code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# Initialise PyTorch model
_A : List[Any] = MobileBertConfig.from_json_file(snake_case_ )
print(f'''Building PyTorch model from configuration: {config}''' )
_A : Tuple = MobileBertForPreTraining(snake_case_ )
# Load weights from tf checkpoint
_A : Tuple = load_tf_weights_in_mobilebert(snake_case_,snake_case_,snake_case_ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(),snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
_snake_case = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt")
_snake_case = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
_snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def lowerCAmelCase_ ( snake_case_ ):
with open(snake_case_,"""rb""" ) as f:
_A : Tuple = Image.open(snake_case_ )
return im.convert("""RGB""" )
@dataclass
class lowercase :
_a = field(
default=UpperCamelCase__,metadata={
"help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
},)
_a = field(
default=UpperCamelCase__,metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} )
_a = field(default=UpperCamelCase__,metadata={"help": "A folder containing the training data."} )
_a = field(default=UpperCamelCase__,metadata={"help": "A folder containing the validation data."} )
_a = field(
default=0.15,metadata={"help": "Percent to split off of train for validation."} )
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},)
def a__ ( self ) -> List[Any]:
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
"""You must specify either a dataset name from the hub or a train and/or validation directory.""" )
@dataclass
class lowercase :
_a = field(
default="google/vit-base-patch16-224-in21k",metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},)
_a = field(
default=UpperCamelCase__,metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(UpperCamelCase__ )},)
_a = field(
default=UpperCamelCase__,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_a = field(
default=UpperCamelCase__,metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} )
_a = field(
default="main",metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},)
_a = field(default=UpperCamelCase__,metadata={"help": "Name or path of preprocessor config."} )
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},)
_a = field(
default=UpperCamelCase__,metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},)
def lowerCAmelCase_ ( snake_case_ ):
_A : str = torch.stack([example["""pixel_values"""] for example in examples] )
_A : str = torch.tensor([example["""labels"""] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def lowerCAmelCase_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Dict = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_image_classification""",snake_case_,snake_case_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",datefmt="""%m/%d/%Y %H:%M:%S""",handlers=[logging.StreamHandler(sys.stdout )],)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A : List[Any] = training_args.get_process_log_level()
logger.setLevel(snake_case_ )
transformers.utils.logging.set_verbosity(snake_case_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
_A : Optional[int] = load_dataset(
data_args.dataset_name,data_args.dataset_config_name,cache_dir=model_args.cache_dir,task="""image-classification""",use_auth_token=True if model_args.use_auth_token else None,)
else:
_A : Tuple = {}
if data_args.train_dir is not None:
_A : Any = os.path.join(data_args.train_dir,"""**""" )
if data_args.validation_dir is not None:
_A : str = os.path.join(data_args.validation_dir,"""**""" )
_A : List[str] = load_dataset(
"""imagefolder""",data_files=snake_case_,cache_dir=model_args.cache_dir,task="""image-classification""",)
# If we don't have a validation split, split off a percentage of train as validation.
_A : Tuple = None if """validation""" in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split,snake_case_ ) and data_args.train_val_split > 0.0:
_A : Union[str, Any] = dataset["""train"""].train_test_split(data_args.train_val_split )
_A : List[Any] = split["""train"""]
_A : Optional[Any] = split["""test"""]
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_A : Any = dataset["""train"""].features["""labels"""].names
_A , _A : Dict = {}, {}
for i, label in enumerate(snake_case_ ):
_A : List[str] = str(snake_case_ )
_A : Dict = label
# Load the accuracy metric from the datasets package
_A : Tuple = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(snake_case_ ):
return metric.compute(predictions=np.argmax(p.predictions,axis=1 ),references=p.label_ids )
_A : Any = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path,num_labels=len(snake_case_ ),labelaid=snake_case_,idalabel=snake_case_,finetuning_task="""image-classification""",cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,)
_A : Union[str, Any] = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ),config=snake_case_,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,)
_A : Union[str, Any] = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,)
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
_A : Optional[int] = image_processor.size["""shortest_edge"""]
else:
_A : List[str] = (image_processor.size["""height"""], image_processor.size["""width"""])
_A : Optional[Any] = Normalize(mean=image_processor.image_mean,std=image_processor.image_std )
_A : int = Compose(
[
RandomResizedCrop(snake_case_ ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
_A : Union[str, Any] = Compose(
[
Resize(snake_case_ ),
CenterCrop(snake_case_ ),
ToTensor(),
normalize,
] )
def train_transforms(snake_case_ ):
_A : List[Any] = [
_train_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]
]
return example_batch
def val_transforms(snake_case_ ):
_A : Tuple = [_val_transforms(pil_img.convert("""RGB""" ) ) for pil_img in example_batch["""image"""]]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
_A : str = (
dataset["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(snake_case_ )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
_A : Optional[int] = (
dataset["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(snake_case_ )
# Initalize our trainer
_A : Optional[int] = Trainer(
model=snake_case_,args=snake_case_,train_dataset=dataset["""train"""] if training_args.do_train else None,eval_dataset=dataset["""validation"""] if training_args.do_eval else None,compute_metrics=snake_case_,tokenizer=snake_case_,data_collator=snake_case_,)
# Training
if training_args.do_train:
_A : List[str] = None
if training_args.resume_from_checkpoint is not None:
_A : Any = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A : Optional[Any] = last_checkpoint
_A : Any = trainer.train(resume_from_checkpoint=snake_case_ )
trainer.save_model()
trainer.log_metrics("""train""",train_result.metrics )
trainer.save_metrics("""train""",train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A : Optional[int] = trainer.evaluate()
trainer.log_metrics("""eval""",snake_case_ )
trainer.save_metrics("""eval""",snake_case_ )
# Write model card and (optionally) push to hub
_A : Any = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """image-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""image-classification""", """vision"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case_ )
else:
trainer.create_model_card(**snake_case_ )
if __name__ == "__main__":
main()
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
from collections.abc import Sequence
def lowerCAmelCase_ ( snake_case_ = None ):
if nums is None or not nums:
raise ValueError("""Input sequence should not be empty""" )
_A : str = nums[0]
for i in range(1,len(snake_case_ ) ):
_A : List[Any] = nums[i]
_A : Optional[Any] = max(snake_case_,ans + num,snake_case_ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
_snake_case = int(input("Enter number of elements : ").strip())
_snake_case = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import argparse
import os
from pathlib import Path
import torch
from bark.generation import _load_model as _bark_load_model
from huggingface_hub import hf_hub_download
from transformers import EncodecConfig, EncodecModel, set_seed
from transformers.models.bark.configuration_bark import (
BarkCoarseConfig,
BarkConfig,
BarkFineConfig,
BarkSemanticConfig,
)
from transformers.models.bark.generation_configuration_bark import (
BarkCoarseGenerationConfig,
BarkFineGenerationConfig,
BarkGenerationConfig,
BarkSemanticGenerationConfig,
)
from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
set_seed(770)
_snake_case = {
"c_attn": "att_proj",
"c_proj": "out_proj",
"c_fc": "in_proj",
"transformer.": "",
"h.": "layers.",
"ln_1": "layernorm_1",
"ln_2": "layernorm_2",
"ln_f": "layernorm_final",
"wpe": "position_embeds_layer",
"wte": "input_embeds_layer",
}
_snake_case = {
"text_small": {
"repo_id": "suno/bark",
"file_name": "text.pt",
},
"coarse_small": {
"repo_id": "suno/bark",
"file_name": "coarse.pt",
},
"fine_small": {
"repo_id": "suno/bark",
"file_name": "fine.pt",
},
"text": {
"repo_id": "suno/bark",
"file_name": "text_2.pt",
},
"coarse": {
"repo_id": "suno/bark",
"file_name": "coarse_2.pt",
},
"fine": {
"repo_id": "suno/bark",
"file_name": "fine_2.pt",
},
}
_snake_case = os.path.dirname(os.path.abspath(__file__))
_snake_case = os.path.join(os.path.expanduser("~"), ".cache")
_snake_case = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0")
def lowerCAmelCase_ ( snake_case_,snake_case_=False ):
_A : List[Any] = model_type
if use_small:
key += "_small"
return os.path.join(snake_case_,REMOTE_MODEL_PATHS[key]["""file_name"""] )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
os.makedirs(snake_case_,exist_ok=snake_case_ )
hf_hub_download(repo_id=snake_case_,filename=snake_case_,local_dir=snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=False,snake_case_="text" ):
if model_type == "text":
_A : Union[str, Any] = BarkSemanticModel
_A : Any = BarkSemanticConfig
_A : str = BarkSemanticGenerationConfig
elif model_type == "coarse":
_A : Any = BarkCoarseModel
_A : List[Any] = BarkCoarseConfig
_A : Dict = BarkCoarseGenerationConfig
elif model_type == "fine":
_A : str = BarkFineModel
_A : List[Any] = BarkFineConfig
_A : List[str] = BarkFineGenerationConfig
else:
raise NotImplementedError()
_A : Union[str, Any] = f'''{model_type}_small''' if use_small else model_type
_A : Union[str, Any] = REMOTE_MODEL_PATHS[model_key]
if not os.path.exists(snake_case_ ):
logger.info(f'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' )
_download(model_info["""repo_id"""],model_info["""file_name"""] )
_A : Optional[Any] = torch.load(snake_case_,map_location=snake_case_ )
# this is a hack
_A : Optional[int] = checkpoint["""model_args"""]
if "input_vocab_size" not in model_args:
_A : Optional[Any] = model_args["""vocab_size"""]
_A : Tuple = model_args["""vocab_size"""]
del model_args["vocab_size"]
# convert Bark model arguments to HF Bark model arguments
_A : Optional[Any] = model_args.pop("""n_head""" )
_A : Optional[Any] = model_args.pop("""n_embd""" )
_A : int = model_args.pop("""n_layer""" )
_A : List[str] = ConfigClass(**checkpoint["""model_args"""] )
_A : str = ModelClass(config=snake_case_ )
_A : Optional[Any] = GenerationConfigClass()
_A : Union[str, Any] = model_generation_config
_A : Dict = checkpoint["""model"""]
# fixup checkpoint
_A : Any = """_orig_mod."""
for k, v in list(state_dict.items() ):
if k.startswith(snake_case_ ):
# replace part of the key with corresponding layer name in HF implementation
_A : List[Any] = k[len(snake_case_ ) :]
for old_layer_name in new_layer_name_dict:
_A : int = new_k.replace(snake_case_,new_layer_name_dict[old_layer_name] )
_A : List[str] = state_dict.pop(snake_case_ )
_A : str = set(state_dict.keys() ) - set(model.state_dict().keys() )
_A : Tuple = {k for k in extra_keys if not k.endswith(""".attn.bias""" )}
_A : Any = set(model.state_dict().keys() ) - set(state_dict.keys() )
_A : Dict = {k for k in missing_keys if not k.endswith(""".attn.bias""" )}
if len(snake_case_ ) != 0:
raise ValueError(f'''extra keys found: {extra_keys}''' )
if len(snake_case_ ) != 0:
raise ValueError(f'''missing keys: {missing_keys}''' )
model.load_state_dict(snake_case_,strict=snake_case_ )
_A : Any = model.num_parameters(exclude_embeddings=snake_case_ )
_A : Tuple = checkpoint["""best_val_loss"""].item()
logger.info(f'''model loaded: {round(n_params/1e6,1 )}M params, {round(snake_case_,3 )} loss''' )
model.eval()
model.to(snake_case_ )
del checkpoint, state_dict
return model
def lowerCAmelCase_ ( snake_case_,snake_case_=False,snake_case_="text" ):
if model_type not in ("text", "coarse", "fine"):
raise NotImplementedError()
_A : List[str] = """cpu""" # do conversion on cpu
_A : Optional[Any] = _get_ckpt_path(snake_case_,use_small=snake_case_ )
_A : List[str] = _load_model(snake_case_,snake_case_,model_type=snake_case_,use_small=snake_case_ )
# load bark initial model
_A : Optional[int] = _bark_load_model(snake_case_,"""cpu""",model_type=snake_case_,use_small=snake_case_ )
if model_type == "text":
_A : Optional[Any] = bark_model["""model"""]
if model.num_parameters(exclude_embeddings=snake_case_ ) != bark_model.get_num_params():
raise ValueError("""initial and new models don't have the same number of parameters""" )
# check if same output as the bark model
_A : Tuple = 5
_A : Dict = 10
if model_type in ["text", "coarse"]:
_A : Dict = torch.randint(256,(batch_size, sequence_length),dtype=torch.int )
_A : Tuple = bark_model(snake_case_ )[0]
_A : int = model(snake_case_ )
# take last logits
_A : Dict = output_new_model_total.logits[:, [-1], :]
else:
_A : Dict = 3
_A : List[Any] = 8
_A : List[Any] = torch.randint(256,(batch_size, sequence_length, n_codes_total),dtype=torch.int )
_A : Tuple = model(snake_case_,snake_case_ )
_A : Optional[int] = bark_model(snake_case_,snake_case_ )
_A : str = output_new_model_total.logits
# output difference should come from the difference of self-attention implementation design
if output_new_model.shape != output_old_model.shape:
raise ValueError("""initial and new outputs don't have the same shape""" )
if (output_new_model - output_old_model).abs().max().item() > 1e-3:
raise ValueError("""initial and new outputs are not equal""" )
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
_A : Optional[Any] = os.path.join(snake_case_,snake_case_ )
_A : Tuple = BarkSemanticConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) )
_A : Dict = BarkCoarseConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) )
_A : List[Any] = BarkFineConfig.from_pretrained(os.path.join(snake_case_,"""config.json""" ) )
_A : Tuple = EncodecConfig.from_pretrained("""facebook/encodec_24khz""" )
_A : str = BarkSemanticModel.from_pretrained(snake_case_ )
_A : Any = BarkCoarseModel.from_pretrained(snake_case_ )
_A : List[Any] = BarkFineModel.from_pretrained(snake_case_ )
_A : int = EncodecModel.from_pretrained("""facebook/encodec_24khz""" )
_A : str = BarkConfig.from_sub_model_configs(
snake_case_,snake_case_,snake_case_,snake_case_ )
_A : Any = BarkGenerationConfig.from_sub_model_configs(
semantic.generation_config,coarseAcoustic.generation_config,fineAcoustic.generation_config )
_A : int = BarkModel(snake_case_ )
_A : Any = semantic
_A : Any = coarseAcoustic
_A : Optional[int] = fineAcoustic
_A : Any = codec
_A : Optional[Any] = bark_generation_config
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
bark.save_pretrained(snake_case_,repo_id=snake_case_,push_to_hub=snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("model_type", type=str, help="text, coarse or fine.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.")
_snake_case = parser.parse_args()
load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
return " ".join(
"""""".join(word[::-1] ) if len(snake_case_ ) > 4 else word for word in sentence.split() )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words("Hey wollef sroirraw"))
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
_snake_case = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu")
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation="relu"))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation="relu"))
classifier.add(layers.Dense(units=1, activation="sigmoid"))
# Compiling the CNN
classifier.compile(
optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"]
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
_snake_case = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
_snake_case = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
_snake_case = train_datagen.flow_from_directory(
"dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
_snake_case = test_datagen.flow_from_directory(
"dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary"
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save("cnn.h5")
# Part 3 - Making new predictions
_snake_case = tf.keras.preprocessing.image.load_img(
"dataset/single_prediction/image.png", target_size=(64, 64)
)
_snake_case = tf.keras.preprocessing.image.img_to_array(test_image)
_snake_case = np.expand_dims(test_image, axis=0)
_snake_case = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
_snake_case = "Normal"
if result[0][0] == 1:
_snake_case = "Abnormality detected"
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
import contextlib
import copy
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import torch
from .utils import deprecate, is_transformers_available
if is_transformers_available():
import transformers
def lowerCAmelCase_ ( snake_case_ ):
random.seed(snake_case_ )
np.random.seed(snake_case_ )
torch.manual_seed(snake_case_ )
torch.cuda.manual_seed_all(snake_case_ )
# ^^ safe to call this function even if cuda is not available
class lowercase :
def __init__( self , _a , _a = 0.9999 , _a = 0.0 , _a = 0 , _a = False , _a = 1.0 , _a = 2 / 3 , _a = None , _a = None , **_a , ) -> int:
if isinstance(_a , torch.nn.Module ):
_A : Any = (
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , _a , standard_warn=_a , )
_A : Dict = parameters.parameters()
# set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility
_A : Tuple = True
if kwargs.get("""max_value""" , _a ) is not None:
_A : Any = """The `max_value` argument is deprecated. Please use `decay` instead."""
deprecate("""max_value""" , """1.0.0""" , _a , standard_warn=_a )
_A : List[Any] = kwargs["""max_value"""]
if kwargs.get("""min_value""" , _a ) is not None:
_A : Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead."""
deprecate("""min_value""" , """1.0.0""" , _a , standard_warn=_a )
_A : Tuple = kwargs["""min_value"""]
_A : Dict = list(_a )
_A : Union[str, Any] = [p.clone().detach() for p in parameters]
if kwargs.get("""device""" , _a ) is not None:
_A : List[str] = """The `device` argument is deprecated. Please use `to` instead."""
deprecate("""device""" , """1.0.0""" , _a , standard_warn=_a )
self.to(device=kwargs["""device"""] )
_A : List[str] = None
_A : Any = decay
_A : Dict = min_decay
_A : Union[str, Any] = update_after_step
_A : List[Any] = use_ema_warmup
_A : Tuple = inv_gamma
_A : Dict = power
_A : Tuple = 0
_A : Optional[Any] = None # set in `step()`
_A : List[Any] = model_cls
_A : int = model_config
@classmethod
def a__ ( cls , _a , _a ) -> "EMAModel":
_A , _A : Optional[int] = model_cls.load_config(_a , return_unused_kwargs=_a )
_A : Union[str, Any] = model_cls.from_pretrained(_a )
_A : Tuple = cls(model.parameters() , model_cls=_a , model_config=model.config )
ema_model.load_state_dict(_a )
return ema_model
def a__ ( self , _a ) -> Tuple:
if self.model_cls is None:
raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" )
if self.model_config is None:
raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" )
_A : Any = self.model_cls.from_config(self.model_config )
_A : Tuple = self.state_dict()
state_dict.pop("""shadow_params""" , _a )
model.register_to_config(**_a )
self.copy_to(model.parameters() )
model.save_pretrained(_a )
def a__ ( self , _a ) -> float:
_A : Optional[int] = max(0 , optimization_step - self.update_after_step - 1 )
if step <= 0:
return 0.0
if self.use_ema_warmup:
_A : Union[str, Any] = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
_A : Dict = (1 + step) / (10 + step)
_A : Optional[Any] = min(_a , self.decay )
# make sure decay is not smaller than min_decay
_A : str = max(_a , self.min_decay )
return cur_decay_value
@torch.no_grad()
def a__ ( self , _a ) -> str:
if isinstance(_a , torch.nn.Module ):
_A : List[str] = (
"""Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """
"""Please pass the parameters of the module instead."""
)
deprecate(
"""passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , _a , standard_warn=_a , )
_A : str = parameters.parameters()
_A : int = list(_a )
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
_A : Union[str, Any] = self.get_decay(self.optimization_step )
_A : List[str] = decay
_A : List[Any] = 1 - decay
_A : Optional[Any] = contextlib.nullcontext
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
import deepspeed
for s_param, param in zip(self.shadow_params , _a ):
if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled():
_A : Optional[Any] = deepspeed.zero.GatheredParameters(_a , modifier_rank=_a )
with context_manager():
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param) )
else:
s_param.copy_(_a )
def a__ ( self , _a ) -> None:
_A : Union[str, Any] = list(_a )
for s_param, param in zip(self.shadow_params , _a ):
param.data.copy_(s_param.to(param.device ).data )
def a__ ( self , _a=None , _a=None ) -> None:
_A : int = [
p.to(device=_a , dtype=_a ) if p.is_floating_point() else p.to(device=_a )
for p in self.shadow_params
]
def a__ ( self ) -> dict:
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def a__ ( self , _a ) -> None:
_A : str = [param.detach().cpu().clone() for param in parameters]
def a__ ( self , _a ) -> None:
if self.temp_stored_params is None:
raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" )
for c_param, param in zip(self.temp_stored_params , _a ):
param.data.copy_(c_param.data )
# Better memory-wise.
_A : List[Any] = None
def a__ ( self , _a ) -> None:
_A : Optional[Any] = copy.deepcopy(_a )
_A : List[str] = state_dict.get("""decay""" , self.decay )
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("""Decay must be between 0 and 1""" )
_A : Optional[int] = state_dict.get("""min_decay""" , self.min_decay )
if not isinstance(self.min_decay , _a ):
raise ValueError("""Invalid min_decay""" )
_A : int = state_dict.get("""optimization_step""" , self.optimization_step )
if not isinstance(self.optimization_step , _a ):
raise ValueError("""Invalid optimization_step""" )
_A : str = state_dict.get("""update_after_step""" , self.update_after_step )
if not isinstance(self.update_after_step , _a ):
raise ValueError("""Invalid update_after_step""" )
_A : Dict = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup )
if not isinstance(self.use_ema_warmup , _a ):
raise ValueError("""Invalid use_ema_warmup""" )
_A : int = state_dict.get("""inv_gamma""" , self.inv_gamma )
if not isinstance(self.inv_gamma , (float, int) ):
raise ValueError("""Invalid inv_gamma""" )
_A : List[Any] = state_dict.get("""power""" , self.power )
if not isinstance(self.power , (float, int) ):
raise ValueError("""Invalid power""" )
_A : Optional[Any] = state_dict.get("""shadow_params""" , _a )
if shadow_params is not None:
_A : str = shadow_params
if not isinstance(self.shadow_params , _a ):
raise ValueError("""shadow_params must be a list""" )
if not all(isinstance(_a , torch.Tensor ) for p in self.shadow_params ):
raise ValueError("""shadow_params must all be Tensors""" )
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
import requests
_snake_case = "" # <-- Put your OpenWeatherMap appid here!
_snake_case = "https://api.openweathermap.org/data/2.5/"
def lowerCAmelCase_ ( snake_case_ = "Chicago",snake_case_ = APPID ):
return requests.get(URL_BASE + """weather""",params=locals() ).json()
def lowerCAmelCase_ ( snake_case_ = "Kolkata, India",snake_case_ = APPID ):
return requests.get(URL_BASE + """forecast""",params=locals() ).json()
def lowerCAmelCase_ ( snake_case_ = 55.68,snake_case_ = 12.57,snake_case_ = APPID ):
return requests.get(URL_BASE + """onecall""",params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
_snake_case = input("Enter a location:").strip()
if location:
pprint(current_weather(location))
else:
break
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase :
def __init__( self , _a = "cpu" , _a = "openai/clip-vit-large-patch14" ) -> None:
_A : Optional[Any] = device
_A : str = CLIPTokenizerFast.from_pretrained(_a )
_A : Dict = [0.48145466, 0.4578275, 0.40821073]
_A : Optional[Any] = [0.26862954, 0.26130258, 0.27577711]
_A : Any = torchvision.transforms.Normalize(self.image_mean , self.image_std )
_A : List[Any] = torchvision.transforms.Resize(224 )
_A : str = torchvision.transforms.CenterCrop(224 )
def a__ ( self , _a ) -> List[Any]:
_A : List[str] = self.resize(_a )
_A : Union[str, Any] = self.center_crop(_a )
_A : str = self.normalize(_a )
return images
def __call__( self , _a=None , _a=None , **_a ) -> Dict:
_A : List[str] = self.tokenizer(text=_a , **_a )
_A : List[str] = self.preprocess_img(_a )
_A : List[Any] = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase ( nn.Module ):
def __init__( self , _a=10 , _a=0.01 , _a=None , _a=None , _a=None , _a=None , _a=None , _a=None , _a=False , _a=True , _a="image" , _a=True , _a=False , _a=False , _a=False , ) -> None:
super().__init__()
_A : List[Any] = None
_A : str = device if device else get_device()
if vqgan:
_A : List[Any] = vqgan
else:
_A : List[str] = load_vqgan(self.device , conf_path=_a , ckpt_path=_a )
self.vqgan.eval()
if clip:
_A : Optional[int] = clip
else:
_A : int = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" )
self.clip.to(self.device )
_A : int = ProcessorGradientFlow(device=self.device )
_A : int = iterations
_A : Dict = lr
_A : Any = log
_A : Tuple = make_grid
_A : Union[str, Any] = return_val
_A : str = quantize
_A : Optional[Any] = self.vqgan.decoder.z_shape
def a__ ( self , _a=None , _a=None , _a=5 , _a=True ) -> Union[str, Any]:
_A : Any = []
if output_path is None:
_A : Tuple = """./animation.gif"""
if input_path is None:
_A : List[Any] = self.save_path
_A : Union[str, Any] = sorted(glob(input_path + """/*""" ) )
if not len(_a ):
raise ValueError(
"""No images found in save path, aborting (did you pass save_intermediate=True to the generate"""
""" function?)""" )
if len(_a ) == 1:
print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" )
_A : Any = total_duration / len(_a )
_A : Optional[int] = [frame_duration] * len(_a )
if extend_frames:
_A : Union[str, Any] = 1.5
_A : Dict = 3
for file_name in paths:
if file_name.endswith(""".png""" ):
images.append(imageio.imread(_a ) )
imageio.mimsave(_a , _a , duration=_a )
print(F'''gif saved to {output_path}''' )
def a__ ( self , _a=None , _a=None ) -> Optional[int]:
if not (path or img):
raise ValueError("""Input either path or tensor""" )
if img is not None:
raise NotImplementedError
_A : str = preprocess(Image.open(_a ) , target_image_size=256 ).to(self.device )
_A : Any = preprocess_vqgan(_a )
_A , *_A : Union[str, Any] = self.vqgan.encode(_a )
return z
def a__ ( self , _a ) -> Optional[Any]:
_A : int = self.latent.detach().requires_grad_()
_A : str = base_latent + transform_vector
if self.quantize:
_A , *_A : Dict = self.vqgan.quantize(_a )
else:
_A : int = trans_latent
return self.vqgan.decode(_a )
def a__ ( self , _a , _a , _a=None ) -> List[str]:
_A : List[Any] = self.clip_preprocessor(text=_a , images=_a , return_tensors="""pt""" , padding=_a )
_A : Tuple = self.clip(**_a )
_A : int = clip_outputs.logits_per_image
if weights is not None:
_A : Tuple = similarity_logits * weights
return similarity_logits.sum()
def a__ ( self , _a , _a , _a ) -> str:
_A : Optional[int] = self._get_clip_similarity(pos_prompts["""prompts"""] , _a , weights=(1 / pos_prompts["""weights"""]) )
if neg_prompts:
_A : List[Any] = self._get_clip_similarity(neg_prompts["""prompts"""] , _a , weights=neg_prompts["""weights"""] )
else:
_A : List[str] = torch.tensor([1] , device=self.device )
_A : str = -torch.log(_a ) + torch.log(_a )
return loss
def a__ ( self , _a , _a , _a ) -> Dict:
_A : int = torch.randn_like(self.latent , requires_grad=_a , device=self.device )
_A : List[Any] = torch.optim.Adam([vector] , lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_A : Tuple = self._add_vector(_a )
_A : int = loop_post_process(_a )
_A : Dict = self._get_CLIP_loss(_a , _a , _a )
print("""CLIP loss""" , _a )
if self.log:
wandb.log({"""CLIP Loss""": clip_loss} )
clip_loss.backward(retain_graph=_a )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def a__ ( self , _a , _a , _a ) -> int:
wandb.init(reinit=_a , project="""face-editor""" )
wandb.config.update({"""Positive Prompts""": positive_prompts} )
wandb.config.update({"""Negative Prompts""": negative_prompts} )
wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} )
if image_path:
_A : Optional[int] = Image.open(_a )
_A : Tuple = image.resize((256, 256) )
wandb.log("""Original Image""" , wandb.Image(_a ) )
def a__ ( self , _a ) -> Union[str, Any]:
if not prompts:
return []
_A : List[str] = []
_A : Optional[int] = []
if isinstance(_a , _a ):
_A : Optional[Any] = [prompt.strip() for prompt in prompts.split("""|""" )]
for prompt in prompts:
if isinstance(_a , (tuple, list) ):
_A : List[str] = prompt[0]
_A : int = float(prompt[1] )
elif ":" in prompt:
_A , _A : Optional[int] = prompt.split(""":""" )
_A : Any = float(_a )
else:
_A : Any = prompt
_A : Tuple = 1.0
processed_prompts.append(_a )
weights.append(_a )
return {
"prompts": processed_prompts,
"weights": torch.tensor(_a , device=self.device ),
}
def a__ ( self , _a , _a=None , _a=None , _a=True , _a=False , _a=True , _a=True , _a=None , ) -> List[Any]:
if image_path:
_A : List[str] = self._get_latent(_a )
else:
_A : Optional[int] = torch.randn(self.latent_dim , device=self.device )
if self.log:
self._init_logging(_a , _a , _a )
assert pos_prompts, "You must provide at least one positive prompt."
