code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Tuple=3 , __lowerCamelCase: str=16 , __lowerCamelCase: Union[str, Any]=[32, 64, 1_28] , __lowerCamelCase: List[Any]=[1, 2, 1] , __lowerCamelCase: Dict=[2, 2, 4] , __lowerCamelCase: Dict=2 , __lowerCamelCase: Any=2.0 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: str=0.0 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Any=False , __lowerCamelCase: str=True , __lowerCamelCase: int=0.02 , __lowerCamelCase: Optional[Any]=1e-5 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[Any]=10 , __lowerCamelCase: Optional[int]=8 , __lowerCamelCase: Optional[int]=["stage1", "stage2"] , __lowerCamelCase: List[str]=[1, 2] , ) -> List[str]:
__UpperCAmelCase : List[str] = parent
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Optional[int] = patch_size
__UpperCAmelCase : Union[str, Any] = num_channels
__UpperCAmelCase : Dict = embed_dim
__UpperCAmelCase : Tuple = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Tuple = num_heads
__UpperCAmelCase : List[Any] = window_size
__UpperCAmelCase : Tuple = mlp_ratio
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Dict = hidden_dropout_prob
__UpperCAmelCase : int = attention_probs_dropout_prob
__UpperCAmelCase : int = drop_path_rate
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : Dict = use_absolute_embeddings
__UpperCAmelCase : Tuple = patch_norm
__UpperCAmelCase : str = layer_norm_eps
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : int = is_training
__UpperCAmelCase : Any = scope
__UpperCAmelCase : Any = use_labels
__UpperCAmelCase : Optional[int] = type_sequence_label_size
__UpperCAmelCase : str = encoder_stride
__UpperCAmelCase : Any = out_features
__UpperCAmelCase : Any = out_indices
def _lowerCamelCase ( self: Optional[Any] ) -> Any:
__UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : Dict = None
if self.use_labels:
__UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : int = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple ) -> Any:
__UpperCAmelCase : Optional[int] = FocalNetModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase )
__UpperCAmelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__UpperCAmelCase : Tuple = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> str:
__UpperCAmelCase : str = FocalNetBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Dict = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Optional[Any] = FocalNetBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[Any] = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] ) -> Tuple:
__UpperCAmelCase : int = FocalNetForMaskedImageModeling(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__UpperCAmelCase : str = 1
__UpperCAmelCase : Optional[int] = FocalNetForMaskedImageModeling(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : Dict = model(__lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : str = self.type_sequence_label_size
__UpperCAmelCase : List[str] = FocalNetForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCAmelCase : str = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase : Any = config_and_inputs
__UpperCAmelCase : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: List[str] = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: List[str] = (
{"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: List[str] = False
lowerCamelCase__: Any = False
lowerCamelCase__: Dict = False
lowerCamelCase__: Union[str, Any] = False
lowerCamelCase__: List[str] = False
def _lowerCamelCase ( self: Tuple ) -> Dict:
__UpperCAmelCase : List[str] = FocalNetModelTester(self )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=37 , has_text_modality=__lowerCamelCase )
def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> Any:
return
def _lowerCamelCase ( self: Optional[Any] ) -> str:
__UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Dict:
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> Any:
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@unittest.skip(reason="FocalNet does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[int] ) -> List[str]:
pass
@unittest.skip(reason="FocalNet does not use feedforward chunking" )
def _lowerCamelCase ( self: Dict ) -> Tuple:
pass
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) )
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
__UpperCAmelCase : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : str = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple ) -> Any:
__UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : Union[str, Any] = outputs.hidden_states
__UpperCAmelCase : Tuple = getattr(
self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
# FocalNet has a different seq_length
__UpperCAmelCase : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__UpperCAmelCase : Union[str, Any] = outputs.reshaped_hidden_states
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = reshaped_hidden_states[0].shape
__UpperCAmelCase : int = (
reshaped_hidden_states[0].view(__lowerCamelCase , __lowerCamelCase , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__UpperCAmelCase : Dict = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Optional[int] = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Tuple ) -> Any:
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[int] = 3
__UpperCAmelCase : Dict = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__UpperCAmelCase : Optional[int] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__UpperCAmelCase : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__UpperCAmelCase : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__UpperCAmelCase : int = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width) )
@slow
def _lowerCamelCase ( self: Optional[int] ) -> int:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = FocalNetModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Optional[Any] = _config_zero_init(__lowerCamelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : List[str] = model_class(config=__lowerCamelCase )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@require_vision
@require_torch
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: Optional[int] ) -> str:
__UpperCAmelCase : List[Any] = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.default_image_processor
__UpperCAmelCase : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
__UpperCAmelCase : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : Dict = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: Optional[int] = (FocalNetBackbone,) if is_torch_available() else ()
lowerCamelCase__: Dict = FocalNetConfig
lowerCamelCase__: List[str] = False
def _lowerCamelCase ( self: Optional[int] ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = FocalNetModelTester(self )
| 361 | import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | 0 |
import datasets
from .evaluate import evaluate
_snake_case = '''\
@inproceedings{Rajpurkar2016SQuAD10,
title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},
author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},
booktitle={EMNLP},
year={2016}
}
'''
_snake_case = '''
This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).
Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by
crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,
from the corresponding reading passage, or the question might be unanswerable.
'''
_snake_case = '''
Computes SQuAD scores (F1 and EM).
Args:
predictions: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair as given in the references (see below)
- \'prediction_text\': the text of the answer
references: List of question-answers dictionaries with the following key-values:
- \'id\': id of the question-answer pair (see above),
- \'answers\': a Dict in the SQuAD dataset format
{
\'text\': list of possible texts for the answer, as a list of strings
\'answer_start\': list of start positions for the answer, as a list of ints
}
Note that answer_start values are not taken into account to compute the metric.
Returns:
\'exact_match\': Exact match (the normalized answer exactly match the gold answer)
\'f1\': The F-score of predicted tokens versus the gold answer
Examples:
>>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]
>>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]
>>> squad_metric = datasets.load_metric("squad")
>>> results = squad_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'exact_match\': 100.0, \'f1\': 100.0}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: str ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )},
"references": {
"id": datasets.Value("string" ),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string" ),
"answer_start": datasets.Value("int32" ),
} ),
},
} ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> List[Any]:
__UpperCAmelCase : int = {prediction["id"]: prediction["prediction_text"] for prediction in predictions}
__UpperCAmelCase : List[str] = [
{
"paragraphs": [
{
"qas": [
{
"answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]],
"id": ref["id"],
}
for ref in references
]
}
]
}
]
__UpperCAmelCase : int = evaluate(dataset=__lowerCamelCase , predictions=__lowerCamelCase )
return score
| 362 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 0 |
"""simple docstring"""
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 363 | import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | 0 |
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["torch", "transformers", "onnx"]
def __init__( self: Tuple , *__lowerCamelCase: str , **__lowerCamelCase: Dict ) -> str:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Optional[int] , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> Any:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> Optional[int]:
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Dict = ["torch", "transformers", "onnx"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> int:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Optional[int] , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> str:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: int , *__lowerCamelCase: Dict , **__lowerCamelCase: int ) -> int:
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Dict = ["torch", "transformers", "onnx"]
def __init__( self: Any , *__lowerCamelCase: int , **__lowerCamelCase: Any ) -> Tuple:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Optional[Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> List[Any]:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Any:
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Dict = ["torch", "transformers", "onnx"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: Any , **__lowerCamelCase: Tuple ) -> Optional[Any]:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Dict , *__lowerCamelCase: Dict , **__lowerCamelCase: int ) -> int:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: List[Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: int ) -> Tuple:
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["torch", "transformers", "onnx"]
def __init__( self: Any , *__lowerCamelCase: int , **__lowerCamelCase: Any ) -> List[str]:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: List[str] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Dict ) -> Optional[Any]:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: int , *__lowerCamelCase: List[Any] , **__lowerCamelCase: str ) -> Any:
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[Any] = ["torch", "transformers", "onnx"]
def __init__( self: List[str] , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> Optional[int]:
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: List[str] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: int ) -> Optional[Any]:
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def _lowerCamelCase ( cls: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: List[Any] ) -> Dict:
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 364 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | 0 |
def _UpperCamelCase ( snake_case__ = 200_0000 ) -> int:
__UpperCAmelCase : Optional[Any] = [0 for i in range(n + 1 )]
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Tuple = 1
for i in range(2, int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i, n + 1, snake_case__ ):
__UpperCAmelCase : Any = 1
__UpperCAmelCase : int = 0
for i in range(snake_case__ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'{solution() = }')
| 365 | from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 0 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "geglu" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: str = "layer_norm" , __lowerCamelCase: bool = False , ) -> List[Any]:
super().__init__()
__UpperCAmelCase : List[Any] = only_cross_attention
__UpperCAmelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
__UpperCAmelCase : List[str] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
__UpperCAmelCase : Dict = AdaLayerNorm(__lowerCamelCase , __lowerCamelCase )
elif self.use_ada_layer_norm_zero:
__UpperCAmelCase : Optional[Any] = AdaLayerNormZero(__lowerCamelCase , __lowerCamelCase )
else:
__UpperCAmelCase : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
__UpperCAmelCase : List[Any] = Attention(
query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCamelCase , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
__UpperCAmelCase : Union[str, Any] = (
AdaLayerNorm(__lowerCamelCase , __lowerCamelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
)
__UpperCAmelCase : Tuple = Attention(
query_dim=__lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , upcast_attention=__lowerCamelCase , ) # is self-attn if encoder_hidden_states is none
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Tuple = None
# 3. Feed-forward
__UpperCAmelCase : Dict = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
__UpperCAmelCase : List[Any] = FeedForward(__lowerCamelCase , dropout=__lowerCamelCase , activation_fn=__lowerCamelCase , final_dropout=__lowerCamelCase )
# let chunk size default to None
__UpperCAmelCase : Any = None
__UpperCAmelCase : str = 0
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: int ) -> Optional[Any]:
# Sets chunk feed-forward
__UpperCAmelCase : Dict = chunk_size
__UpperCAmelCase : List[Any] = dim
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.LongTensor] = None , __lowerCamelCase: Dict[str, Any] = None , __lowerCamelCase: Optional[torch.LongTensor] = None , ) -> Dict:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
__UpperCAmelCase : Dict = self.norma(__lowerCamelCase , __lowerCamelCase )
elif self.use_ada_layer_norm_zero:
__UpperCAmelCase : Union[str, Any] = self.norma(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hidden_dtype=hidden_states.dtype )
else:
__UpperCAmelCase : Optional[Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {}
__UpperCAmelCase : List[str] = self.attna(
__lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCamelCase , **__lowerCamelCase , )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : List[Any] = gate_msa.unsqueeze(1 ) * attn_output
__UpperCAmelCase : Union[str, Any] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
__UpperCAmelCase : int = (
self.norma(__lowerCamelCase , __lowerCamelCase ) if self.use_ada_layer_norm else self.norma(__lowerCamelCase )
)
__UpperCAmelCase : Optional[int] = self.attna(
__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = attn_output + hidden_states
# 3. Feed-forward
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
__UpperCAmelCase : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
__UpperCAmelCase : str = torch.cat(
[self.ff(__lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
__UpperCAmelCase : Dict = self.ff(__lowerCamelCase )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : str = gate_mlp.unsqueeze(1 ) * ff_output
__UpperCAmelCase : Any = ff_output + hidden_states
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 4 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: str = "geglu" , __lowerCamelCase: bool = False , ) -> int:
super().__init__()
__UpperCAmelCase : str = int(dim * mult )
__UpperCAmelCase : Dict = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
__UpperCAmelCase : Optional[Any] = GELU(__lowerCamelCase , __lowerCamelCase )
if activation_fn == "gelu-approximate":
__UpperCAmelCase : Optional[int] = GELU(__lowerCamelCase , __lowerCamelCase , approximate="tanh" )
elif activation_fn == "geglu":
__UpperCAmelCase : Dict = GEGLU(__lowerCamelCase , __lowerCamelCase )
elif activation_fn == "geglu-approximate":
__UpperCAmelCase : int = ApproximateGELU(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = nn.ModuleList([] )
# project in
self.net.append(__lowerCamelCase )
# project dropout
self.net.append(nn.Dropout(__lowerCamelCase ) )
# project out
self.net.append(nn.Linear(__lowerCamelCase , __lowerCamelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__lowerCamelCase ) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> Tuple:
for module in self.net:
__UpperCAmelCase : str = module(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: str = "none" ) -> Tuple:
super().__init__()
__UpperCAmelCase : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = approximate
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[Any] ) -> Tuple:
if gate.device.type != "mps":
return F.gelu(__lowerCamelCase , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: int ) -> str:
__UpperCAmelCase : int = self.proj(__lowerCamelCase )
__UpperCAmelCase : int = self.gelu(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> List[Any]:
super().__init__()
__UpperCAmelCase : Union[str, Any] = nn.Linear(__lowerCamelCase , dim_out * 2 )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> List[Any]:
if gate.device.type != "mps":
return F.gelu(__lowerCamelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.proj(__lowerCamelCase ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__lowerCamelCase )
class _snake_case ( nn.Module ):
def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> List[Any]:
super().__init__()
__UpperCAmelCase : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: str , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Optional[int] = self.proj(__lowerCamelCase )
return x * torch.sigmoid(1.7_02 * x )
class _snake_case ( nn.Module ):
def __init__( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Any:
super().__init__()
__UpperCAmelCase : List[str] = nn.Embedding(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.SiLU()
__UpperCAmelCase : Tuple = nn.Linear(__lowerCamelCase , embedding_dim * 2 )
__UpperCAmelCase : Optional[Any] = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[Any] ) -> int:
__UpperCAmelCase : Any = self.linear(self.silu(self.emb(__lowerCamelCase ) ) )
__UpperCAmelCase : Any = torch.chunk(__lowerCamelCase , 2 )
__UpperCAmelCase : Dict = self.norm(__lowerCamelCase ) * (1 + scale) + shift
return x
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] ) -> Dict:
super().__init__()
__UpperCAmelCase : List[str] = CombinedTimestepLabelEmbeddings(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = nn.SiLU()
__UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , 6 * embedding_dim , bias=__lowerCamelCase )
__UpperCAmelCase : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase , eps=1e-6 )
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int=None ) -> Any:
__UpperCAmelCase : Optional[Any] = self.linear(self.silu(self.emb(__lowerCamelCase , __lowerCamelCase , hidden_dtype=__lowerCamelCase ) ) )
__UpperCAmelCase : Tuple = emb.chunk(6 , dim=1 )
__UpperCAmelCase : Optional[int] = self.norm(__lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class _snake_case ( nn.Module ):
def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: float = 1e-5 ) -> int:
super().__init__()
__UpperCAmelCase : Tuple = num_groups
__UpperCAmelCase : Dict = eps
if act_fn is None:
__UpperCAmelCase : List[str] = None
else:
__UpperCAmelCase : Optional[Any] = get_activation(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.Linear(__lowerCamelCase , out_dim * 2 )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> List[Any]:
if self.act:
__UpperCAmelCase : Any = self.act(__lowerCamelCase )
__UpperCAmelCase : Dict = self.linear(__lowerCamelCase )
__UpperCAmelCase : Dict = emb[:, :, None, None]
__UpperCAmelCase : Optional[int] = emb.chunk(2 , dim=1 )
__UpperCAmelCase : Union[str, Any] = F.group_norm(__lowerCamelCase , self.num_groups , eps=self.eps )
__UpperCAmelCase : Optional[Any] = x * (1 + scale) + shift
return x
| 366 | import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
_snake_case = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 367 | import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | 0 |
def _UpperCamelCase ( snake_case__ = 10**9 ) -> int:
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : int = 2
__UpperCAmelCase : List[Any] = 0
__UpperCAmelCase : int = 0
__UpperCAmelCase : List[str] = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__UpperCAmelCase : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'{solution() = }')
| 368 | from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = "naver-clova-ix/donut-base-finetuned-docvqa"
lowerCamelCase__: Union[str, Any] = (
"This is a tool that answers a question about an document (pdf). It takes an input named `document` which "
"should be the document containing the information, as well as a `question` that is the question about the "
"document. It returns a text that contains the answer to the question."
