_class(**_lowercase) UpperCAmelCase_ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa)) elif getattr(_lowercase , _lowercase) != value: wrong_values.append((key, getattr(_lowercase , _lowercase), value)) if len(_lowercase) > 0: UpperCAmelCase_ = '''\n'''.join([f"- {v[0]}: got {v[1]} instead of {v[2]}" for v in wrong_values]) raise ValueError(f"The following keys were not properly set in the config:\n{errors}") def __a ( self :Any) -> List[str]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
import string from math import logaa def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) UpperCAmelCase_ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple[int, int]: '''simple docstring''' UpperCAmelCase_ = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase_ = corpus_without_punctuation.split('''\n''' ) UpperCAmelCase_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__UpperCAmelCase )) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return round(tf * idf , 3 )
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =GPTSwaTokenizer UpperCamelCase__ : Optional[int] =False UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : Tuple =False def __a ( self :str) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ = GPTSwaTokenizer(_lowercase , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , _lowercase :int) -> str: UpperCAmelCase_ = '''This is a test''' UpperCAmelCase_ = '''This is a test''' return input_text, output_text def __a ( self :Optional[Any]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :int) -> int: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(_lowercase) , 2000) def __a ( self :Union[str, Any]) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 2000) def __a ( self :Dict) -> str: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , [465, 287, 265, 631, 842]) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) # fmt: off self.assertListEqual( _lowercase , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def __a ( self :str) -> Any: UpperCAmelCase_ = GPTSwaTokenizer(_lowercase) UpperCAmelCase_ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_lowercase , _lowercase): self.assertListEqual(tokenizer.encode_fast(_lowercase) , _lowercase) # Test that decode_fast returns the input text for text, token_ids in zip(_lowercase , _lowercase): self.assertEqual(tokenizer.decode_fast(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Optional[int]: UpperCAmelCase_ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ = {'''input_ids''': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=_lowercase , )
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A ( ) -> Any: '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class a_ ( nn.Module ): def __init__( self :Optional[int]) -> Optional[int]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :List[str] , _lowercase :Optional[int]) -> List[str]: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( unittest.TestCase ): def __a ( self :Any) -> Dict: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :Union[str, Any]): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[str] , _lowercase :Optional[int]): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase_ , UpperCAmelCase_ = mock_training_loop_function('''hello''') self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def __a ( self :Optional[Any]) -> Tuple: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(_lowercase :List[str]): pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :Dict) -> Any: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :Dict): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :Optional[Any]) -> Tuple: @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :str , _lowercase :List[Any] , _lowercase :Optional[int]): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase) as cm: mock_training_loop_function(128 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def __a ( self :Optional[Any]) -> Dict: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :str): raise ValueError('''Oops, we had an error!''') with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def __a ( self :Union[str, Any]) -> Any: UpperCAmelCase_ = torch.cuda.memory_allocated() UpperCAmelCase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase) UpperCAmelCase_ = release_memory(_lowercase) self.assertEqual(torch.cuda.memory_allocated() , _lowercase)
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class a_ ( unittest.TestCase ): @property def __a ( self :Optional[int]) -> Optional[Any]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __a ( self :Union[str, Any]) -> str: UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = False return options def __a ( self :Tuple) -> Union[str, Any]: UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''') UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''') # using the PNDM scheduler by default UpperCAmelCase_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = '''A red cat sitting on a park bench''' UpperCAmelCase_ = np.random.RandomState(0) UpperCAmelCase_ = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_lowercase , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image).max() < 1E-2
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. UpperCamelCase_ = 10 def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' for i in range(__UpperCAmelCase , __UpperCAmelCase ): if array[i] == target: return i return -1 def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__UpperCAmelCase ) while left <= right: if right - left < precision: return lin_search(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = (left + right) // 3 + 1 UpperCAmelCase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: UpperCAmelCase_ = one_third - 1 elif array[two_third] < target: UpperCAmelCase_ = two_third + 1 else: UpperCAmelCase_ = one_third + 1 UpperCAmelCase_ = two_third - 1 else: return -1 def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if left < right: if right - left < precision: return lin_search(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase_ = (left + right) // 3 + 1 UpperCAmelCase_ = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(__UpperCAmelCase , one_third - 1 , __UpperCAmelCase , __UpperCAmelCase ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , __UpperCAmelCase , __UpperCAmelCase ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase_ = input("Enter numbers separated by comma:\n").strip() UpperCamelCase_ = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." UpperCamelCase_ = int(input("Enter the number to be found in the list:\n").strip()) UpperCamelCase_ = ite_ternary_search(collection, target) UpperCamelCase_ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"Iterative search: {target} found at positions: {resulta}") print(f"Recursive search: {target} found at positions: {resulta}") else: print("Not found")
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def A ( __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = [[float('''inf''' ) for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): UpperCAmelCase_ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__UpperCAmelCase ): # looping through rows of graph array for i in range(__UpperCAmelCase ): # looping through columns of graph array for j in range(__UpperCAmelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCAmelCase_ = dist[i][k] + dist[k][j] _print_dist(__UpperCAmelCase , __UpperCAmelCase ) return dist, v if __name__ == "__main__": UpperCamelCase_ = int(input("Enter number of vertices: ")) UpperCamelCase_ = int(input("Enter number of edges: ")) UpperCamelCase_ = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCamelCase_ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCamelCase_ = int(input("Enter source:")) UpperCamelCase_ = int(input("Enter destination:")) UpperCamelCase_ = float(input("Enter weight:")) UpperCamelCase_ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
from math import sqrt def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__UpperCAmelCase , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"{solution() = }")
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Optional[Any] , _lowercase :Any , _lowercase :List[str]=7 , _lowercase :int=3 , _lowercase :List[Any]=30 , _lowercase :Union[str, Any]=400 , _lowercase :str=True , _lowercase :Tuple=None , _lowercase :Union[str, Any]=True , _lowercase :str=[0.5, 0.5, 0.5] , _lowercase :int=[0.5, 0.5, 0.5] , _lowercase :Tuple=True , _lowercase :int=1 / 255 , _lowercase :Tuple=True , ) -> Union[str, Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = do_normalize UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_pad def __a ( self :Any) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __a ( self :List[Any] , _lowercase :List[str] , _lowercase :Any=False) -> Any: if not batched: UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] if w < h: UpperCAmelCase_ = int(self.size['''shortest_edge'''] * h / w) UpperCAmelCase_ = self.size['''shortest_edge'''] elif w > h: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = int(self.size['''shortest_edge'''] * w / h) else: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = self.size['''shortest_edge'''] else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Any =DetaImageProcessor if is_vision_available() else None def __a ( self :int) -> List[Any]: UpperCAmelCase_ = DetaImageProcessingTester(self) @property def __a ( self :Tuple) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''do_rescale''')) self.assertTrue(hasattr(_lowercase , '''do_pad''')) self.assertTrue(hasattr(_lowercase , '''size''')) def __a ( self :str) -> Optional[Any]: UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333}) self.assertEqual(image_processor.do_pad , _lowercase) def __a ( self :Any) -> List[Any]: pass def __a ( self :List[str]) -> List[Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> Optional[Any]: # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __a ( self :Optional[Any]) -> List[str]: # prepare image and target UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''') as f: UpperCAmelCase_ = json.loads(f.read()) UpperCAmelCase_ = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCAmelCase_ = DetaImageProcessor() UpperCAmelCase_ = image_processing(images=_lowercase , annotations=_lowercase , return_tensors='''pt''') # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4)) # verify area UpperCAmelCase_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase)) # verify boxes UpperCAmelCase_ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase) UpperCAmelCase_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3)) # verify image_id UpperCAmelCase_ = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase)) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase)) # verify class_labels UpperCAmelCase_ = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase)) # verify orig_size UpperCAmelCase_ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase)) # verify size UpperCAmelCase_ = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase)) @slow def __a ( self :Optional[Any]) -> str: # prepare image, target and masks_path UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''') as f: UpperCAmelCase_ = json.loads(f.read()) UpperCAmelCase_ = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCAmelCase_ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''') # encode them UpperCAmelCase_ = DetaImageProcessor(format='''coco_panoptic''') UpperCAmelCase_ = image_processing(images=_lowercase , annotations=_lowercase , masks_path=_lowercase , return_tensors='''pt''') # verify pixel values UpperCAmelCase_ = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['''pixel_values'''].shape , _lowercase) UpperCAmelCase_ = torch.tensor([0.2_796, 0.3_138, 0.3_481]) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowercase , atol=1E-4)) # verify area UpperCAmelCase_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowercase)) # verify boxes UpperCAmelCase_ = torch.Size([6, 4]) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowercase) UpperCAmelCase_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowercase , atol=1E-3)) # verify image_id UpperCAmelCase_ = torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowercase)) # verify is_crowd UpperCAmelCase_ = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowercase)) # verify class_labels UpperCAmelCase_ = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowercase)) # verify masks UpperCAmelCase_ = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowercase) # verify orig_size UpperCAmelCase_ = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowercase)) # verify size UpperCAmelCase_ = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowercase))