_A : Optional[Any] = self.process_prompts(_a )
_A : Tuple = self.process_prompts(_a )
if save_final and save_path is None:
_A : List[str] = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) )
if not os.path.exists(_a ):
os.makedirs(_a )
else:
_A : Optional[int] = save_path + """_""" + get_timestamp()
os.makedirs(_a )
_A : Any = save_path
_A : Any = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("""Original Image""" )
show_pil(custom_to_pil(_a ) )
_A : Dict = loop_post_process(_a )
for iter, transformed_img in enumerate(self._optimize_CLIP(_a , _a , _a ) ):
if show_intermediate:
show_pil(_a )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) )
if self.log:
wandb.log({"""Image""": wandb.Image(_a )} )
if show_final:
show_pil(_a )
if save_final:
transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
return number & 1 == 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return number | (1 << position)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return number & ~(1 << position)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return number ^ (1 << position)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return ((number >> position) & 1) == 1
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = [0] * len(snake_case_ )
for i in range(1,len(snake_case_ ) ):
# use last results for better performance - dynamic programming
_A : Union[str, Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_A : Union[str, Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_A : int = j
return prefix_result
def lowerCAmelCase_ ( snake_case_ ):
return max(prefix_function(snake_case_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 1 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
_snake_case = "bert-base-cased"
_snake_case = "google/pegasus-xsum"
_snake_case = [" Sam ate lunch today.", "Sams lunch ingredients."]
_snake_case = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
_snake_case = "patrickvonplaten/t5-tiny-random"
_snake_case = "sshleifer/bart-tiny-random"
_snake_case = "sshleifer/tiny-mbart"
_snake_case = "sshleifer/tiny-marian-en-de"
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Union[str, Any] = """\n""".join(snake_case_ )
Path(snake_case_ ).open("""w""" ).writelines(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(snake_case_,f'''{split}.source''' ),snake_case_ )
_dump_articles(os.path.join(snake_case_,f'''{split}.target''' ),snake_case_ )
return tmp_dir
class lowercase ( UpperCamelCase__ ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def a__ ( self , _a ) -> str:
_A : List[str] = AutoTokenizer.from_pretrained(_a )
_A : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_A : int = max(len(tokenizer.encode(_a ) ) for a in ARTICLES )
_A : Any = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES )
_A : Optional[int] = 4
_A : Union[str, Any] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
_A , _A : List[str] = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error.
_A : Union[str, Any] = SeqaSeqDataset(
_a , data_dir=_a , type_path="""train""" , max_source_length=_a , max_target_length=_a , src_lang=_a , tgt_lang=_a , )
_A : int = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_a , _a )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
_A : List[Any] = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def a__ ( self , _a ) -> List[Any]:
_A : int = AutoTokenizer.from_pretrained(_a )
_A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_A : int = max(len(tokenizer.encode(_a ) ) for a in ARTICLES )
_A : Optional[int] = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES )
_A : Any = 4
_A : Optional[int] = LegacySeqaSeqDataset(
_a , data_dir=_a , type_path="""train""" , max_source_length=20 , max_target_length=_a , )
_A : str = DataLoader(_a , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def a__ ( self ) -> Optional[Any]:
_A : Union[str, Any] = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" )
_A : Dict = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
_A : str = tmp_dir.joinpath("""train.source""" ).open().readlines()
_A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_a , _a , 128 , _a )
_A : int = {x.name for x in tmp_dir.iterdir()}
_A : Optional[int] = {x.name for x in save_dir.iterdir()}
_A : Tuple = save_dir.joinpath("""train.source""" ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_a ) < len(_a )
assert len(_a ) == 1
assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" )
def a__ ( self ) -> int:
if not FAIRSEQ_AVAILABLE:
return
_A , _A , _A : Dict = self._get_dataset(max_len=64 )
_A : Tuple = 64
_A : int = ds.make_dynamic_sampler(_a , required_batch_size_multiple=_a )
_A : List[str] = [len(_a ) for x in batch_sampler]
assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_a ) == len(_a ) # no dropped or added examples
_A : Union[str, Any] = DataLoader(_a , batch_sampler=_a , collate_fn=ds.collate_fn , num_workers=2 )
_A : Optional[int] = []
_A : Any = []
for batch in data_loader:
_A : Tuple = batch["""input_ids"""].shape
_A : Dict = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
_A : Dict = np.product(batch["""input_ids"""].shape )
num_src_per_batch.append(_a )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_a )
assert num_src_per_batch[0] == max(_a )
if failures:
raise AssertionError(F'''too many tokens in {len(_a )} batches''' )
def a__ ( self ) -> str:
_A , _A , _A : Any = self._get_dataset(max_len=512 )
_A : Union[str, Any] = 2
_A : List[str] = ds.make_sortish_sampler(_a , shuffle=_a )
_A : Optional[int] = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 )
_A : Dict = DataLoader(_a , batch_size=_a , collate_fn=ds.collate_fn , num_workers=2 , sampler=_a )
_A : Any = tokenizer.pad_token_id
def count_pad_tokens(_a , _a="input_ids" ):
return [batch[k].eq(_a ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_a , k="""labels""" ) ) < sum(count_pad_tokens(_a , k="""labels""" ) )
assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) )
assert len(_a ) == len(_a )
def a__ ( self , _a=1000 , _a=128 ) -> str:
if os.getenv("""USE_REAL_DATA""" , _a ):
_A : Any = """examples/seq2seq/wmt_en_ro"""
_A : List[str] = max_len * 2 * 64
if not Path(_a ).joinpath("""train.len""" ).exists():
save_len_file(_a , _a )
else:
_A : int = """examples/seq2seq/test_data/wmt_en_ro"""
_A : Union[str, Any] = max_len * 4
save_len_file(_a , _a )
_A : Tuple = AutoTokenizer.from_pretrained(_a )
_A : List[str] = SeqaSeqDataset(
_a , data_dir=_a , type_path="""train""" , max_source_length=_a , max_target_length=_a , n_obs=_a , )
return ds, max_tokens, tokenizer
def a__ ( self ) -> Tuple:
_A , _A , _A : Optional[int] = self._get_dataset()
_A : Optional[Any] = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=0 , add_extra_examples=_a ) )
_A : Any = set(DistributedSortishSampler(_a , 256 , num_replicas=2 , rank=1 , add_extra_examples=_a ) )
assert idsa.intersection(_a ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = AutoTokenizer.from_pretrained(_a , use_fast=_a )
if tok_name == MBART_TINY:
_A : Union[str, Any] = SeqaSeqDataset(
_a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , )
_A : Tuple = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
_A : int = SeqaSeqDataset(
_a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , )
_A : Tuple = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
| 343 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 1 |
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=3 , _a=0.6 , _a=None , ) -> Any:
_A : List[Any] = parent
_A : Dict = batch_size
_A : Optional[int] = image_size
_A : Optional[int] = patch_size
_A : Dict = num_channels
_A : Dict = is_training
_A : Union[str, Any] = use_labels
_A : Union[str, Any] = hidden_size
_A : str = num_hidden_layers
_A : Tuple = num_attention_heads
_A : Optional[Any] = intermediate_size
_A : Optional[int] = hidden_act
_A : Union[str, Any] = hidden_dropout_prob
_A : List[str] = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : Optional[Any] = initializer_range
_A : List[Any] = mask_ratio
_A : str = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def a__ ( self ) -> Any:
_A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : Optional[int] = None
if self.use_labels:
_A : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : int = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[Any]:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_a , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def a__ ( self , _a , _a , _a ) -> Tuple:
_A : Optional[int] = TFViTMAEModel(config=_a )
_A : Union[str, Any] = model(_a , training=_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> Optional[Any]:
_A : Dict = TFViTMAEForPreTraining(_a )
_A : int = model(_a , training=_a )
# expected sequence length = num_patches
_A : Union[str, Any] = (self.image_size // self.patch_size) ** 2
_A : List[str] = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_A : int = 1
_A : Optional[Any] = TFViTMAEForPreTraining(_a )
_A : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : Optional[Any] = model(_a , training=_a )
_A : Union[str, Any] = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def a__ ( self ) -> List[Any]:
_A : Optional[int] = self.prepare_config_and_inputs()
((_A) , (_A) , (_A)) : Tuple = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
_a = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {}
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> int:
_A : Dict = TFViTMAEModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMAE does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
def a__ ( self ) -> Any:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[int] = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
_A : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , tf.keras.layers.Layer ) )
def a__ ( self ) -> str:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(_a )
_A : Union[str, Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : int = [*signature.parameters.keys()]
_A : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Optional[Any]:
_A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> str:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_a )
def a__ ( self ) -> Optional[Any]:
# make the mask reproducible
np.random.seed(2 )
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Optional[Any] = int((config.image_size // config.patch_size) ** 2 )
_A : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_A : Optional[int] = model_class(_a )
_A : Dict = self._prepare_for_class(_a , _a )
_A : str = model(_a , noise=_a )
_A : int = copy.deepcopy(self._prepare_for_class(_a , _a ) )
_A : str = model(**_a , noise=_a )
_A : int = outputs_dict[0].numpy()
_A : Any = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 )
def a__ ( self ) -> Union[str, Any]:
# make the mask reproducible
np.random.seed(2 )
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 )
_A : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(_a ):
_A : Tuple = {}
for k, v in inputs_dict.items():
if tf.is_tensor(_a ):
_A : List[str] = v.numpy()
else:
_A : Union[str, Any] = np.array(_a )
return inputs_np_dict
for model_class in self.all_model_classes:
_A : Dict = model_class(_a )
_A : int = self._prepare_for_class(_a , _a )
_A : Any = prepare_numpy_arrays(_a )
_A : List[str] = model(_a , noise=_a )
_A : List[Any] = model(**_a , noise=_a )
self.assert_outputs_same(_a , _a )
def a__ ( self , _a , _a , _a ) -> List[str]:
# make masks reproducible
np.random.seed(2 )
_A : Tuple = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
_A : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_A : Dict = tf.constant(_a )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_A : str = tf_noise
super().check_pt_tf_models(_a , _a , _a )
def a__ ( self ) -> Any:
# make mask reproducible
np.random.seed(2 )
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : str = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(_a )
if module_member_name.endswith("""MainLayer""" )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )]
for module_member in (getattr(_a , _a ),)
if isinstance(_a , _a )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(_a , """_keras_serializable""" , _a )
}
_A : Any = int((config.image_size // config.patch_size) ** 2 )
_A : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_A : str = tf.convert_to_tensor(_a )
inputs_dict.update({"""noise""": noise} )
for main_layer_class in tf_main_layer_classes:
_A : int = main_layer_class(_a )
_A : str = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
_A : List[Any] = tf.keras.Model(_a , outputs=main_layer(_a ) )
_A : Any = model(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
_A : List[Any] = os.path.join(_a , """keras_model.h5""" )
model.save(_a )
_A : Tuple = tf.keras.models.load_model(
_a , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(_a , tf.keras.Model )
_A : List[Any] = model(_a )
self.assert_outputs_same(_a , _a )
@slow
def a__ ( self ) -> Optional[Any]:
# make mask reproducible
np.random.seed(2 )
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_A : str = int((config.image_size // config.patch_size) ** 2 )
_A : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : List[str] = self._prepare_for_class(_a , _a )
_A : List[str] = model(_a , noise=_a )
if model_class.__name__ == "TFViTMAEModel":
_A : Tuple = outputs.last_hidden_state.numpy()
_A : Union[str, Any] = 0
else:
_A : Optional[int] = outputs.logits.numpy()
_A : Any = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_a , saved_model=_a )
_A : Optional[int] = model_class.from_pretrained(_a )
_A : List[Any] = model(_a , noise=_a )
if model_class.__name__ == "TFViTMAEModel":
_A : int = after_outputs["""last_hidden_state"""].numpy()
_A : str = 0
else:
_A : Any = after_outputs["""logits"""].numpy()
_A : str = 0
_A : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_a , 1e-5 )
def a__ ( self ) -> List[str]:
# make mask reproducible
np.random.seed(2 )
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : int = int((config.image_size // config.patch_size) ** 2 )
_A : str = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_A : Dict = model_class(_a )
_A : Any = self._prepare_for_class(_a , _a )
_A : int = model(_a , noise=_a )
_A : List[Any] = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(_a )
_A : Dict = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
_A : int = model_class.from_config(model.config )
_A : List[str] = new_model(_a ) # Build model
new_model.set_weights(model.get_weights() )
_A : Union[str, Any] = new_model(_a , noise=_a )
self.assert_outputs_same(_a , _a )
@unittest.skip(
reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.""" )
def a__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" )
def a__ ( self ) -> int:
pass
@slow
def a__ ( self ) -> str:
_A : int = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> Tuple:
return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Tuple:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
_A : Union[str, Any] = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" )
_A : Tuple = self.default_image_processor
_A : Optional[int] = prepare_img()
_A : Tuple = image_processor(images=_a , return_tensors="""tf""" )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_A : Tuple = ViTMAEConfig()
_A : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_A : Tuple = np.random.uniform(size=(1, num_patches) )
# forward pass
_A : int = model(**_a , noise=_a )
# verify the logits
_A : Any = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , _a )
_A : str = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , _a , atol=1e-4 )
| 343 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = sorted(numsa + numsa )
_A , _A : Optional[int] = divmod(len(snake_case_ ),2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case = [float(x) for x in input("Enter the elements of first array: ").split()]
_snake_case = [float(x) for x in input("Enter the elements of second array: ").split()]
print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
| 343 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import argparse
from collections import defaultdict
import yaml
_snake_case = "docs/source/en/_toctree.yml"
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = defaultdict(snake_case_ )
_A : Optional[Any] = []
_A : List[Any] = []
for doc in doc_list:
if "local" in doc:
counts[doc["local"]] += 1
if doc["title"].lower() == "overview":
overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} )
else:
new_doc_list.append(snake_case_ )
_A : List[str] = new_doc_list
_A : List[str] = [key for key, value in counts.items() if value > 1]
_A : List[str] = []
for duplicate_key in duplicates:
_A : Optional[Any] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} )
if len(snake_case_ ) > 1:
raise ValueError(
f'''{duplicate_key} is present several times in the documentation table of content at '''
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] )
_A : List[Any] = sorted(snake_case_,key=lambda snake_case_ : s["title"].lower() )
# "overview" gets special treatment and is always first
if len(snake_case_ ) > 1:
raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" )
overview_doc.extend(snake_case_ )
# Sort
return overview_doc
def lowerCAmelCase_ ( snake_case_=False ):
with open(snake_case_,encoding="""utf-8""" ) as f:
_A : List[str] = yaml.safe_load(f.read() )
# Get to the API doc
_A : List[Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_A : Dict = content[api_idx]["""sections"""]
# Then to the model doc
_A : Dict = 0
while api_doc[scheduler_idx]["title"] != "Schedulers":
scheduler_idx += 1
_A : Union[str, Any] = api_doc[scheduler_idx]["""sections"""]
_A : Optional[int] = clean_doc_toc(snake_case_ )
_A : List[Any] = False
if new_scheduler_doc != scheduler_doc:
_A : str = True
if overwrite:
_A : Optional[Any] = new_scheduler_doc
if diff:
if overwrite:
_A : List[Any] = api_doc
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(yaml.dump(snake_case_,allow_unicode=snake_case_ ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
def lowerCAmelCase_ ( snake_case_=False ):
with open(snake_case_,encoding="""utf-8""" ) as f:
_A : Union[str, Any] = yaml.safe_load(f.read() )
# Get to the API doc
_A : List[Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_A : Any = content[api_idx]["""sections"""]
# Then to the model doc
_A : str = 0
while api_doc[pipeline_idx]["title"] != "Pipelines":
pipeline_idx += 1
_A : Any = False
_A : Optional[int] = api_doc[pipeline_idx]["""sections"""]
_A : Optional[Any] = []
# sort sub pipeline docs
for pipeline_doc in pipeline_docs:
if "section" in pipeline_doc:
_A : Dict = pipeline_doc["""section"""]
_A : Dict = clean_doc_toc(snake_case_ )
if overwrite:
_A : str = new_sub_pipeline_doc
new_pipeline_docs.append(snake_case_ )
# sort overall pipeline doc
_A : int = clean_doc_toc(snake_case_ )
if new_pipeline_docs != pipeline_docs:
_A : Union[str, Any] = True
if overwrite:
_A : int = new_pipeline_docs
if diff:
if overwrite:
_A : Union[str, Any] = api_doc
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(yaml.dump(snake_case_,allow_unicode=snake_case_ ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_snake_case = parser.parse_args()
check_scheduler_doc(args.fix_and_overwrite)
check_pipeline_doc(args.fix_and_overwrite)
| 343 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 1 |
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class lowercase ( UpperCamelCase__ ):
_a = "M-CLIP"
def __init__( self , _a=1024 , _a=768 , **_a ) -> Optional[int]:
_A : str = transformerDimSize
_A : Any = imageDimSize
super().__init__(**_a )
class lowercase ( UpperCamelCase__ ):
_a = MCLIPConfig
def __init__( self , _a , *_a , **_a ) -> str:
super().__init__(_a , *_a , **_a )
_A : Optional[int] = XLMRobertaModel(_a )
_A : int = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def a__ ( self , _a , _a ) -> int:
_A : Optional[Any] = self.transformer(input_ids=_a , attention_mask=_a )[0]
_A : Dict = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(_a ), embs
| 343 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 1 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
assert x is not None
assert y is not None
_A : Tuple = len(snake_case_ )
_A : int = len(snake_case_ )
# declaring the array for storing the dp values
_A : Union[str, Any] = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741
for i in range(1,m + 1 ):
for j in range(1,n + 1 ):
_A : Any = 1 if x[i - 1] == y[j - 1] else 0
_A : Union[str, Any] = max(l[i - 1][j],l[i][j - 1],l[i - 1][j - 1] + match )
_A : Optional[Any] = """"""
_A , _A : Any = m, n
while i > 0 and j > 0:
_A : Union[str, Any] = 1 if x[i - 1] == y[j - 1] else 0
if l[i][j] == l[i - 1][j - 1] + match:
if match == 1:
_A : Optional[Any] = x[i - 1] + seq
i -= 1
j -= 1
elif l[i][j] == l[i - 1][j]:
i -= 1
else:
j -= 1
return l[m][n], seq
if __name__ == "__main__":
_snake_case = "AGGTAB"
_snake_case = "GXTXAYB"
_snake_case = 4
_snake_case = "GTAB"
_snake_case , _snake_case = longest_common_subsequence(a, b)
print("len =", ln, ", sub-sequence =", subseq)
import doctest
doctest.testmod()
| 343 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 1 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 343 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
_A : List[str] = mf_knapsack(i - 1,snake_case_,snake_case_,snake_case_ )
else:
_A : List[str] = max(
mf_knapsack(i - 1,snake_case_,snake_case_,snake_case_ ),mf_knapsack(i - 1,snake_case_,snake_case_,j - wt[i - 1] ) + val[i - 1],)
_A : Optional[Any] = val
return f[i][j]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Any = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1,n + 1 ):
for w_ in range(1,w + 1 ):
if wt[i - 1] <= w_:
_A : Dict = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]],dp[i - 1][w_] )
else:
_A : List[Any] = dp[i - 1][w_]
return dp[n][w_], dp
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if not (isinstance(snake_case_,(list, tuple) ) and isinstance(snake_case_,(list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
_A : int = len(snake_case_ )
if num_items != len(snake_case_ ):
_A : int = (
"""The number of weights must be the same as the number of values.\n"""
f'''But got {num_items} weights and {len(snake_case_ )} values'''
)
raise ValueError(snake_case_ )
for i in range(snake_case_ ):
if not isinstance(wt[i],snake_case_ ):
_A : List[str] = (
"""All weights must be integers but got weight of """
f'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(snake_case_ )
_A , _A : List[Any] = knapsack(snake_case_,snake_case_,snake_case_,snake_case_ )
_A : set = set()
_construct_solution(snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ )
return optimal_val, example_optional_set
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(snake_case_,snake_case_,i - 1,snake_case_,snake_case_ )
else:
optimal_set.add(snake_case_ )
_construct_solution(snake_case_,snake_case_,i - 1,j - wt[i - 1],snake_case_ )
if __name__ == "__main__":
_snake_case = [3, 2, 4, 4]
_snake_case = [4, 3, 2, 3]
_snake_case = 4
_snake_case = 6
_snake_case = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_snake_case , _snake_case = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_snake_case , _snake_case = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
import unittest
from knapsack import greedy_knapsack as kp
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Dict:
_A : Optional[Any] = [10, 20, 30, 40, 50, 60]
_A : Tuple = [2, 4, 6, 8, 10, 12]
_A : Any = 100
self.assertEqual(kp.calc_profit(_a , _a , _a ) , 210 )
def a__ ( self ) -> List[Any]:
self.assertRaisesRegex(_a , """max_weight must greater than zero.""" )
def a__ ( self ) -> Dict:
self.assertRaisesRegex(_a , """Weight can not be negative.""" )
def a__ ( self ) -> Dict:
self.assertRaisesRegex(_a , """Profit can not be negative.""" )
def a__ ( self ) -> List[str]:
self.assertRaisesRegex(_a , """max_weight must greater than zero.""" )
def a__ ( self ) -> Any:
self.assertRaisesRegex(
_a , """The length of profit and weight must be same.""" )
if __name__ == "__main__":
unittest.main()
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
from __future__ import annotations
import os
from collections.abc import Mapping
_snake_case = tuple[int, int]
class lowercase :
def __init__( self , _a , _a ) -> None:
_A : set[int] = vertices
_A : dict[EdgeT, int] = {
(min(_a ), max(_a )): weight for edge, weight in edges.items()
}
def a__ ( self , _a , _a ) -> None:
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
_A : str = weight
def a__ ( self ) -> Graph:
_A : Graph = Graph({min(self.vertices )} , {} )
_A : EdgeT
_A : int
_A : EdgeT
_A : int
while len(subgraph.vertices ) < len(self.vertices ):
_A : List[Any] = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
_A : Dict = edge
_A : Optional[Any] = weight
subgraph.add_edge(_a , _a )
return subgraph
def lowerCAmelCase_ ( snake_case_ = "p107_network.txt" ):
_A : str = os.path.abspath(os.path.dirname(snake_case_ ) )
_A : str = os.path.join(snake_case_,snake_case_ )
_A : dict[EdgeT, int] = {}
_A : list[str]
_A : int
_A : int
with open(snake_case_ ) as f:
_A : Dict = f.read().strip().split("""\n""" )
_A : Union[str, Any] = [line.split(""",""" ) for line in data]
for edgea in range(1,len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
_A : int = int(adjaceny_matrix[edgea][edgea] )
_A : Graph = Graph(set(range(len(snake_case_ ) ) ),snake_case_ )
_A : Graph = graph.prims_algorithm()
_A : int = sum(graph.edges.values() )
_A : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
_snake_case = logging.get_logger(__name__)
_snake_case = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class lowercase ( UpperCamelCase__ ):
_a = "dpt"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=384 , _a=16 , _a=3 , _a=False , _a=True , _a=[2, 5, 8, 11] , _a="project" , _a=[4, 2, 1, 0.5] , _a=[96, 192, 384, 768] , _a=256 , _a=-1 , _a=False , _a=True , _a=0.4 , _a=255 , _a=0.1 , _a=[1, 1024, 24, 24] , _a=[0, 1] , _a=None , **_a , ) -> Dict:
super().__init__(**_a )
_A : List[str] = hidden_size
_A : Tuple = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("""Initializing the config with a `BiT` backbone.""" )
_A : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
}
_A : str = BitConfig(**_a )
elif isinstance(_a , _a ):
logger.info("""Initializing the config with a `BiT` backbone.""" )
_A : Union[str, Any] = BitConfig(**_a )
elif isinstance(_a , _a ):
_A : Optional[Any] = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
_A : int = backbone_featmap_shape
_A : List[Any] = neck_ignore_stages
if readout_type != "project":
raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" )
else:
_A : Tuple = None
_A : Optional[int] = None
_A : Any = []
_A : Union[str, Any] = num_hidden_layers
_A : Optional[int] = num_attention_heads
_A : Optional[int] = intermediate_size
_A : str = hidden_act
_A : List[str] = hidden_dropout_prob
_A : Union[str, Any] = attention_probs_dropout_prob
_A : Any = initializer_range
_A : Union[str, Any] = layer_norm_eps
_A : Any = image_size
_A : List[Any] = patch_size
_A : Tuple = num_channels
_A : int = qkv_bias
_A : str = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" )
_A : str = readout_type
_A : int = reassemble_factors
_A : Optional[int] = neck_hidden_sizes
_A : Tuple = fusion_hidden_size
_A : Optional[int] = head_in_index
_A : int = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_A : str = use_auxiliary_head
_A : Optional[int] = auxiliary_loss_weight
_A : Optional[int] = semantic_loss_ignore_index
_A : Dict = semantic_classifier_dropout
def a__ ( self ) -> Optional[Any]:
_A : str = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_A : List[Any] = self.backbone_config.to_dict()
_A : str = self.__class__.model_type
return output
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
import colorsys
from PIL import Image # type: ignore
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Dict = x
_A : Optional[Any] = y
for step in range(snake_case_ ): # noqa: B007
_A : List[Any] = a * a - b * b + x
_A : str = 2 * a * b + y
_A : int = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def lowerCAmelCase_ ( snake_case_ ):
if distance == 1:
return (0, 0, 0)
else:
return (255, 255, 255)
def lowerCAmelCase_ ( snake_case_ ):
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(snake_case_,1,1 ) )
def lowerCAmelCase_ ( snake_case_ = 800,snake_case_ = 600,snake_case_ = -0.6,snake_case_ = 0,snake_case_ = 3.2,snake_case_ = 50,snake_case_ = True,):
_A : Union[str, Any] = Image.new("""RGB""",(image_width, image_height) )
_A : List[str] = img.load()
# loop through the image-coordinates
for image_x in range(snake_case_ ):
for image_y in range(snake_case_ ):
# determine the figure-coordinates based on the image-coordinates
_A : Dict = figure_width / image_width * image_height
_A : Optional[int] = figure_center_x + (image_x / image_width - 0.5) * figure_width
_A : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height
_A : Optional[int] = get_distance(snake_case_,snake_case_,snake_case_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_A : Optional[Any] = get_color_coded_rgb(snake_case_ )
else:
_A : Any = get_black_and_white_rgb(snake_case_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
_snake_case = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
_snake_case = logging.get_logger(__name__)
class lowercase ( UpperCamelCase__ ):
_a = ["pixel_values"]
def __init__( self , _a = True , _a = 1 / 255 , _a = True , _a = 8 , **_a , ) -> None:
super().__init__(**_a )
_A : Tuple = do_rescale
_A : Optional[int] = rescale_factor
_A : Tuple = do_pad
_A : Tuple = pad_size
def a__ ( self , _a , _a , _a = None , **_a ) -> np.ndarray:
return rescale(_a , scale=_a , data_format=_a , **_a )
def a__ ( self , _a , _a , _a = None ) -> Optional[Any]:
_A , _A : Dict = get_image_size(_a )
_A : List[str] = (old_height // size + 1) * size - old_height
_A : Dict = (old_width // size + 1) * size - old_width
return pad(_a , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=_a )
def a__ ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> Any:
_A : List[str] = do_rescale if do_rescale is not None else self.do_rescale
_A : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_A : Optional[int] = do_pad if do_pad is not None else self.do_pad
_A : Any = pad_size if pad_size is not None else self.pad_size
_A : List[str] = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
_A : str = [to_numpy_array(_a ) for image in images]
if do_rescale:
_A : Any = [self.rescale(image=_a , scale=_a ) for image in images]
if do_pad:
_A : Any = [self.pad(_a , size=_a ) for image in images]
_A : Union[str, Any] = [to_channel_dimension_format(_a , _a ) for image in images]
_A : Optional[Any] = {"""pixel_values""": images}
return BatchFeature(data=_a , tensor_type=_a )
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowercase :
def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[8, 16, 32, 64] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=1 , ) -> Tuple:
_A : Dict = parent
_A : int = batch_size
_A : str = image_size
_A : Optional[Any] = num_channels
_A : Optional[Any] = embeddings_size
_A : List[str] = hidden_sizes
_A : Any = depths