)
lowerCamelCase__: int = "document_qa"
lowerCamelCase__: List[str] = AutoProcessor
lowerCamelCase__: List[str] = VisionEncoderDecoderModel
lowerCamelCase__: str = ["image", "text"]
lowerCamelCase__: Union[str, Any] = ["text"]
def __init__( self: str , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Optional[int] ) -> List[str]:
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: "Image" , __lowerCamelCase: str ) -> int:
__UpperCAmelCase : Optional[int] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
__UpperCAmelCase : Union[str, Any] = task_prompt.replace("{user_input}" , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.pre_processor.tokenizer(
__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors="pt" ).input_ids
__UpperCAmelCase : Union[str, Any] = self.pre_processor(__lowerCamelCase , return_tensors="pt" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> Optional[Any]:
return self.model.generate(
inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__lowerCamelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__lowerCamelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__lowerCamelCase , ).sequences
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any ) -> Union[str, Any]:
__UpperCAmelCase : str = self.pre_processor.batch_decode(__lowerCamelCase )[0]
__UpperCAmelCase : Tuple = sequence.replace(self.pre_processor.tokenizer.eos_token , "" )
__UpperCAmelCase : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.pad_token , "" )
__UpperCAmelCase : Optional[Any] = re.sub(R"<.*?>" , "" , __lowerCamelCase , count=1 ).strip() # remove first task start token
__UpperCAmelCase : Union[str, Any] = self.pre_processor.tokenajson(__lowerCamelCase )
return sequence["answer"]
| 369 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _snake_case ( _lowercase ):
lowerCamelCase__: UNetaDModel
lowerCamelCase__: ScoreSdeVeScheduler
def __init__( self: List[Any] , __lowerCamelCase: UNetaDModel , __lowerCamelCase: ScoreSdeVeScheduler ) -> Optional[int]:
super().__init__()
self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
@torch.no_grad()
def __call__( self: Union[str, Any] , __lowerCamelCase: int = 1 , __lowerCamelCase: int = 20_00 , __lowerCamelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase: Optional[str] = "pil" , __lowerCamelCase: bool = True , **__lowerCamelCase: Union[str, Any] , ) -> Union[ImagePipelineOutput, Tuple]:
__UpperCAmelCase : List[Any] = self.unet.config.sample_size
__UpperCAmelCase : Dict = (batch_size, 3, img_size, img_size)
__UpperCAmelCase : Optional[int] = self.unet
__UpperCAmelCase : Optional[Any] = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase ) * self.scheduler.init_noise_sigma
__UpperCAmelCase : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(__lowerCamelCase )
self.scheduler.set_sigmas(__lowerCamelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__UpperCAmelCase : Dict = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__UpperCAmelCase : Dict = self.unet(__lowerCamelCase , __lowerCamelCase ).sample
__UpperCAmelCase : Optional[int] = self.scheduler.step_correct(__lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample
# prediction step
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , __lowerCamelCase ).sample
__UpperCAmelCase : Tuple = self.scheduler.step_pred(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean
__UpperCAmelCase : Optional[int] = sample_mean.clamp(0 , 1 )
__UpperCAmelCase : Dict = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCAmelCase : Dict = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__lowerCamelCase )
| 370 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 0 |
"""simple docstring"""
from __future__ import annotations
_snake_case = []
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> bool:
for i in range(len(snake_case__ ) ):
if board[row][i] == 1:
return False
for i in range(len(snake_case__ ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(snake_case__, -1, -1 ), range(snake_case__, -1, -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(snake_case__, -1, -1 ), range(snake_case__, len(snake_case__ ) ) ):
if board[i][j] == 1:
return False
return True
def _UpperCamelCase ( snake_case__, snake_case__ ) -> bool:
if row >= len(snake_case__ ):
solution.append(snake_case__ )
printboard(snake_case__ )
print()
return True
for i in range(len(snake_case__ ) ):
if is_safe(snake_case__, snake_case__, snake_case__ ):
__UpperCAmelCase : Optional[int] = 1
solve(snake_case__, row + 1 )
__UpperCAmelCase : str = 0
return False
def _UpperCamelCase ( snake_case__ ) -> None:
for i in range(len(snake_case__ ) ):
for j in range(len(snake_case__ ) ):
if board[i][j] == 1:
print("Q", end=" " )
else:
print(".", end=" " )
print()
# n=int(input("The no. of queens"))
_snake_case = 8
_snake_case = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print('''The total no. of solutions are :''', len(solution))
| 371 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 0 |
from math import sqrt
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
_snake_case = 299792458
# Symbols
_snake_case , _snake_case , _snake_case , _snake_case = symbols("ct x y z")
def lowerCAmelCase_ ( snake_case_ ):
if velocity > c:
raise ValueError("""Speed must not exceed light speed 299,792,458 [m/s]!""" )
elif velocity < 1:
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("""Speed must be greater than or equal to 1!""" )
return velocity / c
def lowerCAmelCase_ ( snake_case_ ):
return 1 / sqrt(1 - beta(snake_case_ ) ** 2 )
def lowerCAmelCase_ ( snake_case_ ):
return np.array(
[
[gamma(snake_case_ ), -gamma(snake_case_ ) * beta(snake_case_ ), 0, 0],
[-gamma(snake_case_ ) * beta(snake_case_ ), gamma(snake_case_ ), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
] )
def lowerCAmelCase_ ( snake_case_,snake_case_ = None ):
# Ensure event is not empty
if event is None:
_A : Dict = np.array([ct, x, y, z] ) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
return transformation_matrix(snake_case_ ) @ event
if __name__ == "__main__":
import doctest
doctest.testmod()
# Example of symbolic vector:
_snake_case = transform(29979245)
print("Example of four vector: ")
print(f"""ct' = {four_vector[0]}""")
print(f"""x' = {four_vector[1]}""")
print(f"""y' = {four_vector[2]}""")
print(f"""z' = {four_vector[3]}""")
# Substitute symbols with numerical values
_snake_case = {ct: c, x: 1, y: 1, z: 1}
_snake_case = [four_vector[i].subs(sub_dict) for i in range(4)]
print(f"""\n{numerical_vector}""")
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
def lowerCAmelCase_ ( ):
_A : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
_A : str = 6
_A : Any = 1
_A : Union[str, Any] = 1901
_A : Dict = 0
while year < 2001:
day += 7
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_A : Optional[Any] = day - days_per_month[month - 2]
elif day > 29 and month == 2:
month += 1
_A : Tuple = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
_A : Dict = day - days_per_month[month - 2]
if month > 12:
year += 1
_A : int = 1
if year < 2001 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 343 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class lowercase ( UpperCamelCase__ ):
_a = "gpt_neox"
def __init__( self , _a=5_0432 , _a=6144 , _a=44 , _a=64 , _a=2_4576 , _a="gelu" , _a=0.25 , _a=1_0000 , _a=0.0 , _a=0.0 , _a=0.1 , _a=2048 , _a=0.02 , _a=1e-5 , _a=True , _a=0 , _a=2 , _a=False , _a=True , _a=None , **_a , ) -> List[str]:
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
_A : Tuple = vocab_size
_A : Any = max_position_embeddings
_A : Union[str, Any] = hidden_size
_A : str = num_hidden_layers
_A : Any = num_attention_heads
_A : List[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Tuple = rotary_pct
_A : Optional[int] = rotary_emb_base
_A : List[Any] = attention_dropout
_A : Union[str, Any] = hidden_dropout
_A : Any = classifier_dropout
_A : List[str] = initializer_range
_A : List[Any] = layer_norm_eps
_A : Optional[Any] = use_cache
_A : Optional[int] = tie_word_embeddings
_A : Union[str, Any] = use_parallel_residual
_A : Tuple = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"""The hidden size is not divisble by the number of attention heads! Make sure to update them!""" )
def a__ ( self ) -> Optional[int]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
F'''got {self.rope_scaling}''' )
_A : Dict = self.rope_scaling.get("""type""" , _a )
_A : Dict = self.rope_scaling.get("""factor""" , _a )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 343 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 1 |
_snake_case = range(2, 20 + 1)
_snake_case = [10**k for k in range(ks[-1] + 1)]
_snake_case = {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : str = sum(a_i[j] for j in range(snake_case_,len(snake_case_ ) ) )
_A : Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(snake_case_ ),snake_case_ ) ) )
_A , _A : Tuple = 0, 0
_A : Optional[int] = n - i
_A : Optional[Any] = memo.get(snake_case_ )
if sub_memo is not None:
_A : List[Any] = sub_memo.get(snake_case_ )
if jumps is not None and len(snake_case_ ) > 0:
# find and make the largest jump without going over
_A : Dict = -1
for _k in range(len(snake_case_ ) - 1,-1,-1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
_A : Optional[int] = _k
break
if max_jump >= 0:
_A , _A , _A : List[str] = jumps[max_jump]
# since the difference between jumps is cached, add c
_A : Tuple = diff + c
for j in range(min(snake_case_,len(snake_case_ ) ) ):
_A , _A : List[Any] = divmod(snake_case_,10 )
if new_c > 0:
add(snake_case_,snake_case_,snake_case_ )
else:
_A : str = []
else:
_A : str = {c: []}
_A : List[str] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
_A , _A : List[str] = next_term(snake_case_,k - 1,i + dn,snake_case_ )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
_A , _A : Tuple = compute(snake_case_,snake_case_,i + dn,snake_case_ )
diff += _diff
dn += terms_jumped
_A : Optional[int] = sub_memo[c]
# keep jumps sorted by # of terms skipped
_A : int = 0
while j < len(snake_case_ ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(snake_case_,(diff, dn, k) )
return (diff, dn)
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
if i >= n:
return 0, i
if k > len(snake_case_ ):
a_i.extend([0 for _ in range(k - len(snake_case_ ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
_A : str = i
_A , _A , _A : Optional[int] = 0, 0, 0
for j in range(len(snake_case_ ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
_A : int = ds_c + ds_b
diff += addend
_A : Tuple = 0
for j in range(snake_case_ ):
_A : int = a_i[j] + addend
_A , _A : str = divmod(snake_case_,10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(snake_case_,snake_case_,snake_case_ )
return diff, i - start_i
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
for j in range(snake_case_,len(snake_case_ ) ):
_A : Any = digits[j] + addend
if s >= 10:
_A , _A : Optional[Any] = divmod(snake_case_,10 )
_A : str = addend // 10 + quotient
else:
_A : List[Any] = s
_A : List[Any] = addend // 10
if addend == 0:
break
while addend > 0:
_A , _A : str = divmod(snake_case_,10 )
digits.append(snake_case_ )
def lowerCAmelCase_ ( snake_case_ = 10**15 ):
_A : Optional[Any] = [1]
_A : Tuple = 1
_A : str = 0
while True:
_A , _A : Dict = next_term(snake_case_,20,i + dn,snake_case_ )
dn += terms_jumped
if dn == n - i:
break
_A : List[Any] = 0
for j in range(len(snake_case_ ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 1 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_snake_case = {
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
_snake_case = {"facebook/blenderbot-3B": 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCAmelCase_ ( ):
_A : Optional[int] = (
list(range(ord("""!""" ),ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ),ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ),ord("""ÿ""" ) + 1 ) )
)
_A : str = bs[:]
_A : str = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
_A : List[str] = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_,snake_case_ ) )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = set()
_A : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : Tuple = char
return pairs
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "attention_mask"]
def __init__( self , _a , _a , _a="replace" , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , _a=False , **_a , ) -> Dict:
_A : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else bos_token
_A : List[str] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else eos_token
_A : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else sep_token
_A : Optional[int] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else cls_token
_A : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token
_A : int = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_A : Optional[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
super().__init__(
errors=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , add_prefix_space=_a , **_a , )
with open(_a , encoding="""utf-8""" ) as vocab_handle:
_A : Any = json.load(_a )
_A : Dict = {v: k for k, v in self.encoder.items()}
_A : str = errors # how to handle errors in decoding
_A : Union[str, Any] = bytes_to_unicode()
_A : Optional[int] = {v: k for k, v in self.byte_encoder.items()}
with open(_a , encoding="""utf-8""" ) as merges_handle:
_A : List[Any] = merges_handle.read().split("""\n""" )[1:-1]
_A : int = [tuple(merge.split() ) for merge in bpe_merges]
_A : List[str] = dict(zip(_a , range(len(_a ) ) ) )
_A : str = {}
_A : Any = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_A : List[str] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def a__ ( self ) -> Dict:
return len(self.encoder )
def a__ ( self ) -> Union[str, Any]:
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self , _a ) -> Optional[int]:
if token in self.cache:
return self.cache[token]
_A : List[str] = tuple(_a )
_A : Dict = get_pairs(_a )
if not pairs:
return token
while True:
_A : str = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_A , _A : Optional[Any] = bigram
_A : Optional[int] = []
_A : Any = 0
while i < len(_a ):
try:
_A : Union[str, Any] = word.index(_a , _a )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_A : Tuple = j
if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A : str = tuple(_a )
_A : Tuple = new_word
if len(_a ) == 1:
break
else:
_A : Dict = get_pairs(_a )
_A : int = """ """.join(_a )
_A : str = word
return word
def a__ ( self , _a ) -> List[str]:
_A : int = []
for token in re.findall(self.pat , _a ):
_A : Optional[int] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_a ).split(""" """ ) )
return bpe_tokens
def a__ ( self , _a ) -> Optional[Any]:
return self.encoder.get(_a , self.encoder.get(self.unk_token ) )
def a__ ( self , _a ) -> Optional[Any]:
return self.decoder.get(_a )
def a__ ( self , _a ) -> int:
_A : int = """""".join(_a )
_A : int = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : Union[str, Any] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + """\n""" )
_A : List[str] = 0
with open(_a , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
_A : Any = token_index
writer.write(""" """.join(_a ) + """\n""" )
index += 1
return vocab_file, merge_file
def a__ ( self , _a , _a = None , _a = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is None:
return [1] + ([0] * len(_a )) + [1]
return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1]
def a__ ( self , _a , _a = None ) -> List[int]:
_A : int = [self.sep_token_id]
_A : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self , _a , _a=False , **_a ) -> Optional[Any]:
_A : List[str] = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(_a ) > 0 and not text[0].isspace()):
_A : Dict = """ """ + text
return (text, kwargs)
def a__ ( self , _a , _a = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def a__ ( self , _a ) -> List[int]:
_A : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(""" """ + text )
else:
# Generated responses should contain them already.
inputs.append(_a )
_A : List[str] = """ """.join(_a )
_A : Dict = self.encode(_a )
if len(_a ) > self.model_max_length:
_A : str = input_ids[-self.model_max_length :]
logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 343 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = inspect.getfile(accelerate.test_utils )
_A : int = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
_A : Any = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
_A : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def a__ ( self ) -> Dict:
print(F'''Found {torch.cuda.device_count()} devices.''' )
_A : List[Any] = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def a__ ( self ) -> str:
print(F'''Found {torch.cuda.device_count()} devices.''' )
_A : str = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(F'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def a__ ( self ) -> Dict:
_A : int = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(_a , env=os.environ.copy() )
@require_multi_gpu
def a__ ( self ) -> Any:
print(F'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
_A : Dict = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ):
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
_snake_case = Accelerator()
_snake_case = (accelerator.state.process_index + 2, 10)
_snake_case = torch.randint(0, 10, shape).to(accelerator.device)
_snake_case = ""
_snake_case = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_snake_case = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_snake_case = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 343 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 1 |
import argparse
from pathlib import Path
import torch
from transformers import OPTConfig, OPTModel
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = torch.load(snake_case_,map_location="""cpu""" )
if "model" in sd.keys():
_A : List[str] = torch.load(snake_case_,map_location="""cpu""" )["""model"""]
# pop unnecessary weights
_A : Optional[Any] = [
"""decoder.version""",
"""decoder.output_projection.weight""",
]
for key in keys_to_delete:
if key in sd:
sd.pop(snake_case_ )
_A : List[Any] = {
"""decoder.project_in_dim.weight""": """decoder.project_in.weight""",
"""decoder.project_out_dim.weight""": """decoder.project_out.weight""",
"""decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""",
"""decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""",
}
for old_key, new_key in keys_to_rename.items():
if old_key in sd:
_A : Optional[int] = sd.pop(snake_case_ )
_A : str = list(sd.keys() )
for key in keys:
if ".qkv_proj." in key:
_A : Tuple = sd[key]
# We split QKV in separate Q,K,V
_A : Dict = key.replace(""".qkv_proj.""",""".q_proj.""" )
_A : Optional[int] = key.replace(""".qkv_proj.""",""".k_proj.""" )
_A : Union[str, Any] = key.replace(""".qkv_proj.""",""".v_proj.""" )
_A : int = value.shape[0]
assert depth % 3 == 0
# `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming:
# https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97
_A , _A , _A : Any = torch.split(snake_case_,depth // 3,dim=0 )
_A : Any = q
_A : Any = k
_A : Any = v
del sd[key]
return sd
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=None ):
_A : int = load_checkpoint(snake_case_ )
if config is not None:
_A : Any = OPTConfig.from_pretrained(snake_case_ )
else:
_A : List[Any] = OPTConfig()
_A : Optional[Any] = OPTModel(snake_case_ ).half().eval()
model.load_state_dict(snake_case_ )
# Check results
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
model.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fairseq_path",
type=str,
help=(
"path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:"
" https://huggingface.co/models?other=opt_metasq"
),
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.")