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class a_ : UpperCamelCase__ : CommonSchedulerState # setable values UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : jnp.ndarray UpperCamelCase__ : Optional[int] =None @classmethod def __a ( cls :Union[str, Any] , _lowercase :CommonSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray) -> Any: return cls(common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase) @dataclass class a_ ( _snake_case ): UpperCamelCase__ : DDPMSchedulerState class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] UpperCamelCase__ : jnp.dtype @property def __a ( self :List[Any]) -> int: return True @register_to_config def __init__( self :Any , _lowercase :int = 1000 , _lowercase :float = 0.0_001 , _lowercase :float = 0.02 , _lowercase :str = "linear" , _lowercase :Optional[jnp.ndarray] = None , _lowercase :str = "fixed_small" , _lowercase :bool = True , _lowercase :str = "epsilon" , _lowercase :jnp.dtype = jnp.floataa , ) -> str: UpperCAmelCase_ = dtype def __a ( self :int , _lowercase :Optional[CommonSchedulerState] = None) -> DDPMSchedulerState: if common is None: UpperCAmelCase_ = CommonSchedulerState.create(self) # standard deviation of the initial noise distribution UpperCAmelCase_ = jnp.array(1.0 , dtype=self.dtype) UpperCAmelCase_ = jnp.arange(0 , self.config.num_train_timesteps).round()[::-1] return DDPMSchedulerState.create( common=_lowercase , init_noise_sigma=_lowercase , timesteps=_lowercase , ) def __a ( self :Optional[int] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :Optional[int] = None) -> jnp.ndarray: return sample def __a ( self :Union[str, Any] , _lowercase :DDPMSchedulerState , _lowercase :int , _lowercase :Tuple = ()) -> DDPMSchedulerState: UpperCAmelCase_ = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ = (jnp.arange(0 , _lowercase) * step_ratio).round()[::-1] return state.replace( num_inference_steps=_lowercase , timesteps=_lowercase , ) def __a ( self :Union[str, Any] , _lowercase :DDPMSchedulerState , _lowercase :List[Any] , _lowercase :Optional[int]=None , _lowercase :List[Any]=None) -> Union[str, Any]: UpperCAmelCase_ = state.common.alphas_cumprod[t] UpperCAmelCase_ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase_ = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: UpperCAmelCase_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": UpperCAmelCase_ = jnp.clip(_lowercase , a_min=1E-2_0) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": UpperCAmelCase_ = jnp.log(jnp.clip(_lowercase , a_min=1E-2_0)) elif variance_type == "fixed_large": UpperCAmelCase_ = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log UpperCAmelCase_ = jnp.log(state.common.betas[t]) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": UpperCAmelCase_ = variance UpperCAmelCase_ = state.common.betas[t] UpperCAmelCase_ = (predicted_variance + 1) / 2 UpperCAmelCase_ = frac * max_log + (1 - frac) * min_log return variance def __a ( self :Union[str, Any] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :int , _lowercase :jnp.ndarray , _lowercase :Optional[jax.random.KeyArray] = None , _lowercase :bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: UpperCAmelCase_ = timestep if key is None: UpperCAmelCase_ = jax.random.PRNGKey(0) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: UpperCAmelCase_ , UpperCAmelCase_ = jnp.split(_lowercase , sample.shape[1] , axis=1) else: UpperCAmelCase_ = None # 1. compute alphas, betas UpperCAmelCase_ = state.common.alphas_cumprod[t] UpperCAmelCase_ = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype)) UpperCAmelCase_ = 1 - alpha_prod_t UpperCAmelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase_ = model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` " ''' for the FlaxDDPMScheduler.''') # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ = jnp.clip(_lowercase , -1 , 1) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t UpperCAmelCase_ = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): UpperCAmelCase_ = jax.random.split(_lowercase , num=1) UpperCAmelCase_ = jax.random.normal(_lowercase , shape=model_output.shape , dtype=self.dtype) return (self._get_variance(_lowercase , _lowercase , predicted_variance=_lowercase) ** 0.5) * noise UpperCAmelCase_ = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype)) UpperCAmelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=_lowercase , state=_lowercase) def __a ( self :Optional[Any] , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ) -> jnp.ndarray: return add_noise_common(state.common , _lowercase , _lowercase , _lowercase) def __a ( self :str , _lowercase :DDPMSchedulerState , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , _lowercase :jnp.ndarray , ) -> jnp.ndarray: return get_velocity_common(state.common , _lowercase , _lowercase , _lowercase) def __len__( self :Tuple) -> Union[str, Any]: return self.config.num_train_timesteps
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase_ = 4 UpperCamelCase_ = 3 class a_ ( _snake_case ): pass def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' for shard in shards: for i in range(__UpperCAmelCase ): yield {"i": i, "shard": shard} def A ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = int(os.environ['''RANK'''] ) UpperCAmelCase_ = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase_ = ArgumentParser() parser.add_argument('''--streaming''' , type=__UpperCAmelCase ) parser.add_argument('''--local_rank''' , type=__UpperCAmelCase ) parser.add_argument('''--num_workers''' , type=__UpperCAmelCase , default=0 ) UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.streaming UpperCAmelCase_ = args.num_workers UpperCAmelCase_ = {'''shards''': [f"shard_{shard_idx}" for shard_idx in range(__UpperCAmelCase )]} UpperCAmelCase_ = IterableDataset.from_generator(__UpperCAmelCase , gen_kwargs=__UpperCAmelCase ) if not streaming: UpperCAmelCase_ = Dataset.from_list(list(__UpperCAmelCase ) ) UpperCAmelCase_ = split_dataset_by_node(__UpperCAmelCase , rank=__UpperCAmelCase , world_size=__UpperCAmelCase ) UpperCAmelCase_ = torch.utils.data.DataLoader(__UpperCAmelCase , num_workers=__UpperCAmelCase ) UpperCAmelCase_ = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase_ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase_ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"local_size {local_size} != expected_local_size {expected_local_size}" ) if __name__ == "__main__": main()
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> Dict: UpperCAmelCase_ = get_activation('''swish''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :List[Any]) -> List[Any]: UpperCAmelCase_ = get_activation('''silu''') self.assertIsInstance(_lowercase , nn.SiLU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :str) -> Any: UpperCAmelCase_ = get_activation('''mish''') self.assertIsInstance(_lowercase , nn.Mish) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = get_activation('''gelu''') self.assertIsInstance(_lowercase , nn.GELU) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa)).item() , 0) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa)).item() , 0) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa)).item() , 20)
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "b0": efficientnet.EfficientNetBa, "b1": efficientnet.EfficientNetBa, "b2": efficientnet.EfficientNetBa, "b3": efficientnet.EfficientNetBa, "b4": efficientnet.EfficientNetBa, "b5": efficientnet.EfficientNetBa, "b6": efficientnet.EfficientNetBa, "b7": efficientnet.EfficientNetBa, } UpperCamelCase_ = { "b0": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1_280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1_408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1_536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1_792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2_048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2_304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2_560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def A ( __UpperCAmelCase ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = EfficientNetConfig() UpperCAmelCase_ = CONFIG_MAP[model_name]['''hidden_dim'''] UpperCAmelCase_ = CONFIG_MAP[model_name]['''width_coef'''] UpperCAmelCase_ = CONFIG_MAP[model_name]['''depth_coef'''] UpperCAmelCase_ = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ = CONFIG_MAP[model_name]['''dropout_rate'''] UpperCAmelCase_ = CONFIG_MAP[model_name]['''dw_padding'''] UpperCAmelCase_ = '''huggingface/label-files''' UpperCAmelCase_ = '''imagenet-1k-id2label.json''' UpperCAmelCase_ = 1000 UpperCAmelCase_ = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def A ( ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=__UpperCAmelCase , ) return preprocessor def A ( __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] UpperCAmelCase_ = sorted(set(__UpperCAmelCase ) ) UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = {b: str(__UpperCAmelCase ) for b, i in zip(__UpperCAmelCase , range(__UpperCAmelCase ) )} UpperCAmelCase_ = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: UpperCAmelCase_ = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) UpperCAmelCase_ = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase_ = '''efficientnet.''' + item[1] UpperCAmelCase_ = '''classifier.weight''' UpperCAmelCase_ = '''classifier.bias''' return key_mapping def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase_ = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase_ = torch.from_numpy(np.transpose(__UpperCAmelCase ) ) else: UpperCAmelCase_ = torch.from_numpy(__UpperCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__UpperCAmelCase ) @torch.no_grad() def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = model_classes[model_name]( include_top=__UpperCAmelCase , weights='''imagenet''' , input_tensor=__UpperCAmelCase , input_shape=__UpperCAmelCase , pooling=__UpperCAmelCase , classes=1000 , classifier_activation='''softmax''' , ) UpperCAmelCase_ = original_model.trainable_variables UpperCAmelCase_ = original_model.non_trainable_variables UpperCAmelCase_ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase_ = param.numpy() UpperCAmelCase_ = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase_ = get_efficientnet_config(__UpperCAmelCase ) UpperCAmelCase_ = EfficientNetForImageClassification(__UpperCAmelCase ).eval() UpperCAmelCase_ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) UpperCAmelCase_ = rename_keys(__UpperCAmelCase ) replace_params(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase_ = convert_image_processor(__UpperCAmelCase ) UpperCAmelCase_ = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase_ = hf_model(**__UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase_ = False UpperCAmelCase_ = CONFIG_MAP[model_name]['''image_size'''] UpperCAmelCase_ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase_ = image.img_to_array(__UpperCAmelCase ) UpperCAmelCase_ = np.expand_dims(__UpperCAmelCase , axis=0 ) UpperCAmelCase_ = original_model.predict(__UpperCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__UpperCAmelCase ): os.mkdir(__UpperCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(__UpperCAmelCase ) preprocessor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub..." ) UpperCAmelCase_ = f"efficientnet-{model_name}" preprocessor.push_to_hub(__UpperCAmelCase ) hf_model.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") UpperCamelCase_ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = r"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :Union[str, Any] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :List[str]) -> bool: raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :Optional[int] = None) -> List[Any]: UpperCAmelCase_ = max_length UpperCAmelCase_ = max_position_embeddings @add_start_docstrings(_lowercase) def __call__( self :Dict , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Any) -> bool: UpperCAmelCase_ = input_ids.shape[-1] UpperCAmelCase_ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' f"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''') return is_done class a_ ( _snake_case ): def __init__( self :Optional[int] , _lowercase :int , _lowercase :int) -> str: warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' f"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , _lowercase , ) UpperCAmelCase_ = start_length UpperCAmelCase_ = max_new_tokens UpperCAmelCase_ = start_length + max_new_tokens @add_start_docstrings(_lowercase) def __call__( self :Any , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return input_ids.shape[-1] >= self.max_length class a_ ( _snake_case ): def __init__( self :Any , _lowercase :float , _lowercase :Optional[float] = None) -> Union[str, Any]: UpperCAmelCase_ = max_time UpperCAmelCase_ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(_lowercase) def __call__( self :List[str] , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Union[str, Any]) -> bool: return time.time() - self.initial_timestamp > self.max_time class a_ ( _snake_case ): @add_start_docstrings(_lowercase) def __call__( self :int , _lowercase :torch.LongTensor , _lowercase :torch.FloatTensor , **_lowercase :Optional[Any]) -> bool: return any(criteria(_lowercase , _lowercase) for criteria in self) @property def __a ( self :Any) -> Optional[int]: for stopping_criterium in self: if isinstance(_lowercase , _lowercase): return stopping_criterium.max_length elif isinstance(_lowercase , _lowercase): return stopping_criterium.max_length return None def A ( __UpperCAmelCase , __UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' UpperCAmelCase_ = stopping_criteria.max_length UpperCAmelCase_ = deepcopy(__UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , __UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=__UpperCAmelCase ) ) return new_stopping_criteria
344
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class a_ ( _snake_case ): UpperCamelCase__ : Dict ="openai/whisper-base" UpperCamelCase__ : int =( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) UpperCamelCase__ : Any ="transcriber" UpperCamelCase__ : Optional[int] =WhisperProcessor UpperCamelCase__ : List[str] =WhisperForConditionalGeneration UpperCamelCase__ : List[Any] =["audio"] UpperCamelCase__ : Union[str, Any] =["text"] def __a ( self :int , _lowercase :Any) -> Tuple: return self.pre_processor(_lowercase , return_tensors='''pt''').input_features def __a ( self :Dict , _lowercase :Tuple) -> Any: return self.model.generate(inputs=_lowercase) def __a ( self :int , _lowercase :Union[str, Any]) -> Optional[Any]: return self.pre_processor.batch_decode(_lowercase , skip_special_tokens=_lowercase)[0]
344
1
import os from pathlib import Path def A ( ) -> List[str]: '''simple docstring''' from torch.utils.cpp_extension import load UpperCAmelCase_ = Path(__UpperCAmelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr''' UpperCAmelCase_ = [ root / filename for filename in [ '''vision.cpp''', os.path.join('''cpu''' , '''ms_deform_attn_cpu.cpp''' ), os.path.join('''cuda''' , '''ms_deform_attn_cuda.cu''' ), ] ] load( '''MultiScaleDeformableAttention''' , __UpperCAmelCase , with_cuda=__UpperCAmelCase , extra_include_paths=[str(__UpperCAmelCase )] , extra_cflags=['''-DWITH_CUDA=1'''] , extra_cuda_cflags=[ '''-DCUDA_HAS_FP16=1''', '''-D__CUDA_NO_HALF_OPERATORS__''', '''-D__CUDA_NO_HALF_CONVERSIONS__''', '''-D__CUDA_NO_HALF2_OPERATORS__''', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
344
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "OPT_PRETRAINED_MODEL_ARCHIVE_LIST", "OPTForCausalLM", "OPTModel", "OPTPreTrainedModel", "OPTForSequenceClassification", "OPTForQuestionAnswering", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
1