_A : Dict = is_training
_A : List[str] = use_labels
_A : Any = hidden_act
_A : Dict = num_labels
_A : Tuple = scope
_A : List[Any] = len(_a )
_A : List[str] = out_features
_A : Tuple = out_indices
_A : int = num_groups
def a__ ( self ) -> int:
_A : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : Tuple = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> str:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def a__ ( self , _a , _a , _a ) -> Union[str, Any]:
_A : Tuple = BitModel(config=_a )
model.to(_a )
model.eval()
_A : str = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : str = self.num_labels
_A : List[Any] = BitForImageClassification(_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Optional[int] = BitBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[int] = None
_A : Tuple = BitBackbone(config=_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : int = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
_a = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Optional[Any]:
_A : Optional[int] = BitModelTester(self )
_A : Optional[int] = ConfigTester(self , config_class=_a , has_text_modality=_a )
def a__ ( self ) -> int:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> Tuple:
return
@unittest.skip(reason="""Bit does not output attentions""" )
def a__ ( self ) -> int:
pass
@unittest.skip(reason="""Bit does not use inputs_embeds""" )
def a__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""Bit does not support input and output embeddings""" )
def a__ ( self ) -> Dict:
pass
def a__ ( self ) -> Tuple:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(_a )
_A : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Tuple:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Optional[int]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Any:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(config=_a )
for name, module in model.named_modules():
if isinstance(_a , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Optional[Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : List[str] = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Union[str, Any] = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : str = self.model_tester.prepare_config_and_inputs_for_common()
_A : Union[str, Any] = ["""preactivation""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_A : Optional[Any] = layer_type
_A : Dict = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Any = True
check_hidden_states_output(_a , _a , _a )
@unittest.skip(reason="""Bit does not use feedforward chunking""" )
def a__ ( self ) -> str:
pass
def a__ ( self ) -> Optional[int]:
_A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Dict:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Tuple = BitModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> Optional[Any]:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def a__ ( self ) -> str:
_A : Optional[int] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
_A : Tuple = self.default_image_processor
_A : Optional[int] = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : str = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = (BitBackbone,) if is_torch_available() else ()
_a = BitConfig
_a = False
def a__ ( self ) -> int:
_A : Tuple = BitModelTester(self )
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = RobertaPreLayerNormConfig.from_pretrained(
snake_case_,architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
_A : int = torch.load(hf_hub_download(repo_id=snake_case_,filename="""pytorch_model.bin""" ) )
_A : Dict = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
_A : List[str] = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
_A : int = tensor_value
_A : int = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=snake_case_,config=snake_case_,state_dict=snake_case_ )
model.save_pretrained(snake_case_ )
# convert tokenizer
_A : Optional[Any] = AutoTokenizer.from_pretrained(snake_case_ )
tokenizer.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint-repo",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def lowerCAmelCase_ ( *snake_case_ ):
if not isinstance(_UpperCAmelCase,_UpperCAmelCase ):
_A : str = list(_UpperCAmelCase )
for i in range(len(_UpperCAmelCase ) ):
_A : Tuple = None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = [
'CUDA out of memory.', # CUDA OOM
'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU
'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM
]
if isinstance(_UpperCAmelCase,_UpperCAmelCase ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def lowerCAmelCase_ ( snake_case_ = None,snake_case_ = 128 ):
if function is None:
return functools.partial(_UpperCAmelCase,starting_batch_size=_UpperCAmelCase )
_A : Optional[Any] = starting_batch_size
def decorator(*snake_case_,**snake_case_ ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
_A : str = list(inspect.signature(_UpperCAmelCase ).parameters.keys() )
# Guard against user error
if len(_UpperCAmelCase ) < (len(_UpperCAmelCase ) + 1):
_A : Dict = ', '.join([f'''{arg}={value}''' for arg, value in zip(params[1:],args[1:] )] )
raise TypeError(
f'''Batch size was passed into `{function.__name__}` as the first argument when called.'''
f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(_UpperCAmelCase,*_UpperCAmelCase,**_UpperCAmelCase )
except Exception as e:
if should_reduce_batch_size(_UpperCAmelCase ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 350 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 0 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
_snake_case = {
"vocab_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"
),
},
"merges_file": {
"allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt",
"allenai/longformer-large-4096": (
"https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-finetuned-triviaqa": (
"https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"
),
"allenai/longformer-base-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
"allenai/longformer-large-4096-extra.pos.embd.only": (
"https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"
),
},
}
_snake_case = {
"allenai/longformer-base-4096": 4096,
"allenai/longformer-large-4096": 4096,
"allenai/longformer-large-4096-finetuned-triviaqa": 4096,
"allenai/longformer-base-4096-extra.pos.embd.only": 4096,
"allenai/longformer-large-4096-extra.pos.embd.only": 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCAmelCase_ ( ):
_A : int = (
list(range(ord("""!""" ),ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ),ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ),ord("""ÿ""" ) + 1 ) )
)
_A : Optional[int] = bs[:]
_A : int = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowercase__ )
cs.append(2**8 + n )
n += 1
_A : Any = [chr(lowercase__ ) for n in cs]
return dict(zip(lowercase__,lowercase__ ) )
def lowerCAmelCase_ ( snake_case_ ):
_A : str = set()
_A : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : str = char
return pairs
class lowercase ( A__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "attention_mask"]
def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ) -> int:
_A : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
_A : Optional[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
_A : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
_A : List[str] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
_A : str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
_A : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_A : List[Any] = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
errors=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , **__A , )
with open(__A , encoding="""utf-8""" ) as vocab_handle:
_A : Optional[Any] = json.load(__A )
_A : Optional[int] = {v: k for k, v in self.encoder.items()}
_A : List[str] = errors # how to handle errors in decoding
_A : Optional[Any] = bytes_to_unicode()
_A : List[str] = {v: k for k, v in self.byte_encoder.items()}
with open(__A , encoding="""utf-8""" ) as merges_handle:
_A : Dict = merges_handle.read().split("""\n""" )[1:-1]
_A : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges]
_A : Optional[int] = dict(zip(__A , range(len(__A ) ) ) )
_A : Dict = {}
_A : Optional[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_A : Optional[int] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def a__ ( self ) -> Optional[int]:
return len(self.encoder )
def a__ ( self ) -> Tuple:
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self , _a ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
_A : Dict = tuple(__A )
_A : Any = get_pairs(__A )
if not pairs:
return token
while True:
_A : Tuple = min(__A , key=lambda _a : self.bpe_ranks.get(__A , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_A : Dict = bigram
_A : Tuple = []
_A : str = 0
while i < len(__A ):
try:
_A : Optional[Any] = word.index(__A , __A )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_A : List[Any] = j
if word[i] == first and i < len(__A ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A : Union[str, Any] = tuple(__A )
_A : Optional[int] = new_word
if len(__A ) == 1:
break
else:
_A : int = get_pairs(__A )
_A : Any = """ """.join(__A )
_A : Dict = word
return word
def a__ ( self , _a ) -> Optional[Any]:
_A : Optional[Any] = []
for token in re.findall(self.pat , __A ):
_A : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__A ).split(""" """ ) )
return bpe_tokens
def a__ ( self , _a ) -> Any:
return self.encoder.get(__A , self.encoder.get(self.unk_token ) )
def a__ ( self , _a ) -> Tuple:
return self.decoder.get(__A )
def a__ ( self , _a ) -> Optional[Any]:
_A : List[Any] = """""".join(__A )
_A : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(__A ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : Dict = os.path.join(
__A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Optional[Any] = os.path.join(
__A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(__A , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__A , ensure_ascii=__A ) + """\n""" )
_A : List[Any] = 0
with open(__A , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
_A : Tuple = token_index
writer.write(""" """.join(__A ) + """\n""" )
index += 1
return vocab_file, merge_file
def a__ ( self , _a , _a = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_A : Optional[Any] = [self.cls_token_id]
_A : Optional[int] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a__ ( self , _a , _a = None , _a = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def a__ ( self , _a , _a = None ) -> List[int]:
_A : List[str] = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self , _a , _a=False , **_a ) -> List[Any]:
_A : str = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__A ) > 0 and not text[0].isspace()):
_A : int = """ """ + text
return (text, kwargs)
| 351 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 0 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
)
@flax.struct.dataclass
class lowercase ( _UpperCAmelCase ):
_a = 42
_a = 42
class lowercase ( nn.Module ):
_a = 42
_a = (1_6, 3_2, 9_6, 2_5_6)
_a = jnp.floataa
def a__ ( self ):
_A : List[str] = nn.Conv(
self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
_A : Dict = []
for i in range(len(self.block_out_channels ) - 1 ):
_A : Dict = self.block_out_channels[i]
_A : Tuple = self.block_out_channels[i + 1]
_A : Union[str, Any] = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
_A : Union[str, Any] = nn.Conv(
_UpperCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
blocks.append(_UpperCAmelCase )
_A : Optional[Any] = blocks
_A : Tuple = nn.Conv(
self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _a ):
_A : List[str] = self.conv_in(_UpperCAmelCase )
_A : Any = nn.silu(_UpperCAmelCase )
for block in self.blocks:
_A : int = block(_UpperCAmelCase )
_A : str = nn.silu(_UpperCAmelCase )
_A : int = self.conv_out(_UpperCAmelCase )
return embedding
@flax_register_to_config
class lowercase ( nn.Module,_UpperCAmelCase,_UpperCAmelCase ):
_a = 3_2
_a = 4
_a = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_a = False
_a = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_a = 2
_a = 8
_a = None
_a = 1_2_8_0
_a = 0.0
_a = False
_a = jnp.floataa
_a = True
_a = 0
_a = "rgb"
_a = (1_6, 3_2, 9_6, 2_5_6)
def a__ ( self , _a ):
# init input tensors
_A : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size)
_A : List[str] = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
_A : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa )
_A : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_A : Optional[Any] = (1, 3, self.sample_size * 8, self.sample_size * 8)
_A : int = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
_A : Any = jax.random.split(_UpperCAmelCase )
_A : str = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"]
def a__ ( self ):
_A : int = self.block_out_channels
_A : str = block_out_channels[0] * 4
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_A : int = self.num_attention_heads or self.attention_head_dim
# input
_A : Dict = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_A : str = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_A : int = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype )
_A : Optional[Any] = FlaxControlNetConditioningEmbedding(
conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , )
_A : int = self.only_cross_attention
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A : Dict = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A : Dict = (num_attention_heads,) * len(self.down_block_types )
# down
_A : str = []
_A : Optional[int] = []
_A : Tuple = block_out_channels[0]
_A : Union[str, Any] = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
for i, down_block_type in enumerate(self.down_block_types ):
_A : Optional[int] = output_channel
_A : Any = block_out_channels[i]
_A : Optional[Any] = i == len(_UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_A : List[str] = FlaxCrossAttnDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , )
else:
_A : str = FlaxDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_UpperCAmelCase )
for _ in range(self.layers_per_block ):
_A : Optional[int] = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
if not is_final_block:
_A : Optional[int] = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
controlnet_down_blocks.append(_UpperCAmelCase )
_A : str = down_blocks
_A : Dict = controlnet_down_blocks
# mid
_A : Optional[Any] = block_out_channels[-1]
_A : Dict = FlaxUNetMidBlockaDCrossAttn(
in_channels=_UpperCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , )
_A : Any = nn.Conv(
_UpperCAmelCase , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , )
def __call__( self , _a , _a , _a , _a , _a = 1.0 , _a = True , _a = False , ):
_A : Any = self.controlnet_conditioning_channel_order
if channel_order == "bgr":
_A : int = jnp.flip(_UpperCAmelCase , axis=1 )
# 1. time
if not isinstance(_UpperCAmelCase , jnp.ndarray ):
_A : str = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
_A : Optional[int] = timesteps.astype(dtype=jnp.floataa )
_A : List[str] = jnp.expand_dims(_UpperCAmelCase , 0 )
_A : List[str] = self.time_proj(_UpperCAmelCase )
_A : List[Any] = self.time_embedding(_UpperCAmelCase )
# 2. pre-process
_A : int = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
_A : int = self.conv_in(_UpperCAmelCase )
_A : Any = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
_A : Dict = self.controlnet_cond_embedding(_UpperCAmelCase )
sample += controlnet_cond
# 3. down
_A : Dict = (sample,)
for down_block in self.down_blocks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A : List[str] = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
else:
_A : List[Any] = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
# 4. mid
_A : int = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
# 5. contronet blocks
_A : List[Any] = ()
for down_block_res_sample, controlnet_block in zip(_UpperCAmelCase , self.controlnet_down_blocks ):
_A : Tuple = controlnet_block(_UpperCAmelCase )
controlnet_down_block_res_samples += (down_block_res_sample,)
_A : Tuple = controlnet_down_block_res_samples
_A : Optional[int] = self.controlnet_mid_block(_UpperCAmelCase )
# 6. scaling
_A : List[Any] = [sample * conditioning_scale for sample in down_block_res_samples]
mid_block_res_sample *= conditioning_scale
if not return_dict:
return (down_block_res_samples, mid_block_res_sample)
return FlaxControlNetOutput(
down_block_res_samples=_UpperCAmelCase , mid_block_res_sample=_UpperCAmelCase )
| 352 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 0 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Any = """\n""".join(__lowerCAmelCase )
Path(__lowerCAmelCase ).open("""w""" ).writelines(__lowerCAmelCase )
_snake_case = "patrickvonplaten/t5-tiny-random"
_snake_case = "sshleifer/bart-tiny-random"
_snake_case = "sshleifer/tiny-mbart"
_snake_case = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class lowercase ( A__ ):
def a__ ( self , _a ) -> Any:
_A : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
_A : List[str] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
_A : List[str] = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""]
_dump_articles(__snake_case , __snake_case )
_A : Union[str, Any] = str(Path(self.get_auto_remove_tmp_dir() ) / """scores.json""" )
_A : Optional[int] = """translation_en_to_de""" if model == T5_TINY else """summarization"""
_A : Optional[int] = F'''
run_eval_search.py
{model}
{input_file_name}
{output_file_name}
--score_path {score_path}
--task {task}
--num_beams 2
--length_penalty 2.0
'''.split()
with patch.object(__snake_case , """argv""" , __snake_case ):
run_generate()
assert Path(__snake_case ).exists()
# os.remove(Path(output_file_name))
def a__ ( self ) -> Union[str, Any]:
self.run_eval_tester(__snake_case )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def a__ ( self , _a ) -> Dict:
self.run_eval_tester(__snake_case )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def a__ ( self , _a ) -> Any:
_A : List[str] = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source"""
_A : Optional[int] = input_file_name.parent / """utest_output.txt"""
assert not output_file_name.exists()
_A : Dict = {
"""en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""],
"""de""": [
"""Maschinelles Lernen ist großartig, oder?""",
"""Ich esse gerne Bananen""",
"""Morgen ist wieder ein toller Tag!""",
],
}
_A : str = Path(self.get_auto_remove_tmp_dir() )
_A : str = str(tmp_dir / """scores.json""" )
_A : Any = str(tmp_dir / """val.target""" )
_dump_articles(__snake_case , text["""en"""] )
_dump_articles(__snake_case , text["""de"""] )
_A : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization"""
_A : Optional[Any] = F'''
run_eval_search.py
{model}
{str(__snake_case )}
{str(__snake_case )}
--score_path {score_path}
--reference_path {reference_path}
--task {task}
'''.split()
testargs.extend(["""--search""", """num_beams=1:2 length_penalty=0.9:1.0"""] )
with patch.object(__snake_case , """argv""" , __snake_case ):
with CaptureStdout() as cs:
run_search()
_A : Dict = [""" num_beams | length_penalty""", model, """Best score args"""]
_A : List[str] = ["""Info"""]
if "translation" in task:
expected_strings.append("""bleu""" )
else:
expected_strings.extend(__snake_case )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(__snake_case ).exists()
os.remove(Path(__snake_case ) )
| 353 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 0 |
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class lowercase :
_a = LEDConfig
_a = {}
_a = "gelu"
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=False , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a=0.1 , _a=0.1 , _a=20 , _a=2 , _a=1 , _a=0 , _a=4 , ) -> Any:
_A : List[Any] = parent
_A : Tuple = batch_size
_A : List[Any] = seq_length
_A : List[Any] = is_training
_A : str = use_labels
_A : List[str] = vocab_size
_A : Union[str, Any] = hidden_size
_A : List[str] = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : Optional[Any] = intermediate_size
_A : str = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = max_position_embeddings
_A : List[Any] = eos_token_id
_A : str = pad_token_id
_A : Tuple = bos_token_id
_A : List[Any] = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_A : Optional[Any] = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_A : Optional[int] = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def a__ ( self ) -> List[str]:
_A : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_A : Any = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_A : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
_A : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A : List[Any] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_A : Dict = prepare_led_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
_A : Optional[Any] = tf.concat(
[tf.zeros_like(_lowerCamelCase )[:, :-1], tf.ones_like(_lowerCamelCase )[:, -1:]] , axis=-1 , )
_A : Optional[int] = global_attention_mask
return config, inputs_dict
def a__ ( self , _a , _a ) -> Union[str, Any]:
_A : Optional[int] = TFLEDModel(config=_lowerCamelCase ).get_decoder()
_A : str = inputs_dict['''input_ids''']
_A : Optional[Any] = input_ids[:1, :]
_A : Optional[Any] = inputs_dict['''attention_mask'''][:1, :]
_A : List[Any] = 1
# first forward pass
_A : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase )
_A : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_A : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
_A : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_A : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 )
_A : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_A : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0]
_A : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_A : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_A : List[str] = output_from_no_past[:, -3:, random_slice_idx]
_A : List[str] = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=None,snake_case_=None,snake_case_=None,snake_case_=None,):
if attention_mask is None:
_A : List[str] = tf.cast(tf.math.not_equal(lowerCamelCase__,config.pad_token_id ),tf.inta )
if decoder_attention_mask is None:
_A : List[str] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape,dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:],config.pad_token_id ),tf.inta ),
],axis=-1,)
if head_mask is None:
_A : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_A : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class lowercase ( a__,a__,unittest.TestCase ):
_a = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
_a = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
_a = (
{
"conversational": TFLEDForConditionalGeneration,
"feature-extraction": TFLEDModel,
"summarization": TFLEDForConditionalGeneration,
"text2text-generation": TFLEDForConditionalGeneration,
"translation": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
def a__ ( self ) -> List[str]:
_A : Tuple = TFLEDModelTester(self )
_A : Tuple = ConfigTester(self , config_class=_lowerCamelCase )
def a__ ( self ) -> Any:
self.config_tester.run_common_tests()
def a__ ( self ) -> int:
_A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase )
def a__ ( self ) -> Optional[int]:
_A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_A : str = tf.zeros_like(inputs_dict["""attention_mask"""] )
_A : str = 2
_A : Dict = tf.where(
tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , )
_A : str = True
_A : Dict = self.model_tester.seq_length
_A : Dict = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(_a ):
_A : str = outputs.decoder_attentions
self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(_a ):
_A : Optional[int] = [t.numpy() for t in outputs.encoder_attentions]
_A : Any = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_A : Optional[int] = True
_A : str = False
_A : Optional[Any] = False
_A : List[Any] = model_class(_lowerCamelCase )
_A : str = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
_A : int = len(_lowerCamelCase )
self.assertEqual(config.output_hidden_states , _lowerCamelCase )
check_encoder_attentions_output(_lowerCamelCase )
if self.is_encoder_decoder:
_A : str = model_class(_lowerCamelCase )
_A : Dict = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , _lowerCamelCase )
check_decoder_attentions_output(_lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_A : List[Any] = True
_A : Optional[int] = model_class(_lowerCamelCase )
_A : Dict = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , _lowerCamelCase )
check_encoder_attentions_output(_lowerCamelCase )
# Check attention is always last and order is fine
_A : Tuple = True
_A : Dict = True
_A : Union[str, Any] = model_class(_lowerCamelCase )
_A : List[str] = model(self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , _lowerCamelCase )
check_encoder_attentions_output(_lowerCamelCase )
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> str:
pass
def lowerCAmelCase_ ( snake_case_ ):
return tf.constant(lowerCamelCase__,dtype=tf.intaa )
_snake_case = 1e-4
@slow
@require_tf
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Optional[int]:
_A : List[Any] = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" ).led
# change to intended input here
_A : Any = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_A : List[Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_A : List[Any] = prepare_led_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase )
_A : Tuple = model(**_lowerCamelCase )[0]
_A : Dict = (1, 1024, 768)
self.assertEqual(output.shape , _lowerCamelCase )
# change to expected output here
_A : Optional[Any] = tf.convert_to_tensor(
[[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-3 )
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""" )
# change to intended input here
_A : Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_A : List[Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] )
_A : Union[str, Any] = prepare_led_inputs_dict(model.config , _lowerCamelCase , _lowerCamelCase )
_A : Any = model(**_lowerCamelCase )[0]
_A : Optional[int] = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , _lowerCamelCase )
# change to expected output here
_A : int = tf.convert_to_tensor(
[[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , )
tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1e-3 , rtol=1e-3 )
| 354 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 0 |
import argparse
from collections import defaultdict
import yaml
_snake_case = "docs/source/en/_toctree.yml"
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = defaultdict(__a )
for doc in model_doc:
counts[doc["local"]] += 1
_A : List[str] = [key for key, value in counts.items() if value > 1]
_A : str = []
for duplicate_key in duplicates:
_A : Union[str, Any] = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} )
if len(__a ) > 1:
raise ValueError(
f'''{duplicate_key} is present several times in the documentation table of content at '''
"""`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """
"""others.""" )
# Only add this once
new_doc.append({"""local""": duplicate_key, """title""": titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] )
# Sort
return sorted(__a,key=lambda snake_case_ : s["title"].lower() )
def lowerCAmelCase_ ( snake_case_=False ):
with open(__a,encoding="""utf-8""" ) as f:
_A : Tuple = yaml.safe_load(f.read() )
# Get to the API doc
_A : Union[str, Any] = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_A : Union[str, Any] = content[api_idx]['sections']
# Then to the model doc
_A : List[str] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
_A : List[str] = api_doc[model_idx]['sections']
_A : List[Any] = [(idx, section) for idx, section in enumerate(__a ) if 'sections' in section]
_A : Tuple = False
for idx, modality_doc in modalities_docs:
_A : List[Any] = modality_doc['sections']
_A : Any = clean_model_doc_toc(__a )
if old_modality_doc != new_modality_doc:
_A : Union[str, Any] = True
if overwrite:
_A : str = new_modality_doc
if diff:
if overwrite:
_A : Dict = model_doc
_A : Dict = api_doc
with open(__a,"""w""",encoding="""utf-8""" ) as f:
f.write(yaml.dump(__a,allow_unicode=__a ) )
else:
raise ValueError(
"""The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
_snake_case = parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 355 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Dict:
_A : Union[str, Any] = tempfile.mkdtemp()
_A : Any = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""的""",
"""价""",
"""格""",
"""是""",
"""15""",
"""便""",
"""alex""",
"""##andra""",
""",""",
"""。""",
"""-""",
"""t""",
"""shirt""",
]
_A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
_A : List[Any] = {
"""do_resize""": True,
"""size""": {"""height""": 224, """width""": 224},
"""do_center_crop""": True,
"""crop_size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.48145466, 0.4578275, 0.40821073],
"""image_std""": [0.26862954, 0.26130258, 0.27577711],
"""do_convert_rgb""": True,
}
_A : Union[str, Any] = os.path.join(self.tmpdirname , _a )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(_a , _a )
def a__ ( self , **_a ) -> List[str]:
return BertTokenizer.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , **_a ) -> Union[str, Any]:
return BertTokenizerFast.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , **_a ) -> Optional[int]:
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_a )
def a__ ( self ) -> List[str]:
shutil.rmtree(self.tmpdirname )
def a__ ( self ) -> List[str]:
_A : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_A : Dict = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self ) -> List[Any]:
_A : Any = self.get_tokenizer()
_A : Optional[int] = self.get_rust_tokenizer()
_A : List[str] = self.get_image_processor()
_A : Optional[Any] = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
processor_slow.save_pretrained(self.tmpdirname )
_A : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_a )
_A : Tuple = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
processor_fast.save_pretrained(self.tmpdirname )
_A : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , _a )
self.assertIsInstance(processor_fast.tokenizer , _a )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , _a )
self.assertIsInstance(processor_fast.image_processor , _a )
def a__ ( self ) -> str:
_A : Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_A : List[str] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" )
_A : List[Any] = self.get_image_processor(do_normalize=_a )
_A : Tuple = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=_a )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , _a )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _a )
def a__ ( self ) -> List[Any]:
_A : str = self.get_image_processor()
_A : int = self.get_tokenizer()
_A : int = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
_A : Dict = self.prepare_image_inputs()
_A : Optional[Any] = image_processor(_a , return_tensors="""np""" )
_A : str = processor(images=_a , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def a__ ( self ) -> Tuple:
_A : Any = self.get_image_processor()
_A : List[str] = self.get_tokenizer()