_snake_case = parser.parse_args()
convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
| 343 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
_A : list[list[float]] = []
for data in source_data:
for i, el in enumerate(snake_case_ ):
if len(snake_case_ ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(snake_case_ ) )
return data_lists
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : list[list[float]] = []
for dlist, weight in zip(snake_case_,snake_case_ ):
_A : List[str] = min(snake_case_ )
_A : Dict = max(snake_case_ )
_A : list[float] = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
_A : Optional[int] = f'''Invalid weight of {weight:f} provided'''
raise ValueError(snake_case_ )
score_lists.append(snake_case_ )
return score_lists
def lowerCAmelCase_ ( snake_case_ ):
_A : list[float] = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(snake_case_ ):
_A : Optional[Any] = final_scores[j] + ele
return final_scores
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = get_data(snake_case_ )
_A : List[Any] = calculate_each_score(snake_case_,snake_case_ )
_A : Optional[int] = generate_final_scores(snake_case_ )
# append scores to source data
for i, ele in enumerate(snake_case_ ):
source_data[i].append(snake_case_ )
return source_data
| 343 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_snake_case = {
"configuration_maskformer": ["MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "MaskFormerConfig"],
"configuration_maskformer_swin": ["MaskFormerSwinConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["MaskFormerFeatureExtractor"]
_snake_case = ["MaskFormerImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"MaskFormerForInstanceSegmentation",
"MaskFormerModel",
"MaskFormerPreTrainedModel",
]
_snake_case = [
"MaskFormerSwinBackbone",
"MaskFormerSwinModel",
"MaskFormerSwinPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 343 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
if len(snake_case_ ) == 0:
return array
_A , _A : Optional[Any] = min(snake_case_ ), max(snake_case_ )
# Compute the variables
_A : str = _max - _min + 1
_A , _A : List[str] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
_A : str = i - _min
_A : int = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
_A : List[str] = 0
for i in range(snake_case_ ):
while holes_repeat[i] > 0:
_A : str = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case = input("Enter numbers separated by comma:\n")
_snake_case = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted))
| 343 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
def update_area_of_max_square(snake_case_,snake_case_ ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
_A : Tuple = update_area_of_max_square(snake_case_,col + 1 )
_A : int = update_area_of_max_square(row + 1,col + 1 )
_A : int = update_area_of_max_square(row + 1,snake_case_ )
if mat[row][col]:
_A : Tuple = 1 + min([right, diagonal, down] )
_A : Optional[int] = max(largest_square_area[0],snake_case_ )
return sub_problem_sol
else:
return 0
_A : List[str] = [0]
update_area_of_max_square(0,0 )
return largest_square_area[0]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
def update_area_of_max_square_using_dp_array(
snake_case_,snake_case_,snake_case_ ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
_A : str = update_area_of_max_square_using_dp_array(snake_case_,col + 1,snake_case_ )
_A : Any = update_area_of_max_square_using_dp_array(row + 1,col + 1,snake_case_ )
_A : List[Any] = update_area_of_max_square_using_dp_array(row + 1,snake_case_,snake_case_ )
if mat[row][col]:
_A : Dict = 1 + min([right, diagonal, down] )
_A : Optional[Any] = max(largest_square_area[0],snake_case_ )
_A : List[str] = sub_problem_sol
return sub_problem_sol
else:
return 0
_A : Dict = [0]
_A : Optional[int] = [[-1] * cols for _ in range(snake_case_ )]
update_area_of_max_square_using_dp_array(0,0,snake_case_ )
return largest_square_area[0]
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )]
_A : Dict = 0
for row in range(rows - 1,-1,-1 ):
for col in range(cols - 1,-1,-1 ):
_A : Dict = dp_array[row][col + 1]
_A : int = dp_array[row + 1][col + 1]
_A : str = dp_array[row + 1][col]
if mat[row][col] == 1:
_A : Optional[Any] = 1 + min(snake_case_,snake_case_,snake_case_ )
_A : Optional[int] = max(dp_array[row][col],snake_case_ )
else:
_A : List[Any] = 0
return largest_square_area
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : List[str] = [0] * (cols + 1)
_A : List[str] = [0] * (cols + 1)
_A : Any = 0
for row in range(rows - 1,-1,-1 ):
for col in range(cols - 1,-1,-1 ):
_A : int = current_row[col + 1]
_A : Union[str, Any] = next_row[col + 1]
_A : Union[str, Any] = next_row[col]
if mat[row][col] == 1:
_A : Optional[Any] = 1 + min(snake_case_,snake_case_,snake_case_ )
_A : Any = max(current_row[col],snake_case_ )
else:
_A : Tuple = 0
_A : Union[str, Any] = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 343 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
_snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ) -> List[str]:
super().__init__()
if safety_checker is None:
logger.warning(
F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
""" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"""
""" results in services or applications open to the public. Both the diffusers team and Hugging Face"""
""" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"""
""" it only for use-cases that involve analyzing network behavior or auditing its results. For more"""
""" information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" )
self.register_modules(
speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , )
def a__ ( self , _a = "auto" ) -> Tuple:
if slice_size == "auto":
_A : Dict = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_a )
def a__ ( self ) -> str:
self.enable_attention_slicing(_a )
@torch.no_grad()
def __call__( self , _a , _a=1_6000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ) -> Dict:
_A : str = self.speech_processor.feature_extractor(
_a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device )
_A : int = self.speech_model.generate(_a , max_length=48_0000 )
_A : int = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[
0
]
if isinstance(_a , _a ):
_A : List[str] = 1
elif isinstance(_a , _a ):
_A : Union[str, Any] = len(_a )
else:
raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_a )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0)
):
raise ValueError(
F'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
F''' {type(_a )}.''' )
# get prompt text embeddings
_A : Tuple = self.tokenizer(
_a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , )
_A : Optional[int] = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_A : List[str] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"""The following part of your input was truncated because CLIP can only handle sequences up to"""
F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
_A : Any = text_input_ids[:, : self.tokenizer.model_max_length]
_A : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_A , _A , _A : Optional[Any] = text_embeddings.shape
_A : Any = text_embeddings.repeat(1 , _a , 1 )
_A : int = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_A : Dict = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_A : List[str]
if negative_prompt is None:
_A : Optional[int] = [""""""] * batch_size
elif type(_a ) is not type(_a ):
raise TypeError(
F'''`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !='''
F''' {type(_a )}.''' )
elif isinstance(_a , _a ):
_A : int = [negative_prompt]
elif batch_size != len(_a ):
raise ValueError(
F'''`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:'''
F''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
""" the batch size of `prompt`.""" )
else:
_A : Optional[Any] = negative_prompt
_A : Any = text_input_ids.shape[-1]
_A : List[Any] = self.tokenizer(
_a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , )
_A : Union[str, Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_A : Optional[Any] = uncond_embeddings.shape[1]
_A : Optional[Any] = uncond_embeddings.repeat(1 , _a , 1 )
_A : Optional[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_A : int = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_A : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
_A : List[Any] = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
_A : Optional[int] = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to(
self.device )
else:
_A : int = torch.randn(_a , generator=_a , device=self.device , dtype=_a )
else:
if latents.shape != latents_shape:
raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
_A : Any = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(_a )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
_A : Dict = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_A : List[str] = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_A : str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_A : int = {}
if accepts_eta:
_A : Union[str, Any] = eta
for i, t in enumerate(self.progress_bar(_a ) ):
# expand the latents if we are doing classifier free guidance
_A : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_A : List[str] = self.scheduler.scale_model_input(_a , _a )
# predict the noise residual
_A : Dict = self.unet(_a , _a , encoder_hidden_states=_a ).sample
# perform guidance
if do_classifier_free_guidance:
_A , _A : List[str] = noise_pred.chunk(2 )
_A : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
_A : Any = self.scheduler.step(_a , _a , _a , **_a ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(_a , _a , _a )
_A : List[str] = 1 / 0.18215 * latents
_A : str = self.vae.decode(_a ).sample
_A : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_A : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_A : Any = self.numpy_to_pil(_a )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
| 343 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 1 |
from __future__ import annotations
_snake_case = 1.6021e-19 # units = C
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,):
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError("""You cannot supply more or less than 2 values""" )
elif conductivity < 0:
raise ValueError("""Conductivity cannot be negative""" )
elif electron_conc < 0:
raise ValueError("""Electron concentration cannot be negative""" )
elif mobility < 0:
raise ValueError("""mobility cannot be negative""" )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
from collections.abc import Callable
class lowercase :
def __init__( self , _a = None ) -> None:
# Stores actual heap items.
_A : list = []
# Stores indexes of each item for supporting updates and deletion.
_A : dict = {}
# Stores current size of heap.
_A : Tuple = 0
# Stores function used to evaluate the score of an item on which basis ordering
# will be done.
_A : Tuple = key or (lambda _a : x)
def a__ ( self , _a ) -> int | None:
return int((i - 1) / 2 ) if i > 0 else None
def a__ ( self , _a ) -> int | None:
_A : Optional[Any] = int(2 * i + 1 )
return left if 0 < left < self.size else None
def a__ ( self , _a ) -> int | None:
_A : int = int(2 * i + 2 )
return right if 0 < right < self.size else None
def a__ ( self , _a , _a ) -> None:
_A , _A : Dict = (
self.pos_map[self.arr[j][0]],
self.pos_map[self.arr[i][0]],
)
# Then swap the items in the list.
_A , _A : Optional[int] = self.arr[j], self.arr[i]
def a__ ( self , _a , _a ) -> bool:
return self.arr[i][1] < self.arr[j][1]
def a__ ( self , _a ) -> int:
_A : List[Any] = self._left(_a )
_A : List[Any] = self._right(_a )
_A : Optional[int] = i
if left is not None and not self._cmp(_a , _a ):
_A : str = left
if right is not None and not self._cmp(_a , _a ):
_A : Optional[int] = right
return valid_parent
def a__ ( self , _a ) -> None:
_A : int = self._parent(_a )
while parent is not None and not self._cmp(_a , _a ):
self._swap(_a , _a )
_A , _A : Dict = parent, self._parent(_a )
def a__ ( self , _a ) -> None:
_A : Any = self._get_valid_parent(_a )
while valid_parent != index:
self._swap(_a , _a )
_A , _A : Optional[int] = valid_parent, self._get_valid_parent(_a )
def a__ ( self , _a , _a ) -> None:
if item not in self.pos_map:
return
_A : Dict = self.pos_map[item]
_A : List[Any] = [item, self.key(_a )]
# Make sure heap is right in both up and down direction.
# Ideally only one of them will make any change.
self._heapify_up(_a )
self._heapify_down(_a )
def a__ ( self , _a ) -> None:
if item not in self.pos_map:
return
_A : List[str] = self.pos_map[item]
del self.pos_map[item]
_A : Tuple = self.arr[self.size - 1]
_A : Union[str, Any] = index
self.size -= 1
# Make sure heap is right in both up and down direction. Ideally only one
# of them will make any change- so no performance loss in calling both.
if self.size > index:
self._heapify_up(_a )
self._heapify_down(_a )
def a__ ( self , _a , _a ) -> None:
_A : List[Any] = len(self.arr )
if arr_len == self.size:
self.arr.append([item, self.key(_a )] )
else:
_A : int = [item, self.key(_a )]
_A : List[Any] = self.size
self.size += 1
self._heapify_up(self.size - 1 )
def a__ ( self ) -> tuple | None:
return self.arr[0] if self.size else None
def a__ ( self ) -> tuple | None:
_A : int = self.get_top()
if top_item_tuple:
self.delete_item(top_item_tuple[0] )
return top_item_tuple
def lowerCAmelCase_ ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
_snake_case = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a=None , _a=1 ) -> List[Any]:
_A : str = tokenizer
_A : str = dataset
_A : str = len(_a ) if n_tasks is None else n_tasks
_A : List[str] = n_copies
def __iter__( self ) -> Optional[Any]:
_A : Any = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]["""prompt"""].strip() )
_A : List[Any] = self.tokenizer(_a , padding=_a , return_tensors="""pt""" )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a , _a ) -> Optional[int]:
_A : List[str] = start_length
_A : Dict = eof_strings
_A : Optional[int] = tokenizer
def __call__( self , _a , _a , **_a ) -> Optional[Any]:
_A : List[str] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
_A : Union[str, Any] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(_a )
def lowerCAmelCase_ ( snake_case_ ):
_A : int = re.split("""(%s)""" % """|""".join(snake_case_ ),snake_case_ )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=20,**snake_case_ ):
_A : Any = defaultdict(snake_case_ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(snake_case_ ) ):
with torch.no_grad():
_A : Optional[int] = batch["""ids"""].shape[-1]
_A : Optional[int] = accelerator.unwrap_model(snake_case_ ).generate(
input_ids=batch["""ids"""][:, : batch["""input_len"""]],num_return_sequences=snake_case_,**snake_case_ )
# each task is generated batch_size times
_A : Any = batch["""task_id"""].repeat(snake_case_ )
_A : Optional[int] = accelerator.pad_across_processes(
snake_case_,dim=1,pad_index=tokenizer.pad_token_id )
_A , _A : Optional[Any] = accelerator.gather((generated_tokens, generated_tasks) )
_A : Optional[Any] = generated_tokens.cpu().numpy()
_A : str = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(snake_case_,snake_case_ ):
gen_token_dict[task].append(snake_case_ )
_A : str = [[] for _ in range(snake_case_ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
_A : str = tokenizer.decode(snake_case_,skip_special_tokens=snake_case_,clean_up_tokenization_spaces=snake_case_ )
code_gens[task].append(remove_last_block(snake_case_ ) )
return code_gens
def lowerCAmelCase_ ( ):
# Setup configuration
_A : Union[str, Any] = HfArgumentParser(snake_case_ )
_A : int = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
_A : List[str] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
_A : int = """false"""
if args.num_workers is None:
_A : int = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
_A : Dict = Accelerator()
set_seed(args.seed,device_specific=snake_case_ )
# Load model and tokenizer
_A : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt )
_A : int = tokenizer.eos_token
_A : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
_A : Any = {
"""do_sample""": args.do_sample,
"""temperature""": args.temperature,
"""max_new_tokens""": args.max_new_tokens,
"""top_p""": args.top_p,
"""top_k""": args.top_k,
"""stopping_criteria""": StoppingCriteriaList([EndOfFunctionCriteria(0,snake_case_,snake_case_ )] ),
}
# Load evaluation dataset and metric
_A : List[str] = load_dataset("""openai_humaneval""" )
_A : Dict = load_metric("""code_eval""" )
_A : Union[str, Any] = args.num_tasks if args.num_tasks is not None else len(human_eval["""test"""] )
_A : Union[str, Any] = args.n_samples // args.batch_size
_A : Any = TokenizedDataset(snake_case_,human_eval["""test"""],n_copies=snake_case_,n_tasks=snake_case_ )
# do not confuse args.batch_size, which is actually the num_return_sequences
_A : Optional[Any] = DataLoader(snake_case_,batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
_A : Dict = code_eval_metric.compute(references=[""""""],predictions=[[""""""]] )
except ValueError as exception:
print(
"""Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`"""
""" flag to enable code evaluation.""" )
raise exception
_A , _A : List[Any] = accelerator.prepare(snake_case_,snake_case_ )
_A : List[str] = complete_code(
snake_case_,snake_case_,snake_case_,snake_case_,n_tasks=snake_case_,batch_size=args.batch_size,**snake_case_,)
if accelerator.is_main_process:
_A : Union[str, Any] = []
for task in tqdm(range(snake_case_ ) ):
_A : Optional[int] = human_eval["""test"""][task]["""test"""]
_A : Any = f'''check({human_eval["test"][task]["entry_point"]})'''
references.append("""\n""" + test_func + """\n""" + entry_point )
# Evaluate completions with "code_eval" metric
_A , _A : List[str] = code_eval_metric.compute(
references=snake_case_,predictions=snake_case_,num_workers=args.num_workers )
print(f'''Results: {pass_at_k}''' )
# Save results to json file
with open(args.output_file,"""w""" ) as fp:
json.dump(snake_case_,snake_case_ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
from typing import Any
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
return np.array_equal(snake_case_,matrix.conjugate().T )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Tuple = v.conjugate().T
_A : int = v_star.dot(snake_case_ )
assert isinstance(snake_case_,np.ndarray )
return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ ))
def lowerCAmelCase_ ( ):
_A : int = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] )
_A : Dict = np.array([[1], [2], [3]] )
assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.'''
print(rayleigh_quotient(snake_case_,snake_case_ ) )
_A : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(snake_case_ ), f'''{a} is not hermitian.'''
assert rayleigh_quotient(snake_case_,snake_case_ ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import os
from itertools import chain
from random import randrange, shuffle
import pytest
from .sola import PokerHand
_snake_case = (
"4S 3H 2C 7S 5H",
"9D 8H 2C 6S 7H",
"2D 6D 9D TH 7D",
"TC 8C 2S JH 6C",
"JH 8S TH AH QH",
"TS KS 5S 9S AC",
"KD 6S 9D TH AD",
"KS 8D 4D 9S 4S", # pair
"8C 4S KH JS 4D", # pair
"QH 8H KD JH 8S", # pair
"KC 4H KS 2H 8D", # pair
"KD 4S KC 3H 8S", # pair
"AH 8S AS KC JH", # pair
"3H 4C 4H 3S 2H", # 2 pairs
"5S 5D 2C KH KH", # 2 pairs
"3C KH 5D 5S KH", # 2 pairs
"AS 3C KH AD KH", # 2 pairs
"7C 7S 3S 7H 5S", # 3 of a kind
"7C 7S KH 2H 7H", # 3 of a kind
"AC KH QH AH AS", # 3 of a kind
"2H 4D 3C AS 5S", # straight (low ace)
"3C 5C 4C 2C 6H", # straight
"6S 8S 7S 5H 9H", # straight
"JS QS 9H TS KH", # straight
"QC KH TS JS AH", # straight (high ace)
"8C 9C 5C 3C TC", # flush
"3S 8S 9S 5S KS", # flush
"4C 5C 9C 8C KC", # flush
"JH 8H AH KH QH", # flush
"3D 2H 3H 2C 2D", # full house
"2H 2C 3S 3H 3D", # full house
"KH KC 3S 3H 3D", # full house
"JC 6H JS JD JH", # 4 of a kind
"JC 7H JS JD JH", # 4 of a kind
"JC KH JS JD JH", # 4 of a kind
"2S AS 4S 5S 3S", # straight flush (low ace)
"2D 6D 3D 4D 5D", # straight flush
"5C 6C 3C 7C 4C", # straight flush
"JH 9H TH KH QH", # straight flush
"JH AH TH KH QH", # royal flush (high ace straight flush)
)
_snake_case = (
("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"),
("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"),
("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"),
("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"),
("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"),
("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"),
("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"),
("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"),
("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"),
("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"),
("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"),
("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"),
("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"),
("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"),
("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"),
("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"),
("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"),
("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"),
("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"),
("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"),
("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"),
("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"),
("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"),
("AH AD KS KC AC", "AH KD KH AC KC", "Win"),
("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"),
("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"),
("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"),
("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"),
("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"),
("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"),
("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"),
("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"),
)
_snake_case = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", True),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", False),
("AS 3S 4S 8S 2S", True),
)
_snake_case = (
("2H 3H 4H 5H 6H", True),
("AS AH 2H AD AC", False),
("2H 3H 5H 6H 7H", False),
("KS AS TS QS JS", True),
("8H 9H QS JS TH", True),
)
_snake_case = (
("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]),
("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]),
("JH QD KC AS TS", False, [14, 13, 12, 11, 10]),
("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]),
)
_snake_case = (
("JH AH TH KH QH", 0),
("JH 9H TH KH QH", 0),
("JC KH JS JD JH", 7),
("KH KC 3S 3H 3D", 6),
("8C 9C 5C 3C TC", 0),
("JS QS 9H TS KH", 0),
("7C 7S KH 2H 7H", 3),
("3C KH 5D 5S KH", 2),
("QH 8H KD JH 8S", 1),
("2D 6D 9D TH 7D", 0),
)
_snake_case = (
("JH AH TH KH QH", 23),
("JH 9H TH KH QH", 22),
("JC KH JS JD JH", 21),
("KH KC 3S 3H 3D", 20),
("8C 9C 5C 3C TC", 19),
("JS QS 9H TS KH", 18),
("7C 7S KH 2H 7H", 17),
("3C KH 5D 5S KH", 16),
("QH 8H KD JH 8S", 15),
("2D 6D 9D TH 7D", 14),
)
def lowerCAmelCase_ ( ):
_A , _A : List[Any] = randrange(len(snake_case_ ) ), randrange(len(snake_case_ ) )
_A : Tuple = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)]
_A , _A : int = SORTED_HANDS[play], SORTED_HANDS[oppo]
return hand, other, expected
def lowerCAmelCase_ ( snake_case_ = 100 ):
return (generate_random_hand() for _ in range(snake_case_ ))
@pytest.mark.parametrize("""hand, expected""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
assert PokerHand(snake_case_ )._is_flush() == expected
@pytest.mark.parametrize("""hand, expected""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
assert PokerHand(snake_case_ )._is_straight() == expected
@pytest.mark.parametrize("""hand, expected, card_values""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = PokerHand(snake_case_ )
assert player._is_five_high_straight() == expected
assert player._card_values == card_values
@pytest.mark.parametrize("""hand, expected""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
assert PokerHand(snake_case_ )._is_same_kind() == expected
@pytest.mark.parametrize("""hand, expected""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
assert PokerHand(snake_case_ )._hand_type == expected
@pytest.mark.parametrize("""hand, other, expected""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected
@pytest.mark.parametrize("""hand, other, expected""",generate_random_hands() )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
assert PokerHand(snake_case_ ).compare_with(PokerHand(snake_case_ ) ) == expected
def lowerCAmelCase_ ( ):
_A : Optional[Any] = [PokerHand(snake_case_ ) for hand in SORTED_HANDS]
_A : Any = poker_hands.copy()
shuffle(snake_case_ )
_A : str = chain(sorted(snake_case_ ) )
for index, hand in enumerate(snake_case_ ):
assert hand == poker_hands[index]
def lowerCAmelCase_ ( ):