from __future__ import annotations import pandas as pd def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = [0] * no_of_processes UpperCAmelCase_ = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__UpperCAmelCase ): UpperCAmelCase_ = burst_time[i] UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 9_9999_9999 UpperCAmelCase_ = 0 UpperCAmelCase_ = False # Process until all processes are completed while complete != no_of_processes: for j in range(__UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase_ = remaining_time[j] UpperCAmelCase_ = j UpperCAmelCase_ = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase_ = remaining_time[short] if minm == 0: UpperCAmelCase_ = 9_9999_9999 if remaining_time[short] == 0: complete += 1 UpperCAmelCase_ = False # Find finish time of current process UpperCAmelCase_ = increment_time + 1 # Calculate waiting time UpperCAmelCase_ = finish_time - arrival_time[short] UpperCAmelCase_ = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase_ = 0 # Increment time increment_time += 1 return waiting_time def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> list[int]: '''simple docstring''' UpperCAmelCase_ = [0] * no_of_processes for i in range(__UpperCAmelCase ): UpperCAmelCase_ = burst_time[i] + waiting_time[i] return turn_around_time def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 for i in range(__UpperCAmelCase ): UpperCAmelCase_ = total_waiting_time + waiting_time[i] UpperCAmelCase_ = total_turn_around_time + turn_around_time[i] print(f"Average waiting time = {total_waiting_time / no_of_processes:.5f}" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") UpperCamelCase_ = int(input()) UpperCamelCase_ = [0] * no_of_processes UpperCamelCase_ = [0] * no_of_processes UpperCamelCase_ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) UpperCamelCase_ , UpperCamelCase_ = map(int, input().split()) UpperCamelCase_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCamelCase_ = burst_time UpperCamelCase_ = no_of_processes UpperCamelCase_ = waiting_time UpperCamelCase_ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCamelCase_ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
344
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = "▁" UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : str =BigBirdTokenizer UpperCamelCase__ : Tuple =BigBirdTokenizerFast UpperCamelCase__ : Union[str, Any] =True UpperCamelCase__ : List[str] =True def __a ( self :Any) -> List[str]: super().setUp() UpperCAmelCase_ = self.tokenizer_class(_lowercase , keep_accents=_lowercase) tokenizer.save_pretrained(self.tmpdirname) def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase) , _lowercase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase) , _lowercase) def __a ( self :str) -> str: UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(_lowercase) , 1004) def __a ( self :List[str]) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1000) def __a ( self :Tuple) -> int: if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(_lowercase) UpperCAmelCase_ = rust_tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase , add_special_tokens=_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(_lowercase) UpperCAmelCase_ = rust_tokenizer.encode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = BigBirdTokenizer(_lowercase , keep_accents=_lowercase) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''') self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase) , [285, 46, 10, 170, 382] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(_lowercase) self.assertListEqual( _lowercase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(_lowercase) self.assertListEqual( _lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __a ( self :Any) -> List[Any]: return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def __a ( self :int) -> List[Any]: UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 18536, 2260, 101, 66] self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @slow def __a ( self :int) -> Any: UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(_lowercase , self.big_tokenizer.encode(_lowercase)) @require_torch @slow def __a ( self :Dict) -> Union[str, Any]: import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys())[:10] UpperCAmelCase_ = ''' '''.join(_lowercase) UpperCAmelCase_ = self.big_tokenizer.encode_plus(_lowercase , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=_lowercase) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''') UpperCAmelCase_ = BigBirdModel(_lowercase) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowercase) model(**_lowercase) @slow def __a ( self :Optional[int]) -> Any: UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def __a ( self :Dict) -> List[str]: # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
344
1
from __future__ import annotations from random import choice def A ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return choice(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = random_pivot(__UpperCAmelCase ) # partition based on pivot # linear time UpperCAmelCase_ = [e for e in lst if e < pivot] UpperCAmelCase_ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__UpperCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__UpperCAmelCase ) < k - 1: return kth_number(__UpperCAmelCase , k - len(__UpperCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
344
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str | None: '''simple docstring''' UpperCAmelCase_ = "" UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 for keychar, cipherchar in zip(cycle(__UpperCAmelCase ) , __UpperCAmelCase ): UpperCAmelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCAmelCase ) return decoded def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = [] for key in product(__UpperCAmelCase , repeat=3 ): UpperCAmelCase_ = try_key(__UpperCAmelCase , __UpperCAmelCase ) if encoded is not None: possibles.append(__UpperCAmelCase ) return possibles def A ( __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def A ( __UpperCAmelCase = "p059_cipher.txt" ) -> int: '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 UpperCAmelCase_ = Path(__UpperCAmelCase ).parent.joinpath(__UpperCAmelCase ).read_text(encoding='''utf-8''' ) UpperCAmelCase_ = [int(__UpperCAmelCase ) for number in data.strip().split(''',''' )] UpperCAmelCase_ = filter_valid_chars(__UpperCAmelCase ) for common_word in COMMON_WORDS: UpperCAmelCase_ = filter_common_word(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) == 1: break UpperCAmelCase_ = possibles[0] return sum(ord(__UpperCAmelCase ) for char in decoded_text ) if __name__ == "__main__": print(f"{solution() = }")
344
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import pytest UpperCamelCase_ = "__dummy_dataset1__" UpperCamelCase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def A ( ) -> str: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = dataset_loading_script_name UpperCAmelCase_ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__UpperCAmelCase ) UpperCAmelCase_ = script_dir / f"{script_name}.py" with open(__UpperCAmelCase , '''w''' ) as f: f.write(__UpperCAmelCase ) return str(__UpperCAmelCase )
344
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class a_ : def __init__( self :Dict , _lowercase :Tuple , ) -> Dict: UpperCAmelCase_ = parent UpperCAmelCase_ = 13 UpperCAmelCase_ = 7 UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = 99 UpperCAmelCase_ = 32 UpperCAmelCase_ = 2 UpperCAmelCase_ = 4 UpperCAmelCase_ = 37 UpperCAmelCase_ = '''gelu''' UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 0.1 UpperCAmelCase_ = 512 UpperCAmelCase_ = 16 UpperCAmelCase_ = 2 UpperCAmelCase_ = 0.02 UpperCAmelCase_ = 3 UpperCAmelCase_ = 4 UpperCAmelCase_ = None def __a ( self :List[str]) -> Union[str, Any]: UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase_ = None if self.use_input_mask: UpperCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_choices) UpperCAmelCase_ = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self :int) -> Optional[int]: ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase_ = True UpperCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) UpperCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self :Optional[Any] , _lowercase :int , _lowercase :Union[str, Any] , _lowercase :Optional[Any] , _lowercase :Optional[Any] , _lowercase :List[str] , _lowercase :Any) -> Optional[Any]: UpperCAmelCase_ = TFEsmModel(config=_lowercase) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :List[str] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :List[Any] , _lowercase :str , _lowercase :List[Any] , _lowercase :List[str] , _lowercase :List[str] , _lowercase :Optional[int] , ) -> int: UpperCAmelCase_ = True UpperCAmelCase_ = TFEsmModel(config=_lowercase) UpperCAmelCase_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''encoder_hidden_states''': encoder_hidden_states, '''encoder_attention_mask''': encoder_attention_mask, } UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = [input_ids, input_mask] UpperCAmelCase_ = model(_lowercase , encoder_hidden_states=_lowercase) # Also check the case where encoder outputs are not passed UpperCAmelCase_ = model(_lowercase , attention_mask=_lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __a ( self :List[str] , _lowercase :Union[str, Any] , _lowercase :Optional[int] , _lowercase :Any , _lowercase :List[Any] , _lowercase :Tuple , _lowercase :Optional[Any]) -> str: UpperCAmelCase_ = TFEsmForMaskedLM(config=_lowercase) UpperCAmelCase_ = model([input_ids, input_mask]) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __a ( self :int , _lowercase :Optional[Any] , _lowercase :Union[str, Any] , _lowercase :int , _lowercase :List[Any] , _lowercase :Optional[int] , _lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = TFEsmForTokenClassification(config=_lowercase) UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __a ( self :Dict) -> List[Any]: UpperCAmelCase_ = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) = config_and_inputs UpperCAmelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : Optional[int] =( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase__ : List[Any] =( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ : Optional[Any] =False UpperCamelCase__ : Tuple =False def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = TFEsmModelTester(self) UpperCAmelCase_ = ConfigTester(self , config_class=_lowercase , hidden_size=37) def __a ( self :str) -> Any: self.config_tester.run_common_tests() def __a ( self :Optional[Any]) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_lowercase) def __a ( self :Union[str, Any]) -> List[str]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowercase) def __a ( self :Union[str, Any]) -> Tuple: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowercase) @slow def __a ( self :Any) -> Union[str, Any]: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = TFEsmModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) @unittest.skip('''Protein models do not support embedding resizing.''') def __a ( self :Optional[Any]) -> Union[str, Any]: pass @unittest.skip('''Protein models do not support embedding resizing.''') def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Tuple) -> List[str]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCAmelCase_ = model.get_bias() assert isinstance(_lowercase , _lowercase) for k, v in name.items(): assert isinstance(_lowercase , tf.Variable) else: UpperCAmelCase_ = model.get_output_embeddings() assert x is None UpperCAmelCase_ = model.get_bias() assert name is None @require_tf class a_ ( unittest.TestCase ): @slow def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = TFEsmForMaskedLM.from_pretrained('''facebook/esm2_t6_8M_UR50D''') UpperCAmelCase_ = tf.constant([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase_ = model(_lowercase)[0] UpperCAmelCase_ = [1, 6, 33] self.assertEqual(list(output.numpy().shape) , _lowercase) # compare the actual values for a slice. UpperCAmelCase_ = tf.constant( [ [ [8.921_518, -10.589_814, -6.4_671_307], [-6.3_967_156, -13.911_377, -1.1_211_915], [-7.781_247, -13.951_557, -3.740_592], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2)) @slow def __a ( self :List[Any]) -> Optional[Any]: UpperCAmelCase_ = TFEsmModel.from_pretrained('''facebook/esm2_t6_8M_UR50D''') UpperCAmelCase_ = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]]) UpperCAmelCase_ = model(_lowercase)[0] # compare the actual values for a slice. UpperCAmelCase_ = tf.constant( [ [ [0.14_443_092, 0.54_125_327, 0.3_247_739], [0.30_340_484, 0.00_526_676, 0.31_077_722], [0.32_278_043, -0.24_987_096, 0.3_414_628], ] ]) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
344
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class a_ ( _snake_case ): UpperCamelCase__ : Dict ="open-llama" def __init__( self :Union[str, Any] , _lowercase :List[Any]=100000 , _lowercase :Dict=4096 , _lowercase :List[Any]=11008 , _lowercase :Optional[int]=32 , _lowercase :Union[str, Any]=32 , _lowercase :List[str]="silu" , _lowercase :Union[str, Any]=2048 , _lowercase :Any=0.02 , _lowercase :Optional[Any]=1E-6 , _lowercase :str=True , _lowercase :str=0 , _lowercase :Any=1 , _lowercase :Optional[Any]=2 , _lowercase :str=False , _lowercase :Dict=True , _lowercase :Optional[Any]=0.1 , _lowercase :Tuple=0.1 , _lowercase :Dict=True , _lowercase :List[Any]=True , _lowercase :Dict=None , **_lowercase :Optional[int] , ) -> List[Any]: UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = initializer_range UpperCAmelCase_ = rms_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = kwargs.pop( '''use_memorry_efficient_attention''' , _lowercase) UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_dropout_prob UpperCAmelCase_ = use_stable_embedding UpperCAmelCase_ = shared_input_output_embedding UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , tie_word_embeddings=_lowercase , **_lowercase , ) def __a ( self :int) -> str: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowercase) or len(self.rope_scaling) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}") UpperCAmelCase_ = self.rope_scaling.get('''type''' , _lowercase) UpperCAmelCase_ = self.rope_scaling.get('''factor''' , _lowercase) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}") if rope_scaling_factor is None or not isinstance(_lowercase , _lowercase) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
344
1
def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' if exponent == 1: return base if exponent % 2 == 0: UpperCAmelCase_ = _modexpt(__UpperCAmelCase , exponent // 2 , __UpperCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCAmelCase , exponent - 1 , __UpperCAmelCase )) % modulo_value def A ( __UpperCAmelCase = 1777 , __UpperCAmelCase = 1855 , __UpperCAmelCase = 8 ) -> int: '''simple docstring''' UpperCAmelCase_ = base for _ in range(1 , __UpperCAmelCase ): UpperCAmelCase_ = _modexpt(__UpperCAmelCase , __UpperCAmelCase , 10**digits ) return result if __name__ == "__main__": print(f"{solution() = }")