_A : str = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
_A : Tuple = """Alexandra,T-shirt的价格是15便士。"""
_A : Dict = processor(text=_a )
_A : Optional[Any] = tokenizer(_a )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a__ ( self ) -> List[Any]:
_A : Union[str, Any] = self.get_image_processor()
_A : str = self.get_tokenizer()
_A : List[Any] = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
_A : Dict = """Alexandra,T-shirt的价格是15便士。"""
_A : int = self.prepare_image_inputs()
_A : Union[str, Any] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(_a ):
processor()
def a__ ( self ) -> List[str]:
_A : int = self.get_image_processor()
_A : Optional[Any] = self.get_tokenizer()
_A : str = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
_A : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_A : Union[str, Any] = processor.batch_decode(_a )
_A : List[str] = tokenizer.batch_decode(_a )
self.assertListEqual(_a , _a )
def a__ ( self ) -> Tuple:
_A : str = self.get_image_processor()
_A : str = self.get_tokenizer()
_A : List[Any] = ChineseCLIPProcessor(tokenizer=_a , image_processor=_a )
_A : Optional[int] = """Alexandra,T-shirt的价格是15便士。"""
_A : str = self.prepare_image_inputs()
_A : Optional[int] = processor(text=_a , images=_a )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 356 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json",
"google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json"
# See all FNet models at https://huggingface.co/models?filter=fnet
}
class lowercase ( UpperCamelCase__ ):
_a = '''fnet'''
def __init__( self , _a=3_2000 , _a=768 , _a=12 , _a=3072 , _a="gelu_new" , _a=0.1 , _a=512 , _a=4 , _a=0.02 , _a=1e-12 , _a=False , _a=512 , _a=3 , _a=1 , _a=2 , **_a , ) -> int:
super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
_A : str = vocab_size
_A : Tuple = max_position_embeddings
_A : Tuple = hidden_size
_A : List[Any] = num_hidden_layers
_A : Union[str, Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : Union[str, Any] = initializer_range
_A : Optional[Any] = type_vocab_size
_A : List[Any] = layer_norm_eps
_A : Union[str, Any] = use_tpu_fourier_optimizations
_A : List[Any] = tpu_short_seq_length
| 357 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
class lowercase ( lowercase__ ):
_a = 'encoder-decoder'
_a = True
def __init__( self , **_a ) -> List[Any]:
super().__init__(**_UpperCamelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_A : Optional[Any] = kwargs.pop("""encoder""" )
_A : str = encoder_config.pop("""model_type""" )
_A : Optional[Any] = kwargs.pop("""decoder""" )
_A : Dict = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
_A : Tuple = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase )
_A : Union[str, Any] = AutoConfig.for_model(_UpperCamelCase , **_UpperCamelCase )
_A : int = True
@classmethod
def a__ ( cls , _a , _a , **_a ) -> Optional[Any]:
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
_A : Optional[Any] = True
_A : Optional[int] = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_UpperCamelCase )
def a__ ( self ) -> str:
_A : List[str] = copy.deepcopy(self.__dict__ )
_A : int = self.encoder.to_dict()
_A : List[str] = self.decoder.to_dict()
_A : int = self.__class__.model_type
return output
| 358 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 0 |
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_snake_case = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
_snake_case = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = SavedModel()
_A : Optional[int] = []
with open(os.path.join(snake_case_,"""utils""","""tf_ops""","""onnx.json""" ) ) as f:
_A : List[Any] = json.load(snake_case_ )["""opsets"""]
for i in range(1,opset + 1 ):
onnx_ops.extend(onnx_opsets[str(snake_case_ )] )
with open(snake_case_,"""rb""" ) as f:
saved_model.ParseFromString(f.read() )
_A : Tuple = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
_A : List[Any] = sorted(snake_case_ )
_A : str = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(snake_case_ )
if strict and len(snake_case_ ) > 0:
raise Exception(f'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(snake_case_ ) > 0:
print(f'''Found the following incompatible ops for the opset {opset}:''' )
print(*snake_case_,sep="""\n""" )
else:
print(f'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).")
parser.add_argument(
"--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested."
)
parser.add_argument(
"--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model."
)
parser.add_argument(
"--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)"
)
_snake_case = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 0 |
"""simple docstring"""
import string
import numpy
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return b if a == 0 else greatest_common_divisor(b % a,__lowerCamelCase )
class lowercase :
_a = string.ascii_uppercase + string.digits
# This cipher takes alphanumerics into account
# i.e. a total of 36 characters
# take x and return x % len(key_string)
_a = numpy.vectorize(lambda UpperCamelCase__ : x % 3_6 )
_a = numpy.vectorize(A_ )
def __init__( self , _a ) -> None:
_A : Optional[int] = self.modulus(snake_case__ ) # mod36 calc's on the encrypt key
self.check_determinant() # validate the determinant of the encryption key
_A : Optional[int] = encrypt_key.shape[0]
def a__ ( self , _a ) -> int:
return self.key_string.index(snake_case__ )
def a__ ( self , _a ) -> str:
return self.key_string[round(snake_case__ )]
def a__ ( self ) -> None:
_A : Optional[int] = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_A : int = det % len(self.key_string )
_A : Optional[int] = len(self.key_string )
if greatest_common_divisor(snake_case__ , len(self.key_string ) ) != 1:
_A : str = (
F'''determinant modular {req_l} of encryption key({det}) '''
F'''is not co prime w.r.t {req_l}.\nTry another key.'''
)
raise ValueError(snake_case__ )
def a__ ( self , _a ) -> str:
_A : List[str] = [char for char in text.upper() if char in self.key_string]
_A : Tuple = chars[-1]
while len(snake_case__ ) % self.break_key != 0:
chars.append(snake_case__ )
return "".join(snake_case__ )
def a__ ( self , _a ) -> str:
_A : Any = self.process_text(text.upper() )
_A : Optional[int] = ""
for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ):
_A : List[Any] = text[i : i + self.break_key]
_A : Union[str, Any] = [self.replace_letters(snake_case__ ) for char in batch]
_A : Tuple = numpy.array([vec] ).T
_A : Optional[Any] = self.modulus(self.encrypt_key.dot(snake_case__ ) ).T.tolist()[
0
]
_A : List[Any] = "".join(
self.replace_digits(snake_case__ ) for num in batch_encrypted )
encrypted += encrypted_batch
return encrypted
def a__ ( self ) -> numpy.ndarray:
_A : Tuple = round(numpy.linalg.det(self.encrypt_key ) )
if det < 0:
_A : int = det % len(self.key_string )
_A : Any = None
for i in range(len(self.key_string ) ):
if (det * i) % len(self.key_string ) == 1:
_A : str = i
break
_A : int = (
det_inv
* numpy.linalg.det(self.encrypt_key )
* numpy.linalg.inv(self.encrypt_key )
)
return self.to_int(self.modulus(snake_case__ ) )
def a__ ( self , _a ) -> str:
_A : str = self.make_decrypt_key()
_A : Dict = self.process_text(text.upper() )
_A : Optional[Any] = ""
for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ):
_A : str = text[i : i + self.break_key]
_A : List[Any] = [self.replace_letters(snake_case__ ) for char in batch]
_A : List[str] = numpy.array([vec] ).T
_A : Optional[int] = self.modulus(decrypt_key.dot(snake_case__ ) ).T.tolist()[0]
_A : int = "".join(
self.replace_digits(snake_case__ ) for num in batch_decrypted )
decrypted += decrypted_batch
return decrypted
def lowerCAmelCase_ ( ):
_A : Optional[int] = int(input("""Enter the order of the encryption key: """ ) )
_A : Union[str, Any] = []
print("""Enter each row of the encryption key with space separated integers""" )
for _ in range(__lowerCamelCase ):
_A : Union[str, Any] = [int(__lowerCamelCase ) for x in input().split()]
hill_matrix.append(__lowerCamelCase )
_A : Any = HillCipher(numpy.array(__lowerCamelCase ) )
print("""Would you like to encrypt or decrypt some text? (1 or 2)""" )
_A : Tuple = input("""\n1. Encrypt\n2. Decrypt\n""" )
if option == "1":
_A : Any = input("""What text would you like to encrypt?: """ )
print("""Your encrypted text is:""" )
print(hc.encrypt(__lowerCamelCase ) )
elif option == "2":
_A : Optional[int] = input("""What text would you like to decrypt?: """ )
print("""Your decrypted text is:""" )
print(hc.decrypt(__lowerCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 360 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 0 |
import unittest
from transformers import load_tool
from .test_tools_common import ToolTesterMixin
_snake_case = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n"
class lowercase ( unittest.TestCase,__SCREAMING_SNAKE_CASE ):
def a__ ( self ) -> List[Any]:
_A : Any = load_tool("""text-question-answering""" )
self.tool.setup()
_A : List[Any] = load_tool("""text-question-answering""" , remote=_a )
def a__ ( self ) -> List[str]:
_A : int = self.tool(_a , """What did Hugging Face do in April 2021?""" )
self.assertEqual(_a , """launched the BigScience Research Workshop""" )
def a__ ( self ) -> Dict:
_A : Optional[Any] = self.remote_tool(_a , """What did Hugging Face do in April 2021?""" )
self.assertEqual(_a , """launched the BigScience Research Workshop""" )
def a__ ( self ) -> Tuple:
_A : Dict = self.tool(text=_a , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(_a , """launched the BigScience Research Workshop""" )
def a__ ( self ) -> Optional[Any]:
_A : str = self.remote_tool(text=_a , question="""What did Hugging Face do in April 2021?""" )
self.assertEqual(_a , """launched the BigScience Research Workshop""" )
| 361 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 0 |
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
_snake_case = logging.get_logger(__name__)
class lowercase ( UpperCamelCase__ ):
_a = "AutoTokenizer"
_a = ["tokenizer"]
_a = {
"semantic_prompt": 1,
"coarse_prompt": 2,
"fine_prompt": 2,
}
def __init__( self , _a , _a=None ) -> List[str]:
super().__init__(_a )
_A : Optional[int] = speaker_embeddings
@classmethod
def a__ ( cls , _a , _a="speaker_embeddings_path.json" , **_a ) -> Union[str, Any]:
if speaker_embeddings_dict_path is not None:
_A : Optional[Any] = get_file_from_repo(
_a , _a , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , )
if speaker_embeddings_path is None:
logger.warning(
F'''`{os.path.join(_a , _a )}` does not exists
, no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json
dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' )
_A : List[Any] = None
else:
with open(_a ) as speaker_embeddings_json:
_A : Union[str, Any] = json.load(_a )
else:
_A : Tuple = None
_A : Union[str, Any] = AutoTokenizer.from_pretrained(_a , **_a )
return cls(tokenizer=_a , speaker_embeddings=_a )
def a__ ( self , _a , _a="speaker_embeddings_path.json" , _a="speaker_embeddings" , _a = False , **_a , ) -> Any:
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(_a , _a , """v2""" ) , exist_ok=_a )
_A : int = {}
_A : List[Any] = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
_A : Optional[Any] = self._load_voice_preset(_a )
_A : Any = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , _a , F'''{prompt_key}_{key}''' ) , voice_preset[key] , allow_pickle=_a , )
_A : List[str] = os.path.join(_a , F'''{prompt_key}_{key}.npy''' )
_A : Optional[Any] = tmp_dict
with open(os.path.join(_a , _a ) , """w""" ) as fp:
json.dump(_a , _a )
super().save_pretrained(_a , _a , **_a )
def a__ ( self , _a = None , **_a ) -> Tuple:
_A : Tuple = self.speaker_embeddings[voice_preset]
_A : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' )
_A : Union[str, Any] = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , _a ) , cache_dir=kwargs.pop("""cache_dir""" , _a ) , force_download=kwargs.pop("""force_download""" , _a ) , proxies=kwargs.pop("""proxies""" , _a ) , resume_download=kwargs.pop("""resume_download""" , _a ) , local_files_only=kwargs.pop("""local_files_only""" , _a ) , use_auth_token=kwargs.pop("""use_auth_token""" , _a ) , revision=kwargs.pop("""revision""" , _a ) , )
if path is None:
raise ValueError(
F'''`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists
, no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}
embeddings.''' )
_A : List[str] = np.load(_a )
return voice_preset_dict
def a__ ( self , _a = None ) -> Optional[int]:
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F'''Voice preset unrecognized, missing {key} as a key.''' )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' )
def __call__( self , _a=None , _a=None , _a="pt" , _a=256 , _a=False , _a=True , _a=False , **_a , ) -> Tuple:
if voice_preset is not None and not isinstance(_a , _a ):
if (
isinstance(_a , _a )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
_A : Any = self._load_voice_preset(_a )
else:
if isinstance(_a , _a ) and not voice_preset.endswith(""".npz""" ):
_A : Optional[Any] = voice_preset + '.npz'
_A : Union[str, Any] = np.load(_a )
if voice_preset is not None:
self._validate_voice_preset_dict(_a , **_a )
_A : Tuple = BatchFeature(data=_a , tensor_type=_a )
_A : Any = self.tokenizer(
_a , return_tensors=_a , padding="""max_length""" , max_length=_a , return_attention_mask=_a , return_token_type_ids=_a , add_special_tokens=_a , **_a , )
if voice_preset is not None:
_A : Optional[int] = voice_preset
return encoded_text
| 362 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 0 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): # noqa: E741
while r - l > 1:
_A : List[str] = (l + r) // 2
if v[m] >= key:
_A : Any = m
else:
_A : Tuple = m # noqa: E741
return r
def lowerCAmelCase_ ( snake_case_ ):
if len(_lowerCamelCase ) == 0:
return 0
_A : int = [0] * len(_lowerCamelCase )
_A : Dict = 1
_A : Optional[Any] = v[0]
for i in range(1,len(_lowerCamelCase ) ):
if v[i] < tail[0]:
_A : Optional[Any] = v[i]
elif v[i] > tail[length - 1]:
_A : Tuple = v[i]
length += 1
else:
_A : int = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 0 |
import time
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
MaxLengthCriteria,
MaxNewTokensCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
validate_stopping_criteria,
)
@require_torch
class lowercase ( unittest.TestCase ):
def a__ ( self , _a ) -> List[str]:
_A : str = 3
_A : Optional[int] = 250
_A : Tuple = ids_tensor((batch_size, length) , lowercase_ )
_A : int = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length
return input_ids, scores
def a__ ( self ) -> Union[str, Any]:
_A , _A : Dict = self._get_tensors(5 )
_A : str = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10 ),
MaxTimeCriteria(max_time=0.1 ),
] )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : Optional[int] = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : int = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def a__ ( self ) -> Tuple:
_A : Any = MaxLengthCriteria(max_length=10 )
_A , _A : Tuple = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : Dict = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : Union[str, Any] = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def a__ ( self ) -> str:
_A : Tuple = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 )
_A , _A : Any = self._get_tensors(5 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : Union[str, Any] = self._get_tensors(9 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A , _A : Dict = self._get_tensors(10 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
_A : List[Any] = StoppingCriteriaList([criteria] )
self.assertEqual(criteria_list.max_length , 10 )
def a__ ( self ) -> Any:
_A , _A : List[Any] = self._get_tensors(5 )
_A : Union[str, Any] = MaxTimeCriteria(max_time=0.1 )
self.assertFalse(criteria(lowercase_ , lowercase_ ) )
_A : Dict = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 )
self.assertTrue(criteria(lowercase_ , lowercase_ ) )
def a__ ( self ) -> Tuple:
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 )
with self.assertWarns(lowercase_ ):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 )
_A : List[str] = validate_stopping_criteria(StoppingCriteriaList() , 11 )
self.assertEqual(len(lowercase_ ) , 1 )
| 364 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 0 |
"""simple docstring"""
class lowercase :
def __init__( self ) -> None:
_A : dict[str, TrieNode] = {} # Mapping from char to TrieNode
_A : Optional[int] = False
def a__ ( self , _a ) -> None:
for word in words:
self.insert(_a )
def a__ ( self , _a ) -> None:
_A : Tuple = self
for char in word:
if char not in curr.nodes:
_A : Union[str, Any] = TrieNode()
_A : str = curr.nodes[char]
_A : Any = True
def a__ ( self , _a ) -> bool:
_A : Tuple = self
for char in word:
if char not in curr.nodes:
return False
_A : Dict = curr.nodes[char]
return curr.is_leaf
def a__ ( self , _a ) -> None:
def _delete(_a , _a , _a ) -> bool:
if index == len(_a ):
# If word does not exist
if not curr.is_leaf:
return False
_A : List[str] = False
return len(curr.nodes ) == 0
_A : Union[str, Any] = word[index]
_A : Dict = curr.nodes.get(_a )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
_A : Tuple = _delete(_a , _a , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , _a , 0 )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if node.is_leaf:
print(__a,end=""" """ )
for key, value in node.nodes.items():
print_words(__a,word + key )
def lowerCAmelCase_ ( ):
_A : int = '''banana bananas bandana band apple all beast'''.split()
_A : Union[str, Any] = TrieNode()
root.insert_many(__a )
# print_words(root, "")
assert all(root.find(__a ) for word in words )
assert root.find("""banana""" )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
assert root.find("""apple""" )
assert root.find("""all""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
print(str(__a ),"""works!""" if passes else """doesn\'t work :(""" )
def lowerCAmelCase_ ( ):
assert test_trie()
def lowerCAmelCase_ ( ):
print_results("""Testing trie functionality""",test_trie() )
if __name__ == "__main__":
main()
| 365 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 0 |
import datasets
_snake_case = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n"
_snake_case = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n"
_snake_case = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n"
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def a__ ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
"""references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ),
} ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , )
def a__ ( self , _a , _a ) -> Optional[Any]:
return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
| 366 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
from ..utils import DummyObject, requires_backends
class lowercase ( metaclass=UpperCamelCase__ ):
_a = ['''keras_nlp''']
def __init__( self , *_a , **_a ) -> List[str]:
requires_backends(self , ["""keras_nlp"""] )
| 367 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 0 |
import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple
import numpy as np
import pytorch_lightning as pl
import torch
from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from torch import nn
from torch.utils.data import DataLoader
from transformers import MBartTokenizer, TaForConditionalGeneration
from transformers.models.bart.modeling_bart import shift_tokens_right
from utils import (
ROUGE_KEYS,
LegacySeqaSeqDataset,
SeqaSeqDataset,
assert_all_frozen,
calculate_bleu,
calculate_rouge,
check_output_dir,
flatten_list,
freeze_embeds,
freeze_params,
get_git_info,
label_smoothed_nll_loss,
lmap,
pickle_save,
save_git_info,
save_json,
use_task_specific_params,
)
# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa
_snake_case = logging.getLogger(__name__)
class lowercase ( _UpperCamelCase ):
_a = 'summarization'
_a = ['loss']
_a = ROUGE_KEYS
_a = 'rouge2'
def __init__( self , _a , **_a ) -> Union[str, Any]:
if hparams.sortish_sampler and hparams.gpus > 1:
_A : int = False
elif hparams.max_tokens_per_batch is not None:
if hparams.gpus > 1:
raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" )
if hparams.sortish_sampler:
raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" )
super().__init__(_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , mode=self.mode , **_SCREAMING_SNAKE_CASE )
use_task_specific_params(self.model , """summarization""" )
save_git_info(self.hparams.output_dir )
_A : Union[str, Any] = Path(self.output_dir ) / """metrics.json"""
_A : Optional[int] = Path(self.output_dir ) / """hparams.pkl"""
pickle_save(self.hparams , self.hparams_save_path )
_A : Optional[Any] = 0
_A : Optional[int] = defaultdict(_SCREAMING_SNAKE_CASE )
_A : Optional[Any] = self.config.model_type
_A : Tuple = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size
_A : Union[str, Any] = {
"""data_dir""": self.hparams.data_dir,
"""max_source_length""": self.hparams.max_source_length,
"""prefix""": self.model.config.prefix or """""",
}
_A : Tuple = {
"""train""": self.hparams.n_train,
"""val""": self.hparams.n_val,
"""test""": self.hparams.n_test,
}
_A : Dict = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}
_A : List[Any] = {
"""train""": self.hparams.max_target_length,
"""val""": self.hparams.val_max_target_length,
"""test""": self.hparams.test_max_target_length,
}
assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}'''
assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}'''
if self.hparams.freeze_embeds:
freeze_embeds(self.model )
if self.hparams.freeze_encoder:
freeze_params(self.model.get_encoder() )
assert_all_frozen(self.model.get_encoder() )
_A : Dict = get_git_info()["""repo_sha"""]
_A : int = hparams.num_workers
_A : List[str] = None # default to config
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , _SCREAMING_SNAKE_CASE ):
_A : Optional[int] = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
_A : Union[str, Any] = self.decoder_start_token_id
_A : Tuple = (
SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset
)
_A : Optional[Any] = False
_A : str = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
if self.hparams.eval_max_gen_length is not None:
_A : Optional[int] = self.hparams.eval_max_gen_length
else:
_A : int = self.model.config.max_length
_A : Tuple = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric
def a__ ( self , _a ) -> Dict[str, List[str]]:
_A : Tuple = {
k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items()
}
save_json(_SCREAMING_SNAKE_CASE , Path(self.output_dir ) / """text_batch.json""" )
save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" )
_A : Any = True
return readable_batch
def a__ ( self , _a , **_a ) -> Dict:
return self.model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
def a__ ( self , _a ) -> Optional[int]:
_A : Tuple = self.tokenizer.batch_decode(
_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE )
return lmap(str.strip , _SCREAMING_SNAKE_CASE )
def a__ ( self , _a ) -> Tuple:
_A : Union[str, Any] = self.tokenizer.pad_token_id
_A , _A : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""]
_A : Dict = batch["""labels"""]
if isinstance(self.model , _SCREAMING_SNAKE_CASE ):
_A : str = self.model._shift_right(_SCREAMING_SNAKE_CASE )
else:
_A : Union[str, Any] = shift_tokens_right(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero
_A : int = decoder_input_ids
self.save_readable_batch(_SCREAMING_SNAKE_CASE )
_A : Optional[Any] = self(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE )
_A : Tuple = outputs["""logits"""]
if self.hparams.label_smoothing == 0:
# Same behavior as modeling_bart.py, besides ignoring pad_token_id
_A : List[str] = nn.CrossEntropyLoss(ignore_index=_SCREAMING_SNAKE_CASE )
assert lm_logits.shape[-1] == self.vocab_size
_A : List[str] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) )
else:
_A : List[str] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1 )
_A , _A : int = label_smoothed_nll_loss(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.hparams.label_smoothing , ignore_index=_SCREAMING_SNAKE_CASE )
return (loss,)
@property
def a__ ( self ) -> int:
return self.tokenizer.pad_token_id
def a__ ( self , _a , _a ) -> Dict:
_A : Dict = self._step(_SCREAMING_SNAKE_CASE )
_A : Tuple = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) )
# tokens per batch
_A : int = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum()
_A : List[str] = batch["""input_ids"""].shape[0]
_A : Optional[int] = batch["""input_ids"""].eq(self.pad ).sum()
_A : Tuple = batch["""input_ids"""].eq(self.pad ).float().mean()
# TODO(SS): make a wandb summary metric for this
return {"loss": loss_tensors[0], "log": logs}
def a__ ( self , _a , _a ) -> Dict:
return self._generative_step(_SCREAMING_SNAKE_CASE )
def a__ ( self , _a , _a="val" ) -> Dict:
self.step_count += 1
_A : Tuple = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names}
_A : Union[str, Any] = losses["""loss"""]
_A : Tuple = {
k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""]
}
_A : str = (
generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
)
_A : Optional[Any] = torch.tensor(_SCREAMING_SNAKE_CASE ).type_as(_SCREAMING_SNAKE_CASE )
generative_metrics.update({k: v.item() for k, v in losses.items()} )
losses.update(_SCREAMING_SNAKE_CASE )
_A : Union[str, Any] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()}
_A : Optional[int] = self.step_count
self.metrics[prefix].append(_SCREAMING_SNAKE_CASE ) # callback writes this to self.metrics_save_path
_A : List[Any] = flatten_list([x["""preds"""] for x in outputs] )
return {
"log": all_metrics,
"preds": preds,
F'''{prefix}_loss''': loss,
F'''{prefix}_{self.val_metric}''': metric_tensor,
}
def a__ ( self , _a , _a ) -> Dict:
return calculate_rouge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def a__ ( self , _a ) -> dict:
_A : List[Any] = time.time()
# parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
_A : Any = self.model.generate(
batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=_SCREAMING_SNAKE_CASE , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , )
_A : str = (time.time() - ta) / batch["""input_ids"""].shape[0]
_A : int = self.ids_to_clean_text(_SCREAMING_SNAKE_CASE )
_A : List[Any] = self.ids_to_clean_text(batch["""labels"""] )
_A : Tuple = self._step(_SCREAMING_SNAKE_CASE )
_A : Optional[Any] = dict(zip(self.loss_names , _SCREAMING_SNAKE_CASE ) )
_A : List[str] = self.calc_generative_metrics(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_A : Dict = np.mean(lmap(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
base_metrics.update(gen_time=_SCREAMING_SNAKE_CASE , gen_len=_SCREAMING_SNAKE_CASE , preds=_SCREAMING_SNAKE_CASE , target=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
return base_metrics
def a__ ( self , _a , _a ) -> List[Any]:
return self._generative_step(_SCREAMING_SNAKE_CASE )
def a__ ( self , _a ) -> Optional[int]:
return self.validation_epoch_end(_SCREAMING_SNAKE_CASE , prefix="""test""" )
def a__ ( self , _a ) -> SeqaSeqDataset:
_A : int = self.n_obs[type_path]
_A : Optional[Any] = self.target_lens[type_path]
_A : Optional[int] = self.dataset_class(
self.tokenizer , type_path=_SCREAMING_SNAKE_CASE , n_obs=_SCREAMING_SNAKE_CASE , max_target_length=_SCREAMING_SNAKE_CASE , **self.dataset_kwargs , )
return dataset
def a__ ( self , _a , _a , _a = False ) -> DataLoader:
_A : Union[str, Any] = self.get_dataset(_SCREAMING_SNAKE_CASE )
if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
_A : Optional[int] = dataset.make_sortish_sampler(_SCREAMING_SNAKE_CASE , distributed=self.hparams.gpus > 1 )
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , )
elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
_A : Optional[Any] = dataset.make_dynamic_sampler(
self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 )
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_sampler=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , num_workers=self.num_workers , )
else:
return DataLoader(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , collate_fn=dataset.collate_fn , shuffle=_SCREAMING_SNAKE_CASE , num_workers=self.num_workers , sampler=_SCREAMING_SNAKE_CASE , )
def a__ ( self ) -> DataLoader:
_A : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE )
return dataloader
def a__ ( self ) -> DataLoader:
return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size )
def a__ ( self ) -> DataLoader:
return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size )
@staticmethod
def a__ ( _a , _a ) -> Union[str, Any]:
BaseTransformer.add_model_specific_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
add_generic_args(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
parser.add_argument(
"""--max_source_length""" , default=1024 , type=_SCREAMING_SNAKE_CASE , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--max_target_length""" , default=56 , type=_SCREAMING_SNAKE_CASE , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--val_max_target_length""" , default=142 , type=_SCREAMING_SNAKE_CASE , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--test_max_target_length""" , default=142 , type=_SCREAMING_SNAKE_CASE , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument("""--freeze_encoder""" , action="""store_true""" )
parser.add_argument("""--freeze_embeds""" , action="""store_true""" )
parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--max_tokens_per_batch""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--logger_name""" , type=_SCREAMING_SNAKE_CASE , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" )
parser.add_argument("""--n_train""" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_val""" , type=_SCREAMING_SNAKE_CASE , default=500 , required=_SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" )
parser.add_argument("""--n_test""" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" )
parser.add_argument(
"""--task""" , type=_SCREAMING_SNAKE_CASE , default="""summarization""" , required=_SCREAMING_SNAKE_CASE , help="""# examples. -1 means use all.""" )
parser.add_argument("""--label_smoothing""" , type=_SCREAMING_SNAKE_CASE , default=0.0 , required=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--src_lang""" , type=_SCREAMING_SNAKE_CASE , default="""""" , required=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--tgt_lang""" , type=_SCREAMING_SNAKE_CASE , default="""""" , required=_SCREAMING_SNAKE_CASE )
parser.add_argument("""--eval_beams""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE )
parser.add_argument(
"""--val_metric""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , choices=["""bleu""", """rouge2""", """loss""", None] )
parser.add_argument("""--eval_max_gen_length""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""never generate more than n tokens""" )
parser.add_argument("""--save_top_k""" , type=_SCREAMING_SNAKE_CASE , default=1 , required=_SCREAMING_SNAKE_CASE , help="""How many checkpoints to save""" )
parser.add_argument(
"""--early_stopping_patience""" , type=_SCREAMING_SNAKE_CASE , default=-1 , required=_SCREAMING_SNAKE_CASE , help=(
"""-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So"""
""" val_check_interval will effect it."""