# Test that five high straights are compared correctly.
_A : List[Any] = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )]
pokerhands.sort(reverse=snake_case_ )
assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C"
def lowerCAmelCase_ ( ):
# Multiple calls to five_high_straight function should still return True
# and shouldn't mutate the list in every call other than the first.
_A : List[str] = PokerHand("""2C 4S AS 3D 5C""" )
_A : Union[str, Any] = True
_A : int = [5, 4, 3, 2, 14]
for _ in range(10 ):
assert pokerhand._is_five_high_straight() == expected
assert pokerhand._card_values == expected_card_values
def lowerCAmelCase_ ( ):
# Problem number 54 from Project Euler
# Testing from poker_hands.txt file
_A : int = 0
_A : Union[str, Any] = os.path.abspath(os.path.dirname(snake_case_ ) )
_A : Union[str, Any] = os.path.join(snake_case_,"""poker_hands.txt""" )
with open(snake_case_ ) as file_hand:
for line in file_hand:
_A : str = line[:14].strip()
_A : Union[str, Any] = line[15:].strip()
_A , _A : Union[str, Any] = PokerHand(snake_case_ ), PokerHand(snake_case_ )
_A : List[str] = player.compare_with(snake_case_ )
if output == "Win":
answer += 1
assert answer == 376
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
from numpy import exp, pi, sqrt
def lowerCAmelCase_ ( snake_case_,snake_case_ = 0.0,snake_case_ = 1.0 ):
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def lowerCAmelCase_ ( snake_case_ ):
_A : str = DPTConfig()
if "large" in checkpoint_url:
_A : List[Any] = 1024
_A : Union[str, Any] = 4096
_A : Tuple = 24
_A : Tuple = 16
_A : int = [5, 11, 17, 23]
_A : List[str] = [256, 512, 1024, 1024]
_A : Optional[Any] = (1, 384, 384)
if "ade" in checkpoint_url:
_A : Optional[Any] = True
_A : Union[str, Any] = 150
_A : Dict = """huggingface/label-files"""
_A : Any = """ade20k-id2label.json"""
_A : Union[str, Any] = json.load(open(cached_download(hf_hub_url(snake_case_,snake_case_,repo_type="""dataset""" ) ),"""r""" ) )
_A : List[str] = {int(snake_case_ ): v for k, v in idalabel.items()}
_A : Optional[int] = idalabel
_A : int = {v: k for k, v in idalabel.items()}
_A : int = [1, 150, 480, 480]
return config, expected_shape
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(snake_case_,snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
_A : Dict = name.replace("""pretrained.model""","""dpt.encoder""" )
if "pretrained.model" in name:
_A : Any = name.replace("""pretrained.model""","""dpt.embeddings""" )
if "patch_embed" in name:
_A : List[Any] = name.replace("""patch_embed""","""patch_embeddings""" )
if "pos_embed" in name:
_A : str = name.replace("""pos_embed""","""position_embeddings""" )
if "attn.proj" in name:
_A : Optional[int] = name.replace("""attn.proj""","""attention.output.dense""" )
if "proj" in name and "project" not in name:
_A : int = name.replace("""proj""","""projection""" )
if "blocks" in name:
_A : str = name.replace("""blocks""","""layer""" )
if "mlp.fc1" in name:
_A : int = name.replace("""mlp.fc1""","""intermediate.dense""" )
if "mlp.fc2" in name:
_A : Any = name.replace("""mlp.fc2""","""output.dense""" )
if "norm1" in name:
_A : Tuple = name.replace("""norm1""","""layernorm_before""" )
if "norm2" in name:
_A : Optional[Any] = name.replace("""norm2""","""layernorm_after""" )
if "scratch.output_conv" in name:
_A : List[str] = name.replace("""scratch.output_conv""","""head""" )
if "scratch" in name:
_A : Dict = name.replace("""scratch""","""neck""" )
if "layer1_rn" in name:
_A : Dict = name.replace("""layer1_rn""","""convs.0""" )
if "layer2_rn" in name:
_A : List[Any] = name.replace("""layer2_rn""","""convs.1""" )
if "layer3_rn" in name:
_A : str = name.replace("""layer3_rn""","""convs.2""" )
if "layer4_rn" in name:
_A : Any = name.replace("""layer4_rn""","""convs.3""" )
if "refinenet" in name:
_A : int = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
_A : List[str] = name.replace(f'''refinenet{layer_idx}''',f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
_A : Tuple = name.replace("""out_conv""","""projection""" )
if "resConfUnit1" in name:
_A : Optional[Any] = name.replace("""resConfUnit1""","""residual_layer1""" )
if "resConfUnit2" in name:
_A : List[str] = name.replace("""resConfUnit2""","""residual_layer2""" )
if "conv1" in name:
_A : Union[str, Any] = name.replace("""conv1""","""convolution1""" )
if "conv2" in name:
_A : List[Any] = name.replace("""conv2""","""convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
_A : List[Any] = name.replace("""pretrained.act_postprocess1.0.project.0""","""neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
_A : Optional[int] = name.replace("""pretrained.act_postprocess2.0.project.0""","""neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
_A : Union[str, Any] = name.replace("""pretrained.act_postprocess3.0.project.0""","""neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
_A : Dict = name.replace("""pretrained.act_postprocess4.0.project.0""","""neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
_A : int = name.replace("""pretrained.act_postprocess1.3""","""neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
_A : Union[str, Any] = name.replace("""pretrained.act_postprocess1.4""","""neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
_A : str = name.replace("""pretrained.act_postprocess2.3""","""neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
_A : Any = name.replace("""pretrained.act_postprocess2.4""","""neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
_A : List[str] = name.replace("""pretrained.act_postprocess3.3""","""neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
_A : str = name.replace("""pretrained.act_postprocess4.3""","""neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
_A : List[Any] = name.replace("""pretrained.act_postprocess4.4""","""neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
_A : int = name.replace("""pretrained""","""dpt""" )
if "bn" in name:
_A : Any = name.replace("""bn""","""batch_norm""" )
if "head" in name:
_A : List[str] = name.replace("""head""","""head.head""" )
if "encoder.norm" in name:
_A : int = name.replace("""encoder.norm""","""layernorm""" )
if "auxlayer" in name:
_A : Any = name.replace("""auxlayer""","""auxiliary_head.head""" )
return name
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A : Optional[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
_A : Any = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A : Optional[int] = in_proj_weight[: config.hidden_size, :]
_A : List[str] = in_proj_bias[: config.hidden_size]
_A : Optional[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
_A : Optional[int] = in_proj_bias[-config.hidden_size :]
def lowerCAmelCase_ ( ):
_A : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_A : Optional[Any] = Image.open(requests.get(snake_case_,stream=snake_case_ ).raw )
return im
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A , _A : Optional[int] = get_dpt_config(snake_case_ )
# load original state_dict from URL
_A : Tuple = torch.hub.load_state_dict_from_url(snake_case_,map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(snake_case_ )
# rename keys
for key in state_dict.copy().keys():
_A : Dict = state_dict.pop(snake_case_ )
_A : List[Any] = val
# read in qkv matrices
read_in_q_k_v(snake_case_,snake_case_ )
# load HuggingFace model
_A : Optional[int] = DPTForSemanticSegmentation(snake_case_ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case_ )
model.load_state_dict(snake_case_ )
model.eval()
# Check outputs on an image
_A : Optional[Any] = 480 if """ade""" in checkpoint_url else 384
_A : str = DPTImageProcessor(size=snake_case_ )
_A : Any = prepare_img()
_A : Union[str, Any] = image_processor(snake_case_,return_tensors="""pt""" )
# forward pass
_A : List[str] = model(**snake_case_ ).logits if """ade""" in checkpoint_url else model(**snake_case_ ).predicted_depth
# Assert logits
_A : Optional[Any] = torch.tensor([[6.31_99, 6.36_29, 6.41_48], [6.38_50, 6.36_15, 6.41_66], [6.35_19, 6.31_76, 6.35_75]] )
if "ade" in checkpoint_url:
_A : List[str] = torch.tensor([[4.04_80, 4.24_20, 4.43_60], [4.31_24, 4.56_93, 4.82_61], [4.57_68, 4.89_65, 5.21_63]] )
assert outputs.shape == torch.Size(snake_case_ )
assert (
torch.allclose(outputs[0, 0, :3, :3],snake_case_,atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3],snake_case_ )
)
Path(snake_case_ ).mkdir(exist_ok=snake_case_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case_ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case_ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add model""",use_temp_dir=snake_case_,)
image_processor.push_to_hub(
repo_path_or_name=Path(snake_case_,snake_case_ ),organization="""nielsr""",commit_message="""Add image processor""",use_temp_dir=snake_case_,)
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_url",
default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
type=str,
help="URL of the original DPT checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
parser.add_argument(
"--model_name",
default="dpt-large",
type=str,
help="Name of the model, in case you're pushing to the hub.",
)
_snake_case = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
_snake_case = {str(digit): digit**5 for digit in range(10)}
def lowerCAmelCase_ ( snake_case_ ):
return sum(DIGITS_FIFTH_POWER[digit] for digit in str(snake_case_ ) )
def lowerCAmelCase_ ( ):
return sum(
number
for number in range(1000,1000000 )
if number == digits_fifth_powers_sum(snake_case_ ) )
if __name__ == "__main__":
print(solution())
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
_snake_case = logging.get_logger(__name__)
_snake_case = {
"artists_file": "artists.json",
"lyrics_file": "lyrics.json",
"genres_file": "genres.json",
}
_snake_case = {
"artists_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json",
},
"genres_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json",
},
"lyrics_file": {
"jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json",
},
}
_snake_case = {
"jukebox": 512,
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_LYRIC_TOKENS_SIZES
_a = ["input_ids", "attention_mask"]
def __init__( self , _a , _a , _a , _a=["v3", "v2", "v2"] , _a=512 , _a=5 , _a="<|endoftext|>" , **_a , ) -> str:
_A : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else unk_token
super().__init__(
unk_token=_a , n_genres=_a , version=_a , max_n_lyric_tokens=_a , **_a , )
_A : str = version
_A : str = max_n_lyric_tokens
_A : Optional[Any] = n_genres
with open(_a , encoding="""utf-8""" ) as vocab_handle:
_A : Union[str, Any] = json.load(_a )
with open(_a , encoding="""utf-8""" ) as vocab_handle:
_A : Optional[int] = json.load(_a )
with open(_a , encoding="""utf-8""" ) as vocab_handle:
_A : Tuple = json.load(_a )
_A : Tuple = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+"""
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
_A : Tuple = oov.replace(R"""\-'""" , R"""\-+'""" )
_A : List[Any] = regex.compile(_a )
_A : Any = {v: k for k, v in self.artists_encoder.items()}
_A : List[str] = {v: k for k, v in self.genres_encoder.items()}
_A : Optional[Any] = {v: k for k, v in self.lyrics_encoder.items()}
@property
def a__ ( self ) -> Optional[int]:
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def a__ ( self ) -> Union[str, Any]:
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def a__ ( self , _a , _a , _a ) -> int:
_A : Any = [self.artists_encoder.get(_a , 0 ) for artist in list_artists]
for genres in range(len(_a ) ):
_A : Tuple = [self.genres_encoder.get(_a , 0 ) for genre in list_genres[genres]]
_A : Tuple = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
_A : Tuple = [[self.lyrics_encoder.get(_a , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def a__ ( self , _a ) -> List[Any]:
return list(_a )
def a__ ( self , _a , _a , _a , **_a ) -> List[Any]:
_A , _A , _A : Any = self.prepare_for_tokenization(_a , _a , _a )
_A : Optional[int] = self._tokenize(_a )
return artist, genre, lyrics
def a__ ( self , _a , _a , _a , _a = False ) -> Tuple[str, str, str, Dict[str, Any]]:
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
_A : str = artists[idx].lower()
_A : Dict = [genres[idx].lower()]
else:
_A : Any = self._normalize(artists[idx] ) + """.v2"""
_A : Union[str, Any] = [
self._normalize(_a ) + """.v2""" for genre in genres[idx].split("""_""" )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
_A : Any = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" )
_A : List[Any] = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n"""
_A : Tuple = {vocab[index]: index + 1 for index in range(len(_a ) )}
_A : Any = 0
_A : Optional[Any] = len(_a ) + 1
_A : int = self.vocab
_A : Optional[Any] = {v: k for k, v in self.vocab.items()}
_A : Any = """"""
else:
_A : Tuple = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""" )
_A : Optional[int] = self._run_strip_accents(_a )
_A : Optional[int] = lyrics.replace("""\\""" , """\n""" )
_A : List[str] = self.out_of_vocab.sub("""""" , _a ), [], []
return artists, genres, lyrics
def a__ ( self , _a ) -> Tuple:
_A : Tuple = unicodedata.normalize("""NFD""" , _a )
_A : int = []
for char in text:
_A : Any = unicodedata.category(_a )
if cat == "Mn":
continue
output.append(_a )
return "".join(_a )
def a__ ( self , _a ) -> str:
_A : Optional[Any] = (
[chr(_a ) for i in range(ord("""a""" ) , ord("""z""" ) + 1 )]
+ [chr(_a ) for i in range(ord("""A""" ) , ord("""Z""" ) + 1 )]
+ [chr(_a ) for i in range(ord("""0""" ) , ord("""9""" ) + 1 )]
+ ["""."""]