344
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : Optional[Any] =(DPMSolverSinglestepScheduler,) UpperCamelCase__ : Tuple =(("num_inference_steps", 25),) def __a ( self :List[Any] , **_lowercase :Optional[Any]) -> int: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf'''), '''variance_type''': None, } config.update(**_lowercase) return config def __a ( self :Union[str, Any] , _lowercase :List[Any]=0 , **_lowercase :Optional[int]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ = sample, sample for t in range(_lowercase , time_step + scheduler.config.solver_order + 1): UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Union[str, Any]) -> List[Any]: pass def __a ( self :Optional[Any] , _lowercase :str=0 , **_lowercase :Union[str, Any]) -> Dict: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Dict , _lowercase :Union[str, Any]=None , **_lowercase :List[Any]) -> int: if scheduler is None: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :int) -> Tuple: UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = 50 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:]): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_574) < 1E-3 def __a ( self :List[Any]) -> List[Any]: for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :int) -> Optional[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ = DPMSolverSinglestepScheduler(**self.get_scheduler_config()) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 UpperCAmelCase_ = DEISMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = UniPCMultistepScheduler.from_config(scheduler.config) UpperCAmelCase_ = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCAmelCase_ = self.full_loop(scheduler=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Tuple) -> int: self.check_over_configs(thresholding=_lowercase) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , algorithm_type='''dpmsolver++''' , solver_order=_lowercase , solver_type=_lowercase , ) def __a ( self :List[Any]) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Optional[int]: for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) UpperCAmelCase_ = self.full_loop( solver_order=_lowercase , solver_type=_lowercase , prediction_type=_lowercase , algorithm_type=_lowercase , ) assert not torch.isnan(_lowercase).any(), "Samples have nan numbers" def __a ( self :Tuple) -> int: self.check_over_configs(lower_order_final=_lowercase) self.check_over_configs(lower_order_final=_lowercase) def __a ( self :Tuple) -> Optional[Any]: self.check_over_configs(lambda_min_clipped=-float('''inf''')) self.check_over_configs(lambda_min_clipped=-5.1) def __a ( self :Any) -> List[str]: self.check_over_configs(variance_type=_lowercase) self.check_over_configs(variance_type='''learned_range''') def __a ( self :Any) -> Dict: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_lowercase , time_step=0) def __a ( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_791) < 1E-3 def __a ( self :Any) -> Union[str, Any]: UpperCAmelCase_ = self.full_loop(use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.2_248) < 1E-3 def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.1_453) < 1E-3 def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=_lowercase) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_mean.item() - 0.0_649) < 1E-3 def __a ( self :Any) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(thresholding=_lowercase , dynamic_thresholding_ratio=0) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter.half() scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step(_lowercase , _lowercase , _lowercase).prev_sample assert sample.dtype == torch.floataa
344
1
from math import factorial def A ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' return sum(map(__UpperCAmelCase , str(factorial(__UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
344
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class a_ ( nn.Module ): def __init__( self :Optional[Any]) -> Union[str, Any]: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :Dict , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( _snake_case ): def __a ( self :Tuple , _lowercase :Optional[int] , *_lowercase :Union[str, Any] , **_lowercase :Any) -> Optional[Any]: return (args[0] + 1,) + args[1:], kwargs class a_ ( _snake_case ): def __a ( self :Union[str, Any] , _lowercase :Dict , _lowercase :Tuple) -> int: return output + 1 class a_ ( unittest.TestCase ): def __a ( self :str) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) self.assertEqual(test_model._hf_hook , _lowercase) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[Any]) -> Any: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = ModelHook() add_hook_to_module(_lowercase , _lowercase) add_hook_to_module(_lowercase , _lowercase , append=_lowercase) self.assertEqual(isinstance(test_model._hf_hook , _lowercase) , _lowercase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(_lowercase , '''_old_forward''')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , '''forward''') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['''x''']) remove_hook_from_module(_lowercase) self.assertFalse(hasattr(_lowercase , '''_hf_hook''')) self.assertFalse(hasattr(_lowercase , '''_old_forward''')) def __a ( self :Optional[int]) -> Optional[int]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(x + 1) UpperCAmelCase_ = test_model(x + 2) UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PreForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , _lowercase , atol=1E-5) def __a ( self :List[str]) -> int: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks UpperCAmelCase_ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) assert torch.allclose(_lowercase , output + 2 , atol=1E-5) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = test_model(_lowercase) UpperCAmelCase_ = PostForwardHook() add_hook_to_module(_lowercase , _lowercase) UpperCAmelCase_ = test_model(_lowercase) self.assertTrue(torch.allclose(_lowercase , output + 1)) self.assertTrue(outputa.requires_grad) UpperCAmelCase_ = True UpperCAmelCase_ = test_model(_lowercase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def __a ( self :Tuple) -> Optional[int]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(_lowercase , AlignDevicesHook(io_same_device=_lowercase)) UpperCAmelCase_ = torch.randn(2 , 3).to(0) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , torch.device(0)) def __a ( self :str) -> List[Any]: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = {'''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True} add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(hook_kwargs['''execution_device''']) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload UpperCAmelCase_ = { '''execution_device''': 0 if torch.cuda.is_available() else '''cpu''', '''offload''': True, '''offload_buffers''': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**_lowercase)) add_hook_to_module(model.lineara , AlignDevicesHook(**_lowercase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :List[Any]) -> str: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook(_lowercase , execution_device=_lowercase , offload=_lowercase , offload_buffers=_lowercase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # This will move each submodule on different devices UpperCAmelCase_ = 0 if torch.cuda.is_available() else '''cpu''' attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) # Buffers are not included in the offload by default, so are on the execution device UpperCAmelCase_ = torch.device(_lowercase) self.assertEqual(model.batchnorm.running_mean.device , _lowercase) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) # Now test with buffers included in the offload attach_align_device_hook( _lowercase , execution_device=_lowercase , offload=_lowercase , weights_map=model.state_dict() , offload_buffers=_lowercase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''meta''')) self.assertEqual(model.lineara.weight.device , torch.device('''meta''')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('''meta''')) UpperCAmelCase_ = torch.randn(2 , 3) UpperCAmelCase_ = model(_lowercase) self.assertEqual(output.device , _lowercase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(_lowercase) self.assertEqual(model.lineara.weight.device , torch.device('''cpu''')) self.assertEqual(model.batchnorm.weight.device , torch.device('''cpu''')) self.assertEqual(model.lineara.weight.device , torch.device('''cpu'''))
344
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Dict =KandinskyVaaControlnetImgaImgPipeline UpperCamelCase__ : Union[str, Any] =["image_embeds", "negative_image_embeds", "image", "hint"] UpperCamelCase__ : Optional[Any] =["image_embeds", "negative_image_embeds", "image", "hint"] UpperCamelCase__ : Optional[Any] =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCamelCase__ : Dict =False @property def __a ( self :Union[str, Any]) -> Optional[int]: return 32 @property def __a ( self :Tuple) -> List[str]: return 32 @property def __a ( self :Tuple) -> Tuple: return self.time_input_dim @property def __a ( self :List[str]) -> Union[str, Any]: return self.time_input_dim * 4 @property def __a ( self :Optional[int]) -> Tuple: return 100 @property def __a ( self :Tuple) -> Any: torch.manual_seed(0) UpperCAmelCase_ = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase_ = UNetaDConditionModel(**_lowercase) return model @property def __a ( self :Union[str, Any]) -> Tuple: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __a ( self :int) -> List[Any]: torch.manual_seed(0) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs) return model def __a ( self :int) -> int: UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00_085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase_ = DDIMScheduler(**_lowercase) UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __a ( self :Any , _lowercase :Dict , _lowercase :Dict=0) -> Optional[Any]: UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( _lowercase) # create init_image UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''').resize((256, 256)) # create hint UpperCAmelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase)).to(_lowercase) if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __a ( self :Optional[int]) -> Tuple: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) UpperCAmelCase_ = pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(_lowercase)) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(_lowercase) , return_dict=_lowercase , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class a_ ( unittest.TestCase ): def __a ( self :str) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :Tuple) -> Tuple: UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''') UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''') UpperCAmelCase_ = init_image.resize((512, 512)) UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''') UpperCAmelCase_ = torch.from_numpy(np.array(_lowercase)).float() / 255.0 UpperCAmelCase_ = hint.permute(2 , 0 , 1).unsqueeze(0) UpperCAmelCase_ = '''A robot, 4k photo''' UpperCAmelCase_ = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa) pipe_prior.to(_lowercase) UpperCAmelCase_ = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa) UpperCAmelCase_ = pipeline.to(_lowercase) pipeline.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = torch.Generator(device='''cpu''').manual_seed(0) UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior( _lowercase , image=_lowercase , strength=0.85 , generator=_lowercase , negative_prompt='''''' , ).to_tuple() UpperCAmelCase_ = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , hint=_lowercase , generator=_lowercase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(_lowercase , _lowercase)
344
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class a_ ( unittest.TestCase ): def __a ( self :Optional[Any]) -> int: UpperCAmelCase_ = tempfile.mkdtemp() UpperCAmelCase_ = BlipImageProcessor() UpperCAmelCase_ = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''') UpperCAmelCase_ = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''') UpperCAmelCase_ = InstructBlipProcessor(_lowercase , _lowercase , _lowercase) processor.save_pretrained(self.tmpdirname) def __a ( self :List[Any] , **_lowercase :Dict) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).tokenizer def __a ( self :Optional[Any] , **_lowercase :Optional[Any]) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).image_processor def __a ( self :Dict , **_lowercase :Tuple) -> str: return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase).qformer_tokenizer def __a ( self :Optional[int]) -> str: shutil.rmtree(self.tmpdirname) def __a ( self :Any) -> List[str]: UpperCAmelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCAmelCase_ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1)) for x in image_inputs] return image_inputs def __a ( self :Tuple) -> int: UpperCAmelCase_ = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname) UpperCAmelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''') UpperCAmelCase_ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0) UpperCAmelCase_ = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowercase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _lowercase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _lowercase) self.assertIsInstance(processor.qformer_tokenizer , _lowercase) def __a ( self :Dict) -> Any: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = image_processor(_lowercase , return_tensors='''np''') UpperCAmelCase_ = processor(images=_lowercase , return_tensors='''np''') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def __a ( self :Union[str, Any]) -> Dict: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = processor(text=_lowercase) UpperCAmelCase_ = tokenizer(_lowercase , return_token_type_ids=_lowercase) UpperCAmelCase_ = qformer_tokenizer(_lowercase , return_token_type_ids=_lowercase) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key]) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key]) def __a ( self :Dict) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(_lowercase): processor() def __a ( self :Optional[int]) -> Optional[Any]: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ = processor.batch_decode(_lowercase) UpperCAmelCase_ = tokenizer.batch_decode(_lowercase) self.assertListEqual(_lowercase , _lowercase) def __a ( self :str) -> int: UpperCAmelCase_ = self.get_image_processor() UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_qformer_tokenizer() UpperCAmelCase_ = InstructBlipProcessor( tokenizer=_lowercase , image_processor=_lowercase , qformer_tokenizer=_lowercase) UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = self.prepare_image_inputs() UpperCAmelCase_ = processor(text=_lowercase , images=_lowercase) self.assertListEqual( list(inputs.keys()) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