) , )
return parser
class lowercase ( _UpperCamelCase ):
_a = 'translation'
_a = ['loss']
_a = ['bleu']
_a = 'bleu'
def __init__( self , _a , **_a ) -> Tuple:
super().__init__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
_A : Dict = hparams.src_lang
_A : int = hparams.tgt_lang
def a__ ( self , _a , _a ) -> dict:
return calculate_bleu(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
Path(args.output_dir ).mkdir(exist_ok=_UpperCamelCase )
check_output_dir(_UpperCamelCase,expected_items=3 )
if model is None:
if "summarization" in args.task:
_A : Union[str, Any] = SummarizationModule(_UpperCamelCase )
else:
_A : Tuple = TranslationModule(_UpperCamelCase )
_A : int = Path(args.data_dir ).name
if (
args.logger_name == "default"
or args.fast_dev_run
or str(args.output_dir ).startswith("""/tmp""" )
or str(args.output_dir ).startswith("""/var""" )
):
_A : Optional[Any] = True # don't pollute wandb logs unnecessarily
elif args.logger_name == "wandb":
from pytorch_lightning.loggers import WandbLogger
_A : Dict = os.environ.get("""WANDB_PROJECT""",_UpperCamelCase )
_A : Optional[int] = WandbLogger(name=model.output_dir.name,project=_UpperCamelCase )
elif args.logger_name == "wandb_shared":
from pytorch_lightning.loggers import WandbLogger
_A : Any = WandbLogger(name=model.output_dir.name,project=f'''hf_{dataset}''' )
if args.early_stopping_patience >= 0:
_A : int = get_early_stopping_callback(model.val_metric,args.early_stopping_patience )
else:
_A : Optional[int] = False
_A : List[str] = args.val_metric == """loss"""
_A : List[str] = generic_train(
_UpperCamelCase,_UpperCamelCase,logging_callback=SeqaSeqLoggingCallback(),checkpoint_callback=get_checkpoint_callback(
args.output_dir,model.val_metric,args.save_top_k,_UpperCamelCase ),early_stopping_callback=_UpperCamelCase,logger=_UpperCamelCase,)
pickle_save(model.hparams,model.output_dir / """hparams.pkl""" )
if not args.do_predict:
return model
_A : Tuple = """"""
_A : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir,"""*.ckpt""" ),recursive=_UpperCamelCase ) )
if checkpoints:
_A : str = checkpoints[-1]
_A : Dict = checkpoints[-1]
trainer.logger.log_hyperparams(model.hparams )
# test() without a model tests using the best checkpoint automatically
trainer.test()
return model
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
_snake_case = pl.Trainer.add_argparse_args(parser)
_snake_case = SummarizationModule.add_model_specific_args(parser, os.getcwd())
_snake_case = parser.parse_args()
main(args)
| 368 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 0 |
"""simple docstring"""
import copy
import random
from transformers import CLIPTokenizer
class lowercase ( a__ ):
def __init__( self , *_a , **_a ) -> List[Any]:
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
_A : Any = {}
def a__ ( self , _a , *_a , **_a ) -> Optional[int]:
_A : int = super().add_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
if num_added_tokens == 0:
raise ValueError(
F'''The tokenizer already contains the token {placeholder_token}. Please pass a different'''
""" `placeholder_token` that is not already in the tokenizer.""" )
def a__ ( self , _a , *_a , _a=1 , **_a ) -> int:
_A : Dict = []
if num_vec_per_token == 1:
self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
output.append(_lowerCamelCase )
else:
_A : Union[str, Any] = []
for i in range(_lowerCamelCase ):
_A : Optional[int] = placeholder_token + F'''_{i}'''
self.try_adding_tokens(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase )
output.append(_lowerCamelCase )
# handle cases where there is a new placeholder token that contains the current placeholder token but is larger
for token in self.token_map:
if token in placeholder_token:
raise ValueError(
F'''The tokenizer already has placeholder token {token} that can get confused with'''
F''' {placeholder_token}keep placeholder tokens independent''' )
_A : int = output
def a__ ( self , _a , _a=False , _a=1.0 ) -> Any:
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_A : List[Any] = []
for i in range(len(_lowerCamelCase ) ):
output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCamelCase ) )
return output
for placeholder_token in self.token_map:
if placeholder_token in text:
_A : str = self.token_map[placeholder_token]
_A : int = tokens[: 1 + int(len(_lowerCamelCase ) * prop_tokens_to_load )]
if vector_shuffle:
_A : Tuple = copy.copy(_lowerCamelCase )
random.shuffle(_lowerCamelCase )
_A : List[Any] = text.replace(_lowerCamelCase , """ """.join(_lowerCamelCase ) )
return text
def __call__( self , _a , *_a , _a=False , _a=1.0 , **_a ) -> Optional[int]:
return super().__call__(
self.replace_placeholder_tokens_in_text(
_lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
def a__ ( self , _a , *_a , _a=False , _a=1.0 , **_a ) -> List[Any]:
return super().encode(
self.replace_placeholder_tokens_in_text(
_lowerCamelCase , vector_shuffle=_lowerCamelCase , prop_tokens_to_load=_lowerCamelCase ) , *_lowerCamelCase , **_lowerCamelCase , )
| 369 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , ) -> Union[str, Any]:
_A : Tuple = size if size is not None else {"""shortest_edge""": 20}
_A : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_A : List[str] = parent
_A : Union[str, Any] = batch_size
_A : Dict = num_channels
_A : Dict = image_size
_A : Optional[Any] = min_resolution
_A : Tuple = max_resolution
_A : int = do_resize
_A : int = size
_A : List[str] = do_center_crop
_A : Any = crop_size
def a__ ( self ) -> int:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowercase ( __UpperCamelCase,unittest.TestCase ):
_a = MobileNetVaImageProcessor if is_vision_available() else None
def a__ ( self ) -> List[Any]:
_A : Optional[int] = MobileNetVaImageProcessingTester(self )
@property
def a__ ( self ) -> Optional[int]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_lowerCAmelCase , """do_resize""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """size""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(_lowerCAmelCase , """crop_size""" ) )
def a__ ( self ) -> Union[str, Any]:
_A : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_A : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
# Initialize image_processing
_A : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , Image.Image )
# Test not batched input
_A : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : Optional[Any] = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def a__ ( self ) -> Tuple:
# Initialize image_processing
_A : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , np.ndarray )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : int = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def a__ ( self ) -> Optional[Any]:
# Initialize image_processing
_A : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase )
for image in image_inputs:
self.assertIsInstance(_lowerCAmelCase , torch.Tensor )
# Test not batched input
_A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_A : Tuple = image_processing(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 370 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 0 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class lowercase ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self , _a=0.01 , _a=1000 ) -> str:
_A : List[Any] = p_stop
_A : List[Any] = max_length
def __iter__( self ) -> Optional[Any]:
_A : List[str] = 0
_A : Union[str, Any] = False
while not stop and count < self.max_length:
yield count
count += 1
_A : Optional[Any] = random.random() < self.p_stop
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def a__ ( self , _a , _a , _a=False , _a=True ) -> str:
_A : List[str] = [
BatchSamplerShard(lowercase_ , 2 , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
for i in range(2 )
]
_A : Dict = [list(lowercase_ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(lowercase_ ) for shard in batch_sampler_shards] , [len(lowercase_ ) for e in expected] )
self.assertListEqual(lowercase_ , lowercase_ )
def a__ ( self ) -> List[str]:
# Check the shards when the dataset is a round multiple of total batch size.
_A : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ )
_A : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
_A : Any = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_A : Union[str, Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ )
_A : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
_A : int = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ )
_A : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_A : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
_A : Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ )
_A : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_A : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
_A : Union[str, Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
# Check the shards when the dataset is very small.
_A : int = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ )
_A : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
_A : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ )
_A : Any = [[], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ )
def a__ ( self ) -> str:
# Check the shards when the dataset is a round multiple of batch size.
_A : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ )
_A : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
_A : Union[str, Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size.
_A : Union[str, Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ )
_A : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
_A : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ )
_A : List[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_A : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ )
_A : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
_A : str = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ )
_A : str = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
# Check the shards when the dataset is very small.
_A : int = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ )
_A : Tuple = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
_A : List[str] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ )
_A : List[str] = [[], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ )
def a__ ( self ) -> List[Any]:
# Check the shards when the dataset is a round multiple of total batch size.
_A : List[str] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ )
_A : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
_A : Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowercase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_A : Optional[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
_A : Tuple = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowercase_ )
_A : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_A : Dict = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
_A : Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_A : Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ )
_A : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
_A : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowercase_ )
_A : Optional[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is very small.
_A : Tuple = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ )
_A : List[str] = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
_A : Optional[int] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowercase_ )
_A : Any = [[], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_ )
def a__ ( self ) -> str:
# Check the shards when the dataset is a round multiple of batch size.
_A : Tuple = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ )
_A : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
_A : int = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowercase_ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size.
_A : Dict = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ )
_A : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
_A : Optional[int] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowercase_ )
_A : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_A : Any = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ )
_A : int = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
_A : Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowercase_ )
_A : int = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
# Check the shards when the dataset is very small.
_A : Optional[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ )
_A : int = [[[0, 1]], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
_A : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowercase_ )
_A : str = [[], []]
self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_ )
def a__ ( self ) -> Optional[Any]:
_A : List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
_A : str = [BatchSamplerShard(lowercase_ , 2 , lowercase_ , even_batches=lowercase_ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def a__ ( self , _a , _a , _a , _a=False , _a=2 , _a=False ) -> str:
random.seed(lowercase_ )
_A : List[str] = list(lowercase_ )
_A : Optional[Any] = [
IterableDatasetShard(
lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ , num_processes=lowercase_ , process_index=lowercase_ , split_batches=lowercase_ , )
for i in range(lowercase_ )
]
_A : List[str] = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(lowercase_ )
iterable_dataset_lists.append(list(lowercase_ ) )
_A : Dict = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
_A : str = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
self.assertTrue(len(lowercase_ ) % shard_batch_size == 0 )
_A : int = []
for idx in range(0 , len(lowercase_ ) , lowercase_ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(lowercase_ ) < len(lowercase_ ):
reference += reference
self.assertListEqual(lowercase_ , reference[: len(lowercase_ )] )
def a__ ( self ) -> Optional[int]:
_A : Tuple = 42
_A : Dict = RandomIterableDataset()
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
# Edge case with a very small dataset
_A : Tuple = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_ )
def a__ ( self ) -> List[Any]:
_A : List[Any] = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowercase_ )
_A : int = SkipBatchSampler(lowercase_ , 2 )
self.assertListEqual(list(lowercase_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def a__ ( self ) -> Dict:
_A : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def a__ ( self ) -> Tuple:
_A : Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
_A : int = skip_first_batches(lowercase_ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def a__ ( self ) -> Any:
_A : int = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(lowercase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def a__ ( self ) -> Any:
Accelerator()
_A : Tuple = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(lowercase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowercase_ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 371 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_ = 100 ):
_A : Optional[Any] = set()
_A : int = 0
_A : str = n + 1 # maximum limit
for a in range(2,__a ):
for b in range(2,__a ):
_A : int = a**b # calculates the current power
collect_powers.add(__a ) # adds the result to the set
return len(__a )
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))
| 350 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowercase ( lowercase__ ):
_a = """trocr"""
_a = ["""past_key_values"""]
_a = {
"""num_attention_heads""": """decoder_attention_heads""",
"""hidden_size""": """d_model""",
"""num_hidden_layers""": """decoder_layers""",
}
def __init__( self , _a=5_0265 , _a=1024 , _a=12 , _a=16 , _a=4096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.02 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> List[Any]:
_A : Optional[Any] = vocab_size
_A : Optional[Any] = d_model
_A : Optional[int] = decoder_layers
_A : Any = decoder_attention_heads
_A : Optional[int] = decoder_ffn_dim
_A : Any = activation_function
_A : int = max_position_embeddings
_A : Union[str, Any] = dropout
_A : List[Any] = attention_dropout
_A : List[Any] = activation_dropout
_A : List[str] = init_std
_A : Tuple = decoder_layerdrop
_A : Any = use_cache
_A : Union[str, Any] = scale_embedding
_A : Dict = use_learned_position_embeddings
_A : List[str] = layernorm_embedding
super().__init__(
pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , decoder_start_token_id=lowercase_ , **lowercase_ , )
| 351 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
_snake_case = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["""BeitFeatureExtractor"""]
_snake_case = ["""BeitImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"""BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BeitForImageClassification""",
"""BeitForMaskedImageModeling""",
"""BeitForSemanticSegmentation""",
"""BeitModel""",
"""BeitPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"""FlaxBeitForImageClassification""",
"""FlaxBeitForMaskedImageModeling""",
"""FlaxBeitModel""",
"""FlaxBeitPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 352 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 0 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( SCREAMING_SNAKE_CASE_ ):
def __init__( self , _a , _a , _a , _a , _a , _a , _a , ) -> Dict:
super().__init__()
self.register_modules(
vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , )
def a__ ( self , _a = "auto" ) -> Optional[int]:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_A : Optional[Any] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(snake_case__ )
def a__ ( self ) -> Optional[int]:
self.enable_attention_slicing(snake_case__ )
@torch.no_grad()
def __call__( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , _a = None , **_a , ) -> Any:
if isinstance(snake_case__ , snake_case__ ):
_A : Tuple = 1
elif isinstance(snake_case__ , snake_case__ ):
_A : List[str] = len(snake_case__ )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(snake_case__ )}.''' )
# get prompt text embeddings
_A : Union[str, Any] = self.tokenizer(
snake_case__ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
_A : List[Any] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_A : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
_A : List[str] = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
_A : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_A : Any = text_embeddings.shape
_A : int = text_embeddings.repeat(1 , snake_case__ , 1 )
_A : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_A : Tuple = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_A : List[str]
if negative_prompt is None:
_A : Dict = ['']
elif type(snake_case__ ) is not type(snake_case__ ):
raise TypeError(
F'''`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !='''
F''' {type(snake_case__ )}.''' )
elif isinstance(snake_case__ , snake_case__ ):
_A : List[str] = [negative_prompt]
elif batch_size != len(snake_case__ ):
raise ValueError(
F'''`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:'''
F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
""" the batch size of `prompt`.""" )
else:
_A : Optional[Any] = negative_prompt
_A : Tuple = text_input_ids.shape[-1]
_A : Optional[Any] = self.tokenizer(
snake_case__ , padding="""max_length""" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="""pt""" , )
_A : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_A : Dict = uncond_embeddings.shape[1]
_A : Any = uncond_embeddings.repeat(snake_case__ , snake_case__ , 1 )
_A : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : List[str] = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_A : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
_A : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
_A : Optional[int] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
_A : Tuple = torch.randn(
snake_case__ , generator=snake_case__ , device="""cpu""" , dtype=snake_case__ ).to(self.device )
_A : Optional[Any] = torch.randn(snake_case__ , generator=snake_case__ , device="""cpu""" , dtype=snake_case__ ).to(
self.device )
else:
_A : List[str] = torch.randn(
snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ )
_A : List[str] = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ )
else:
if latents_reference.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
_A : str = latents_reference.to(self.device )
_A : Dict = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
_A : Dict = (latents_shape[3] - latents_shape_reference[3]) // 2
_A : Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2
_A : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
_A : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
_A : int = 0 if dx < 0 else dx
_A : str = 0 if dy < 0 else dy
_A : Tuple = max(-dx , 0 )
_A : str = max(-dy , 0 )
# import pdb
# pdb.set_trace()
_A : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(snake_case__ )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
_A : Dict = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_A : Dict = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_A : Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_A : Optional[int] = {}
if accepts_eta:
_A : Optional[Any] = eta
for i, t in enumerate(self.progress_bar(snake_case__ ) ):
# expand the latents if we are doing classifier free guidance
_A : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : List[str] = self.scheduler.scale_model_input(snake_case__ , snake_case__ )
# predict the noise residual
_A : Union[str, Any] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample
# perform guidance
if do_classifier_free_guidance:
_A : List[Any] = noise_pred.chunk(2 )
_A : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
_A : List[Any] = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(snake_case__ , snake_case__ , snake_case__ )
_A : Any = 1 / 0.18215 * latents
_A : Optional[int] = self.vae.decode(snake_case__ ).sample
_A : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_A : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
_A : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(snake_case__ ) , return_tensors="""pt""" ).to(
self.device )
_A : Dict = self.safety_checker(
images=snake_case__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
_A : Dict = None
if output_type == "pil":
_A : str = self.numpy_to_pil(snake_case__ )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
| 353 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = []
_A : Any = []
_A : List[str] = {
"""^""": 3,
"""*""": 2,
"""/""": 2,
"""%""": 2,
"""+""": 1,
"""-""": 1,
} # Priority of each operator
_A : Any = len(snake_case_ ) if (len(snake_case_ ) > 7) else 7
# Print table header for output
print(
"""Symbol""".center(8 ),"""Stack""".center(snake_case_ ),"""Postfix""".center(snake_case_ ),sep=""" | """,)
print("""-""" * (print_width * 3 + 7) )
for x in infix:
if x.isalpha() or x.isdigit():
post_fix.append(snake_case_ ) # if x is Alphabet / Digit, add it to Postfix
elif x == "(":
stack.append(snake_case_ ) # if x is "(" push to Stack
elif x == ")": # if x is ")" pop stack until "(" is encountered
while stack[-1] != "(":
post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(snake_case_ ) == 0:
stack.append(snake_case_ ) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while len(snake_case_ ) > 0 and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop() ) # pop stack & add to Postfix
stack.append(snake_case_ ) # push x to stack
print(
x.center(8 ),("""""".join(snake_case_ )).ljust(snake_case_ ),("""""".join(snake_case_ )).ljust(snake_case_ ),sep=""" | """,) # Output in tabular format
while len(snake_case_ ) > 0: # while stack is not empty
post_fix.append(stack.pop() ) # pop stack & add to Postfix
print(
""" """.center(8 ),("""""".join(snake_case_ )).ljust(snake_case_ ),("""""".join(snake_case_ )).ljust(snake_case_ ),sep=""" | """,) # Output in tabular format
return "".join(snake_case_ ) # return Postfix as str
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = list(infix[::-1] ) # reverse the infix equation
for i in range(len(snake_case_ ) ):
if infix[i] == "(":
_A : str = """)""" # change "(" to ")"
elif infix[i] == ")":
_A : Union[str, Any] = """(""" # change ")" to "("
return (infix_2_postfix("""""".join(snake_case_ ) ))[
::-1
] # call infix_2_postfix on Infix, return reverse of Postfix
if __name__ == "__main__":
_snake_case = input("\nEnter an Infix Equation = ") # Input an Infix equation
_snake_case = "".join(Infix.split()) # Remove spaces from the input
print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
| 354 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 0 |
from typing import Any
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
_validation(
snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,)
# Creates data structures and fill initial step
_A : dict = {}
_A : dict = {}
for state in states_space:
_A : int = observations_space[0]
_A : Optional[Any] = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
_A : List[str] = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1,len(snake_case_ ) ):
_A : Optional[Any] = observations_space[o]
_A : Dict = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
_A : Union[str, Any] = """"""
_A : Any = -1
for k_state in states_space:
_A : Dict = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
_A : Optional[Any] = probability
_A : Dict = k_state
# Update probabilities and pointers dicts
_A : Optional[int] = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
_A : List[Any] = arg_max
# The final observation
_A : Union[str, Any] = observations_space[len(snake_case_ ) - 1]
# argmax for given final observation
_A : List[str] = """"""
_A : List[Any] = -1
for k_state in states_space:
_A : Optional[int] = probabilities[(k_state, final_observation)]
if probability > max_probability:
_A : int = probability
_A : List[Any] = k_state
_A : Union[str, Any] = arg_max
# Process pointers backwards
_A : Optional[int] = last_state
_A : List[str] = []
for o in range(len(snake_case_ ) - 1,-1,-1 ):