)
_A : str = frozenset(_a )
_A : Union[str, Any] = re.compile(R"""_+""" )
_A : int = """""".join([c if c in accepted else """_""" for c in text.lower()] )
_A : List[str] = pattern.sub("""_""" , _a ).strip("""_""" )
return text
def a__ ( self , _a ) -> str:
return " ".join(_a )
def a__ ( self , _a , _a = None , _a = False ) -> Dict:
# Convert to TensorType
if not isinstance(_a , _a ):
_A : List[Any] = TensorType(_a )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
"""Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" )
import tensorflow as tf
_A : List[str] = tf.constant
_A : Dict = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" )
import torch
_A : Optional[int] = torch.tensor
_A : Optional[int] = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" )
import jax.numpy as jnp # noqa: F811
_A : str = jnp.array
_A : str = _is_jax
else:
_A : Optional[Any] = np.asarray
_A : Tuple = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
_A : List[Any] = [inputs]
if not is_tensor(_a ):
_A : Dict = as_tensor(_a )
except: # noqa E722
raise ValueError(
"""Unable to create tensor, you should probably activate truncation and/or padding """
"""with 'padding=True' 'truncation=True' to have batched tensors with the same length.""" )
return inputs
def __call__( self , _a , _a , _a="" , _a="pt" ) -> BatchEncoding:
_A : List[str] = [0, 0, 0]
_A : Optional[int] = [artist] * len(self.version )
_A : List[str] = [genres] * len(self.version )
_A , _A , _A : Tuple = self.tokenize(_a , _a , _a )
_A , _A , _A : int = self._convert_token_to_id(_a , _a , _a )
_A : List[Any] = [-INFINITY] * len(full_tokens[-1] )
_A : Optional[Any] = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_a )
for i in range(len(self.version ) )
]
return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} )
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=_a ) )
_A : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=_a ) )
_A : str = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_a ) )
return (artists_file, genres_file, lyrics_file)
def a__ ( self , _a , _a , _a ) -> str:
_A : Any = self.artists_decoder.get(_a )
_A : Tuple = [self.genres_decoder.get(_a ) for genre in genres_index]
_A : int = [self.lyrics_decoder.get(_a ) for character in lyric_index]
return artist, genres, lyrics
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
def lowerCAmelCase_ ( ):
return [
a * b * (1000 - a - b)
for a in range(1,999 )
for b in range(snake_case_,999 )
if (a * a + b * b == (1000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 343 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 1 |
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Dict:
_A : List[str] = get_activation("""swish""" )
self.assertIsInstance(_a , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a__ ( self ) -> str:
_A : Optional[int] = get_activation("""silu""" )
self.assertIsInstance(_a , nn.SiLU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a__ ( self ) -> Optional[int]:
_A : Dict = get_activation("""mish""" )
self.assertIsInstance(_a , nn.Mish )
self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def a__ ( self ) -> str:
_A : List[Any] = get_activation("""gelu""" )
self.assertIsInstance(_a , nn.GELU )
self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 343 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
return sum(i for i in range(1,number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
_snake_case = int(input("Enter number: ").strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
| 343 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 1 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class lowercase ( UpperCamelCase__ ):
_a = ["vqvae"]
def __init__( self , _a , _a , _a , _a , ) -> Optional[int]:
super().__init__()
self.register_modules(unet=_a , scheduler=_a , mel=_a , vqvae=_a )
def a__ ( self ) -> int:
return 50 if isinstance(self.scheduler , _a ) else 1000
@torch.no_grad()
def __call__( self , _a = 1 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = None , _a = 0 , _a = 0 , _a = None , _a = 0 , _a = None , _a = None , _a=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
_A : List[Any] = steps or self.get_default_steps()
self.scheduler.set_timesteps(_a )
_A : Optional[Any] = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
_A : List[str] = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
_A : str = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_a , device=self.device , )
_A : Optional[int] = noise
_A : Union[str, Any] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_a , _a )
_A : Dict = self.mel.audio_slice_to_image(_a )
_A : List[Any] = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape(
(input_image.height, input_image.width) )
_A : Union[str, Any] = (input_image / 255) * 2 - 1
_A : int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
_A : int = self.vqvae.encode(torch.unsqueeze(_a , 0 ) ).latent_dist.sample(
generator=_a )[0]
_A : Dict = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
_A : str = self.scheduler.add_noise(_a , _a , self.scheduler.timesteps[start_step - 1] )
_A : Optional[Any] = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
_A : Optional[Any] = int(mask_start_secs * pixels_per_second )
_A : Optional[int] = int(mask_end_secs * pixels_per_second )
_A : List[str] = self.scheduler.add_noise(_a , _a , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _a ):
_A : Optional[int] = self.unet(_a , _a , _a )["""sample"""]
else:
_A : Any = self.unet(_a , _a )["""sample"""]
if isinstance(self.scheduler , _a ):
_A : int = self.scheduler.step(
model_output=_a , timestep=_a , sample=_a , eta=_a , generator=_a , )["""prev_sample"""]
else:
_A : Union[str, Any] = self.scheduler.step(
model_output=_a , timestep=_a , sample=_a , generator=_a , )["""prev_sample"""]
if mask is not None:
if mask_start > 0:
_A : Optional[Any] = mask[:, step, :, :mask_start]
if mask_end > 0:
_A : List[Any] = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
_A : str = 1 / self.vqvae.config.scaling_factor * images
_A : Union[str, Any] = self.vqvae.decode(_a )["""sample"""]
_A : int = (images / 2 + 0.5).clamp(0 , 1 )
_A : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
_A : Dict = (images * 255).round().astype("""uint8""" )
_A : Tuple = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_a , mode="""RGB""" ).convert("""L""" ) for _ in images) )
_A : Optional[Any] = [self.mel.image_to_audio(_a ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_a )[:, np.newaxis, :] ) , **ImagePipelineOutput(_a ) )
@torch.no_grad()
def a__ ( self , _a , _a = 50 ) -> np.ndarray:
assert isinstance(self.scheduler , _a )
self.scheduler.set_timesteps(_a )
_A : str = np.array(
[np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] )
_A : str = (sample / 255) * 2 - 1
_A : Dict = torch.Tensor(_a ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
_A : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
_A : str = self.scheduler.alphas_cumprod[t]
_A : int = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
_A : List[str] = 1 - alpha_prod_t
_A : Any = self.unet(_a , _a )["""sample"""]
_A : Tuple = (1 - alpha_prod_t_prev) ** 0.5 * model_output
_A : List[Any] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
_A : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _a , _a , _a ) -> torch.Tensor:
_A : Union[str, Any] = acos(torch.dot(torch.flatten(_a ) , torch.flatten(_a ) ) / torch.norm(_a ) / torch.norm(_a ) )
return sin((1 - alpha) * theta ) * xa / sin(_a ) + sin(alpha * theta ) * xa / sin(_a )
| 343 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 1 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
_snake_case = pd.read_csv("sample_data.csv", header=None)
_snake_case = df.shape[:1][0]
# If you're using some other dataset input the target column
_snake_case = df.iloc[:, 1:2]
_snake_case = actual_data.values.reshape(len_data, 1)
_snake_case = MinMaxScaler().fit_transform(actual_data)
_snake_case = 10
_snake_case = 5
_snake_case = 20
_snake_case = len_data - periods * look_back
_snake_case = actual_data[:division]
_snake_case = actual_data[division - look_back :]
_snake_case , _snake_case = [], []
_snake_case , _snake_case = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
_snake_case = np.array(train_x)
_snake_case = np.array(test_x)
_snake_case = np.array([list(i.ravel()) for i in train_y])
_snake_case = np.array([list(i.ravel()) for i in test_y])
_snake_case = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
_snake_case = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
_snake_case = model.predict(x_test)
| 343 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
_snake_case = ["text", "image", "audio"]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = []
for input_type in input_types:
if input_type == "text":
inputs.append("""Text input""" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(snake_case_,snake_case_ ):
inputs.append(create_inputs(snake_case_ ) )
else:
raise ValueError(f'''Invalid type requested: {input_type}''' )
return inputs
def lowerCAmelCase_ ( snake_case_ ):
_A : Dict = []
for output in outputs:
if isinstance(snake_case_,(str, AgentText) ):
output_types.append("""text""" )
elif isinstance(snake_case_,(Image.Image, AgentImage) ):
output_types.append("""image""" )
elif isinstance(snake_case_,(torch.Tensor, AgentAudio) ):
output_types.append("""audio""" )
else:
raise ValueError(f'''Invalid output: {output}''' )
return output_types
@is_tool_test
class lowercase :
def a__ ( self ) -> Optional[int]:
self.assertTrue(hasattr(self.tool , """inputs""" ) )
self.assertTrue(hasattr(self.tool , """outputs""" ) )
_A : List[str] = self.tool.inputs
for _input in inputs:
if isinstance(_input , _a ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
_A : Optional[int] = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def a__ ( self ) -> Union[str, Any]:
_A : Optional[Any] = create_inputs(self.tool.inputs )
_A : List[Any] = self.tool(*_a )
# There is a single output
if len(self.tool.outputs ) == 1:
_A : Optional[int] = [outputs]
self.assertListEqual(output_types(_a ) , self.tool.outputs )
def a__ ( self ) -> int:
self.assertTrue(hasattr(self.tool , """description""" ) )
self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) )
self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) )
def a__ ( self ) -> List[str]:
_A : Dict = create_inputs(self.tool.inputs )
_A : Optional[Any] = self.tool(*_a )
if not isinstance(_a , _a ):
_A : str = [outputs]
self.assertEqual(len(_a ) , len(self.tool.outputs ) )
for output, output_type in zip(_a , self.tool.outputs ):
_A : str = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(_a , _a ) )
def a__ ( self ) -> Tuple:
_A : Union[str, Any] = create_inputs(self.tool.inputs )
_A : List[str] = []
for _input, input_type in zip(_a , self.tool.inputs ):
if isinstance(_a , _a ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
_A : Any = self.tool(*_a )
if not isinstance(_a , _a ):
_A : Optional[int] = [outputs]
self.assertEqual(len(_a ) , len(self.tool.outputs ) )
| 343 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = [
["attention", "attn"],
["encoder_attention", "encoder_attn"],
["q_lin", "q_proj"],
["k_lin", "k_proj"],
["v_lin", "v_proj"],
["out_lin", "out_proj"],
["norm_embeddings", "layernorm_embedding"],
["position_embeddings", "embed_positions"],
["embeddings", "embed_tokens"],
["ffn.lin", "fc"],
]
def lowerCAmelCase_ ( snake_case_ ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_A : Optional[Any] = k.replace(snake_case_,snake_case_ )
if k.startswith("""encoder""" ):
_A : str = k.replace(""".attn""",""".self_attn""" )
_A : Optional[int] = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Union[str, Any] = k.replace("""norm2""","""final_layer_norm""" )
elif k.startswith("""decoder""" ):
_A : List[str] = k.replace("""norm1""","""self_attn_layer_norm""" )
_A : Any = k.replace("""norm2""","""encoder_attn_layer_norm""" )
_A : Union[str, Any] = k.replace("""norm3""","""final_layer_norm""" )
return k
def lowerCAmelCase_ ( snake_case_ ):
_A : str = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
_A : Union[str, Any] = sd.pop(snake_case_ )
_A : Any = k.replace("""layernorm_embedding""","""layer_norm""" )
assert new_k not in sd
_A : Union[str, Any] = v
_snake_case = ["START"]
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
_A : Optional[Any] = model["""model"""]
_A : Union[str, Any] = BlenderbotConfig.from_json_file(snake_case_ )
_A : Optional[Any] = BlenderbotForConditionalGeneration(snake_case_ )
_A : Tuple = m.model.state_dict().keys()
_A : Optional[int] = []
_A : Union[str, Any] = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_A : Optional[int] = rename_state_dict_key(snake_case_ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_A : List[str] = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(snake_case_ )
m.model.load_state_dict(snake_case_,strict=snake_case_ )
m.half()
m.save_pretrained(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin")
parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.")
parser.add_argument(
"--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use"
)
_snake_case = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 343 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_snake_case = {
"configuration_owlvit": [
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"OwlViTConfig",
"OwlViTOnnxConfig",
"OwlViTTextConfig",
"OwlViTVisionConfig",
],
"processing_owlvit": ["OwlViTProcessor"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["OwlViTFeatureExtractor"]
_snake_case = ["OwlViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OwlViTModel",
"OwlViTPreTrainedModel",
"OwlViTTextModel",
"OwlViTVisionModel",
"OwlViTForObjectDetection",
]
if TYPE_CHECKING:
from .configuration_owlvit import (
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
OwlViTConfig,
OwlViTOnnxConfig,
OwlViTTextConfig,
OwlViTVisionConfig,
)
from .processing_owlvit import OwlViTProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_owlvit import OwlViTFeatureExtractor
from .image_processing_owlvit import OwlViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_owlvit import (
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
OwlViTForObjectDetection,
OwlViTModel,
OwlViTPreTrainedModel,
OwlViTTextModel,
OwlViTVisionModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 1 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : List[Any] = []
_A , _A : List[str] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
_A : Dict = result + left + right
return input_list
def lowerCAmelCase_ ( snake_case_ ):
if len(snake_case_ ) <= 1:
return input_list
_A : Tuple = list(snake_case_ )
# iteration for two-way merging
_A : int = 2
while p <= len(snake_case_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0,len(snake_case_ ),snake_case_ ):
_A : List[str] = i
_A : Tuple = i + p - 1
_A : Dict = (low + high + 1) // 2
_A : Tuple = merge(snake_case_,snake_case_,snake_case_,snake_case_ )
# final merge of last two parts
if p * 2 >= len(snake_case_ ):
_A : Any = i
_A : List[Any] = merge(snake_case_,0,snake_case_,len(snake_case_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_snake_case = input("Enter numbers separated by a comma:\n").strip()
if user_input == "":
_snake_case = []
else:
_snake_case = [int(item.strip()) for item in user_input.split(",")]
print(iter_merge_sort(unsorted))
| 343 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 1 |
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=False , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ) -> str:
_A : Any = parent
_A : int = batch_size
_A : int = seq_length
_A : Union[str, Any] = is_training
_A : Dict = use_input_mask
_A : Any = use_token_type_ids
_A : int = use_labels
_A : Union[str, Any] = vocab_size
_A : Any = hidden_size
_A : Optional[Any] = num_hidden_layers
_A : Tuple = num_attention_heads
_A : int = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : Dict = attention_probs_dropout_prob
_A : Dict = max_position_embeddings
_A : List[str] = type_vocab_size
_A : int = type_sequence_label_size
_A : str = initializer_range
_A : Union[str, Any] = num_labels
_A : Tuple = num_choices
_A : Dict = scope
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A : Tuple = None
if self.use_input_mask:
_A : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
_A : int = None
_A : str = None
_A : str = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
_A : Any = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self ) -> Union[str, Any]:
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Any = DistilBertModel(config=_a )
model.to(_a )
model.eval()
_A : str = model(_a , _a )
_A : Dict = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
_A : Dict = DistilBertForMaskedLM(config=_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> str:
_A : Dict = DistilBertForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(
_a , attention_mask=_a , start_positions=_a , end_positions=_a )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Any = self.num_labels
_A : int = DistilBertForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Tuple:
_A : List[str] = self.num_labels
_A : Optional[int] = DistilBertForTokenClassification(config=_a )
model.to(_a )
model.eval()
_A : Tuple = model(_a , attention_mask=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a ) -> Optional[int]:
_A : Dict = self.num_choices
_A : Union[str, Any] = DistilBertForMultipleChoice(config=_a )
model.to(_a )
model.eval()
_A : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_A : str = model(
_a , attention_mask=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self ) -> Optional[Any]:
_A : List[Any] = self.prepare_config_and_inputs()
((_A) , (_A) , (_A) , (_A) , (_A) , (_A)) : Dict = config_and_inputs
_A : List[str] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
_a = (
{
"feature-extraction": DistilBertModel,
"fill-mask": DistilBertForMaskedLM,
"question-answering": DistilBertForQuestionAnswering,
"text-classification": DistilBertForSequenceClassification,
"token-classification": DistilBertForTokenClassification,
"zero-shot": DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_a = True
_a = True
_a = True
_a = True
def a__ ( self ) -> List[Any]:
_A : List[Any] = DistilBertModelTester(self )
_A : List[str] = ConfigTester(self , config_class=_a , dim=37 )
def a__ ( self ) -> str:
self.config_tester.run_common_tests()
def a__ ( self ) -> Union[str, Any]:
_A : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*_a )
def a__ ( self ) -> str:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*_a )
def a__ ( self ) -> Optional[Any]:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*_a )
def a__ ( self ) -> List[Any]:
_A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*_a )
def a__ ( self ) -> Tuple:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*_a )
def a__ ( self ) -> List[Any]:
_A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*_a )
@slow
def a__ ( self ) -> str:
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Tuple = DistilBertModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@slow
@require_torch_gpu
def a__ ( self ) -> int:
_A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
_A : str = True
_A : Tuple = model_class(config=_a )
_A : Tuple = self._prepare_for_class(_a , _a )
_A : List[str] = torch.jit.trace(
_a , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_a , os.path.join(_a , """traced_model.pt""" ) )
_A : List[str] = torch.jit.load(os.path.join(_a , """traced_model.pt""" ) , map_location=_a )
loaded(inputs_dict["""input_ids"""].to(_a ) , inputs_dict["""attention_mask"""].to(_a ) )
@require_torch
class lowercase ( unittest.TestCase ):
@slow
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = DistilBertModel.from_pretrained("""distilbert-base-uncased""" )
_A : List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_A : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_A : Optional[int] = model(_a , attention_mask=_a )[0]
_A : Any = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , _a )
_A : Union[str, Any] = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _a , atol=1e-4 ) )
| 343 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 1 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
_snake_case = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowercase :
def __init__( self , _a , _a=16 , _a=13 , _a=7 , _a=14 , _a=10 , _a=19 , _a=5 , _a=4 , _a=True , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=[1, 2, 3, 4, 5] , _a=25 , _a=5 , ) -> List[str]:
_A : Any = d_model
_A : List[str] = parent
_A : Optional[Any] = batch_size
_A : Optional[Any] = prediction_length
_A : List[Any] = context_length
_A : Tuple = cardinality
_A : Union[str, Any] = num_time_features
_A : Union[str, Any] = lags_sequence
_A : List[str] = embedding_dimension
_A : List[str] = is_training
_A : Any = hidden_size
_A : int = num_hidden_layers
_A : Tuple = num_attention_heads
_A : Optional[int] = intermediate_size
_A : Any = hidden_act
_A : Union[str, Any] = hidden_dropout_prob
_A : List[str] = attention_probs_dropout_prob
_A : List[str] = context_length
_A : Optional[Any] = prediction_length + label_length
_A : Optional[Any] = label_length
_A : str = moving_average
_A : str = autocorrelation_factor
def a__ ( self ) -> Tuple:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def a__ ( self , _a ) -> str:
_A : int = config.context_length + max(config.lags_sequence )
_A : Dict = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_A : int = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_A : Any = floats_tensor([self.batch_size, _past_length] )
_A : Tuple = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_A : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] )
_A : Any = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def a__ ( self ) -> List[str]:
_A : Any = self.get_config()
_A : Any = self.prepare_autoformer_inputs_dict(_a )
return config, inputs_dict
def a__ ( self ) -> Tuple:
_A , _A : Any = self.prepare_config_and_inputs()
return config, inputs_dict
def a__ ( self , _a , _a ) -> Optional[int]:
_A : Union[str, Any] = AutoformerModel(config=_a ).to(_a ).eval()
_A : List[Any] = model(**_a )
_A : Any = outputs.encoder_last_hidden_state
_A : Union[str, Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_A : List[str] = model.get_encoder()
encoder.save_pretrained(_a )