344
1
import itertools import string from collections.abc import Generator, Iterable def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' UpperCAmelCase_ = iter(__UpperCAmelCase ) while True: UpperCAmelCase_ = tuple(itertools.islice(__UpperCAmelCase , __UpperCAmelCase ) ) if not chunk: return yield chunk def A ( __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) UpperCAmelCase_ = '''''' if len(__UpperCAmelCase ) < 2: return dirty for i in range(len(__UpperCAmelCase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__UpperCAmelCase ) & 1: clean += "X" return clean def A ( __UpperCAmelCase ) -> list[str]: '''simple docstring''' UpperCAmelCase_ = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler UpperCAmelCase_ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__UpperCAmelCase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__UpperCAmelCase ) return table def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = generate_table(__UpperCAmelCase ) UpperCAmelCase_ = prepare_input(__UpperCAmelCase ) UpperCAmelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def A ( __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' UpperCAmelCase_ = generate_table(__UpperCAmelCase ) UpperCAmelCase_ = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__UpperCAmelCase , 2 ): UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) UpperCAmelCase_ , UpperCAmelCase_ = divmod(table.index(__UpperCAmelCase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
344
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( _snake_case ): UpperCamelCase__ : Optional[int] ="levit" def __init__( self :List[str] , _lowercase :List[Any]=224 , _lowercase :str=3 , _lowercase :Optional[int]=3 , _lowercase :str=2 , _lowercase :List[Any]=1 , _lowercase :str=16 , _lowercase :Dict=[128, 256, 384] , _lowercase :Union[str, Any]=[4, 8, 12] , _lowercase :Tuple=[4, 4, 4] , _lowercase :Dict=[16, 16, 16] , _lowercase :Any=0 , _lowercase :Dict=[2, 2, 2] , _lowercase :Any=[2, 2, 2] , _lowercase :Tuple=0.02 , **_lowercase :Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = kernel_size UpperCAmelCase_ = stride UpperCAmelCase_ = padding UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = depths UpperCAmelCase_ = key_dim UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = patch_size UpperCAmelCase_ = attention_ratio UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = initializer_range UpperCAmelCase_ = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( _snake_case ): UpperCamelCase__ : Union[str, Any] =version.parse("1.11" ) @property def __a ( self :Any) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def __a ( self :List[Any]) -> float: return 1E-4
344
1
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=None , __UpperCAmelCase="no" , __UpperCAmelCase="29500" ) -> int: '''simple docstring''' UpperCAmelCase_ = False UpperCAmelCase_ = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCAmelCase_ = True elif "IPython" in sys.modules: UpperCAmelCase_ = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCAmelCase_ = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __UpperCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCAmelCase_ = 8 UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__UpperCAmelCase ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port=__UpperCAmelCase , mixed_precision=__UpperCAmelCase ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCAmelCase_ = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase=() , __UpperCAmelCase=2 ) -> Optional[Any]: '''simple docstring''' from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__UpperCAmelCase , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCAmelCase_ = PrepareForLaunch(__UpperCAmelCase , debug=__UpperCAmelCase ) start_processes(__UpperCAmelCase , args=__UpperCAmelCase , nprocs=__UpperCAmelCase , start_method='''fork''' )
344
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
1
UpperCamelCase_ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
344
import functools def A ( __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = len(__UpperCAmelCase ) UpperCAmelCase_ = len(__UpperCAmelCase ) @functools.cache def min_distance(__UpperCAmelCase , __UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __UpperCAmelCase ) , 1 + min_distance(__UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
344
1
from math import factorial def A ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' return sum(int(__UpperCAmelCase ) for x in str(factorial(__UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
344
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", } } UpperCamelCase_ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } # Segments (not really needed) UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 UpperCamelCase_ = 4 class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Any ="left" def __init__( self :Optional[int] , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=False , _lowercase :Optional[int]=True , _lowercase :Union[str, Any]=False , _lowercase :Tuple="<s>" , _lowercase :Any="</s>" , _lowercase :Dict="<unk>" , _lowercase :str="<sep>" , _lowercase :Tuple="<pad>" , _lowercase :Any="<cls>" , _lowercase :List[str]="<mask>" , _lowercase :Union[str, Any]=["<eop>", "<eod>"] , _lowercase :Optional[Dict[str, Any]] = None , **_lowercase :Union[str, Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase) if isinstance(_lowercase , _lowercase) else mask_token UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , **_lowercase , ) UpperCAmelCase_ = 3 UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_lowercase) @property def __a ( self :int) -> List[Any]: return len(self.sp_model) def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :Dict) -> Union[str, Any]: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :Optional[Any] , _lowercase :Optional[Any]) -> List[Any]: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __a ( self :List[str] , _lowercase :Tuple) -> Optional[int]: if self.remove_space: UpperCAmelCase_ = ''' '''.join(inputs.strip().split()) else: UpperCAmelCase_ = inputs UpperCAmelCase_ = outputs.replace('''``''' , '''"''').replace('''\'\'''' , '''"''') if not self.keep_accents: UpperCAmelCase_ = unicodedata.normalize('''NFKD''' , _lowercase) UpperCAmelCase_ = ''''''.join([c for c in outputs if not unicodedata.combining(_lowercase)]) if self.do_lower_case: UpperCAmelCase_ = outputs.lower() return outputs def __a ( self :str , _lowercase :str) -> List[str]: UpperCAmelCase_ = self.preprocess_text(_lowercase) UpperCAmelCase_ = self.sp_model.encode(_lowercase , out_type=_lowercase) UpperCAmelCase_ = [] for piece in pieces: if len(_lowercase) > 1 and piece[-1] == str(''',''') and piece[-2].isdigit(): UpperCAmelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_lowercase , '''''')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: UpperCAmelCase_ = cur_pieces[1:] else: UpperCAmelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_lowercase) else: new_pieces.append(_lowercase) return new_pieces def __a ( self :Optional[Any] , _lowercase :Union[str, Any]) -> Tuple: return self.sp_model.PieceToId(_lowercase) def __a ( self :Optional[int] , _lowercase :Optional[Any]) -> List[str]: return self.sp_model.IdToPiece(_lowercase) def __a ( self :List[Any] , _lowercase :Optional[Any]) -> int: UpperCAmelCase_ = ''''''.join(_lowercase).replace(_lowercase , ''' ''').strip() return out_string def __a ( self :Union[str, Any] , _lowercase :List[int] , _lowercase :bool = False , _lowercase :bool = None , _lowercase :bool = True , **_lowercase :Tuple , ) -> str: UpperCAmelCase_ = kwargs.pop('''use_source_tokenizer''' , _lowercase) UpperCAmelCase_ = self.convert_ids_to_tokens(_lowercase , skip_special_tokens=_lowercase) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ = [] UpperCAmelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) UpperCAmelCase_ = [] sub_texts.append(_lowercase) else: current_sub_text.append(_lowercase) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_lowercase)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase_ = ''''''.join(_lowercase) UpperCAmelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ = self.clean_up_tokenization(_lowercase) return clean_text else: return text def __a ( self :str , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) if token_ids_a is not None: return ([0] * len(_lowercase)) + [1] + ([0] * len(_lowercase)) + [1, 1] return ([0] * len(_lowercase)) + [1, 1] def __a ( self :Optional[int] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def __a ( self :str , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_lowercase): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return UpperCAmelCase_ = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _lowercase) elif not os.path.isfile(self.vocab_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (out_vocab_file,)
344
1
from collections.abc import Sequence def A ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(__UpperCAmelCase ) ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> float: '''simple docstring''' UpperCAmelCase_ = 0.0 for coeff in reversed(__UpperCAmelCase ): UpperCAmelCase_ = result * x + coeff return result if __name__ == "__main__": UpperCamelCase_ = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase_ = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
344
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class a_ ( _snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] ="maskformer-swin" UpperCamelCase__ : List[str] ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self :Union[str, Any] , _lowercase :Optional[int]=224 , _lowercase :List[str]=4 , _lowercase :Tuple=3 , _lowercase :List[Any]=96 , _lowercase :Any=[2, 2, 6, 2] , _lowercase :int=[3, 6, 12, 24] , _lowercase :List[Any]=7 , _lowercase :Dict=4.0 , _lowercase :Any=True , _lowercase :int=0.0 , _lowercase :List[Any]=0.0 , _lowercase :Tuple=0.1 , _lowercase :str="gelu" , _lowercase :Union[str, Any]=False , _lowercase :Tuple=0.02 , _lowercase :List[str]=1E-5 , _lowercase :List[str]=None , _lowercase :Any=None , **_lowercase :Any , ) -> Union[str, Any]: super().__init__(**_lowercase) UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = embed_dim UpperCAmelCase_ = depths UpperCAmelCase_ = len(_lowercase) UpperCAmelCase_ = num_heads UpperCAmelCase_ = window_size UpperCAmelCase_ = mlp_ratio UpperCAmelCase_ = qkv_bias UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = drop_path_rate UpperCAmelCase_ = hidden_act UpperCAmelCase_ = use_absolute_embeddings UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ = int(embed_dim * 2 ** (len(_lowercase) - 1)) UpperCAmelCase_ = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(_lowercase) + 1)] UpperCAmelCase_ , UpperCAmelCase_ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names)
344
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : int =StableDiffusionDiffEditPipeline UpperCamelCase__ : Union[str, Any] =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"} UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"} UpperCamelCase__ : List[Any] =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ : int =frozenset([] ) def __a ( self :List[Any]) -> Union[str, Any]: torch.manual_seed(0) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_lowercase , ) UpperCAmelCase_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) UpperCAmelCase_ = DDIMInverseScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowercase , set_alpha_to_zero=_lowercase , ) torch.manual_seed(0) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_lowercase) UpperCAmelCase_ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') UpperCAmelCase_ = { '''unet''': unet, '''scheduler''': scheduler, '''inverse_scheduler''': inverse_scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __a ( self :Tuple , _lowercase :Union[str, Any] , _lowercase :Union[str, Any]=0) -> Any: UpperCAmelCase_ = floats_tensor((1, 16, 16) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(_lowercase)).to(_lowercase) if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''prompt''': '''a dog and a newt''', '''mask_image''': mask, '''image_latents''': latents, '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __a ( self :str , _lowercase :Optional[int] , _lowercase :int=0) -> List[Any]: UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''') if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''image''': image, '''source_prompt''': '''a cat and a frog''', '''target_prompt''': '''a dog and a newt''', '''generator''': generator, '''num_inference_steps''': 2, '''num_maps_per_mask''': 2, '''mask_encode_strength''': 1.0, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __a ( self :Optional[int] , _lowercase :Optional[Any] , _lowercase :List[str]=0) -> Tuple: UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowercase)).to(_lowercase) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1)[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_lowercase)).convert('''RGB''') if str(_lowercase).startswith('''mps'''): UpperCAmelCase_ = torch.manual_seed(_lowercase) else: UpperCAmelCase_ = torch.Generator(device=_lowercase).manual_seed(_lowercase) UpperCAmelCase_ = { '''image''': image, '''prompt''': '''a cat and a frog''', '''generator''': generator, '''num_inference_steps''': 2, '''inpaint_strength''': 1.0, '''guidance_scale''': 6.0, '''decode_latents''': True, '''output_type''': '''numpy''', } return inputs def __a ( self :str) -> Optional[int]: if not hasattr(self.pipeline_class , '''_optional_components'''): return UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(_lowercase , _lowercase , _lowercase) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components}) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = pipe(**_lowercase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase) UpperCAmelCase_ = self.pipeline_class.from_pretrained(_lowercase) pipe_loaded.to(_lowercase) pipe_loaded.set_progress_bar_config(disable=_lowercase) for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowercase , _lowercase) is None , f"`{optional_component}` did not stay set to None after loading." , ) UpperCAmelCase_ = self.get_dummy_inputs(_lowercase) UpperCAmelCase_ = pipe_loaded(**_lowercase)[0] UpperCAmelCase_ = np.abs(output - output_loaded).max() self.assertLess(_lowercase , 1E-4) def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_mask_inputs(_lowercase) UpperCAmelCase_ = pipe.generate_mask(**_lowercase) UpperCAmelCase_ = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16)) UpperCAmelCase_ = np.array([0] * 9) UpperCAmelCase_ = np.abs(mask_slice.flatten() - expected_slice).max() self.assertLessEqual(_lowercase , 1E-3) self.assertEqual(mask[0, -3, -4] , 0) def __a ( self :Optional[Any]) -> Optional[Any]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inversion_inputs(_lowercase) UpperCAmelCase_ = pipe.invert(**_lowercase).images UpperCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) UpperCAmelCase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_lowercase , 1E-3) def __a ( self :List[Any]) -> Any: super().test_inference_batch_single_identical(expected_max_diff=5E-3) def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = {'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''} UpperCAmelCase_ = DPMSolverMultistepScheduler(**_lowercase) UpperCAmelCase_ = DPMSolverMultistepInverseScheduler(**_lowercase) UpperCAmelCase_ = self.pipeline_class(**_lowercase) pipe.to(_lowercase) pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = self.get_dummy_inversion_inputs(_lowercase) UpperCAmelCase_ = pipe.invert(**_lowercase).images UpperCAmelCase_ = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3)) UpperCAmelCase_ = np.array( [0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , ) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(_lowercase , 1E-3) @require_torch_gpu @slow class a_ ( unittest.TestCase ): def __a ( self :Union[str, Any]) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def __a ( cls :List[str]) -> Dict: UpperCAmelCase_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''') UpperCAmelCase_ = raw_image.convert('''RGB''').resize((768, 768)) UpperCAmelCase_ = raw_image def __a ( self :str) -> int: UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = DDIMScheduler.from_config(pipe.scheduler.config) UpperCAmelCase_ = DDIMInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = '''a bowl of fruit''' UpperCAmelCase_ = '''a bowl of pears''' UpperCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_lowercase , target_prompt=_lowercase , generator=_lowercase , ) UpperCAmelCase_ = pipe.invert( prompt=_lowercase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowercase).latents UpperCAmelCase_ = pipe( prompt=_lowercase , mask_image=_lowercase , image_latents=_lowercase , generator=_lowercase , negative_prompt=_lowercase , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1 def __a ( self :Tuple) -> Any: UpperCAmelCase_ = torch.manual_seed(0) UpperCAmelCase_ = StableDiffusionDiffEditPipeline.from_pretrained( '''stabilityai/stable-diffusion-2-1''' , safety_checker=_lowercase , torch_dtype=torch.floataa) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) UpperCAmelCase_ = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_lowercase) UpperCAmelCase_ = '''a bowl of fruit''' UpperCAmelCase_ = '''a bowl of pears''' UpperCAmelCase_ = pipe.generate_mask( image=self.raw_image , source_prompt=_lowercase , target_prompt=_lowercase , generator=_lowercase , ) UpperCAmelCase_ = pipe.invert( prompt=_lowercase , image=self.raw_image , inpaint_strength=0.7 , generator=_lowercase , num_inference_steps=25 , ).latents UpperCAmelCase_ = pipe( prompt=_lowercase , mask_image=_lowercase , image_latents=_lowercase , generator=_lowercase , negative_prompt=_lowercase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ = ( np.array( load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/diffedit/pears.png''').resize((768, 768))) / 255 ) assert np.abs((expected_image - image).max()) < 5E-1
344
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters UpperCamelCase_ = False UpperCamelCase_ = False def A ( __UpperCAmelCase ) -> Any: '''simple docstring''' return TrainCommand(__UpperCAmelCase ) class a_ ( _snake_case ): @staticmethod def __a ( _lowercase :ArgumentParser) -> List[Any]: UpperCAmelCase_ = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''') train_parser.add_argument( '''--train_data''' , type=_lowercase , required=_lowercase , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=_lowercase , default=0 , help='''Column of the dataset csv file with example labels.''') train_parser.add_argument( '''--column_text''' , type=_lowercase , default=1 , help='''Column of the dataset csv file with example texts.''') train_parser.add_argument( '''--column_id''' , type=_lowercase , default=2 , help='''Column of the dataset csv file with example ids.''') train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''') train_parser.add_argument('''--validation_data''' , type=_lowercase , default='''''' , help='''path to validation dataset.''') train_parser.add_argument( '''--validation_split''' , type=_lowercase , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=_lowercase , default='''./''' , help='''path to saved the trained model.''') train_parser.add_argument( '''--task''' , type=_lowercase , default='''text_classification''' , help='''Task to train the model on.''') train_parser.add_argument( '''--model''' , type=_lowercase , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''') train_parser.add_argument('''--train_batch_size''' , type=_lowercase , default=32 , help='''Batch size for training.''') train_parser.add_argument('''--valid_batch_size''' , type=_lowercase , default=64 , help='''Batch size for validation.''') train_parser.add_argument('''--learning_rate''' , type=_lowercase , default=3E-5 , help='''Learning rate.''') train_parser.add_argument('''--adam_epsilon''' , type=_lowercase , default=1E-0_8 , help='''Epsilon for Adam optimizer.''') train_parser.set_defaults(func=_lowercase) def __init__( self :Union[str, Any] , _lowercase :Namespace) -> Union[str, Any]: UpperCAmelCase_ = logging.get_logger('''transformers-cli/training''') UpperCAmelCase_ = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=_lowercase) UpperCAmelCase_ = args.output UpperCAmelCase_ = args.column_label UpperCAmelCase_ = args.column_text UpperCAmelCase_ = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": UpperCAmelCase_ = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") UpperCAmelCase_ = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") UpperCAmelCase_ = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) UpperCAmelCase_ = args.validation_split UpperCAmelCase_ = args.train_batch_size UpperCAmelCase_ = args.valid_batch_size UpperCAmelCase_ = args.learning_rate UpperCAmelCase_ = args.adam_epsilon def __a ( self :int) -> Tuple: if self.framework == "tf": return self.run_tf() return self.run_torch() def __a ( self :Optional[Any]) -> Any: raise NotImplementedError def __a ( self :int) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
344
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader(__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} UpperCAmelCase_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase , split=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' if issubclass(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = text_path elif issubclass(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase_ = [text_path] UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} UpperCAmelCase_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_dataset(__UpperCAmelCase , __UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=("train",) ) -> str: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) for split in splits: UpperCAmelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ = TextDatasetReader({'''train''': text_path} , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase_ = {'''text''': '''string'''} UpperCAmelCase_ = features.copy() if features else default_expected_features UpperCAmelCase_ = ( Features({feature: Value(__UpperCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ = TextDatasetReader({'''train''': text_path} , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCAmelCase_ = {split: text_path} else: UpperCAmelCase_ = '''train''' UpperCAmelCase_ = {'''train''': text_path, '''test''': text_path} UpperCAmelCase_ = tmp_path / '''cache''' UpperCAmelCase_ = {'''text''': '''string'''} UpperCAmelCase_ = TextDatasetReader(__UpperCAmelCase , cache_dir=__UpperCAmelCase ).read() _check_text_datasetdict(__UpperCAmelCase , __UpperCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
344
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = "▁" UpperCamelCase_ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } UpperCamelCase_ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } UpperCamelCase_ = { "facebook/m2m100_418M": 1_024, } # fmt: off UpperCamelCase_ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class a_ ( _snake_case ): UpperCamelCase__ : str =VOCAB_FILES_NAMES UpperCamelCase__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[int] =["input_ids", "attention_mask"] UpperCamelCase__ : List[int] =[] UpperCamelCase__ : List[int] =[] def __init__( self :Optional[Any] , _lowercase :Dict , _lowercase :List[str] , _lowercase :Dict=None , _lowercase :Union[str, Any]=None , _lowercase :Union[str, Any]="<s>" , _lowercase :Any="</s>" , _lowercase :List[Any]="</s>" , _lowercase :List[str]="<pad>" , _lowercase :Union[str, Any]="<unk>" , _lowercase :Tuple="m2m100" , _lowercase :Optional[Dict[str, Any]] = None , _lowercase :str=8 , **_lowercase :Any , ) -> None: UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = language_codes UpperCAmelCase_ = FAIRSEQ_LANGUAGE_CODES[language_codes] UpperCAmelCase_ = {lang_code: f"__{lang_code}__" for lang_code in fairseq_language_code} UpperCAmelCase_ = kwargs.get('''additional_special_tokens''' , []) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = load_json(_lowercase) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(_lowercase , self.sp_model_kwargs) UpperCAmelCase_ = len(self.encoder) UpperCAmelCase_ = { self.get_lang_token(_lowercase): self.encoder_size + i for i, lang_code in enumerate(_lowercase) } UpperCAmelCase_ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase)} UpperCAmelCase_ = {v: k for k, v in self.lang_token_to_id.items()} UpperCAmelCase_ = src_lang if src_lang is not None else '''en''' UpperCAmelCase_ = tgt_lang UpperCAmelCase_ = self.get_lang_id(self._src_lang) self.set_src_lang_special_tokens(self._src_lang) UpperCAmelCase_ = num_madeup_words @property def __a ( self :Optional[Any]) -> int: return len(self.encoder) + len(self.lang_token_to_id) @property def __a ( self :int) -> str: return self._src_lang @src_lang.setter def __a ( self :Dict , _lowercase :str) -> None: UpperCAmelCase_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __a ( self :Optional[Any] , _lowercase :str) -> List[str]: return self.sp_model.encode(_lowercase , out_type=_lowercase) def __a ( self :Optional[int] , _lowercase :Tuple) -> List[str]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token]) def __a ( self :int , _lowercase :int) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token) def __a ( self :str , _lowercase :Any) -> Any: UpperCAmelCase_ = [] UpperCAmelCase_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase) + token UpperCAmelCase_ = [] else: current_sub_tokens.append(_lowercase) out_string += self.sp_model.decode(_lowercase) return out_string.strip() def __a ( self :Dict , _lowercase :List[int] , _lowercase :Optional[List[int]] = None , _lowercase :bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase) UpperCAmelCase_ = [1] * len(self.prefix_tokens) UpperCAmelCase_ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase)) + suffix_ones return prefix_ones + ([0] * len(_lowercase)) + ([0] * len(_lowercase)) + suffix_ones def __a ( self :List[Any] , _lowercase :List[int] , _lowercase :Optional[List[int]] = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __a ( self :List[Any]) -> Dict: UpperCAmelCase_ = {self.convert_ids_to_tokens(_lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self :List[str]) -> Dict: UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self :str , _lowercase :Dict) -> None: UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs) def __a ( self :Tuple , _lowercase :str , _lowercase :Optional[str] = None) -> Tuple[str]: UpperCAmelCase_ = Path(_lowercase) if not save_dir.is_dir(): raise OSError(f"{save_directory} should be a directory") UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _lowercase) if os.path.abspath(self.spm_file) != os.path.abspath(_lowercase) and os.path.isfile(self.spm_file): copyfile(self.spm_file , _lowercase) elif not os.path.isfile(self.spm_file): with open(_lowercase , '''wb''') as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(_lowercase) return (str(_lowercase), str(_lowercase)) def __a ( self :Union[str, Any] , _lowercase :List[str] , _lowercase :str = "en" , _lowercase :Optional[List[str]] = None , _lowercase :str = "ro" , **_lowercase :Tuple , ) -> BatchEncoding: UpperCAmelCase_ = src_lang UpperCAmelCase_ = tgt_lang self.set_src_lang_special_tokens(self.src_lang) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase) def __a ( self :int , _lowercase :Dict , _lowercase :Optional[str] , _lowercase :Optional[str] , **_lowercase :List[str]) -> Dict: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''') UpperCAmelCase_ = src_lang UpperCAmelCase_ = self(_lowercase , add_special_tokens=_lowercase , **_lowercase) UpperCAmelCase_ = self.get_lang_id(_lowercase) UpperCAmelCase_ = tgt_lang_id return inputs def __a ( self :Optional[Any]) -> Optional[int]: self.set_src_lang_special_tokens(self.src_lang) def __a ( self :List[str]) -> Tuple: self.set_tgt_lang_special_tokens(self.tgt_lang) def __a ( self :Optional[Any] , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :str , _lowercase :str) -> None: UpperCAmelCase_ = self.get_lang_token(_lowercase) UpperCAmelCase_ = self.lang_token_to_id[lang_token] UpperCAmelCase_ = [self.cur_lang_id] UpperCAmelCase_ = [self.eos_token_id] def __a ( self :Dict , _lowercase :str) -> str: return self.lang_code_to_token[lang] def __a ( self :Union[str, Any] , _lowercase :str) -> int: UpperCAmelCase_ = self.get_lang_token(_lowercase) return self.lang_token_to_id[lang_token] def A ( __UpperCAmelCase , __UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def A ( __UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__UpperCAmelCase , '''r''' ) as f: return json.load(__UpperCAmelCase ) def A ( __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' with open(__UpperCAmelCase , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a_ ( _snake_case ): def __a ( self :int) -> int: UpperCAmelCase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_lowercase , '''hidden_sizes''')) self.parent.assertTrue(hasattr(_lowercase , '''num_attention_heads''')) self.parent.assertTrue(hasattr(_lowercase , '''num_encoder_blocks''')) class a_ : def __init__( self :Optional[Any] , _lowercase :List[str] , _lowercase :List[Any]=13 , _lowercase :str=64 , _lowercase :Union[str, Any]=3 , _lowercase :int=4 , _lowercase :Optional[Any]=[2, 2, 2, 2] , _lowercase :str=[8, 4, 2, 1] , _lowercase :str=[16, 32, 64, 128] , _lowercase :Optional[int]=[1, 4, 8, 16] , _lowercase :Dict=[1, 2, 4, 8] , _lowercase :List[str]=True , _lowercase :List[Any]=True , _lowercase :Optional[Any]="gelu" , _lowercase :Any=0.1 , _lowercase :Any=0.1 , _lowercase :List[Any]=0.02 , _lowercase :List[str]=3 , _lowercase :List[str]=None , ) -> List[str]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = num_encoder_blocks UpperCAmelCase_ = sr_ratios UpperCAmelCase_ = depths UpperCAmelCase_ = hidden_sizes UpperCAmelCase_ = downsampling_rates UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = initializer_range UpperCAmelCase_ = num_labels UpperCAmelCase_ = scope def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels def __a ( self :Union[str, Any]) -> int: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __a ( self :List[Any] , _lowercase :str , _lowercase :List[str] , _lowercase :Optional[Any]) -> Tuple: UpperCAmelCase_ = SegformerModel(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = UpperCAmelCase_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __a ( self :List[Any] , _lowercase :Any , _lowercase :int , _lowercase :Optional[int]) -> Dict: UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = SegformerForSemanticSegmentation(_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = model(_lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) UpperCAmelCase_ = model(_lowercase , labels=_lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __a ( self :List[str] , _lowercase :Dict , _lowercase :Dict , _lowercase :Dict) -> Tuple: UpperCAmelCase_ = 1 UpperCAmelCase_ = SegformerForSemanticSegmentation(config=_lowercase) model.to(_lowercase) model.eval() UpperCAmelCase_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(_lowercase) UpperCAmelCase_ = model(_lowercase , labels=_lowercase) self.parent.assertGreater(result.loss , 0.0) def __a ( self :Dict) -> str: UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a_ ( _snake_case , _snake_case , unittest.TestCase ): UpperCamelCase__ : List[str] =( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCamelCase__ : Optional[Any] =( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase__ : Optional[int] =True UpperCamelCase__ : List[Any] =False UpperCamelCase__ : List[str] =False UpperCamelCase__ : int =False def __a ( self :Optional[int]) -> List[Any]: UpperCAmelCase_ = SegformerModelTester(self) UpperCAmelCase_ = SegformerConfigTester(self , config_class=_lowercase) def __a ( self :Optional[int]) -> str: self.config_tester.run_common_tests() def __a ( self :int) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_lowercase) def __a ( self :List[Any]) -> int: UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_lowercase) @unittest.skip('''SegFormer does not use inputs_embeds''') def __a ( self :str) -> Union[str, Any]: pass @unittest.skip('''SegFormer does not have get_input_embeddings method and get_output_embeddings methods''') def __a ( self :Tuple) -> List[str]: pass def __a ( self :int) -> Optional[int]: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_lowercase) UpperCAmelCase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase) def __a ( self :Dict) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase)) UpperCAmelCase_ = outputs.attentions UpperCAmelCase_ = sum(self.model_tester.depths) self.assertEqual(len(_lowercase) , _lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase)) UpperCAmelCase_ = outputs.attentions self.assertEqual(len(_lowercase) , _lowercase) # verify the first attentions (first block, first layer) UpperCAmelCase_ = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) UpperCAmelCase_ = (self.model_tester.image_size // 32) ** 2 UpperCAmelCase_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) UpperCAmelCase_ = len(_lowercase) # Check attention is always last and order is fine UpperCAmelCase_ = True UpperCAmelCase_ = True UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase)) self.assertEqual(out_len + 1 , len(_lowercase)) UpperCAmelCase_ = outputs.attentions self.assertEqual(len(_lowercase) , _lowercase) # verify the first attentions (first block, first layer) UpperCAmelCase_ = (self.model_tester.image_size // 4) ** 2 UpperCAmelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __a ( self :Tuple) -> List[str]: def check_hidden_states_output(_lowercase :List[str] , _lowercase :Optional[int] , _lowercase :Dict): UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_lowercase , _lowercase)) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = self.model_tester.num_encoder_blocks self.assertEqual(len(_lowercase) , _lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_lowercase , _lowercase , _lowercase) def __a ( self :Union[str, Any]) -> List[Any]: if not self.model_tester.is_training: return UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_lowercase): continue UpperCAmelCase_ = model_class(_lowercase) model.to(_lowercase) model.train() UpperCAmelCase_ = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase) UpperCAmelCase_ = model(**_lowercase).loss loss.backward() @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def __a ( self :str) -> str: pass @slow def __a ( self :List[str]) -> int: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = SegformerModel.from_pretrained(_lowercase) self.assertIsNotNone(_lowercase) def A ( ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class a_ ( unittest.TestCase ): @slow def __a ( self :Optional[int]) -> List[Any]: # only resize + normalize UpperCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase) UpperCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( _lowercase) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''pt''') UpperCAmelCase_ = encoded_inputs.pixel_values.to(_lowercase) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1E-4)) @slow def __a ( self :Optional[Any]) -> Tuple: # only resize + normalize UpperCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase) UpperCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained( '''nvidia/segformer-b1-finetuned-cityscapes-1024-1024''').to(_lowercase) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''pt''') UpperCAmelCase_ = encoded_inputs.pixel_values.to(_lowercase) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , _lowercase) UpperCAmelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(_lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _lowercase , atol=1E-1)) @slow def __a ( self :Tuple) -> str: # only resize + normalize UpperCAmelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_lowercase , align=_lowercase , do_random_crop=_lowercase) UpperCAmelCase_ = SegformerForSemanticSegmentation.from_pretrained('''nvidia/segformer-b0-finetuned-ade-512-512''').to( _lowercase) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_lowercase , return_tensors='''pt''') UpperCAmelCase_ = encoded_inputs.pixel_values.to(_lowercase) with torch.no_grad(): UpperCAmelCase_ = model(_lowercase) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_lowercase , target_sizes=[(500, 300)]) UpperCAmelCase_ = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , _lowercase) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_lowercase) UpperCAmelCase_ = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , _lowercase)
344
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class a_ ( _snake_case ): UpperCamelCase__ : List[Any] =(PNDMScheduler,) UpperCamelCase__ : Optional[Any] =(("num_inference_steps", 50),) def __a ( self :Union[str, Any] , **_lowercase :Any) -> Union[str, Any]: UpperCAmelCase_ = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_lowercase) return config def __a ( self :str , _lowercase :List[Any]=0 , **_lowercase :str) -> Union[str, Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) new_scheduler.set_timesteps(_lowercase) # copy over dummy past residuals UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :Any) -> Optional[Any]: pass def __a ( self :str , _lowercase :int=0 , **_lowercase :Union[str, Any]) -> List[Any]: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_lowercase) UpperCAmelCase_ = scheduler_class.from_pretrained(_lowercase) # copy over dummy past residuals new_scheduler.set_timesteps(_lowercase) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_prk(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = new_scheduler.step_plms(_lowercase , _lowercase , _lowercase , **_lowercase).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __a ( self :int , **_lowercase :str) -> Optional[Any]: UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(**_lowercase) UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = 10 UpperCAmelCase_ = self.dummy_model() UpperCAmelCase_ = self.dummy_sample_deter scheduler.set_timesteps(_lowercase) for i, t in enumerate(scheduler.prk_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample for i, t in enumerate(scheduler.plms_timesteps): UpperCAmelCase_ = model(_lowercase , _lowercase) UpperCAmelCase_ = scheduler.step_plms(_lowercase , _lowercase , _lowercase).prev_sample return sample def __a ( self :Union[str, Any]) -> int: UpperCAmelCase_ = dict(self.forward_default_kwargs) UpperCAmelCase_ = kwargs.pop('''num_inference_steps''' , _lowercase) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample if num_inference_steps is not None and hasattr(_lowercase , '''set_timesteps'''): scheduler.set_timesteps(_lowercase) elif num_inference_steps is not None and not hasattr(_lowercase , '''set_timesteps'''): UpperCAmelCase_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ = dummy_past_residuals[:] UpperCAmelCase_ = scheduler.step_prk(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_prk(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCAmelCase_ = scheduler.step_plms(_lowercase , 0 , _lowercase , **_lowercase).prev_sample UpperCAmelCase_ = scheduler.step_plms(_lowercase , 1 , _lowercase , **_lowercase).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __a ( self :Any) -> Dict: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=_lowercase) def __a ( self :List[Any]) -> Any: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowercase) UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config(steps_offset=1) UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def __a ( self :Optional[int]) -> str: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02]): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase) def __a ( self :Any) -> List[str]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase) def __a ( self :List[Any]) -> Dict: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase) def __a ( self :Any) -> Tuple: for t in [1, 5, 10]: self.check_over_forward(time_step=_lowercase) def __a ( self :Tuple) -> Dict: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=_lowercase) def __a ( self :str) -> List[Any]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 UpperCAmelCase_ = 27 for scheduler_class in self.scheduler_classes: UpperCAmelCase_ = self.dummy_sample UpperCAmelCase_ = 0.1 * sample UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.set_timesteps(_lowercase) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): UpperCAmelCase_ = scheduler.step_prk(_lowercase , _lowercase , _lowercase).prev_sample def __a ( self :List[str]) -> int: with self.assertRaises(_lowercase): UpperCAmelCase_ = self.scheduler_classes[0] UpperCAmelCase_ = self.get_scheduler_config() UpperCAmelCase_ = scheduler_class(**_lowercase) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def __a ( self :List[str]) -> Dict: UpperCAmelCase_ = self.full_loop() UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 198.1_318) < 1E-2 assert abs(result_mean.item() - 0.2_580) < 1E-3 def __a ( self :Any) -> Tuple: UpperCAmelCase_ = self.full_loop(prediction_type='''v_prediction''') UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 67.3_986) < 1E-2 assert abs(result_mean.item() - 0.0_878) < 1E-3 def __a ( self :int) -> Any: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 230.0_399) < 1E-2 assert abs(result_mean.item() - 0.2_995) < 1E-3 def __a ( self :Any) -> Dict: # We specify different beta, so that the first alpha is 0.99 UpperCAmelCase_ = self.full_loop(set_alpha_to_one=_lowercase , beta_start=0.01) UpperCAmelCase_ = torch.sum(torch.abs(_lowercase)) UpperCAmelCase_ = torch.mean(torch.abs(_lowercase)) assert abs(result_sum.item() - 186.9_482) < 1E-2 assert abs(result_mean.item() - 0.2_434) < 1E-3
344