result.append(snake_case_ )
_A : Union[str, Any] = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
_validate_not_empty(
snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,)
_validate_lists(snake_case_,snake_case_ )
_validate_dicts(
snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("""There's an empty parameter""" )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_validate_list(snake_case_,"""observations_space""" )
_validate_list(snake_case_,"""states_space""" )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if not isinstance(_object,snake_case_ ):
_A : Any = f'''{var_name} must be a list'''
raise ValueError(snake_case_ )
else:
for x in _object:
if not isinstance(snake_case_,snake_case_ ):
_A : List[Any] = f'''{var_name} must be a list of strings'''
raise ValueError(snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,):
_validate_dict(snake_case_,"""initial_probabilities""",snake_case_ )
_validate_nested_dict(snake_case_,"""transition_probabilities""" )
_validate_nested_dict(snake_case_,"""emission_probabilities""" )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_validate_dict(_object,snake_case_,snake_case_ )
for x in _object.values():
_validate_dict(snake_case_,snake_case_,snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ = False ):
if not isinstance(_object,snake_case_ ):
_A : str = f'''{var_name} must be a dict'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_,snake_case_ ) for x in _object ):
_A : Dict = f'''{var_name} all keys must be strings'''
raise ValueError(snake_case_ )
if not all(isinstance(snake_case_,snake_case_ ) for x in _object.values() ):
_A : str = """nested dictionary """ if nested else """"""
_A : Dict = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(snake_case_ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 355 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 0 |
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> Tuple:
_A : Optional[int] = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" )
_A : int = AutoTokenizer.from_pretrained("""google/mt5-small""" )
_A : str = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids
_A : Optional[int] = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids
_A : Optional[Any] = shift_tokens_right(_a , model.config.pad_token_id , model.config.decoder_start_token_id )
_A : Union[str, Any] = model(_a , decoder_input_ids=_a ).logits
_A : Dict = optax.softmax_cross_entropy(_a , onehot(_a , logits.shape[-1] ) ).mean()
_A : List[str] = -(labels.shape[-1] * loss.item())
_A : List[str] = -84.9127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
| 356 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 0 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class lowercase ( __lowerCamelCase ):
_a = 'trajectory_transformer'
_a = ['past_key_values']
_a = {
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0006 , _a=512 , _a=0.02 , _a=1e-12 , _a=1 , _a=True , _a=1 , _a=5_0256 , _a=5_0256 , **_a , ) -> List[str]:
_A : List[str] = vocab_size
_A : str = action_weight
_A : Optional[int] = reward_weight
_A : Optional[int] = value_weight
_A : int = max_position_embeddings
_A : Tuple = block_size
_A : Optional[int] = action_dim
_A : Dict = observation_dim
_A : Any = transition_dim
_A : str = learning_rate
_A : List[Any] = n_layer
_A : Any = n_head
_A : str = n_embd
_A : str = embd_pdrop
_A : str = attn_pdrop
_A : Optional[Any] = resid_pdrop
_A : Dict = initializer_range
_A : List[str] = layer_norm_eps
_A : Any = kaiming_initializer_range
_A : Dict = use_cache
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
| 357 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
import logging
from transformers.configuration_utils import PretrainedConfig
_snake_case = logging.getLogger(__name__)
class lowercase ( lowerCAmelCase_ ):
_a = 'masked_bert'
def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=0 , _a="topK" , _a="constant" , _a=0.0 , **_a , ) -> Optional[int]:
super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase )
_A : int = vocab_size
_A : Dict = hidden_size
_A : Any = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Optional[int] = hidden_act
_A : Any = intermediate_size
_A : str = hidden_dropout_prob
_A : List[Any] = attention_probs_dropout_prob
_A : List[Any] = max_position_embeddings
_A : Any = type_vocab_size
_A : Any = initializer_range
_A : List[str] = layer_norm_eps
_A : List[Any] = pruning_method
_A : Any = mask_init
_A : Any = mask_scale
| 358 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
def get_matched_characters(snake_case_,snake_case_ ) -> str:
_A : Optional[Any] = []
_A : Tuple = min(len(_stra ),len(_stra ) ) // 2
for i, l in enumerate(_stra ):
_A : Optional[Any] = int(max(0,i - limit ) )
_A : int = int(min(i + limit + 1,len(_stra ) ) )
if l in _stra[left:right]:
matched.append(_UpperCamelCase )
_A : str = f'''{_stra[0:_stra.index(_UpperCamelCase )]} {_stra[_stra.index(_UpperCamelCase ) + 1:]}'''
return "".join(_UpperCamelCase )
# matching characters
_A : Optional[Any] = get_matched_characters(_UpperCamelCase,_UpperCamelCase )
_A : str = get_matched_characters(_UpperCamelCase,_UpperCamelCase )
_A : Union[str, Any] = len(_UpperCamelCase )
# transposition
_A : List[str] = (
len([(ca, ca) for ca, ca in zip(_UpperCamelCase,_UpperCamelCase ) if ca != ca] ) // 2
)
if not match_count:
_A : int = 0.0
else:
_A : Union[str, Any] = (
1
/ 3
* (
match_count / len(_UpperCamelCase )
+ match_count / len(_UpperCamelCase )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
_A : Dict = 0
for ca, ca in zip(stra[:4],stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 0 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class lowercase ( metaclass=UpperCamelCase__ ):
_a = ['transformers', 'torch', 'note_seq']
def __init__( self , *_a , **_a ) -> Tuple:
requires_backends(self , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def a__ ( cls , *_a , **_a ) -> Tuple:
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
@classmethod
def a__ ( cls , *_a , **_a ) -> str:
requires_backends(cls , ["""transformers""", """torch""", """note_seq"""] )
| 360 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 0 |
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = CTRLTokenizer
_a = False
_a = False
def a__ ( self ) -> List[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A : List[str] = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""]
_A : Optional[Any] = dict(zip(_snake_case , range(len(_snake_case ) ) ) )
_A : Optional[int] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""]
_A : Optional[Any] = {"""unk_token""": """<unk>"""}
_A : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_snake_case ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_snake_case ) )
def a__ ( self , **_a ) -> Dict:
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **_snake_case )
def a__ ( self , _a ) -> Optional[Any]:
_A : str = """adapt react readapt apt"""
_A : Any = """adapt react readapt apt"""
return input_text, output_text
def a__ ( self ) -> List[Any]:
_A : int = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_A : List[Any] = """adapt react readapt apt"""
_A : str = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split()
_A : Optional[Any] = tokenizer.tokenize(_snake_case )
self.assertListEqual(_snake_case , _snake_case )
_A : Optional[Any] = tokens + [tokenizer.unk_token]
_A : Union[str, Any] = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case )
| 361 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionSAGPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowercase ( __snake_case,__snake_case,unittest.TestCase ):
_a = StableDiffusionSAGPipeline
_a = TEXT_TO_IMAGE_PARAMS
_a = TEXT_TO_IMAGE_BATCH_PARAMS
_a = TEXT_TO_IMAGE_IMAGE_PARAMS
_a = TEXT_TO_IMAGE_IMAGE_PARAMS
_a = False
def a__ ( self ) -> List[str]:
torch.manual_seed(0 )
_A : Tuple = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
_A : int = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=_a , set_alpha_to_one=_a , )
torch.manual_seed(0 )
_A : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
_A : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_A : Any = CLIPTextModel(_a )
_A : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_A : str = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def a__ ( self , _a , _a=0 ) -> Tuple:
if str(_a ).startswith("""mps""" ):
_A : List[Any] = torch.manual_seed(_a )
else:
_A : Optional[int] = torch.Generator(device=_a ).manual_seed(_a )
_A : List[Any] = {
"""prompt""": """.""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 1.0,
"""sag_scale""": 1.0,
"""output_type""": """numpy""",
}
return inputs
def a__ ( self ) -> str:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ) -> Dict:
_A : int = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
_A : Union[str, Any] = sag_pipe.to(_a )
sag_pipe.set_progress_bar_config(disable=_a )
_A : int = """."""
_A : Optional[Any] = torch.manual_seed(0 )
_A : List[Any] = sag_pipe(
[prompt] , generator=_a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
_A : List[str] = output.images
_A : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A : Dict = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def a__ ( self ) -> Any:
_A : Any = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
_A : Tuple = sag_pipe.to(_a )
sag_pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """."""
_A : Tuple = torch.manual_seed(0 )
_A : Optional[int] = sag_pipe(
[prompt] , generator=_a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" )
_A : int = output.images
_A : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_A : Optional[int] = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2
def a__ ( self ) -> List[Any]:
_A : str = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
_A : int = sag_pipe.to(_a )
sag_pipe.set_progress_bar_config(disable=_a )
_A : Dict = """."""
_A : Union[str, Any] = torch.manual_seed(0 )
_A : List[Any] = sag_pipe(
[prompt] , width=768 , height=512 , generator=_a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , )
_A : Dict = output.images
assert image.shape == (1, 512, 768, 3)
| 362 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 0 |
import inspect
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
_snake_case = "src/transformers"
# This is to make sure the transformers module imported is the one in the repo.
_snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS)
_snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING
# Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`.
# For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)`
_snake_case = re.compile(r"\[(.+?)\]\((https://huggingface\.co/.+?)\)")
_snake_case = {
"DecisionTransformerConfig",
"EncoderDecoderConfig",
"MusicgenConfig",
"RagConfig",
"SpeechEncoderDecoderConfig",
"TimmBackboneConfig",
"VisionEncoderDecoderConfig",
"VisionTextDualEncoderConfig",
"LlamaConfig",
}
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = None
# source code of `config_class`
_A : Optional[Any] = inspect.getsource(UpperCamelCase__ )
_A : str = _re_checkpoint.findall(UpperCamelCase__ )
# Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link.
# For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')`
for ckpt_name, ckpt_link in checkpoints:
# allow the link to end with `/`
if ckpt_link.endswith("""/""" ):
_A : Tuple = ckpt_link[:-1]
# verify the checkpoint name corresponds to the checkpoint link
_A : Union[str, Any] = f'''https://huggingface.co/{ckpt_name}'''
if ckpt_link == ckpt_link_from_name:
_A : Tuple = ckpt_name
break
return checkpoint
def lowerCAmelCase_ ( ):
_A : Any = []
for config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in config_class.__module__:
continue
_A : Any = get_checkpoint_from_config_class(UpperCamelCase__ )
_A : str = config_class.__name__
if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK:
configs_without_checkpoint.append(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
_A : List[Any] = """\n""".join(sorted(UpperCamelCase__ ) )
raise ValueError(f'''The following configurations don\'t contain any valid checkpoint:\n{message}''' )
if __name__ == "__main__":
check_config_docstrings_have_checkpoints()
| 363 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 0 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class lowercase ( SCREAMING_SNAKE_CASE__ ):
def __init__( self , _a , _a ) -> Optional[int]:
_A : Any = params
_A : Dict = np.array(_SCREAMING_SNAKE_CASE )
_A : Union[str, Any] = np.array([len(_SCREAMING_SNAKE_CASE ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self , _a ) -> int:
return (self.token_ids[index], self.lengths[index])
def __len__( self ) -> Optional[Any]:
return len(self.lengths )
def a__ ( self ) -> int:
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def a__ ( self ) -> Optional[Any]:
_A : Optional[int] = self.params.max_model_input_size
_A : str = self.lengths > max_len
logger.info(F'''Splitting {sum(_SCREAMING_SNAKE_CASE )} too long sequences.''' )
def divide_chunks(_a , _a ):
return [l[i : i + n] for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )]
_A : Optional[Any] = []
_A : Optional[int] = []
if self.params.mlm:
_A : Union[str, Any] = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
else:
_A : Any = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
_A : List[Any] = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
_A : Optional[Any] = np.insert(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE )
if sub_s[-1] != sep_id:
_A : Optional[int] = np.insert(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
assert len(_SCREAMING_SNAKE_CASE ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(_SCREAMING_SNAKE_CASE )
new_tok_ids.extend(_SCREAMING_SNAKE_CASE )
new_lengths.extend([len(_SCREAMING_SNAKE_CASE ) for l in sub_seqs] )
_A : Union[str, Any] = np.array(_SCREAMING_SNAKE_CASE )
_A : Any = np.array(_SCREAMING_SNAKE_CASE )
def a__ ( self ) -> str:
_A : Union[str, Any] = len(self )
_A : List[Any] = self.lengths > 11
_A : Dict = self.token_ids[indices]
_A : Any = self.lengths[indices]
_A : Optional[int] = len(self )
logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def a__ ( self ) -> int:
if "unk_token" not in self.params.special_tok_ids:
return
else:
_A : Optional[Any] = self.params.special_tok_ids["unk_token"]
_A : Tuple = len(self )
_A : int = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
_A : Optional[Any] = (unk_occs / self.lengths) < 0.5
_A : List[str] = self.token_ids[indices]
_A : Dict = self.lengths[indices]
_A : Union[str, Any] = len(self )
logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def a__ ( self ) -> Any:
if not self.params.is_master:
return
logger.info(F'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def a__ ( self , _a ) -> List[str]:
_A : int = [t[0] for t in batch]
_A : Tuple = [t[1] for t in batch]
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
# Max for paddings
_A : Optional[Any] = max(_SCREAMING_SNAKE_CASE )
# Pad token ids
if self.params.mlm:
_A : Union[str, Any] = self.params.special_tok_ids["pad_token"]
else:
_A : List[Any] = self.params.special_tok_ids["unk_token"]
_A : Optional[int] = [list(t.astype(_SCREAMING_SNAKE_CASE ) ) + [pad_idx] * (max_seq_len_ - len(_SCREAMING_SNAKE_CASE )) for t in token_ids]
assert len(tk_ ) == len(_SCREAMING_SNAKE_CASE )
assert all(len(_SCREAMING_SNAKE_CASE ) == max_seq_len_ for t in tk_ )
_A : Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_)
_A : Any = torch.tensor(_SCREAMING_SNAKE_CASE ) # (bs)
return tk_t, lg_t
| 364 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 0 |
"""simple docstring"""
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
_snake_case = data_utils.TransfoXLTokenizer
_snake_case = data_utils.TransfoXLCorpus
_snake_case = data_utils
_snake_case = data_utils
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(_UpperCAmelCase,"""rb""" ) as fp:
_A : int = pickle.load(_UpperCAmelCase,encoding="""latin1""" )
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
_A : Any = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"]
print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' )
_A : Optional[int] = corpus.vocab.__dict__
torch.save(_UpperCAmelCase,_UpperCAmelCase )
_A : Optional[int] = corpus.__dict__
corpus_dict_no_vocab.pop("""vocab""",_UpperCAmelCase )
_A : str = pytorch_dump_folder_path + "/" + CORPUS_NAME
print(f'''Save dataset to {pytorch_dataset_dump_path}''' )
torch.save(_UpperCAmelCase,_UpperCAmelCase )
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
_A : Optional[Any] = os.path.abspath(_UpperCAmelCase )
_A : Dict = os.path.abspath(_UpperCAmelCase )
print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' )
# Initialise PyTorch model
if transfo_xl_config_file == "":
_A : Tuple = TransfoXLConfig()
else:
_A : str = TransfoXLConfig.from_json_file(_UpperCAmelCase )
print(f'''Building PyTorch model from configuration: {config}''' )
_A : List[Any] = TransfoXLLMHeadModel(_UpperCAmelCase )
_A : Any = load_tf_weights_in_transfo_xl(_UpperCAmelCase,_UpperCAmelCase,_UpperCAmelCase )
# Save pytorch-model
_A : int = os.path.join(_UpperCAmelCase,_UpperCAmelCase )
_A : List[Any] = os.path.join(_UpperCAmelCase,_UpperCAmelCase )
print(f'''Save PyTorch model to {os.path.abspath(_UpperCAmelCase )}''' )
torch.save(model.state_dict(),_UpperCAmelCase )
print(f'''Save configuration file to {os.path.abspath(_UpperCAmelCase )}''' )
with open(_UpperCAmelCase,"""w""",encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
_snake_case = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 365 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_snake_case = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 366 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
_snake_case = logging.get_logger(__name__)
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__ ):
def __init__( self , **_a ) -> Dict:
super().__init__(**__lowerCamelCase )
if self.framework == "tf":
raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' )
requires_backends(self , """vision""" )
self.check_model_type(__lowerCamelCase )
def __call__( self , _a , _a = None , **_a , ) -> Optional[Any]:
if "text_queries" in kwargs:
_A : Optional[Any] = kwargs.pop("""text_queries""" )
if isinstance(__lowerCamelCase , (str, Image.Image) ):
_A : int = {"""image""": image, """candidate_labels""": candidate_labels}
else:
_A : str = image
_A : Optional[Any] = super().__call__(__lowerCamelCase , **__lowerCamelCase )
return results
def a__ ( self , **_a ) -> List[str]:
_A : Optional[Any] = {}
if "threshold" in kwargs:
_A : Any = kwargs["""threshold"""]
if "top_k" in kwargs:
_A : List[str] = kwargs["""top_k"""]
return {}, {}, postprocess_params
def a__ ( self , _a ) -> Any:
_A : List[Any] = load_image(inputs["""image"""] )
_A : int = inputs["""candidate_labels"""]
if isinstance(__lowerCamelCase , __lowerCamelCase ):
_A : List[str] = candidate_labels.split(""",""" )
_A : Any = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(__lowerCamelCase ):
_A : Union[str, Any] = self.tokenizer(__lowerCamelCase , return_tensors=self.framework )
_A : Dict = self.image_processor(__lowerCamelCase , return_tensors=self.framework )
yield {
"is_last": i == len(__lowerCamelCase ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def a__ ( self , _a ) -> Any:
_A : List[str] = model_inputs.pop("""target_size""" )
_A : str = model_inputs.pop("""candidate_label""" )
_A : Optional[int] = model_inputs.pop("""is_last""" )
_A : Dict = self.model(**__lowerCamelCase )
_A : Tuple = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs}
return model_outputs
def a__ ( self , _a , _a=0.1 , _a=None ) -> int:
_A : str = []
for model_output in model_outputs:
_A : Optional[Any] = model_output["""candidate_label"""]
_A : Optional[int] = BaseModelOutput(__lowerCamelCase )
_A : List[str] = self.image_processor.post_process_object_detection(
outputs=__lowerCamelCase , threshold=__lowerCamelCase , target_sizes=model_output["""target_size"""] )[0]
for index in outputs["scores"].nonzero():
_A : Tuple = outputs["""scores"""][index].item()
_A : str = self._get_bounding_box(outputs["""boxes"""][index][0] )
_A : int = {"""score""": score, """label""": label, """box""": box}
results.append(__lowerCamelCase )
_A : List[str] = sorted(__lowerCamelCase , key=lambda _a : x["score"] , reverse=__lowerCamelCase )
if top_k:
_A : str = results[:top_k]
return results
def a__ ( self , _a ) -> Tuple:
if self.framework != "pt":
raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" )
_A , _A , _A , _A : Any = box.int().tolist()
_A : Any = {
"""xmin""": xmin,
"""ymin""": ymin,
"""xmax""": xmax,
"""ymax""": ymax,
}
return bbox
| 367 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class lowercase ( unittest.TestCase ):
def a__ ( self , _a ) -> Optional[Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_A : Union[str, Any] = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(_lowerCamelCase )
def a__ ( self ) -> Any:
_A : Tuple = """sshleifer/tiny-gpt2"""
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(_lowerCamelCase )
_A : int = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> Optional[int]:
_A : int = """sgugger/tiny-distilbert-classification"""
_A : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , only_pretrain_model=_lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(_lowerCamelCase )
_A : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> List[str]:
_A : str = """sshleifer/tiny-gpt2"""
_A : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , torchscript=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(_lowerCamelCase )
_A : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = """sshleifer/tiny-gpt2"""
_A : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , fpaa=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : Tuple = PyTorchBenchmark(_lowerCamelCase )
_A : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> int:
_A : Any = """sshleifer/tiny-gpt2"""
_A : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase )
# set architectures equal to `None`
_A : Tuple = None
_A : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : int = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
_A : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> Dict:
_A : Tuple = """sshleifer/tiny-gpt2"""
_A : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : str = PyTorchBenchmark(_lowerCamelCase )
_A : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can\'t do half precision""" )
def a__ ( self ) -> Dict:
_A : int = """sshleifer/tiny-gpt2"""
_A : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=_lowerCamelCase , multi_process=_lowerCamelCase , )
_A : int = PyTorchBenchmark(_lowerCamelCase )
_A : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a__ ( self ) -> Optional[Any]:
_A : Optional[int] = """sshleifer/tiny-gpt2"""
_A : int = AutoConfig.from_pretrained(_lowerCamelCase )
_A : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : str = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
_A : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> Any:
_A : Tuple = """sshleifer/tinier_bart"""
_A : Dict = AutoConfig.from_pretrained(_lowerCamelCase )
_A : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : List[Any] = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
_A : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def a__ ( self ) -> Tuple:
_A : Optional[int] = """sshleifer/tiny-gpt2"""
_A : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase )
_A : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : Any = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
_A : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a__ ( self ) -> List[str]:
_A : Optional[int] = """sshleifer/tinier_bart"""
_A : Optional[Any] = AutoConfig.from_pretrained(_lowerCamelCase )
_A : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_lowerCamelCase , )
_A : List[str] = PyTorchBenchmark(_lowerCamelCase , configs=[config] )
_A : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def a__ ( self ) -> Optional[int]:
_A : Optional[int] = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , save_to_csv=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_lowerCamelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(_lowerCamelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(_lowerCamelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(_lowerCamelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(_lowerCamelCase , """env.csv""" ) , multi_process=_lowerCamelCase , )
_A : Any = PyTorchBenchmark(_lowerCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """env.csv""" ) ).exists() )
def a__ ( self ) -> List[str]:
_A : List[Any] = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(_a ):
self.assertTrue(hasattr(_lowerCamelCase , """sequential""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """cumulative""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """current""" ) )
self.assertTrue(hasattr(_lowerCamelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_A : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=_lowerCamelCase , inference=_lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_lowerCamelCase , """log.txt""" ) , log_print=_lowerCamelCase , trace_memory_line_by_line=_lowerCamelCase , multi_process=_lowerCamelCase , )
_A : Any = PyTorchBenchmark(_lowerCamelCase )
_A : Any = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(_lowerCamelCase , """log.txt""" ) ).exists() )
| 368 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 0 |
"""simple docstring"""
import argparse
import json
import re
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileNetVaConfig,
MobileNetVaForImageClassification,
MobileNetVaImageProcessor,
load_tf_weights_in_mobilenet_va,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.0_01 )
if "_quant" in model_name:
raise ValueError("""Quantized models are not supported.""" )
_A : int = re.match(r"""^mobilenet_v1_([^_]*)_([^_]*)$""",_snake_case )
if matches:
_A : List[str] = float(matches[1] )
_A : Dict = int(matches[2] )