_A : Union[str, Any] = AutoformerEncoder.from_pretrained(_a ).to(_a )
_A , _A , _A , _A , _A : str = model.create_network_inputs(**_a )
_A , _A : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_A : Optional[Any] = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_A : int = encoder(inputs_embeds=_a )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
_A : Union[str, Any] = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_A : Any = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_A : int = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_A : str = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_A : int = model.get_decoder()
decoder.save_pretrained(_a )
_A : str = AutoformerDecoder.from_pretrained(_a ).to(_a )
_A : List[Any] = decoder(
trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_a = (AutoformerForPrediction,) if is_torch_available() else ()
_a = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
_a = False
_a = False
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> int:
_A : Tuple = AutoformerModelTester(self )
_A : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a )
def a__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
def a__ ( self ) -> str:
_A , _A : str = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_A : Any = model_class(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_a )
_A , _A : Any = model_class.from_pretrained(_a , output_loading_info=_a )
self.assertEqual(info["""missing_keys"""] , [] )
def a__ ( self ) -> str:
_A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_a )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def a__ ( self ) -> str:
pass
def a__ ( self ) -> Optional[Any]:
_A : Tuple = inspect.signature(getattr(_a , """forward""" ) )
# The main input is the name of the argument after `self`
_A : int = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , _a )
def a__ ( self ) -> int:
_A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[int] = model_class(_a )
_A : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[str] = [*signature.parameters.keys()]
_A : str = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(_a )] , _a )
def a__ ( self ) -> List[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Tuple = True
_A : Optional[Any] = getattr(self.model_tester , """seq_length""" , _a )
_A : Optional[Any] = getattr(self.model_tester , """decoder_seq_length""" , _a )
_A : Union[str, Any] = getattr(self.model_tester , """encoder_seq_length""" , _a )
_A : List[Any] = getattr(self.model_tester , """d_model""" , _a )
_A : Any = getattr(self.model_tester , """num_attention_heads""" , _a )
_A : List[str] = d_model // num_attention_heads
for model_class in self.all_model_classes:
_A : Optional[Any] = True
_A : Dict = False
_A : List[Any] = True
_A : int = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Optional[Any] = model(**self._prepare_for_class(_a , _a ) )
_A : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_A : Any = True
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : List[Any] = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[int] = outputs.encoder_attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_A : Optional[int] = len(_a )
_A : Union[str, Any] = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(_a , _a )
# decoder attentions
_A : Tuple = outputs.decoder_attentions
self.assertIsInstance(_a , (list, tuple) )
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_A : str = outputs.cross_attentions
self.assertIsInstance(_a , (list, tuple) )
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_A : Optional[Any] = True
_A : Dict = True
_A : List[Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Tuple = model(**self._prepare_for_class(_a , _a ) )
self.assertEqual(out_len + 2 , len(_a ) )
_A : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def a__ ( self ) -> List[Any]:
super().test_retain_grad_hidden_states_attentions()
def lowerCAmelCase_ ( snake_case_="train-batch.pt" ):
_A : Union[str, Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""",filename=snake_case_,repo_type="""dataset""" )
_A : Optional[int] = torch.load(snake_case_,map_location=snake_case_ )
return batch
@require_torch
@slow
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Dict:
_A : str = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : Any = prepare_batch()
with torch.no_grad():
_A : str = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_A : Union[str, Any] = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , _a )
_A : str = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=_a )
self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) )
def a__ ( self ) -> Any:
_A : Optional[int] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : int = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A : List[Any] = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_A : Dict = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , _a )
_A : Dict = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=_a )
self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) )
def a__ ( self ) -> List[str]:
_A : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : Any = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A : Optional[Any] = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_A : Union[str, Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , _a )
_A : str = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=_a )
_A : Optional[Any] = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
_snake_case = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
_snake_case = {"facebook/blenderbot_small-90M": 512}
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = set()
_A : List[str] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : List[str] = char
_A : str = set(snake_case_ )
return pairs
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "attention_mask"]
def __init__( self , _a , _a , _a="__start__" , _a="__end__" , _a="__unk__" , _a="__null__" , **_a , ) -> List[str]:
super().__init__(unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , **_a )
with open(_a , encoding="""utf-8""" ) as vocab_handle:
_A : List[str] = json.load(_a )
_A : Tuple = {v: k for k, v in self.encoder.items()}
with open(_a , encoding="""utf-8""" ) as merges_handle:
_A : List[str] = merges_handle.read().split("""\n""" )[1:-1]
_A : Tuple = [tuple(merge.split() ) for merge in merges]
_A : Any = dict(zip(_a , range(len(_a ) ) ) )
_A : str = {}
@property
def a__ ( self ) -> int:
return len(self.encoder )
def a__ ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self , _a ) -> str:
if token in self.cache:
return self.cache[token]
_A : Any = re.sub("""([.,!?()])""" , R""" \1""" , _a )
_A : Optional[int] = re.sub("""(')""" , R""" \1 """ , _a )
_A : Tuple = re.sub(R"""\s{2,}""" , """ """ , _a )
if "\n" in token:
_A : Union[str, Any] = token.replace("""\n""" , """ __newln__""" )
_A : int = token.split(""" """ )
_A : Any = []
for token in tokens:
if not len(_a ):
continue
_A : Optional[int] = token.lower()
_A : Any = tuple(_a )
_A : str = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
_A : Optional[int] = get_pairs(_a )
if not pairs:
words.append(_a )
continue
while True:
_A : List[str] = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_A , _A : Dict = bigram
_A : Dict = []
_A : List[Any] = 0
while i < len(_a ):
try:
_A : Optional[Any] = word.index(_a , _a )
new_word.extend(word[i:j] )
_A : int = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A : int = tuple(_a )
_A : Dict = new_word
if len(_a ) == 1:
break
else:
_A : str = get_pairs(_a )
_A : Dict = """@@ """.join(_a )
_A : List[Any] = word[:-4]
_A : Optional[Any] = word
words.append(_a )
return " ".join(_a )
def a__ ( self , _a ) -> List[str]:
_A : Any = []
_A : List[str] = re.findall(R"""\S+\n?""" , _a )
for token in words:
split_tokens.extend(list(self.bpe(_a ).split(""" """ ) ) )
return split_tokens
def a__ ( self , _a ) -> int:
_A : int = token.lower()
return self.encoder.get(_a , self.encoder.get(self.unk_token ) )
def a__ ( self , _a ) -> str:
return self.decoder.get(_a , self.unk_token )
def a__ ( self , _a ) -> str:
_A : List[str] = """ """.join(_a ).replace("""@@ """ , """""" ).strip()
return out_string
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Tuple = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(_a , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_a , ensure_ascii=_a ) + """\n""" )
_A : List[Any] = 0
with open(_a , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _a : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
""" Please check that the tokenizer is not corrupted!""" )
_A : Optional[Any] = token_index
writer.write(""" """.join(_a ) + """\n""" )
index += 1
return vocab_file, merge_file
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
_snake_case = logging.get_logger(__name__)
class lowercase :
def __init__( self , _a , _a ) -> Dict:
_A : List[str] = question_encoder
_A : int = generator
_A : str = self.question_encoder
def a__ ( self , _a ) -> Tuple:
if os.path.isfile(_a ):
raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(_a , exist_ok=_a )
_A : Optional[int] = os.path.join(_a , """question_encoder_tokenizer""" )
_A : int = os.path.join(_a , """generator_tokenizer""" )
self.question_encoder.save_pretrained(_a )
self.generator.save_pretrained(_a )
@classmethod
def a__ ( cls , _a , **_a ) -> List[Any]:
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
_A : Optional[int] = kwargs.pop("""config""" , _a )
if config is None:
_A : str = RagConfig.from_pretrained(_a )
_A : Tuple = AutoTokenizer.from_pretrained(
_a , config=config.question_encoder , subfolder="""question_encoder_tokenizer""" )
_A : Dict = AutoTokenizer.from_pretrained(
_a , config=config.generator , subfolder="""generator_tokenizer""" )
return cls(question_encoder=_a , generator=_a )
def __call__( self , *_a , **_a ) -> int:
return self.current_tokenizer(*_a , **_a )
def a__ ( self , *_a , **_a ) -> Union[str, Any]:
return self.generator.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> Dict:
return self.generator.decode(*_a , **_a )
def a__ ( self ) -> str:
_A : Union[str, Any] = self.question_encoder
def a__ ( self ) -> Optional[int]:
_A : Any = self.generator
def a__ ( self , _a , _a = None , _a = None , _a = None , _a = "longest" , _a = None , _a = True , **_a , ) -> BatchEncoding:
warnings.warn(
"""`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the """
"""regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` """
"""context manager to prepare your targets. See the documentation of your specific tokenizer for more """
"""details""" , _a , )
if max_length is None:
_A : Optional[int] = self.current_tokenizer.model_max_length
_A : List[str] = self(
_a , add_special_tokens=_a , return_tensors=_a , max_length=_a , padding=_a , truncation=_a , **_a , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
_A : int = self.current_tokenizer.model_max_length
_A : str = self(
text_target=_a , add_special_tokens=_a , return_tensors=_a , padding=_a , max_length=_a , truncation=_a , **_a , )
_A : str = labels["""input_ids"""]
return model_inputs
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
from collections.abc import Callable
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : float = a
_A : float = b
if function(snake_case_ ) == 0: # one of the a or b is a root for the function
return a
elif function(snake_case_ ) == 0:
return b
elif (
function(snake_case_ ) * function(snake_case_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
_A : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(snake_case_ ) == 0:
return mid
elif function(snake_case_ ) * function(snake_case_ ) < 0:
_A : List[str] = mid
else:
_A : str = mid
_A : Dict = start + (end - start) / 2.0
return mid
def lowerCAmelCase_ ( snake_case_ ):
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
_snake_case = {
"vocab_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
},
"merges_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
},
}
_snake_case = {
"vinai/phobert-base": 256,
"vinai/phobert-large": 256,
}
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[Any] = set()
_A : str = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_A : List[Any] = char
_A : Dict = set(snake_case_ )
return pairs
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="</s>" , _a="<s>" , _a="<unk>" , _a="<pad>" , _a="<mask>" , **_a , ) -> Optional[int]:
super().__init__(
bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , **_a , )
_A : Union[str, Any] = vocab_file
_A : List[Any] = merges_file
_A : Union[str, Any] = {}
_A : int = 0
_A : int = 1
_A : str = 2
_A : Optional[Any] = 3
self.add_from_file(_a )
_A : Optional[int] = {v: k for k, v in self.encoder.items()}
with open(_a , encoding="""utf-8""" ) as merges_handle:
_A : Any = merges_handle.read().split("""\n""" )[:-1]
_A : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges]
_A : int = dict(zip(_a , range(len(_a ) ) ) )
_A : Dict = {}
def a__ ( self , _a , _a = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_A : List[Any] = [self.cls_token_id]
_A : Tuple = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a__ ( self , _a , _a = None , _a = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is None:
return [1] + ([0] * len(_a )) + [1]
return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1]
def a__ ( self , _a , _a = None ) -> List[int]:
_A : int = [self.sep_token_id]
_A : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def a__ ( self ) -> Optional[Any]:
return len(self.encoder )
def a__ ( self ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self , _a ) -> List[Any]:
if token in self.cache:
return self.cache[token]
_A : str = tuple(_a )
_A : Dict = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] )
_A : Tuple = get_pairs(_a )
if not pairs:
return token
while True:
_A : List[str] = min(_a , key=lambda _a : self.bpe_ranks.get(_a , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
_A , _A : List[str] = bigram
_A : Optional[Any] = []
_A : List[str] = 0
while i < len(_a ):
try:
_A : Optional[int] = word.index(_a , _a )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_A : Optional[int] = j
if word[i] == first and i < len(_a ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_A : Optional[int] = tuple(_a )
_A : Dict = new_word
if len(_a ) == 1:
break
else:
_A : List[str] = get_pairs(_a )
_A : List[Any] = """@@ """.join(_a )
_A : List[str] = word[:-4]
_A : List[str] = word
return word
def a__ ( self , _a ) -> Any:
_A : List[Any] = []
_A : List[Any] = re.findall(R"""\S+\n?""" , _a )
for token in words:
split_tokens.extend(list(self.bpe(_a ).split(""" """ ) ) )
return split_tokens
def a__ ( self , _a ) -> Optional[Any]:
return self.encoder.get(_a , self.encoder.get(self.unk_token ) )
def a__ ( self , _a ) -> Optional[Any]:
return self.decoder.get(_a , self.unk_token )
def a__ ( self , _a ) -> List[Any]:
_A : Optional[int] = """ """.join(_a ).replace("""@@ """ , """""" ).strip()
return out_string
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_A : List[Any] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ):
copyfile(self.vocab_file , _a )
if os.path.abspath(self.merges_file ) != os.path.abspath(_a ):
copyfile(self.merges_file , _a )
return out_vocab_file, out_merge_file
def a__ ( self , _a ) -> Optional[Any]:
if isinstance(_a , _a ):
try:
with open(_a , """r""" , encoding="""utf-8""" ) as fd:
self.add_from_file(_a )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(F'''Incorrect encoding detected in {f}, please rebuild the dataset''' )
return
_A : int = f.readlines()
for lineTmp in lines:
_A : Union[str, Any] = lineTmp.strip()
_A : str = line.rfind(""" """ )
if idx == -1:
raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" )
_A : List[str] = line[:idx]
_A : Union[str, Any] = len(self.encoder )
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
_A : int = """hf-internal-testing/tiny-random-t5"""
_A : Tuple = AutoTokenizer.from_pretrained(_a )
_A : List[str] = AutoModelForSeqaSeqLM.from_pretrained(_a )
_A : List[Any] = tokenizer("""This is me""" , return_tensors="""pt""" )
_A : Optional[int] = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
_A : Optional[Any] = model.generate(**_a )
_A : Any = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_a )
_A : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(_a )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
_A : Dict = model_reloaded.generate(**_a )
self.assertTrue(torch.allclose(_a , _a ) )
def a__ ( self ) -> Dict:
_A : Union[str, Any] = """hf-internal-testing/tiny-random-t5"""
_A : str = AutoModelForSeqaSeqLM.from_pretrained(_a )
_A : str = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_a ):
model.save_pretrained(_a )
_A : Tuple = model.reverse_bettertransformer()
model.save_pretrained(_a )
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = PhobertTokenizer
_a = False
def a__ ( self ) -> str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A : Optional[Any] = ["""T@@""", """i""", """I""", """R@@""", """r""", """e@@"""]
_A : Optional[int] = dict(zip(_a , range(len(_a ) ) ) )
_A : str = ["""#version: 0.2""", """l à</w>"""]
_A : Optional[int] = {"""unk_token""": """<unk>"""}
_A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
for token in vocab_tokens:
fp.write(F'''{token} {vocab_tokens[token]}\n''' )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_a ) )
def a__ ( self , **_a ) -> str:
kwargs.update(self.special_tokens_map )
return PhobertTokenizer.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , _a ) -> Optional[Any]:
_A : Optional[Any] = """Tôi là VinAI Research"""
_A : Union[str, Any] = """T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"""
return input_text, output_text
def a__ ( self ) -> Optional[int]:
_A : Any = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_A : Union[str, Any] = """Tôi là VinAI Research"""
_A : Any = """T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h""".split()
_A : Union[str, Any] = tokenizer.tokenize(_a )
print(_a )
self.assertListEqual(_a , _a )
_A : List[Any] = tokens + [tokenizer.unk_token]
_A : Union[str, Any] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.31.0")
_snake_case = logging.getLogger(__name__)
@dataclass
class lowercase :
_a = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
_a = field(
default=UpperCamelCase__,metadata={"help": "Pretrained config name or path if not the same as model_name"} )
_a = field(
default=UpperCamelCase__,metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
_a = field(
default=UpperCamelCase__,metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},)
_a = field(
default=UpperCamelCase__,metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},)
_a = field(
default="main",metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},)
@dataclass
class lowercase :
_a = field(default=UpperCamelCase__,metadata={"help": "The input training data file (a text file)."} )
_a = field(
default=UpperCamelCase__,metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},)
_a = field(
default=UpperCamelCase__,metadata={"help": "Overwrite the cached training and evaluation sets"} )
_a = field(
default=UpperCamelCase__,metadata={"help": "The number of processes to use for the preprocessing."},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"The maximum total input sequence length after tokenization. If passed, sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"Whether to pad all samples to the maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},)
_a = field(
default=UpperCamelCase__,metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},)
def a__ ( self ) -> Dict:
if self.train_file is not None:
_A : List[str] = self.train_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
_A : List[str] = self.validation_file.split(""".""" )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class lowercase :
_a = 42
_a = True
_a = None
_a = None
def __call__( self , _a ) -> Optional[Any]:
_A : Tuple = """label""" if """label""" in features[0].keys() else """labels"""
_A : Any = [feature.pop(_a ) for feature in features]
_A : List[str] = len(_a )
_A : Optional[int] = len(features[0]["""input_ids"""] )
_A : Tuple = [
[{k: v[i] for k, v in feature.items()} for i in range(_a )] for feature in features
]
_A : str = list(chain(*_a ) )
_A : Optional[Any] = self.tokenizer.pad(
_a , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
# Un-flatten
_A : str = {k: v.view(_a , _a , -1 ) for k, v in batch.items()}
# Add back labels
_A : Union[str, Any] = torch.tensor(_a , dtype=torch.intaa )
return batch
def lowerCAmelCase_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_A : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A : Tuple = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_swag""",snake_case_,snake_case_ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",datefmt="""%m/%d/%Y %H:%M:%S""",handlers=[logging.StreamHandler(sys.stdout )],)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A : Tuple = training_args.get_process_log_level()
logger.setLevel(snake_case_ )
datasets.utils.logging.set_verbosity(snake_case_ )
transformers.utils.logging.set_verbosity(snake_case_ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A : List[str] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A : Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
_A : Tuple = {}
if data_args.train_file is not None:
_A : Optional[int] = data_args.train_file
if data_args.validation_file is not None:
_A : Any = data_args.validation_file
_A : Dict = data_args.train_file.split(""".""" )[-1]
_A : Tuple = load_dataset(
snake_case_,data_files=snake_case_,cache_dir=model_args.cache_dir,use_auth_token=True if model_args.use_auth_token else None,)
else:
# Downloading and loading the swag dataset from the hub.
_A : Optional[Any] = load_dataset(
"""swag""","""regular""",cache_dir=model_args.cache_dir,use_auth_token=True if model_args.use_auth_token else None,)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,)
_A : str = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,use_fast=model_args.use_fast_tokenizer,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,)
_A : List[str] = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path,from_tf=bool(""".ckpt""" in model_args.model_name_or_path ),config=snake_case_,cache_dir=model_args.cache_dir,revision=model_args.model_revision,use_auth_token=True if model_args.use_auth_token else None,)