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCamelCase_ = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): from run_translation import main # noqa set_seed(42) UpperCamelCase_ = "sshleifer/student_marian_en_ro_6_1" UpperCamelCase_ = "sshleifer/tiny-mbart" @require_torch class a_ ( _snake_case ): def __a ( self :str , _lowercase :Any=False , _lowercase :Tuple=None , _lowercase :Dict=True , _lowercase :Tuple=True , _lowercase :List[Any]=True , _lowercase :List[str]=True , ) -> int: UpperCAmelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=_lowercase , num_train_epochs=1 , distributed=_lowercase , extra_args_str=_lowercase , predict_with_generate=_lowercase , do_train=_lowercase , do_eval=_lowercase , do_predict=_lowercase , ) UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history if not do_eval: return UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ = eval_metrics[-1] assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) assert not math.isnan(float(last_step_stats['''eval_loss'''])), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __a ( self :Dict) -> str: self.run_seqaseq_quick() @require_torch_multi_gpu def __a ( self :Any) -> int: self.run_seqaseq_quick(distributed=_lowercase) @require_torch_multi_gpu def __a ( self :int) -> Any: self.run_seqaseq_quick(distributed=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Tuple) -> List[str]: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp simple --fp16''') @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :Union[str, Any]) -> Any: self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2''' , predict_with_generate=_lowercase) @unittest.skip('''Requires an update of the env running those tests''') @require_torch_multi_gpu @require_fairscale def __a ( self :int) -> Any: self.run_seqaseq_quick( distributed=_lowercase , extra_args_str='''--sharded_ddp zero_dp_2 --fp16''' , predict_with_generate=_lowercase) @require_apex @require_torch_gpu def __a ( self :Tuple) -> str: # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=_lowercase , extra_args_str='''--fp16 --fp16_backend=apex''') @parameterized.expand(['''base''', '''low''', '''high''', '''mixed''']) @require_torch_multi_gpu def __a ( self :str , _lowercase :Any) -> List[str]: # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase_ = { # test with the default log_level - should be info and thus log info once '''base''': {'''extra_args_str''': '''''', '''n_matches''': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes '''low''': {'''extra_args_str''': '''--log_level debug --log_level_replica debug''', '''n_matches''': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica '''high''': {'''extra_args_str''': '''--log_level error --log_level_replica debug''', '''n_matches''': 1}, # test with high log_level and log_level_replica - should be quiet on all processes '''mixed''': {'''extra_args_str''': '''--log_level error --log_level_replica error''', '''n_matches''': 0}, } UpperCAmelCase_ = experiments[experiment_id] UpperCAmelCase_ = {'''distributed''': True, '''predict_with_generate''': False, '''do_eval''': False, '''do_predict''': False} UpperCAmelCase_ = '''Running training''' with CaptureStderr() as cl: self.run_seqaseq_quick(**_lowercase , extra_args_str=data['''extra_args_str''']) UpperCAmelCase_ = len(re.findall(_lowercase , cl.err)) self.assertEqual(_lowercase , data['''n_matches''']) @slow def __a ( self :Any) -> Dict: UpperCAmelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=10 , distributed=_lowercase , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(os.path.join(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = [log for log in logs if '''eval_loss''' in log.keys()] UpperCAmelCase_ = eval_metrics[0] UpperCAmelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['''eval_bleu'''] , _lowercase) # test if do_predict saves generations and metrics UpperCAmelCase_ = os.listdir(_lowercase) UpperCAmelCase_ = {os.path.basename(_lowercase) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __a ( self :List[str]) -> str: from transformers.training_args import OptimizerNames def train_and_return_metrics(_lowercase :str) -> Tuple[int, float]: UpperCAmelCase_ = '''--skip_memory_metrics 0''' UpperCAmelCase_ = self.run_trainer( max_len=128 , model_name=_lowercase , learning_rate=3E-4 , num_train_epochs=1 , optim=_lowercase , distributed=_lowercase , extra_args_str=_lowercase , do_eval=_lowercase , do_predict=_lowercase , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ = TrainerState.load_from_json(Path(_lowercase , '''trainer_state.json''')).log_history UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_peaked_delta'''] / 2**20) UpperCAmelCase_ = int(logs[0]['''train_mem_gpu_alloc_delta'''] / 2**20) UpperCAmelCase_ = logs[0]['''train_loss'''] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) UpperCAmelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB" , ) self.assertGreater( _lowercase , _lowercase , '''should use ~150MB less total gpu memory with BNB, compared to without it for this model but got''' f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB" , ) self.assertEqual( _lowercase , _lowercase , f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}") def __a ( self :Any , _lowercase :int , _lowercase :str , _lowercase :int , _lowercase :float = 3E-3 , _lowercase :str = "adafactor" , _lowercase :bool = False , _lowercase :str = None , _lowercase :int = 0 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :bool = True , _lowercase :int = None , ) -> List[Any]: UpperCAmelCase_ = self.test_file_dir / '''../fixtures/tests_samples/wmt_en_ro''' UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = f"\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(_lowercase)}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(_lowercase)}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n ".split() UpperCAmelCase_ = f"\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(_lowercase)}\n ".split() UpperCAmelCase_ = ''' --do_predict '''.split() UpperCAmelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f"--optim {optim}".split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ = get_gpu_count() UpperCAmelCase_ = get_torch_dist_unique_port() UpperCAmelCase_ = f"\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n ".split() UpperCAmelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(_lowercase , env=self.get_env()) else: UpperCAmelCase_ = ['''run_translation.py'''] + args with patch.object(_lowercase , '''argv''' , _lowercase): main() return output_dir
344
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = False, False, False @dataclass class a_ : UpperCamelCase__ : Optional[int] =None UpperCamelCase__ : bool =True UpperCamelCase__ : bool =True UpperCamelCase__ : Optional[str] =None # Automatically constructed UpperCamelCase__ : ClassVar[str] ="dict" UpperCamelCase__ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) UpperCamelCase__ : str =field(default="Audio" , init=_snake_case , repr=_snake_case ) def __call__( self :List[Any]) -> List[Any]: return self.pa_type def __a ( self :Any , _lowercase :Union[str, bytes, dict]) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(_lowercase , _lowercase): return {"bytes": None, "path": value} elif isinstance(_lowercase , _lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase_ = BytesIO() sf.write(_lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase_ = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32767 else: UpperCAmelCase_ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32767 UpperCAmelCase_ = BytesIO(bytes()) sf.write(_lowercase , _lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.") def __a ( self :Dict , _lowercase :dict , _lowercase :Optional[Dict[str, Union[str, bool, None]]] = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') UpperCAmelCase_ , UpperCAmelCase_ = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"An audio sample should have one of 'path' or 'bytes' but both are None in {value}.") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err UpperCAmelCase_ = xsplitext(_lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: UpperCAmelCase_ = token_per_repo_id or {} UpperCAmelCase_ = path.split('''::''')[-1] try: UpperCAmelCase_ = string_to_dict(_lowercase , config.HUB_DATASETS_URL)['''repo_id'''] UpperCAmelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase_ = None with xopen(_lowercase , '''rb''' , use_auth_token=_lowercase) as f: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) else: UpperCAmelCase_ , UpperCAmelCase_ = sf.read(_lowercase) UpperCAmelCase_ = array.T if self.mono: UpperCAmelCase_ = librosa.to_mono(_lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase_ = librosa.resample(_lowercase , orig_sr=_lowercase , target_sr=self.sampling_rate) UpperCAmelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __a ( self :Union[str, Any]) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def __a ( self :int , _lowercase :Union[pa.StringArray, pa.StructArray]) -> pa.StructArray: if pa.types.is_string(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): UpperCAmelCase_ = pa.array([Audio().encode_example(_lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: UpperCAmelCase_ = storage.field('''bytes''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: UpperCAmelCase_ = storage.field('''path''') else: UpperCAmelCase_ = pa.array([None] * len(_lowercase) , type=pa.string()) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(_lowercase , self.pa_type) def __a ( self :Any , _lowercase :pa.StructArray) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_lowercase :Tuple): with xopen(_lowercase , '''rb''') as f: UpperCAmelCase_ = f.read() return bytes_ UpperCAmelCase_ = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase_ = pa.array( [os.path.basename(_lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) UpperCAmelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(_lowercase , self.pa_type)
344
1
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class a_ ( unittest.TestCase ): def __init__( self :Tuple , _lowercase :List[Any] , _lowercase :bool = True , _lowercase :Dict[str, int] = None , _lowercase :int = 32 , _lowercase :bool = True , _lowercase :Union[int, float] = 1 / 255 , _lowercase :bool = True , _lowercase :bool = True , _lowercase :Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073] , _lowercase :Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711] , _lowercase :bool = True , _lowercase :List[Any]=7 , _lowercase :Dict=30 , _lowercase :Optional[int]=400 , _lowercase :Any=3 , ) -> Any: UpperCAmelCase_ = parent UpperCAmelCase_ = do_resize UpperCAmelCase_ = size if size is not None else {'''shortest_edge''': 288} UpperCAmelCase_ = size_divisor UpperCAmelCase_ = do_rescale UpperCAmelCase_ = rescale_factor UpperCAmelCase_ = do_normalize UpperCAmelCase_ = do_center_crop UpperCAmelCase_ = image_mean UpperCAmelCase_ = image_std UpperCAmelCase_ = do_pad UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution def __a ( self :str) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __a ( self :List[Any] , _lowercase :Tuple , _lowercase :List[str]=False) -> int: if not batched: UpperCAmelCase_ = self.size['''shortest_edge'''] UpperCAmelCase_ = image_inputs[0] if isinstance(_lowercase , Image.Image): UpperCAmelCase_ , UpperCAmelCase_ = image.size else: UpperCAmelCase_ , UpperCAmelCase_ = image.shape[1], image.shape[2] UpperCAmelCase_ = size / min(_lowercase , _lowercase) if h < w: UpperCAmelCase_ , UpperCAmelCase_ = size, scale * w else: UpperCAmelCase_ , UpperCAmelCase_ = scale * h, size UpperCAmelCase_ = int((1333 / 800) * size) if max(_lowercase , _lowercase) > max_size: UpperCAmelCase_ = max_size / max(_lowercase , _lowercase) UpperCAmelCase_ = newh * scale UpperCAmelCase_ = neww * scale UpperCAmelCase_ , UpperCAmelCase_ = int(newh + 0.5), int(neww + 0.5) UpperCAmelCase_ , UpperCAmelCase_ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: UpperCAmelCase_ = [] for image in image_inputs: UpperCAmelCase_ , UpperCAmelCase_ = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[0])[0] UpperCAmelCase_ = max(_lowercase , key=lambda _lowercase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : Tuple =BridgeTowerImageProcessor if is_vision_available() else None def __a ( self :int) -> Dict: UpperCAmelCase_ = BridgeTowerImageProcessingTester(self) @property def __a ( self :Dict) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Dict) -> Tuple: UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowercase , '''image_mean''')) self.assertTrue(hasattr(_lowercase , '''image_std''')) self.assertTrue(hasattr(_lowercase , '''do_normalize''')) self.assertTrue(hasattr(_lowercase , '''do_resize''')) self.assertTrue(hasattr(_lowercase , '''size''')) self.assertTrue(hasattr(_lowercase , '''size_divisor''')) def __a ( self :Union[str, Any]) -> Tuple: pass def __a ( self :List[str]) -> Tuple: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :Union[str, Any]) -> Optional[int]: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __a ( self :str) -> int: # Initialize image processor UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase_ = image_processing(_lowercase , return_tensors='''pt''').pixel_values UpperCAmelCase_ , UpperCAmelCase_ = self.image_processor_tester.get_expected_values(_lowercase , batched=_lowercase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
344
from ..utils import DummyObject, requires_backends class a_ ( metaclass=_snake_case ): UpperCamelCase__ : Any =["torch", "scipy"] def __init__( self :List[str] , *_lowercase :List[str] , **_lowercase :Union[str, Any]) -> List[Any]: requires_backends(self , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Dict , *_lowercase :Any , **_lowercase :Dict) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def __a ( cls :Optional[Any] , *_lowercase :str , **_lowercase :Optional[Any]) -> Union[str, Any]: requires_backends(cls , ['''torch''', '''scipy'''])
344
1
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( _snake_case , unittest.TestCase ): UpperCamelCase__ : List[Any] =BioGptTokenizer UpperCamelCase__ : str =False def __a ( self :int) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ = dict(zip(_lowercase , range(len(_lowercase)))) UpperCAmelCase_ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''') as fp: fp.write(json.dumps(_lowercase)) with open(self.merges_file , '''w''') as fp: fp.write('''\n'''.join(_lowercase)) def __a ( self :Optional[int] , _lowercase :Union[str, Any]) -> Optional[Any]: UpperCAmelCase_ = '''lower newer''' UpperCAmelCase_ = '''lower newer''' return input_text, output_text def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = BioGptTokenizer(self.vocab_file , self.merges_file) UpperCAmelCase_ = '''lower''' UpperCAmelCase_ = ['''low''', '''er</w>'''] UpperCAmelCase_ = tokenizer.tokenize(_lowercase) self.assertListEqual(_lowercase , _lowercase) UpperCAmelCase_ = tokens + ['''<unk>'''] UpperCAmelCase_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase) , _lowercase) @slow def __a ( self :Optional[Any]) -> Union[str, Any]: UpperCAmelCase_ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') UpperCAmelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase) UpperCAmelCase_ = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase) self.assertTrue(encoded_sentence == [2] + text) self.assertTrue(encoded_pair == [2] + text + [2] + text_a)
344
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
1