# The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
# the usual 1000. The first class (index 0) is "background".
_A : List[str] = 1001
_A : Tuple = "imagenet-1k-id2label.json"
_A : Union[str, Any] = "huggingface/label-files"
_A : str = json.load(open(hf_hub_download(_snake_case,_snake_case,repo_type="""dataset""" ),"""r""" ) )
_A : Tuple = {int(_snake_case ) + 1: v for k, v in idalabel.items()}
_A : Dict = "background"
_A : str = idalabel
_A : List[Any] = {v: k for k, v in idalabel.items()}
return config
def lowerCAmelCase_ ( ):
_A : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg"
_A : Any = Image.open(requests.get(_snake_case,stream=_snake_case ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=False ):
_A : int = get_mobilenet_va_config(_snake_case )
# Load 🤗 model
_A : List[Any] = MobileNetVaForImageClassification(_snake_case ).eval()
# Load weights from TensorFlow checkpoint
load_tf_weights_in_mobilenet_va(_snake_case,_snake_case,_snake_case )
# Check outputs on an image, prepared by MobileNetV1ImageProcessor
_A : Dict = MobileNetVaImageProcessor(
crop_size={"""width""": config.image_size, """height""": config.image_size},size={"""shortest_edge""": config.image_size + 32},)
_A : int = image_processor(images=prepare_img(),return_tensors="""pt""" )
_A : Any = model(**_snake_case )
_A : Dict = outputs.logits
assert logits.shape == (1, 1001)
if model_name == "mobilenet_v1_1.0_224":
_A : Tuple = torch.tensor([-4.17_39, -1.12_33, 3.12_05] )
elif model_name == "mobilenet_v1_0.75_192":
_A : Optional[Any] = torch.tensor([-3.94_40, -2.31_41, -0.33_33] )
else:
_A : str = None
if expected_logits is not None:
assert torch.allclose(logits[0, :3],_snake_case,atol=1e-4 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
print("""Pushing to the hub...""" )
_A : List[str] = "google/" + model_name
image_processor.push_to_hub(_snake_case )
model.push_to_hub(_snake_case )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="mobilenet_v1_1.0_224",
type=str,
help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 369 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_pytesseract, require_torch
from transformers.utils import is_pytesseract_available, is_torch_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_pytesseract_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase ( unittest.TestCase ):
def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , ) -> Dict:
_A : int = size if size is not None else {"height": 18, "width": 18}
_A : List[Any] = parent
_A : Tuple = batch_size
_A : Optional[int] = num_channels
_A : Tuple = image_size
_A : Tuple = min_resolution
_A : Optional[int] = max_resolution
_A : str = do_resize
_A : int = size
_A : Tuple = apply_ocr
def a__ ( self ) -> List[Any]:
return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr}
@require_torch
@require_pytesseract
class lowercase ( _a,unittest.TestCase ):
_a = LayoutLMvaImageProcessor if is_pytesseract_available() else None
def a__ ( self ) -> Optional[int]:
_A : int = LayoutLMvaImageProcessingTester(self )
@property
def a__ ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def a__ ( self ) -> Optional[Any]:
_A : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_a , """do_resize""" ) )
self.assertTrue(hasattr(_a , """size""" ) )
self.assertTrue(hasattr(_a , """apply_ocr""" ) )
def a__ ( self ) -> Union[str, Any]:
_A : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
_A : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def a__ ( self ) -> Optional[Any]:
pass
def a__ ( self ) -> Any:
# Initialize image_processing
_A : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a )
for image in image_inputs:
self.assertIsInstance(_a , Image.Image )
# Test not batched input
_A : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" )
self.assertEqual(
encoding.pixel_values.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
self.assertIsInstance(encoding.words , _a )
self.assertIsInstance(encoding.boxes , _a )
# Test batched
_A : Optional[Any] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def a__ ( self ) -> str:
# Initialize image_processing
_A : Any = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a )
for image in image_inputs:
self.assertIsInstance(_a , np.ndarray )
# Test not batched input
_A : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : List[str] = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def a__ ( self ) -> int:
# Initialize image_processing
_A : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a )
for image in image_inputs:
self.assertIsInstance(_a , torch.Tensor )
# Test not batched input
_A : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
_A : Dict = image_processing(_a , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def a__ ( self ) -> Optional[int]:
# with apply_OCR = True
_A : Union[str, Any] = LayoutLMvaImageProcessor()
from datasets import load_dataset
_A : Union[str, Any] = load_dataset("""hf-internal-testing/fixtures_docvqa""" , split="""test""" )
_A : Dict = Image.open(ds[0]["""file"""] ).convert("""RGB""" )
_A : List[Any] = image_processing(_a , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
self.assertEqual(len(encoding.words ) , len(encoding.boxes ) )
# fmt: off
# the words and boxes were obtained with Tesseract 4.1.1
_A : List[Any] = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231
_A : List[Any] = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231
# fmt: on
self.assertListEqual(encoding.words , _a )
self.assertListEqual(encoding.boxes , _a )
# with apply_OCR = False
_A : Any = LayoutLMvaImageProcessor(apply_ocr=_a )
_A : Dict = image_processing(_a , return_tensors="""pt""" )
self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
| 370 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_ ):
if not grid or not grid[0]:
raise TypeError("""The grid does not contain the appropriate information""" )
for cell_n in range(1,len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
_A : Any = grid[0]
for row_n in range(1,len(_lowerCAmelCase ) ):
_A : List[str] = grid[row_n]
_A : Tuple = fill_row(_lowerCAmelCase,_lowerCAmelCase )
_A : Optional[int] = grid[row_n]
return grid[-1][-1]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
current_row[0] += row_above[0]
for cell_n in range(1,len(_lowerCAmelCase ) ):
current_row[cell_n] += min(current_row[cell_n - 1],row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 0 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
_snake_case = logging.get_logger(__name__)
@add_end_docstrings(__lowerCamelCase )
class lowercase ( __lowerCamelCase ):
def __init__( self , *_a , **_a ) -> Dict:
super().__init__(*__lowercase , **__lowercase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING )
def a__ ( self , _a=None , _a=None , _a=None ) -> List[Any]:
_A : Dict = {}
_A : str = {}
if prompt is not None:
_A : Dict = prompt
if generate_kwargs is not None:
_A : Optional[Any] = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_A : List[str] = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
"""\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,"""
""" please use only one""" )
_A : List[str] = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self , _a , **_a ) -> Optional[Any]:
return super().__call__(__lowercase , **__lowercase )
def a__ ( self , _a , _a=None ) -> Dict:
_A : str = load_image(__lowercase )
if prompt is not None:
if not isinstance(__lowercase , __lowercase ):
raise ValueError(
F'''Received an invalid text input, got - {type(__lowercase )} - but expected a single string. '''
"""Note also that one single text can be provided for conditional image to text generation.""" )
_A : Tuple = self.model.config.model_type
if model_type == "git":
_A : str = self.image_processor(images=__lowercase , return_tensors=self.framework )
_A : Union[str, Any] = self.tokenizer(text=__lowercase , add_special_tokens=__lowercase ).input_ids
_A : str = [self.tokenizer.cls_token_id] + input_ids
_A : Any = torch.tensor(__lowercase ).unsqueeze(0 )
model_inputs.update({"""input_ids""": input_ids} )
elif model_type == "pix2struct":
_A : Dict = self.image_processor(images=__lowercase , header_text=__lowercase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_A : Union[str, Any] = self.image_processor(images=__lowercase , return_tensors=self.framework )
_A : List[Any] = self.tokenizer(__lowercase , return_tensors=self.framework )
model_inputs.update(__lowercase )
else:
raise ValueError(F'''Model type {model_type} does not support conditional text generation''' )
else:
_A : str = self.image_processor(images=__lowercase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_A : Dict = None
return model_inputs
def a__ ( self , _a , _a=None ) -> Optional[Any]:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["""input_ids"""] , __lowercase )
and all(x is None for x in model_inputs["""input_ids"""] )
):
_A : Optional[int] = None
if generate_kwargs is None:
_A : Optional[int] = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_A : Dict = model_inputs.pop(self.model.main_input_name )
_A : Dict = self.model.generate(__lowercase , **__lowercase , **__lowercase )
return model_outputs
def a__ ( self , _a ) -> Union[str, Any]:
_A : Optional[int] = []
for output_ids in model_outputs:
_A : str = {
'''generated_text''': self.tokenizer.decode(
__lowercase , skip_special_tokens=__lowercase , )
}
records.append(__lowercase )
return records
| 350 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 0 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
_A : Optional[Any] = len(_UpperCAmelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(_UpperCAmelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col],[*diagonal_right_collisions, row - col],[*diagonal_left_collisions, row + col],_UpperCAmelCase,_UpperCAmelCase,)
def lowerCAmelCase_ ( snake_case_ ):
_A : list[list[str]] = []
depth_first_search([],[],[],_UpperCAmelCase,_UpperCAmelCase )
# Print all the boards
for board in boards:
for column in board:
print(_UpperCAmelCase )
print("""""" )
print(len(_UpperCAmelCase ),"""solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 351 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 0 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ):
debug_launcher(test_script.main )
def a__ ( self ):
debug_launcher(test_ops.main )
| 352 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 0 |
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class lowercase ( snake_case_ ):
_a = 4_2
class lowercase ( snake_case_,snake_case_ ):
_a = True
@register_to_config
def __init__( self , _a = 3 , _a = 3 , _a = ("DownEncoderBlock2D",) , _a = ("UpDecoderBlock2D",) , _a = (64,) , _a = 1 , _a = "silu" , _a = 4 , _a = 32 , _a = 32 , _a = 0.18215 , ) -> Optional[Any]:
super().__init__()
# pass init params to Encoder
_A : Union[str, Any] = Encoder(
in_channels=_a , out_channels=_a , down_block_types=_a , block_out_channels=_a , layers_per_block=_a , act_fn=_a , norm_num_groups=_a , double_z=_a , )
# pass init params to Decoder
_A : int = Decoder(
in_channels=_a , out_channels=_a , up_block_types=_a , block_out_channels=_a , layers_per_block=_a , norm_num_groups=_a , act_fn=_a , )
_A : Tuple = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
_A : Optional[Any] = nn.Convad(_a , _a , 1 )
_A : List[str] = False
_A : Optional[Any] = False
# only relevant if vae tiling is enabled
_A : Tuple = self.config.sample_size
_A : int = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
_A : List[str] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
_A : int = 0.25
def a__ ( self , _a , _a=False ) -> Tuple:
if isinstance(_a , (Encoder, Decoder) ):
_A : str = value
def a__ ( self , _a = True ) -> List[str]:
_A : Tuple = use_tiling
def a__ ( self ) -> Dict:
self.enable_tiling(_a )
def a__ ( self ) -> Tuple:
_A : Optional[Any] = True
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : str = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : int = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> Optional[int]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Tuple:
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput:
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(_a , return_dict=_a )
if self.use_slicing and x.shape[0] > 1:
_A : int = [self.encoder(_a ) for x_slice in x.split(1 )]
_A : str = torch.cat(_a )
else:
_A : Optional[Any] = self.encoder(_a )
_A : Tuple = self.quant_conv(_a )
_A : str = DiagonalGaussianDistribution(_a )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_a )
def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(_a , return_dict=_a )
_A : int = self.post_quant_conv(_a )
_A : Dict = self.decoder(_a )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_a )
@apply_forward_hook
def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]:
if self.use_slicing and z.shape[0] > 1:
_A : Optional[int] = [self._decode(_a ).sample for z_slice in z.split(1 )]
_A : List[str] = torch.cat(_a )
else:
_A : Optional[Any] = self._decode(_a ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=_a )
def a__ ( self , _a , _a , _a ) -> Any:
_A : Union[str, Any] = min(a.shape[2] , b.shape[2] , _a )
for y in range(_a ):
_A : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def a__ ( self , _a , _a , _a ) -> str:
_A : Tuple = min(a.shape[3] , b.shape[3] , _a )
for x in range(_a ):
_A : Union[str, Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def a__ ( self , _a , _a = True ) -> AutoencoderKLOutput:
_A : int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
_A : Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor )
_A : Optional[int] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
_A : List[str] = []
for i in range(0 , x.shape[2] , _a ):
_A : str = []
for j in range(0 , x.shape[3] , _a ):
_A : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
_A : Optional[Any] = self.encoder(_a )
_A : Optional[int] = self.quant_conv(_a )
row.append(_a )
rows.append(_a )
_A : List[str] = []
for i, row in enumerate(_a ):
_A : Optional[Any] = []
for j, tile in enumerate(_a ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_A : Any = self.blend_v(rows[i - 1][j] , _a , _a )
if j > 0:
_A : Optional[Any] = self.blend_h(row[j - 1] , _a , _a )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_a , dim=3 ) )
_A : List[Any] = torch.cat(_a , dim=2 )
_A : Union[str, Any] = DiagonalGaussianDistribution(_a )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=_a )
def a__ ( self , _a , _a = True ) -> Union[DecoderOutput, torch.FloatTensor]:
_A : int = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
_A : Any = int(self.tile_sample_min_size * self.tile_overlap_factor )
_A : Tuple = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
_A : List[str] = []
for i in range(0 , z.shape[2] , _a ):
_A : Dict = []
for j in range(0 , z.shape[3] , _a ):
_A : Any = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
_A : Any = self.post_quant_conv(_a )
_A : str = self.decoder(_a )
row.append(_a )
rows.append(_a )
_A : Union[str, Any] = []
for i, row in enumerate(_a ):
_A : str = []
for j, tile in enumerate(_a ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_A : Any = self.blend_v(rows[i - 1][j] , _a , _a )
if j > 0:
_A : Tuple = self.blend_h(row[j - 1] , _a , _a )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(_a , dim=3 ) )
_A : int = torch.cat(_a , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_a )
def a__ ( self , _a , _a = False , _a = True , _a = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
_A : Dict = sample
_A : int = self.encode(_a ).latent_dist
if sample_posterior:
_A : Optional[int] = posterior.sample(generator=_a )
else:
_A : Optional[Any] = posterior.mode()
_A : Tuple = self.decode(_a ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_a )
| 353 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 0 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class lowercase ( UpperCamelCase__ ):
_a = 4_2
_a = None
def lowerCAmelCase_ ( snake_case_,snake_case_=0.9_99,snake_case_="cosine",):
if alpha_transform_type == "cosine":
def alpha_bar_fn(snake_case_ ):
return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(snake_case_ ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
_A : List[Any] = []
for i in range(_lowerCAmelCase ):
_A : int = i / num_diffusion_timesteps
_A : List[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ),_lowerCAmelCase ) )
return torch.tensor(_lowerCAmelCase,dtype=torch.floataa )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 1000 , _a = "fixed_small_log" , _a = True , _a = 1.0 , _a = "epsilon" , _a = "squaredcos_cap_v2" , ) -> Optional[int]:
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'""" )
_A : Dict = betas_for_alpha_bar(_lowerCAmelCase )
_A : List[Any] = 1.0 - self.betas
_A : str = torch.cumprod(self.alphas , dim=0 )
_A : str = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
_A : Dict = 1.0
# setable values
_A : Dict = None
_A : Any = torch.from_numpy(np.arange(0 , _lowerCAmelCase )[::-1].copy() )
_A : Any = variance_type
def a__ ( self , _a , _a = None ) -> Dict:
return sample
def a__ ( self , _a , _a = None ) -> Any:
_A : Optional[Any] = num_inference_steps
_A : int = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
_A : List[str] = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
_A : str = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase )
def a__ ( self , _a , _a=None , _a=None , _a=None ) -> Optional[int]:
if prev_timestep is None:
_A : int = t - 1
_A : Optional[int] = self.alphas_cumprod[t]
_A : Any = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_A : Tuple = 1 - alpha_prod_t
_A : str = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_A : int = self.betas[t]
else:
_A : Union[str, Any] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : Dict = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
_A : Tuple = torch.log(torch.clamp(_lowerCAmelCase , min=1e-20 ) )
_A : Union[str, Any] = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
_A : List[Any] = variance.log()
_A : str = beta.log()
_A : Dict = (predicted_variance + 1) / 2
_A : Optional[int] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a = None , _a=None , _a = True , ) -> Tuple:
_A : int = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
_A , _A : List[str] = torch.split(_lowerCAmelCase , sample.shape[1] , dim=1 )
else:
_A : Tuple = None
# 1. compute alphas, betas
if prev_timestep is None:
_A : Any = t - 1
_A : Optional[Any] = self.alphas_cumprod[t]
_A : Optional[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
_A : List[str] = 1 - alpha_prod_t
_A : Dict = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
_A : str = self.betas[t]
_A : str = self.alphas[t]
else:
_A : str = 1 - alpha_prod_t / alpha_prod_t_prev
_A : List[str] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : List[Any] = torch.clamp(
_lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[str] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
_A : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : str = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_A : List[str] = 0
if t > 0:
_A : List[Any] = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=_lowerCAmelCase , device=model_output.device )
_A : List[str] = self._get_variance(
_lowerCAmelCase , predicted_variance=_lowerCAmelCase , prev_timestep=_lowerCAmelCase , )
if self.variance_type == "fixed_small_log":
_A : List[str] = variance
elif self.variance_type == "learned_range":
_A : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
""" for the UnCLIPScheduler.""" )
_A : Optional[Any] = variance * variance_noise
_A : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase )
def a__ ( self , _a , _a , _a , ) -> Optional[int]:
_A : List[Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
_A : Union[str, Any] = timesteps.to(original_samples.device )
_A : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5
_A : List[Any] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
_A : str = sqrt_alpha_prod.unsqueeze(-1 )
_A : List[str] = (1 - alphas_cumprod[timesteps]) ** 0.5
_A : int = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
_A : Optional[Any] = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
_A : Tuple = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 354 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 0 |
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
_snake_case = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
_snake_case = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
_snake_case = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def a__ ( self ) -> Any:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/krishnap25/mauve""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/krishnap25/mauve"""] , reference_urls=[
"""https://arxiv.org/abs/2102.01454""",
"""https://github.com/krishnap25/mauve""",
] , )
def a__ ( self , _a , _a , _a=None , _a=None , _a=None , _a=None , _a="auto" , _a=-1 , _a=0.9 , _a=5 , _a=500 , _a="gpt2-large" , _a=-1 , _a=1024 , _a=25 , _a=5 , _a=True , _a=25 , ) -> List[str]:
_A : Optional[Any] = compute_mauve(
p_text=_SCREAMING_SNAKE_CASE , q_text=_SCREAMING_SNAKE_CASE , p_features=_SCREAMING_SNAKE_CASE , q_features=_SCREAMING_SNAKE_CASE , p_tokens=_SCREAMING_SNAKE_CASE , q_tokens=_SCREAMING_SNAKE_CASE , num_buckets=_SCREAMING_SNAKE_CASE , pca_max_data=_SCREAMING_SNAKE_CASE , kmeans_explained_var=_SCREAMING_SNAKE_CASE , kmeans_num_redo=_SCREAMING_SNAKE_CASE , kmeans_max_iter=_SCREAMING_SNAKE_CASE , featurize_model_name=_SCREAMING_SNAKE_CASE , device_id=_SCREAMING_SNAKE_CASE , max_text_length=_SCREAMING_SNAKE_CASE , divergence_curve_discretization_size=_SCREAMING_SNAKE_CASE , mauve_scaling_factor=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , seed=_SCREAMING_SNAKE_CASE , )
return out
| 355 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"andreasmadsen/efficient_mlm_m0.40": (
"https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json"
),
}
class lowercase ( snake_case_ ):
_a = "roberta-prelayernorm"
def __init__( self , _a=5_0265 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , **_a , ) -> Optional[int]:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
_A : List[Any] = vocab_size
_A : List[Any] = hidden_size
_A : Any = num_hidden_layers
_A : Tuple = num_attention_heads
_A : Any = hidden_act
_A : Union[str, Any] = intermediate_size
_A : Optional[Any] = hidden_dropout_prob
_A : Tuple = attention_probs_dropout_prob
_A : Tuple = max_position_embeddings
_A : Optional[Any] = type_vocab_size
_A : Union[str, Any] = initializer_range
_A : Union[str, Any] = layer_norm_eps
_A : str = position_embedding_type
_A : Tuple = use_cache
_A : int = classifier_dropout
class lowercase ( snake_case_ ):
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_A : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_A : str = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 356 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = generate_pascal_triangle(snake_case_ )
for row_idx in range(snake_case_ ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=""" """ )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx],end=""" """ )
else:
print(triangle[row_idx][col_idx],end="""""" )
print()
def lowerCAmelCase_ ( snake_case_ ):
if not isinstance(snake_case_,snake_case_ ):
raise TypeError("""The input value of \'num_rows\' should be \'int\'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of \'num_rows\' should be greater than or equal to 0""" )
_A : list[list[int]] = []
for current_row_idx in range(snake_case_ ):
_A : str = populate_current_row(snake_case_,snake_case_ )
triangle.append(snake_case_ )
return triangle
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : List[Any] = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
_A : Optional[int] = 1, 1
for current_col_idx in range(1,snake_case_ ):
calculate_current_element(
snake_case_,snake_case_,snake_case_,snake_case_ )
return current_row
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
_A : Optional[Any] = triangle[current_row_idx - 1][current_col_idx - 1]
_A : List[Any] = triangle[current_row_idx - 1][current_col_idx]
_A : Tuple = above_to_left_elt + above_to_right_elt
def lowerCAmelCase_ ( snake_case_ ):
if not isinstance(snake_case_,snake_case_ ):
raise TypeError("""The input value of \'num_rows\' should be \'int\'""" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"""The input value of \'num_rows\' should be greater than or equal to 0""" )
_A : list[list[int]] = [[1]]
for row_index in range(1,snake_case_ ):
_A : Tuple = [0] + result[-1] + [0]
_A : Any = row_index + 1
# Calculate the number of distinct elements in a row
_A : str = sum(divmod(snake_case_,2 ) )
_A : Optional[int] = [
temp_row[i - 1] + temp_row[i] for i in range(1,distinct_elements + 1 )
]
_A : int = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
_A : List[Any] = row_first_half + row_second_half
result.append(snake_case_ )
return result
def lowerCAmelCase_ ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(snake_case_,snake_case_ ) -> None:
_A : Tuple = f'''{func.__name__}({value})'''
_A : Dict = timeit(f'''__main__.{call}''',setup="""import __main__""" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f'''{call:38} -- {timing:.4f} seconds''' )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(snake_case_,snake_case_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 357 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowercase ( lowerCamelCase__,unittest.TestCase ):
_a = KandinskyVaaControlnetPipeline
_a = ['image_embeds', 'negative_image_embeds', 'hint']
_a = ['image_embeds', 'negative_image_embeds', 'hint']
_a = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
_a = False
@property
def a__ ( self ) -> Union[str, Any]:
return 32
@property
def a__ ( self ) -> List[str]:
return 32
@property
def a__ ( self ) -> Tuple:
return self.time_input_dim
@property
def a__ ( self ) -> Dict:
return self.time_input_dim * 4
@property
def a__ ( self ) -> Optional[Any]:
return 100
@property
def a__ ( self ) -> Optional[int]:
torch.manual_seed(0 )
_A : List[Any] = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_A : List[Any] = UNetaDConditionModel(**lowercase__ )
return model
@property
def a__ ( self ) -> Dict:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def a__ ( self ) -> str:
torch.manual_seed(0 )
_A : List[str] = VQModel(**self.dummy_movq_kwargs )
return model
def a__ ( self ) -> Tuple:
_A : str = self.dummy_unet
_A : List[str] = self.dummy_movq
_A : Any = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowercase__ , set_alpha_to_one=lowercase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowercase__ , )
_A : List[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def a__ ( self , _a , _a=0 ) -> List[str]:
_A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
_A : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowercase__ )
# create hint
_A : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ )
if str(lowercase__ ).startswith("""mps""" ):
_A : Tuple = torch.manual_seed(lowercase__ )
else:
_A : Tuple = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ )
_A : List[Any] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def a__ ( self ) -> List[str]:
_A : List[Any] = """cpu"""
_A : str = self.get_dummy_components()
_A : int = self.pipeline_class(**lowercase__ )
_A : Any = pipe.to(lowercase__ )
pipe.set_progress_bar_config(disable=lowercase__ )
_A : Optional[Any] = pipe(**self.get_dummy_inputs(lowercase__ ) )
_A : Any = output.images
_A : Union[str, Any] = pipe(
**self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0]
_A : Union[str, Any] = image[0, -3:, -3:, -1]
_A : Any = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_A : Any = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ) -> str:
_A : Optional[Any] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" )
_A : Union[str, Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
_A : Optional[Any] = torch.from_numpy(np.array(lowercase__ ) ).float() / 255.0
_A : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
_A : Any = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(lowercase__ )
_A : Optional[int] = KandinskyVaaControlnetPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
_A : Any = pipeline.to(lowercase__ )
pipeline.set_progress_bar_config(disable=lowercase__ )
_A : Tuple = """A robot, 4k photo"""
_A : Optional[Any] = torch.Generator(device="""cuda""" ).manual_seed(0 )
_A , _A : Optional[Any] = pipe_prior(
lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_A : Optional[int] = torch.Generator(device="""cuda""" ).manual_seed(0 )
_A : List[str] = pipeline(
image_embeds=lowercase__ , negative_image_embeds=lowercase__ , hint=lowercase__ , generator=lowercase__ , num_inference_steps=100 , output_type="""np""" , )
_A : Any = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(lowercase__ , lowercase__ )
| 358 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 0 |
print((lambda quine: quine % quine)("print((lambda quine: quine %% quine)(%r))"))
| 359 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 0 |
"""simple docstring"""
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
_A : Tuple = (boundary[1] - boundary[0]) / steps
_A : Optional[Any] = boundary[0]
_A : Union[str, Any] = boundary[1]
_A : Tuple = make_points(a__,a__,a__ )
_A : Tuple = 0.0
y += (h / 2.0) * f(a__ )
for i in x_i:
# print(i)
y += h * f(a__ )
y += (h / 2.0) * f(a__ )
return y
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Any = a + h
while x < (b - h):
yield x
_A : Any = x + h
def lowerCAmelCase_ ( snake_case_ ): # enter your function here
_A : Dict = (x - 0) * (x - 0)
return y
def lowerCAmelCase_ ( ):
_A : List[Any] = 0.0 # Lower bound of integration
_A : Optional[Any] = 1.0 # Upper bound of integration
_A : Optional[int] = 10.0 # define number of steps or resolution
_A : Optional[int] = [a, b] # define boundary of integration
_A : str = method_a(a__,a__ )
print(f'''y = {y}''' )
if __name__ == "__main__":
main()