# When using your own dataset or a different dataset from swag, you will probably need to change this.
_A : Dict = [f'''ending{i}''' for i in range(4 )]
_A : Tuple = """sent1"""
_A : Union[str, Any] = """sent2"""
if data_args.max_seq_length is None:
_A : Optional[Any] = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
"""The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"""
""" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"""
""" override this default with `--block_size xxx`.""" )
_A : Tuple = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'''
f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' )
_A : List[Any] = min(data_args.max_seq_length,tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(snake_case_ ):
_A : Optional[int] = [[context] * 4 for context in examples[context_name]]
_A : Optional[Any] = examples[question_header_name]
_A : Union[str, Any] = [
[f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(snake_case_ )
]
# Flatten out
_A : Union[str, Any] = list(chain(*snake_case_ ) )
_A : Optional[Any] = list(chain(*snake_case_ ) )
# Tokenize
_A : Union[str, Any] = tokenizer(
snake_case_,snake_case_,truncation=snake_case_,max_length=snake_case_,padding="""max_length""" if data_args.pad_to_max_length else False,)
# Un-flatten
return {k: [v[i : i + 4] for i in range(0,len(snake_case_ ),4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
_A : List[Any] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
_A : Tuple = min(len(snake_case_ ),data_args.max_train_samples )
_A : Any = train_dataset.select(range(snake_case_ ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
_A : Optional[Any] = train_dataset.map(
snake_case_,batched=snake_case_,num_proc=data_args.preprocessing_num_workers,load_from_cache_file=not data_args.overwrite_cache,)
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
_A : List[str] = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
_A : int = min(len(snake_case_ ),data_args.max_eval_samples )
_A : List[str] = eval_dataset.select(range(snake_case_ ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
_A : Optional[int] = eval_dataset.map(
snake_case_,batched=snake_case_,num_proc=data_args.preprocessing_num_workers,load_from_cache_file=not data_args.overwrite_cache,)
# Data collator
_A : int = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=snake_case_,pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(snake_case_ ):
_A , _A : Dict = eval_predictions
_A : str = np.argmax(snake_case_,axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
_A : List[str] = Trainer(
model=snake_case_,args=snake_case_,train_dataset=train_dataset if training_args.do_train else None,eval_dataset=eval_dataset if training_args.do_eval else None,tokenizer=snake_case_,data_collator=snake_case_,compute_metrics=snake_case_,)
# Training
if training_args.do_train:
_A : Tuple = None
if training_args.resume_from_checkpoint is not None:
_A : int = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A : Dict = last_checkpoint
_A : Optional[Any] = trainer.train(resume_from_checkpoint=snake_case_ )
trainer.save_model() # Saves the tokenizer too for easy upload
_A : Optional[int] = train_result.metrics
_A : Dict = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case_ )
)
_A : Tuple = min(snake_case_,len(snake_case_ ) )
trainer.log_metrics("""train""",snake_case_ )
trainer.save_metrics("""train""",snake_case_ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_A : Any = trainer.evaluate()
_A : List[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case_ )
_A : Dict = min(snake_case_,len(snake_case_ ) )
trainer.log_metrics("""eval""",snake_case_ )
trainer.save_metrics("""eval""",snake_case_ )
_A : Union[str, Any] = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """multiple-choice""",
"""dataset_tags""": """swag""",
"""dataset_args""": """regular""",
"""dataset""": """SWAG""",
"""language""": """en""",
}
if training_args.push_to_hub:
trainer.push_to_hub(**snake_case_ )
else:
trainer.create_model_card(**snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class lowercase :
def __init__( self , _a , _a=2 , _a=3 , _a=4 , _a=2 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=36 , _a=3 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=6 , _a=6 , _a=3 , _a=4 , _a=None , _a=1000 , ) -> List[str]:
_A : Optional[Any] = parent
_A : List[Any] = batch_size
_A : Optional[int] = num_channels
_A : int = image_size
_A : str = patch_size
_A : Tuple = text_seq_length
_A : List[Any] = is_training
_A : Any = use_input_mask
_A : List[Any] = use_token_type_ids
_A : List[str] = use_labels
_A : Optional[Any] = vocab_size
_A : str = hidden_size
_A : Union[str, Any] = num_hidden_layers
_A : Union[str, Any] = num_attention_heads
_A : Tuple = intermediate_size
_A : Optional[int] = hidden_act
_A : List[str] = hidden_dropout_prob
_A : Dict = attention_probs_dropout_prob
_A : Optional[int] = max_position_embeddings
_A : Optional[int] = type_vocab_size
_A : Optional[int] = type_sequence_label_size
_A : Optional[Any] = initializer_range
_A : Optional[int] = coordinate_size
_A : Optional[int] = shape_size
_A : Optional[Any] = num_labels
_A : List[Any] = num_choices
_A : Union[str, Any] = scope
_A : Dict = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_A : List[Any] = text_seq_length
_A : List[Any] = (image_size // patch_size) ** 2 + 1
_A : List[str] = self.text_seq_length + self.image_seq_length
def a__ ( self ) -> Tuple:
_A : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_A : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_A : int = bbox[i, j, 3]
_A : Tuple = bbox[i, j, 1]
_A : Any = t
if bbox[i, j, 2] < bbox[i, j, 0]:
_A : List[str] = bbox[i, j, 2]
_A : Tuple = bbox[i, j, 0]
_A : Dict = t
_A : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : Optional[Any] = None
if self.use_input_mask:
_A : Dict = random_attention_mask([self.batch_size, self.text_seq_length] )
_A : str = None
if self.use_token_type_ids:
_A : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_A : List[Any] = None
_A : Any = None
if self.use_labels:
_A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_A : List[Any] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ) -> Dict:
_A : Dict = LayoutLMvaModel(config=_a )
model.to(_a )
model.eval()
# text + image
_A : List[Any] = model(_a , pixel_values=_a )
_A : int = model(
_a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a )
_A : Optional[Any] = model(_a , bbox=_a , pixel_values=_a , token_type_ids=_a )
_A : List[Any] = model(_a , bbox=_a , pixel_values=_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_A : int = model(_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_A : int = model(pixel_values=_a )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Optional[int] = self.num_labels
_A : Union[str, Any] = LayoutLMvaForSequenceClassification(_a )
model.to(_a )
model.eval()
_A : List[str] = model(
_a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ) -> Optional[int]:
_A : int = self.num_labels
_A : str = LayoutLMvaForTokenClassification(config=_a )
model.to(_a )
model.eval()
_A : str = model(
_a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , labels=_a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def a__ ( self , _a , _a , _a , _a , _a , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = LayoutLMvaForQuestionAnswering(config=_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = model(
_a , bbox=_a , pixel_values=_a , attention_mask=_a , token_type_ids=_a , start_positions=_a , end_positions=_a , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self ) -> Optional[int]:
_A : List[str] = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) : Tuple = config_and_inputs
_A : List[str] = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""pixel_values""": pixel_values,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = False
_a = False
_a = False
_a = (
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
_a = (
{"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel}
if is_torch_available()
else {}
)
def a__ ( self , _a , _a , _a , _a , _a ) -> Dict:
# `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual
# embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has
# the sequence dimension of the text embedding only.
# (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`)
return True
def a__ ( self ) -> int:
_A : Any = LayoutLMvaModelTester(self )
_A : Dict = ConfigTester(self , config_class=_a , hidden_size=37 )
def a__ ( self , _a , _a , _a=False ) -> Optional[Any]:
_A : Dict = copy.deepcopy(_a )
if model_class in get_values(_a ):
_A : str = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(_a , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(_a ):
_A : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_a )
elif model_class in get_values(_a ):
_A : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_a )
_A : str = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_a )
elif model_class in [
*get_values(_a ),
]:
_A : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_a )
elif model_class in [
*get_values(_a ),
]:
_A : List[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_a , )
return inputs_dict
def a__ ( self ) -> Tuple:
self.config_tester.run_common_tests()
def a__ ( self ) -> List[str]:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Union[str, Any]:
_A : List[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_A : Union[str, Any] = type
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> int:
_A : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_a )
def a__ ( self ) -> str:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_a )
def a__ ( self ) -> Dict:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_a )
@slow
def a__ ( self ) -> Union[str, Any]:
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : List[Any] = LayoutLMvaModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> Tuple:
return LayoutLMvaImageProcessor(apply_ocr=_a ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
_A : str = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(_a )
_A : int = self.default_image_processor
_A : Optional[int] = prepare_img()
_A : int = image_processor(images=_a , return_tensors="""pt""" ).pixel_values.to(_a )
_A : Dict = torch.tensor([[1, 2]] )
_A : Any = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
_A : Optional[Any] = model(
input_ids=input_ids.to(_a ) , bbox=bbox.to(_a ) , pixel_values=pixel_values.to(_a ) , )
# verify the logits
_A : Dict = torch.Size((1, 199, 768) )
self.assertEqual(outputs.last_hidden_state.shape , _a )
_A : Dict = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_a )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _a , atol=1e-4 ) )
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "bit"
_a = ["preactivation", "bottleneck"]
_a = ["SAME", "VALID"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="preactivation" , _a="relu" , _a=None , _a=32 , _a=0.0 , _a=False , _a=32 , _a=1 , _a=None , _a=None , **_a , ) -> Optional[Any]:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
_A : List[str] = global_padding.upper()
else:
raise ValueError(F'''Padding strategy {global_padding} not supported''' )
_A : Optional[int] = num_channels
_A : List[Any] = embedding_size
_A : List[Any] = hidden_sizes
_A : Any = depths
_A : Any = layer_type
_A : List[Any] = hidden_act
_A : int = global_padding
_A : List[str] = num_groups
_A : Any = drop_path_rate
_A : List[Any] = embedding_dynamic_padding
_A : Union[str, Any] = output_stride
_A : List[str] = width_factor
_A : Any = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : int = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
| 343 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase ( UpperCamelCase__ ):
_a = "char"
_a = "bpe"
_a = "wp"
_snake_case = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "char_tokenizer"]
_a = "ViTImageProcessor"
_a = "MgpstrTokenizer"
def __init__( self , _a=None , _a=None , **_a ) -> Dict:
_A : List[str] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , _a , )
_A : List[str] = kwargs.pop("""feature_extractor""" )
_A : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
_A : List[Any] = tokenizer
_A : Union[str, Any] = AutoTokenizer.from_pretrained("""gpt2""" )
_A : str = AutoTokenizer.from_pretrained("""bert-base-uncased""" )
super().__init__(_a , _a )
def __call__( self , _a=None , _a=None , _a=None , **_a ) -> List[Any]:
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_A : Optional[Any] = self.image_processor(_a , return_tensors=_a , **_a )
if text is not None:
_A : Union[str, Any] = self.char_tokenizer(_a , return_tensors=_a , **_a )
if text is None:
return inputs
elif images is None:
return encodings
else:
_A : Dict = encodings["""input_ids"""]
return inputs
def a__ ( self , _a ) -> Dict:
_A , _A , _A : List[str] = sequences
_A : Union[str, Any] = char_preds.size(0 )
_A , _A : Optional[int] = self._decode_helper(_a , """char""" )
_A , _A : Any = self._decode_helper(_a , """bpe""" )
_A , _A : Optional[int] = self._decode_helper(_a , """wp""" )
_A : str = []
_A : Dict = []
for i in range(_a ):
_A : List[Any] = [char_scores[i], bpe_scores[i], wp_scores[i]]
_A : Any = [char_strs[i], bpe_strs[i], wp_strs[i]]
_A : str = scores.index(max(_a ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
_A : int = {}
_A : str = final_strs
_A : Union[str, Any] = final_scores
_A : Dict = char_strs
_A : List[Any] = bpe_strs
_A : Tuple = wp_strs
return out
def a__ ( self , _a , _a ) -> Union[str, Any]:
if format == DecodeType.CHARACTER:
_A : str = self.char_decode
_A : List[str] = 1
_A : Dict = """[s]"""
elif format == DecodeType.BPE:
_A : Any = self.bpe_decode
_A : Union[str, Any] = 2
_A : Optional[int] = """#"""
elif format == DecodeType.WORDPIECE:
_A : Any = self.wp_decode
_A : Dict = 102
_A : Optional[Any] = """[SEP]"""
else:
raise ValueError(F'''Format {format} is not supported.''' )
_A , _A : List[Any] = [], []
_A : List[str] = pred_logits.size(0 )
_A : List[Any] = pred_logits.size(1 )
_A , _A : str = pred_logits.topk(1 , dim=-1 , largest=_a , sorted=_a )
_A : Optional[Any] = preds_index.view(-1 , _a )[:, 1:]
_A : Any = decoder(_a )
_A , _A : Optional[Any] = torch.nn.functional.softmax(_a , dim=2 ).max(dim=2 )
_A : List[str] = preds_max_prob[:, 1:]
for index in range(_a ):
_A : List[Any] = preds_str[index].find(_a )
_A : Any = preds_str[index][:pred_eos]
_A : Dict = preds_index[index].cpu().tolist()
_A : Optional[int] = pred_index.index(_a ) if eos_token in pred_index else -1
_A : str = preds_max_prob[index][: pred_eos_index + 1]
_A : Tuple = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(_a )
conf_scores.append(_a )
return dec_strs, conf_scores
def a__ ( self , _a ) -> List[Any]:
_A : Optional[int] = [seq.replace(""" """ , """""" ) for seq in self.char_tokenizer.batch_decode(_a )]
return decode_strs
def a__ ( self , _a ) -> List[Any]:
return self.bpe_tokenizer.batch_decode(_a )
def a__ ( self , _a ) -> Dict:
_A : int = [seq.replace(""" """ , """""" ) for seq in self.wp_tokenizer.batch_decode(_a )]
return decode_strs
| 343 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 1 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 1 |
from jiwer import compute_measures
import datasets
_snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"
_snake_case = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"
_snake_case = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION,_KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
def a__ ( self ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
] , )
def a__ ( self , _a=None , _a=None , _a=False ) -> Tuple:
if concatenate_texts:
return compute_measures(_a , _a )["wer"]
else:
_A : Tuple = 0
_A : int = 0
for prediction, reference in zip(_a , _a ):
_A : List[str] = compute_measures(_a , _a )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 343 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
if not isinstance(snake_case_,snake_case_ ):
_A : Any = f'''Input value of [number={number}] must be an integer'''
raise TypeError(snake_case_ )
if number < 0:
return False
_A : List[str] = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 1 |
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class lowercase ( datasets.BuilderConfig ):
_a = None
class lowercase ( datasets.ArrowBasedBuilder ):
_a = PandasConfig
def a__ ( self ) -> Optional[Any]:
return datasets.DatasetInfo(features=self.config.features )
def a__ ( self , _a ) -> Dict:
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_A : List[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_a , (str, list, tuple) ):
_A : Optional[Any] = data_files
if isinstance(_a , _a ):
_A : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_A : Tuple = [dl_manager.iter_files(_a ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )]
_A : List[Any] = []
for split_name, files in data_files.items():
if isinstance(_a , _a ):
_A : Any = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_A : Any = [dl_manager.iter_files(_a ) for file in files]
splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={"""files""": files} ) )
return splits
def a__ ( self , _a ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_A : Dict = table_cast(_a , self.config.features.arrow_schema )
return pa_table
def a__ ( self , _a ) -> List[str]:
for i, file in enumerate(itertools.chain.from_iterable(_a ) ):
with open(_a , """rb""" ) as f:
_A : int = pa.Table.from_pandas(pd.read_pickle(_a ) )
yield i, self._cast_table(_a )
| 343 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 1 |
import re
import time
from typing import Optional
import IPython.display as disp
from ..trainer_callback import TrainerCallback
from ..trainer_utils import IntervalStrategy, has_length
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = int(snake_case_ )
_A , _A , _A : Union[str, Any] = t // 3600, (t // 60) % 60, t % 60
return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}'''
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=300 ):
# docstyle-ignore
return f'''
<div>
{prefix}
<progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>
{label}
</div>
'''
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = """<table border=\"1\" class=\"dataframe\">\n"""
html_code += """ <thead>\n <tr style="text-align: left;">\n"""
for i in items[0]:
html_code += f''' <th>{i}</th>\n'''
html_code += " </tr>\n </thead>\n <tbody>\n"
for line in items[1:]:
html_code += " <tr>\n"
for elt in line:
_A : Optional[int] = f'''{elt:.6f}''' if isinstance(snake_case_,snake_case_ ) else str(snake_case_ )
html_code += f''' <td>{elt}</td>\n'''
html_code += " </tr>\n"
html_code += " </tbody>\n</table><p>"
return html_code
class lowercase :
_a = 5
_a = 0.2
def __init__( self , _a , _a = None , _a = True , _a = None , _a = 300 , ) -> List[str]:
_A : str = total
_A : Optional[int] = """""" if prefix is None else prefix
_A : Tuple = leave
_A : List[str] = parent
_A : Optional[Any] = width
_A : Union[str, Any] = None
_A : List[str] = None
_A : List[Any] = None
def a__ ( self , _a , _a = False , _a = None ) -> Optional[Any]:
_A : Dict = value
if comment is not None:
_A : int = comment
if self.last_value is None:
_A : Tuple = time.time()
_A : str = value
_A : Union[str, Any] = None
_A : Optional[Any] = self.warmup
_A : List[Any] = 1
self.update_bar(_a )
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ):
if self.first_calls > 0:
self.first_calls -= 1
_A : Dict = time.time()
_A : Any = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
_A : str = self.elapsed_time / (value - self.start_value)
else:
_A : Dict = None
if value >= self.total:
_A : int = self.total
_A : Union[str, Any] = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
_A : List[str] = self.average_time_per_item * (self.total - value)
self.update_bar(_a )
_A : Union[str, Any] = value
_A : Union[str, Any] = current_time
if self.average_time_per_item is None:
_A : str = 1
else:
_A : Any = max(int(self.update_every / self.average_time_per_item ) , 1 )
def a__ ( self , _a , _a=None ) -> Optional[Any]:
_A : List[Any] = """ """ * (len(str(self.total ) ) - len(str(_a ) )) + str(_a )
if self.elapsed_time is None:
_A : str = F'''[{spaced_value}/{self.total} : < :'''
elif self.predicted_remaining is None:
_A : str = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}'''
else:
_A : Optional[Any] = (
F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <'''
F''' {format_time(self.predicted_remaining )}'''
)
self.label += F''', {1/self.average_time_per_item:.2f} it/s'''
self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]'''
self.display()
def a__ ( self ) -> List[str]:
_A : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
_A : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=_a )
else:
self.output.update(disp.HTML(self.html_code ) )
def a__ ( self ) -> List[str]:
if self.parent is None and self.output is not None:
self.output.update(disp.HTML("""""" ) )
class lowercase ( UpperCamelCase__ ):
def __init__( self , _a , _a=None ) -> Tuple:
super().__init__(_a )
_A : Any = None if column_names is None else [column_names]
_A : str = None
def a__ ( self ) -> int:
_A : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width )
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table )
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
_A : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=_a )
else:
self.output.update(disp.HTML(self.html_code ) )
def a__ ( self , _a ) -> List[Any]:
if self.inner_table is None:
_A : List[str] = [list(values.keys() ), list(values.values() )]
else:
_A : Union[str, Any] = self.inner_table[0]
if len(self.inner_table ) == 1:
# We give a chance to update the column names at the first iteration
for key in values.keys():
if key not in columns:
columns.append(_a )
_A : Dict = columns
self.inner_table.append([values[c] for c in columns] )
def a__ ( self , _a , _a=None , _a=300 ) -> Union[str, Any]:
_A : List[str] = NotebookProgressBar(_a , prefix=_a , parent=self , width=_a )
return self.child_bar
def a__ ( self ) -> Dict:
_A : List[Any] = None
self.display()
class lowercase ( UpperCamelCase__ ):
def __init__( self ) -> List[Any]:
_A : int = None
_A : Dict = None
_A : List[Any] = False
def a__ ( self , _a , _a , _a , **_a ) -> Optional[Any]:
_A : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step"""
_A : Any = 0
_A : Optional[int] = 0
_A : int = [self.first_column] + ["""Training Loss"""]
if args.evaluation_strategy != IntervalStrategy.NO:
column_names.append("""Validation Loss""" )
_A : int = NotebookTrainingTracker(state.max_steps , _a )
def a__ ( self , _a , _a , _a , **_a ) -> Union[str, Any]:
_A : List[str] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}'''
self.training_tracker.update(
state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , )
_A : List[str] = False
def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Tuple:
if not has_length(_a ):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
_A : int = self.training_tracker.add_child(len(_a ) )
else:
_A : List[Any] = NotebookProgressBar(len(_a ) )
self.prediction_bar.update(1 )
else:
self.prediction_bar.update(self.prediction_bar.value + 1 )
def a__ ( self , _a , _a , _a , **_a ) -> Dict:
if self.prediction_bar is not None:
self.prediction_bar.close()
_A : int = None
def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Optional[int]:
# Only for when there is no evaluation
if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs:
_A : int = {"""Training Loss""": logs["""loss"""]}
# First column is necessarily Step sine we're not in epoch eval strategy
_A : List[Any] = state.global_step
self.training_tracker.write_line(_a )
def a__ ( self , _a , _a , _a , _a=None , **_a ) -> Optional[int]:
if self.training_tracker is not None:
_A : Any = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""}
for log in reversed(state.log_history ):
if "loss" in log:
_A : int = log["""loss"""]
break
if self.first_column == "Epoch":
_A : List[str] = int(state.epoch )
else:
_A : Any = state.global_step
_A : Dict = """eval"""
for k in metrics:
if k.endswith("""_loss""" ):
_A : int = re.sub(R"""\_loss$""" , """""" , _a )
_A : Any = metrics.pop("""total_flos""" , _a )
_A : List[str] = metrics.pop("""epoch""" , _a )
_A : Optional[Any] = metrics.pop(F'''{metric_key_prefix}_runtime''' , _a )
_A : Optional[int] = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _a )
_A : Optional[int] = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _a )
_A : List[Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _a )
for k, v in metrics.items():
if k == F'''{metric_key_prefix}_loss''':
_A : Any = v
else:
_A : str = k.split("""_""" )
_A : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] )
_A : List[Any] = v
self.training_tracker.write_line(_a )
self.training_tracker.remove_child()