| 360 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 0 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
_snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class lowercase ( __lowercase ):
def __init__( self , _a , _a , _a=None , _a=1 ) -> Optional[Any]:
_A : List[str] = tokenizer
_A : str = dataset
_A : List[str] = len(UpperCAmelCase__ ) if n_tasks is None else n_tasks
_A : int = n_copies
def __iter__( self ) -> Optional[int]:
_A : Union[str, Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() )
_A : Any = self.tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="""pt""" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowercase ( __lowercase ):
def __init__( self , _a , _a , _a ) -> str:
_A : Any = start_length
_A : int = eof_strings
_A : List[Any] = tokenizer
def __call__( self , _a , _a , **_a ) -> Union[str, Any]:
_A : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
_A : Tuple = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(UpperCAmelCase__ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = re.split("""(%s)""" % """|""".join(snake_case_ ),snake_case_ )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=20,**snake_case_ ):
_A : Union[str, Any] = defaultdict(snake_case_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(snake_case_ ) ):
with torch.no_grad():
_A : Union[str, Any] = batch["""ids"""].shape[-1]
_A : Any = accelerator.unwrap_model(snake_case_ ).generate(
input_ids=batch["""ids"""][:, : batch["""input_len"""]],num_return_sequences=snake_case_,**snake_case_ )
# each task is generated batch_size times
_A : str = batch["""task_id"""].repeat(snake_case_ )
_A : Union[str, Any] = accelerator.pad_across_processes(
snake_case_,dim=1,pad_index=tokenizer.pad_token_id )
_A , _A : Tuple = accelerator.gather((generated_tokens, generated_tasks) )
_A : str = generated_tokens.cpu().numpy()
_A : int = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(snake_case_,snake_case_ ):
gen_token_dict[task].append(snake_case_ )
_A : List[Any] = [[] for _ in range(snake_case_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
_A : Optional[int] = tokenizer.decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
code_gens[task].append(remove_last_block(snake_case_ ) )
return code_gens
def lowerCAmelCase_ ( ):
# Setup configuration
_A : Optional[int] = HfArgumentParser(snake_case_ )
_A : str = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
_A : List[Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
_A : Dict = """false"""
if args.num_workers is None:
_A : Optional[int] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
_A : Union[str, Any] = Accelerator()
set_seed(args.seed,device_specific=snake_case_ )
# Load model and tokenizer
_A : str = AutoTokenizer.from_pretrained(args.model_ckpt )
_A : Optional[int] = tokenizer.eos_token
_A : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
_A : Optional[int] = {
"""do_sample""": args.do_sample,
"""temperature""": args.temperature,
"""max_new_tokens""": args.max_new_tokens,
"""top_p""": args.top_p,
"""top_k""": args.top_k,
"""stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0,snake_case_,snake_case_ )] ),
}
# Load evaluation dataset and metric
_A : List[str] = load_dataset("""openai_humaneval""" )
_A : Any = load_metric("""code_eval""" )
_A : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] )
_A : List[str] = args.n_samples // args.batch_size
_A : Union[str, Any] = TokenizedDataset(snake_case_,human_eval["""test"""],n_copies=snake_case_,n_tasks=snake_case_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
_A : List[Any] = DataLoader(snake_case_,batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
_A : Union[str, Any] = code_eval_metric.compute(references=[""""""],predictions=[[""""""]] )
except ValueError as exception:
print(
"""Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"""
""" flag to enable code evaluation.""" )
raise exception
_A , _A : int = accelerator.prepare(snake_case_,snake_case_ )
_A : List[Any] = complete_code(
snake_case_,snake_case_,snake_case_,snake_case_,n_tasks=snake_case_,batch_size=args.batch_size,**snake_case_,)
if accelerator.is_main_process:
_A : str = []
for task in tqdm(range(snake_case_ ) ):
_A : List[Any] = human_eval["""test"""][task]["""test"""]
_A : Optional[Any] = f'''check({human_eval["test"][task]["entry_point"]})'''
references.append("""\n""" + test_func + """\n""" + entry_point )
# Evaluate completions with "code_eval" metric
_A , _A : Union[str, Any] = code_eval_metric.compute(
references=snake_case_,predictions=snake_case_,num_workers=args.num_workers )
print(f'''Results: {pass_at_k}''' )
# Save results to json file
with open(args.output_file,"""w""" ) as fp:
json.dump(snake_case_,snake_case_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 361 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if not isinstance(__lowerCAmelCase,__lowerCAmelCase ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(__lowerCAmelCase,__lowerCAmelCase ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
_A : Tuple = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(__lowerCAmelCase )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 362 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 0 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class lowercase ( unittest.TestCase ):
@require_torch
def a__ ( self ) -> Tuple:
_A : Dict = pipeline(
task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" )
_A : Optional[Any] = load_dataset("""ashraq/esc50""" )
_A : int = dataset["""train"""]["""audio"""][-1]["""array"""]
_A : List[Any] = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [{"""score""": 0.501, """label""": """Sound of a dog"""}, {"""score""": 0.499, """label""": """Sound of vaccum cleaner"""}] , )
@unittest.skip("""No models are available in TF""" )
def a__ ( self ) -> Tuple:
pass
@slow
@require_torch
def a__ ( self ) -> Dict:
_A : List[Any] = pipeline(
task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , )
# This is an audio of a dog
_A : int = load_dataset("""ashraq/esc50""" )
_A : int = dataset["""train"""]["""audio"""][-1]["""array"""]
_A : Dict = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
] , )
_A : List[Any] = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
[
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
_A : Optional[Any] = audio_classifier(
[audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
[
{"""score""": 0.999, """label""": """Sound of a dog"""},
{"""score""": 0.001, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
@unittest.skip("""No models are available in TF""" )
def a__ ( self ) -> Tuple:
pass
| 363 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'],
'tokenization_cpmant': ['CpmAntTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST',
'CpmAntForCausalLM',
'CpmAntModel',
'CpmAntPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 364 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 0 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
_snake_case = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
_snake_case = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
_snake_case = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n"
def lowerCAmelCase_ ( snake_case_ ):
def remove_articles(snake_case_ ):
_A : Union[str, Any] = re.compile(r"""\b(a|an|the)\b""",re.UNICODE )
return re.sub(_a,""" """,_a )
def white_space_fix(snake_case_ ):
return " ".join(text.split() )
def remove_punc(snake_case_ ):
_A : List[str] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(snake_case_ ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_a ) ) ) )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return int(normalize_answer(_a ) == normalize_answer(_a ) )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Any = [any(compute_exact(_a,_a ) for ref in refs ) for pred, refs in zip(_a,_a )]
return (sum(_a ) / len(_a )) * 100
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : int = [rgram for rgrams in rgramslist for rgram in rgrams]
_A : List[str] = Counter(_a )
_A : Tuple = Counter(_a )
_A : Any = Counter()
for sgram, scount in sgramcounter.items():
_A : List[str] = scount * numref
_A : List[str] = Counter(_a )
_A : List[Any] = Counter()
for cgram, ccount in cgramcounter.items():
_A : Optional[int] = ccount * numref
# KEEP
_A : int = sgramcounter_rep & cgramcounter_rep
_A : Tuple = keepgramcounter_rep & rgramcounter
_A : Optional[int] = sgramcounter_rep & rgramcounter
_A : Tuple = 0
_A : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_A : Optional[Any] = 1
_A : Union[str, Any] = 1
if len(_a ) > 0:
_A : List[Any] = keeptmpscorea / len(_a )
if len(_a ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_A : str = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_A : List[Any] = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_A : int = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_A : List[str] = sgramcounter_rep - cgramcounter_rep
_A : Optional[int] = delgramcounter_rep - rgramcounter
_A : int = sgramcounter_rep - rgramcounter
_A : List[Any] = 0
_A : Any = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_A : int = 1
if len(_a ) > 0:
_A : Union[str, Any] = deltmpscorea / len(_a )
# ADDITION
_A : Optional[int] = set(_a ) - set(_a )
_A : Dict = set(_a ) & set(_a )
_A : str = set(_a ) - set(_a )
_A : List[Any] = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_A : int = 1
_A : Optional[Any] = 1
if len(_a ) > 0:
_A : Any = addtmpscore / len(_a )
if len(_a ) > 0:
_A : Union[str, Any] = addtmpscore / len(_a )
_A : Tuple = 0
if addscore_precision > 0 or addscore_recall > 0:
_A : Dict = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Optional[Any] = len(_a )
_A : Optional[int] = ssent.split(""" """ )
_A : Any = csent.split(""" """ )
_A : Optional[Any] = []
_A : List[str] = []
_A : Union[str, Any] = []
_A : int = []
_A : Dict = []
_A : Any = []
_A : List[str] = []
_A : int = []
_A : Dict = []
_A : str = []
for rsent in rsents:
_A : int = rsent.split(""" """ )
_A : Optional[int] = []
_A : int = []
_A : Optional[int] = []
ragramslist.append(_a )
for i in range(0,len(_a ) - 1 ):
if i < len(_a ) - 1:
_A : Any = ragrams[i] + """ """ + ragrams[i + 1]
ragrams.append(_a )
if i < len(_a ) - 2:
_A : Any = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2]
ragrams.append(_a )
if i < len(_a ) - 3:
_A : Dict = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3]
ragrams.append(_a )
ragramslist.append(_a )
ragramslist.append(_a )
ragramslist.append(_a )
for i in range(0,len(_a ) - 1 ):
if i < len(_a ) - 1:
_A : Any = sagrams[i] + """ """ + sagrams[i + 1]
sagrams.append(_a )
if i < len(_a ) - 2:
_A : List[str] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2]
sagrams.append(_a )
if i < len(_a ) - 3:
_A : List[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3]
sagrams.append(_a )
for i in range(0,len(_a ) - 1 ):
if i < len(_a ) - 1:
_A : str = cagrams[i] + """ """ + cagrams[i + 1]
cagrams.append(_a )
if i < len(_a ) - 2:
_A : int = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2]
cagrams.append(_a )
if i < len(_a ) - 3:
_A : str = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3]
cagrams.append(_a )
(_A) : Optional[Any] = SARIngram(_a,_a,_a,_a )
(_A) : str = SARIngram(_a,_a,_a,_a )
(_A) : str = SARIngram(_a,_a,_a,_a )
(_A) : Any = SARIngram(_a,_a,_a,_a )
_A : int = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_A : Dict = sum([delascore, delascore, delascore, delascore] ) / 4
_A : Tuple = sum([addascore, addascore, addascore, addascore] ) / 4
_A : str = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def lowerCAmelCase_ ( snake_case_,snake_case_ = True,snake_case_ = "13a",snake_case_ = True ):
if lowercase:
_A : Optional[Any] = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_A : Optional[int] = sacrebleu.metrics.bleu._get_tokenizer(_a )()(_a )
else:
_A : Any = sacrebleu.TOKENIZERS[tokenizer]()(_a )
elif tokenizer == "moses":
_A : int = sacremoses.MosesTokenizer().tokenize(_a,return_str=_a,escape=_a )
elif tokenizer == "penn":
_A : Union[str, Any] = sacremoses.MosesTokenizer().penn_tokenize(_a,return_str=_a )
else:
_A : int = sentence
if not return_str:
_A : List[str] = normalized_sent.split()
return normalized_sent
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if not (len(_a ) == len(_a ) == len(_a )):
raise ValueError("""Sources length must match predictions and references lengths.""" )
_A : Optional[int] = 0
for src, pred, refs in zip(_a,_a,_a ):
sari_score += SARIsent(normalize(_a ),normalize(_a ),[normalize(_a ) for sent in refs] )
_A : List[Any] = sari_score / len(_a )
return 100 * sari_score
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_="exp",snake_case_=None,snake_case_=False,snake_case_=False,snake_case_=False,):
_A : List[str] = len(references[0] )
if any(len(_a ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_A : Optional[Any] = [[refs[i] for refs in references] for i in range(_a )]
_A : str = sacrebleu.corpus_bleu(
_a,_a,smooth_method=_a,smooth_value=_a,force=_a,lowercase=_a,use_effective_order=_a,)
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def a__ ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=[
"""https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""",
"""https://github.com/cocoxu/simplification/blob/master/SARI.py""",
"""https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""",
"""https://github.com/mjpost/sacreBLEU""",
] , reference_urls=[
"""https://www.aclweb.org/anthology/Q16-1029.pdf""",
"""https://github.com/mjpost/sacreBLEU""",
"""https://en.wikipedia.org/wiki/BLEU""",
"""https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""",
] , )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : str = {}
result.update({"""sari""": compute_sari(sources=lowerCamelCase_ , predictions=lowerCamelCase_ , references=lowerCamelCase_ )} )
result.update({"""sacrebleu""": compute_sacrebleu(predictions=lowerCamelCase_ , references=lowerCamelCase_ )} )
result.update({"""exact""": compute_em(predictions=lowerCamelCase_ , references=lowerCamelCase_ )} )
return result
| 365 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 0 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
_snake_case = """sshleifer/mar_enro_6_3_student"""
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> Tuple:
super().setUp()
_A : Any = cached_path(
"""https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=_lowercase , )
_A : int = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k'''
@slow
@require_torch_gpu
def a__ ( self ) -> List[Any]:
MarianMTModel.from_pretrained(_lowercase )
@slow
@require_torch_gpu
def a__ ( self ) -> int:
_A : List[Any] = {
"""$MAX_LEN""": 64,
"""$BS""": 64,
"""$GAS""": 1,
"""$ENRO_DIR""": self.data_dir,
"""facebook/mbart-large-cc25""": MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
"""--learning_rate=3e-5""": """--learning_rate 3e-4""",
"""--num_train_epochs 6""": """--num_train_epochs 1""",
}
# Clean up bash script
_A : List[Any] = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip()
_A : str = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" )
for k, v in env_vars_to_replace.items():
_A : str = bash_script.replace(_lowercase , str(_lowercase ) )
_A : Dict = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
_A : str = F'''\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '''.split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
_A : Tuple = ["""finetune.py"""] + bash_script.split() + args
with patch.object(_lowercase , """argv""" , _lowercase ):
_A : Dict = argparse.ArgumentParser()
_A : str = pl.Trainer.add_argparse_args(_lowercase )
_A : Optional[int] = SummarizationModule.add_model_specific_args(_lowercase , os.getcwd() )
_A : List[str] = parser.parse_args()
_A : str = main(_lowercase )
# Check metrics
_A : Tuple = load_json(model.metrics_save_path )
_A : Tuple = metrics["""val"""][0]
_A : int = metrics["""val"""][-1]
self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase )
self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
_A : List[str] = os.listdir(_lowercase )
_A : str = [x for x in contents if x.endswith(""".ckpt""" )][0]
_A : Union[str, Any] = os.path.join(args.output_dir , _lowercase )
_A : Union[str, Any] = torch.load(_lowercase , map_location="""cpu""" )
_A : Optional[Any] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight"""
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_A : Optional[int] = {os.path.basename(_lowercase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["""test"""] ) == 1
class lowercase ( UpperCamelCase__ ):
@timeout_decorator.timeout(600 )
@slow
@require_torch_gpu
def a__ ( self ) -> Optional[int]:
_A : List[Any] = F'''{self.test_file_dir_str}/test_data/wmt_en_ro'''
_A : List[Any] = {
"""--fp16_opt_level=O1""": """""",
"""$MAX_LEN""": 128,
"""$BS""": 16,
"""$GAS""": 1,
"""$ENRO_DIR""": data_dir,
"""$m""": """sshleifer/student_marian_en_ro_6_1""",
"""val_check_interval=0.25""": """val_check_interval=1.0""",
}
# Clean up bash script
_A : int = (
(self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip()
)
_A : Optional[int] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" )
_A : List[str] = bash_script.replace("""--fp16 """ , """ """ )
for k, v in env_vars_to_replace.items():
_A : Any = bash_script.replace(_lowercase , str(_lowercase ) )
_A : Dict = self.get_auto_remove_tmp_dir()
_A : str = bash_script.replace("""--fp16""" , """""" )
_A : str = 6
_A : Optional[Any] = (
["""distillation.py"""]
+ bash_script.split()
+ [
F'''--output_dir={output_dir}''',
"""--gpus=1""",
"""--learning_rate=1e-3""",
F'''--num_train_epochs={epochs}''',
"""--warmup_steps=10""",
"""--val_check_interval=1.0""",
"""--do_predict""",
]
)
with patch.object(_lowercase , """argv""" , _lowercase ):
_A : Optional[int] = argparse.ArgumentParser()
_A : Union[str, Any] = pl.Trainer.add_argparse_args(_lowercase )
_A : Optional[int] = SummarizationDistiller.add_model_specific_args(_lowercase , os.getcwd() )
_A : Dict = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
_A : Tuple = distill_main(_lowercase )
# Check metrics
_A : Optional[int] = load_json(model.metrics_save_path )
_A : Optional[Any] = metrics["""val"""][0]
_A : Dict = metrics["""val"""][-1]
assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , _lowercase )
# check lightning ckpt can be loaded and has a reasonable statedict
_A : int = os.listdir(_lowercase )
_A : List[str] = [x for x in contents if x.endswith(""".ckpt""" )][0]
_A : Tuple = os.path.join(args.output_dir , _lowercase )
_A : int = torch.load(_lowercase , map_location="""cpu""" )
_A : Union[str, Any] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight"""
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
_A : Tuple = {os.path.basename(_lowercase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["""test"""] ) == 1
| 366 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 0 |
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = int(SCREAMING_SNAKE_CASE__ )
if n_element < 1:
_A : Optional[int] = ValueError("""a should be a positive number""" )
raise my_error
_A : Optional[Any] = [1]
_A , _A , _A : List[str] = (0, 0, 0)
_A : Dict = 1
while index < n_element:
while hamming_list[i] * 2 <= hamming_list[-1]:
i += 1
while hamming_list[j] * 3 <= hamming_list[-1]:
j += 1
while hamming_list[k] * 5 <= hamming_list[-1]:
k += 1
hamming_list.append(
min(hamming_list[i] * 2,hamming_list[j] * 3,hamming_list[k] * 5 ) )
index += 1
return hamming_list
if __name__ == "__main__":
_snake_case = input("Enter the last number (nth term) of the Hamming Number Series: ")
print("Formula of Hamming Number Series => 2^i * 3^j * 5^k")
_snake_case = hamming(int(n))
print("-----------------------------------------------------")
print(f"""The list with nth numbers is: {hamming_numbers}""")
print("-----------------------------------------------------")
| 367 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 0 |
import doctest
from collections import deque
import numpy as np
class lowercase :
def __init__( self ) -> Optional[Any]:
_A : Optional[int] = [2, 1, 2, -1]
_A : List[str] = [1, 2, 3, 4]
def a__ ( self ) -> Dict:
_A : int = len(self.first_signal )
_A : Tuple = len(self.second_signal )
_A : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase )
# create a zero matrix of max_length x max_length
_A : Tuple = [[0] * max_length for i in range(__lowerCamelCase )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(__lowerCamelCase ):
_A : List[Any] = deque(self.second_signal )
rotated_signal.rotate(__lowerCamelCase )
for j, item in enumerate(__lowerCamelCase ):
matrix[i][j] += item
# multiply the matrix with the first signal
_A : Any = np.matmul(np.transpose(__lowerCamelCase ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(__lowerCamelCase , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 368 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class lowercase :
_a = 4_2
_a = None
_a = None
def lowerCAmelCase_ ( ):
_A : Any = Node(1 )
_A : List[str] = Node(2 )
_A : int = Node(3 )
_A : List[Any] = Node(4 )
_A : int = Node(5 )
return tree
def lowerCAmelCase_ ( snake_case_ ):
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def lowerCAmelCase_ ( snake_case_ ):
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def lowerCAmelCase_ ( snake_case_ ):
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def lowerCAmelCase_ ( snake_case_ ):
return (max(height(root.left ),height(root.right ) ) + 1) if root else 0
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = []
if root is None:
return output
_A : Any = deque([root] )
while process_queue:
_A : List[Any] = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = []
def populate_output(snake_case_,snake_case_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left,level - 1 )
populate_output(root.right,level - 1 )
populate_output(a__,a__ )
return output
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = []
def populate_output(snake_case_,snake_case_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right,level - 1 )
populate_output(root.left,level - 1 )
populate_output(a__,a__ )
return output
def lowerCAmelCase_ ( snake_case_ ):
if root is None:
return []
_A : Tuple = []
_A : Tuple = 0
_A : Union[str, Any] = height(a__ )
for h in range(1,height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(a__,a__ ) )
_A : Tuple = 1
else:
output.append(get_nodes_from_right_to_left(a__,a__ ) )
_A : str = 0
return output
def lowerCAmelCase_ ( ): # Main function for testing.
_A : List[str] = make_tree()
print(f'''In-order Traversal: {inorder(a__ )}''' )
print(f'''Pre-order Traversal: {preorder(a__ )}''' )
print(f'''Post-order Traversal: {postorder(a__ )}''',"""\n""" )
print(f'''Height of Tree: {height(a__ )}''',"""\n""" )
print("""Complete Level Order Traversal: """ )
print(level_order(a__ ),"""\n""" )
print("""Level-wise order Traversal: """ )
for level in range(1,height(a__ ) + 1 ):
print(f'''Level {level}:''',get_nodes_from_left_to_right(a__,level=a__ ) )
print("""\nZigZag order Traversal: """ )
print(zigzag(a__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 369 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 0 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
_snake_case = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
for attribute in key.split(""".""" ):
_A : Any = getattr(_lowerCamelCase,_lowerCamelCase )
if weight_type is not None:
_A : List[str] = getattr(_lowerCamelCase,_lowerCamelCase ).shape
else:
_A : Union[str, Any] = hf_pointer.shape
assert hf_shape == value.shape, (
f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
_A : List[Any] = value
elif weight_type == "weight_g":
_A : Union[str, Any] = value
elif weight_type == "weight_v":
_A : Tuple = value
elif weight_type == "bias":
_A : int = value
else:
_A : Union[str, Any] = value
logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = []
_A : Tuple = fairseq_model.state_dict()
_A : Tuple = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
_A : Any = None
for name, value in fairseq_dict.items():
_A : Optional[Any] = False
if "conv_layers" in name:
load_conv_layer(
_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,hf_model.config.feat_extract_norm == """group""",)
_A : Optional[Any] = True
elif name.split(""".""" )[0] == "proj":
_A : int = fairseq_model.proj
_A : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
_A : int = True
if "*" in mapped_key:
_A : Dict = name.split(_lowerCamelCase )[0].split(""".""" )[-2]
_A : Dict = mapped_key.replace("""*""",_lowerCamelCase )
if "weight_g" in name:
_A : Optional[Any] = "weight_g"
elif "weight_v" in name:
_A : Tuple = "weight_v"
elif "bias" in name:
_A : List[str] = "bias"
elif "weight" in name:
_A : Dict = "weight"
else:
_A : List[Any] = None
set_recursively(_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,_lowerCamelCase,_lowerCamelCase )
continue
if not is_used:
unused_weights.append(_lowerCamelCase )
logger.warning(f'''Unused weights: {unused_weights}''' )
return proj_weight
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[str] = full_name.split("""conv_layers.""" )[-1]
_A : List[str] = name.split(""".""" )
_A : int = int(items[0] )
_A : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
_A : Dict = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
_A : Union[str, Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
_A : Union[str, Any] = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
_A : int = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(_lowerCamelCase )
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = emb.weight.shape
_A : List[Any] = nn.Linear(_lowerCamelCase,_lowerCamelCase,bias=_lowerCamelCase )
_A : Optional[int] = emb.weight.data
return lin_layer
def lowerCAmelCase_ ( snake_case_ ):
with open(_lowerCamelCase,"""r""",encoding="""utf-8""" ) as f:
_A : str = f.readlines()
_A : int = [line.split(""" """ )[0] for line in lines]
_A : Optional[int] = len(_lowerCamelCase )
_A : Union[str, Any] = {
"<s>": 0,
"<pad>": 1,
"</s>": 2,
"<unk>": 3,
}
vocab_dict.update(dict(zip(_lowerCamelCase,range(4,num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,):
_A : str = WavaVecaConfig.from_pretrained(_lowerCamelCase )
_A : Any = SpeechaTextaConfig.from_pretrained(
_lowerCamelCase,vocab_size=_lowerCamelCase,decoder_layers=_lowerCamelCase,do_stable_layer_norm=_lowerCamelCase )
_A : str = WavaVecaFeatureExtractor(
feature_size=1,sampling_rate=16000,padding_value=0,do_normalize=_lowerCamelCase,return_attention_mask=_lowerCamelCase,)
_A : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path],arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
_A : Tuple = model[0].eval()
# set weights for wav2vec2 encoder
_A : str = WavaVecaModel(_lowerCamelCase )
_A : List[str] = recursively_load_weights_wavaveca(model.encoder,_lowerCamelCase )
_A : int = SpeechaTextaForCausalLM(_lowerCamelCase )
_A : Optional[int] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(),strict=_lowerCamelCase )
# set output linear layer
unexpected_keys.remove("""embed_out""" )
_A : Union[str, Any] = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' )
logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' )
_A : int = SpeechEncoderDecoderModel(encoder=_lowerCamelCase,decoder=_lowerCamelCase )
_A : List[str] = False
# add projection layer
_A : str = nn.Parameter(projection_layer.weight )
_A : int = nn.Parameter(projection_layer.bias )
_A : int = create_vocab_dict(_lowerCamelCase )
with open(os.path.join(_lowerCamelCase,"""vocab.json""" ),"""w""" ) as fp:
json.dump(_lowerCamelCase,_lowerCamelCase )
_A : str = SpeechaTextaTokenizer(os.path.join(_lowerCamelCase,"""vocab.json""" ) )
tokenizer.save_pretrained(_lowerCamelCase )
_A : Tuple = hf_wavavec.config.to_dict()
_A : Any = tokenizer.pad_token_id
_A : List[Any] = tokenizer.bos_token_id
_A : List[str] = tokenizer.eos_token_id
_A : Dict = "speech_to_text_2"
_A : List[str] = "wav2vec2"
_A : Tuple = SpeechEncoderDecoderConfig.from_dict(_lowerCamelCase )
hf_wavavec.save_pretrained(_lowerCamelCase )
feature_extractor.save_pretrained(_lowerCamelCase )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument(
"--encoder_config_path",
default="facebook/wav2vec2-large-lv60",
type=str,
help="Path to hf encoder wav2vec2 checkpoint config",
)
parser.add_argument(
"--decoder_config_path",
default="facebook/s2t-small-mustc-en-fr-st",
type=str,
help="Path to hf decoder s2t checkpoint config",
)
parser.add_argument("--vocab_size", default=10224, type=int, help="Vocab size of decoder")
parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers")
_snake_case = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 370 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 0 |
from __future__ import annotations
from collections import namedtuple
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Optional[Any] = namedtuple("""result""","""name value""" )
if (voltage, current, power).count(0 ) != 1:
raise ValueError("""Only one argument must be 0""" )
elif power < 0:
raise ValueError(
"""Power cannot be negative in any electrical/electronics system""" )
elif voltage == 0:
return result("""voltage""",power / current )
elif current == 0:
return result("""current""",power / voltage )
elif power == 0:
return result("""power""",float(round(abs(voltage * current ),2 ) ) )
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 0 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
_snake_case = {"tokenization_byt5": ["ByT5Tokenizer"]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 350 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 0 |
from transformers import BertTokenizerFast
from .custom_tokenization import CustomTokenizer
class lowercase ( __SCREAMING_SNAKE_CASE ):
_a = CustomTokenizer
pass
| 351 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 0 |
_snake_case = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
_snake_case = [{'type': 'code', 'content': INSTALL_CONTENT}]
_snake_case = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
}
| 352 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.