_A : Dict = None
# Evaluation takes a long time so we should force the next update.
_A : Tuple = True
def a__ ( self , _a , _a , _a , **_a ) -> Any:
self.training_tracker.update(
state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_a )
_A : Tuple = None
| 343 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowerCAmelCase_ ( snake_case_,snake_case_=10 ):
_A : Dict = []
for _ in range(snake_case_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowerCAmelCase_ ( snake_case_,snake_case_=10 ):
_A : Dict = []
for step in range(snake_case_ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Tuple = os.path.join(snake_case_,"""schedule.bin""" )
torch.save(scheduler.state_dict(),snake_case_ )
_A : Tuple = torch.load(snake_case_ )
scheduler.load_state_dict(snake_case_ )
return lrs
@require_torch
class lowercase ( unittest.TestCase ):
def a__ ( self , _a , _a , _a ) -> Any:
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a )
def a__ ( self ) -> Optional[Any]:
_A : Any = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a )
_A : Optional[int] = torch.tensor([0.4, 0.2, -0.5] )
_A : Tuple = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A : Optional[int] = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 )
for _ in range(100 ):
_A : int = criterion(_a , _a )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
def a__ ( self ) -> Optional[Any]:
_A : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_a )
_A : List[str] = torch.tensor([0.4, 0.2, -0.5] )
_A : Dict = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
_A : str = Adafactor(
params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_a , weight_decay=0.0 , relative_step=_a , scale_parameter=_a , warmup_init=_a , )
for _ in range(1000 ):
_A : Dict = criterion(_a , _a )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 )
@require_torch
class lowercase ( unittest.TestCase ):
_a = nn.Linear(5_0,5_0 ) if is_torch_available() else None
_a = AdamW(m.parameters(),lr=10.0 ) if is_torch_available() else None
_a = 1_0
def a__ ( self , _a , _a , _a , _a=None ) -> str:
self.assertEqual(len(_a ) , len(_a ) )
for a, b in zip(_a , _a ):
self.assertAlmostEqual(_a , _a , delta=_a , msg=_a )
def a__ ( self ) -> List[str]:
_A : List[str] = {"""num_warmup_steps""": 2, """num_training_steps""": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
_A : Union[str, Any] = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"""num_warmup_steps""": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, """num_cycles""": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, """power""": 2.0, """lr_end""": 1e-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"""num_warmup_steps""": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
_A , _A : Optional[int] = data
_A : Tuple = scheduler_func(self.optimizer , **_a )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
_A : str = unwrap_schedule(_a , self.num_steps )
self.assertListAlmostEqual(
_a , _a , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , )
_A : str = scheduler_func(self.optimizer , **_a )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_a ) # wrap to test picklability of the schedule
_A : List[str] = unwrap_and_save_reload_schedule(_a , self.num_steps )
self.assertListEqual(_a , _a , msg=F'''failed for {scheduler_func} in save and reload''' )
class lowercase :
def __init__( self , _a ) -> Optional[Any]:
_A : Tuple = fn
def __call__( self , *_a , **_a ) -> Optional[Any]:
return self.fn(*_a , **_a )
@classmethod
def a__ ( self , _a ) -> int:
_A : Optional[Any] = list(map(self , scheduler.lr_lambdas ) )
| 343 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 1 |
import datasets
import faiss
import numpy as np
import streamlit as st
import torch
from elasticsearch import Elasticsearch
from elia_utils import (
embed_questions_for_retrieval,
make_qa_sas_model,
qa_sas_generate,
query_es_index,
query_qa_dense_index,
)
import transformers
from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer
_snake_case = "bart"
_snake_case = True
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
if LOAD_DENSE_INDEX:
_A : Dict = AutoTokenizer.from_pretrained("""yjernite/retribert-base-uncased""" )
_A : int = AutoModel.from_pretrained("""yjernite/retribert-base-uncased""" ).to("""cuda:0""" )
_A : Union[str, Any] = qar_model.eval()
else:
_A , _A : Any = (None, None)
if MODEL_TYPE == "bart":
_A : str = AutoTokenizer.from_pretrained("""yjernite/bart_eli5""" )
_A : List[Any] = AutoModelForSeqaSeqLM.from_pretrained("""yjernite/bart_eli5""" ).to("""cuda:0""" )
_A : List[Any] = torch.load("""seq2seq_models/eli5_bart_model_blm_2.pth""" )
sas_model.load_state_dict(save_dict["""model"""] )
_A : List[str] = sas_model.eval()
else:
_A , _A : Optional[int] = make_qa_sas_model(
model_name="""t5-small""",from_file="""seq2seq_models/eli5_t5_model_1024_4.pth""",device="""cuda:0""" )
return (qar_tokenizer, qar_model, sas_tokenizer, sas_model)
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
if LOAD_DENSE_INDEX:
_A : str = faiss.StandardGpuResources()
_A : int = datasets.load_dataset(path="""wiki_snippets""",name="""wiki40b_en_100_0""" )["""train"""]
_A : Optional[Any] = np.memmap(
"""wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat""",dtype="""float32""",mode="""r""",shape=(wikiaab_passages.num_rows, 128),)
_A : Optional[int] = faiss.IndexFlatIP(128 )
_A : Optional[int] = faiss.index_cpu_to_gpu(snake_case_,1,snake_case_ )
wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU
else:
_A , _A : List[Any] = (None, None)
_A : Tuple = Elasticsearch([{"""host""": """localhost""", """port""": """9200"""}] )
return (wikiaab_passages, wikiaab_gpu_index_flat, es_client)
@st.cache(allow_output_mutation=snake_case_ )
def lowerCAmelCase_ ( ):
_A : Optional[int] = datasets.load_dataset("""eli5""",name="""LFQA_reddit""" )
_A : Optional[int] = elia["""train_eli5"""]
_A : Union[str, Any] = np.memmap(
"""eli5_questions_reps.dat""",dtype="""float32""",mode="""r""",shape=(elia_train.num_rows, 128) )
_A : Dict = faiss.IndexFlatIP(128 )
eli5_train_q_index.add(snake_case_ )
return (elia_train, eli5_train_q_index)
_snake_case , _snake_case , _snake_case = load_indexes()
_snake_case , _snake_case , _snake_case , _snake_case = load_models()
_snake_case , _snake_case = load_train_data()
def lowerCAmelCase_ ( snake_case_,snake_case_=10 ):
_A : Optional[int] = embed_questions_for_retrieval([question],snake_case_,snake_case_ )
_A , _A : int = eli5_train_q_index.search(snake_case_,snake_case_ )
_A : Dict = [elia_train[int(snake_case_ )] for i in I[0]]
return nn_examples
def lowerCAmelCase_ ( snake_case_,snake_case_="wiki40b",snake_case_="dense",snake_case_=10 ):
if source == "none":
_A , _A : str = (""" <P> """.join(["""""" for _ in range(11 )] ).strip(), [])
else:
if method == "dense":
_A , _A : Tuple = query_qa_dense_index(
snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ )
else:
_A , _A : List[Any] = query_es_index(
snake_case_,snake_case_,index_name="""english_wiki40b_snippets_100w""",n_results=snake_case_,)
_A : List[Any] = [
(res["""article_title"""], res["""section_title"""].strip(), res["""score"""], res["""passage_text"""]) for res in hit_lst
]
_A : Optional[int] = """question: {} context: {}""".format(snake_case_,snake_case_ )
return question_doc, support_list
@st.cache(
hash_funcs={
torch.Tensor: (lambda snake_case_ : None),
transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None),
} )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_=64,snake_case_=256,snake_case_=False,snake_case_=2,snake_case_=0.95,snake_case_=0.8 ):
with torch.no_grad():
_A : Tuple = qa_sas_generate(
snake_case_,snake_case_,snake_case_,num_answers=1,num_beams=snake_case_,min_len=snake_case_,max_len=snake_case_,do_sample=snake_case_,temp=snake_case_,top_p=snake_case_,top_k=snake_case_,max_input_length=1024,device="""cuda:0""",)[0]
return (answer, support_list)
st.title("Long Form Question Answering with ELI5")
# Start sidebar
_snake_case = "<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>"
_snake_case = "\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class=\"img-container\"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n" % (
header_html,
)
st.sidebar.markdown(
header_full,
unsafe_allow_html=True,
)
# Long Form QA with ELI5 and Wikipedia
_snake_case = "\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n"
st.sidebar.markdown(description, unsafe_allow_html=True)
_snake_case = [
"Answer the question",
"View the retrieved document only",
"View the most similar ELI5 question and answer",
"Show me everything, please!",
]
_snake_case = st.sidebar.checkbox("Demo options")
if demo_options:
_snake_case = st.sidebar.selectbox(
"",
action_list,
index=3,
)
_snake_case = action_list.index(action_st)
_snake_case = st.sidebar.selectbox(
"",
["Show full text of passages", "Show passage section titles"],
index=0,
)
_snake_case = show_type == "Show full text of passages"
else:
_snake_case = 3
_snake_case = True
_snake_case = st.sidebar.checkbox("Retrieval options")
if retrieval_options:
_snake_case = "\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n "
st.sidebar.markdown(retriever_info)
_snake_case = st.sidebar.selectbox("Which Wikipedia format should the model use?", ["wiki40b", "none"])
_snake_case = st.sidebar.selectbox("Which Wikipedia indexer should the model use?", ["dense", "sparse", "mixed"])
else:
_snake_case = "wiki40b"
_snake_case = "dense"
_snake_case = "beam"
_snake_case = 2
_snake_case = 64
_snake_case = 256
_snake_case = None
_snake_case = None
_snake_case = st.sidebar.checkbox("Generation options")
if generate_options:
_snake_case = "\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder's output probabilities.\n "
st.sidebar.markdown(generate_info)
_snake_case = st.sidebar.selectbox("Would you like to use beam search or sample an answer?", ["beam", "sampled"])
_snake_case = st.sidebar.slider(
"Minimum generation length", min_value=8, max_value=256, value=64, step=8, format=None, key=None
)
_snake_case = st.sidebar.slider(
"Maximum generation length", min_value=64, max_value=512, value=256, step=16, format=None, key=None
)
if sampled == "beam":
_snake_case = st.sidebar.slider("Beam size", min_value=1, max_value=8, value=2, step=None, format=None, key=None)
else:
_snake_case = st.sidebar.slider(
"Nucleus sampling p", min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None
)
_snake_case = st.sidebar.slider(
"Temperature", min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None
)
_snake_case = None
# start main text
_snake_case = [
"<MY QUESTION>",
"How do people make chocolate?",
"Why do we get a fever when we are sick?",
"How can different animals perceive different colors?",
"What is natural language processing?",
"What's the best way to treat a sunburn?",
"What exactly are vitamins ?",
"How does nuclear energy provide electricity?",
"What's the difference between viruses and bacteria?",
"Why are flutes classified as woodwinds when most of them are made out of metal ?",
"Why do people like drinking coffee even though it tastes so bad?",
"What happens when wine ages? How does it make the wine taste better?",
"If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?",
"How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?",
"How does New Zealand have so many large bird predators?",
]
_snake_case = st.selectbox(
"What would you like to ask? ---- select <MY QUESTION> to enter a new query",
questions_list,
index=1,
)
if question_s == "<MY QUESTION>":
_snake_case = st.text_input("Enter your question here:", "")
else:
_snake_case = question_s
if st.button("Show me!"):
if action in [0, 1, 3]:
if index_type == "mixed":
_snake_case , _snake_case = make_support(question, source=wiki_source, method="dense", n_results=10)
_snake_case , _snake_case = make_support(question, source=wiki_source, method="sparse", n_results=10)
_snake_case = []
for res_d, res_s in zip(support_list_dense, support_list_sparse):
if tuple(res_d) not in support_list:
support_list += [tuple(res_d)]
if tuple(res_s) not in support_list:
support_list += [tuple(res_s)]
_snake_case = support_list[:10]
_snake_case = "<P> " + " <P> ".join([res[-1] for res in support_list])
else:
_snake_case , _snake_case = make_support(question, source=wiki_source, method=index_type, n_results=10)
if action in [0, 3]:
_snake_case , _snake_case = answer_question(
question_doc,
sas_model,
sas_tokenizer,
min_len=min_len,
max_len=int(max_len),
sampling=(sampled == "sampled"),
n_beams=n_beams,
top_p=top_p,
temp=temp,
)
st.markdown("### The model generated answer is:")
st.write(answer)
if action in [0, 1, 3] and wiki_source != "none":
st.markdown("--- \n ### The model is drawing information from the following Wikipedia passages:")
for i, res in enumerate(support_list):
_snake_case = "https://en.wikipedia.org/wiki/{}".format(res[0].replace(" ", "_"))
_snake_case = res[1].strip()
if sec_titles == "":
_snake_case = "[{}]({})".format(res[0], wiki_url)
else:
_snake_case = sec_titles.split(" & ")
_snake_case = " & ".join(
["[{}]({}#{})".format(sec.strip(), wiki_url, sec.strip().replace(" ", "_")) for sec in sec_list]
)
st.markdown(
"{0:02d} - **Article**: {1:<18} <br> _Section_: {2}".format(i + 1, res[0], sections),
unsafe_allow_html=True,
)
if show_passages:
st.write(
"> <span style=\"font-family:arial; font-size:10pt;\">" + res[-1] + "</span>", unsafe_allow_html=True
)
if action in [2, 3]:
_snake_case = find_nearest_training(question)
_snake_case = nn_train_list[0]
st.markdown(
"--- \n ### The most similar question in the ELI5 training set was: \n\n {}".format(train_exple["title"])
)
_snake_case = [
"{}. {}".format(i + 1, " \n".join([line.strip() for line in ans.split("\n") if line.strip() != ""]))
for i, (ans, sc) in enumerate(zip(train_exple["answers"]["text"], train_exple["answers"]["score"]))
if i == 0 or sc > 2
]
st.markdown("##### Its answers were: \n\n {}".format("\n".join(answers_st)))
_snake_case = "\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n"
st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
| 343 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model"}
_snake_case = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
}
}
_snake_case = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
# Segments (not really needed)
_snake_case = 0
_snake_case = 1
_snake_case = 2
_snake_case = 3
_snake_case = 4
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = "left"
def __init__( self , _a , _a=False , _a=True , _a=False , _a="<s>" , _a="</s>" , _a="<unk>" , _a="<sep>" , _a="<pad>" , _a="<cls>" , _a="<mask>" , _a=["<eop>", "<eod>"] , _a = None , **_a , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
_A : Dict = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
_A : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
_A : Tuple = 3
_A : Tuple = do_lower_case
_A : Union[str, Any] = remove_space
_A : Union[str, Any] = keep_accents
_A : Optional[int] = vocab_file
_A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_a )
@property
def a__ ( self ) -> str:
return len(self.sp_model )
def a__ ( self ) -> List[Any]:
_A : int = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.__dict__.copy()
_A : Tuple = None
return state
def __setstate__( self , _a ) -> Dict:
_A : Optional[int] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_A : List[Any] = {}
_A : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a__ ( self , _a ) -> Optional[Any]:
if self.remove_space:
_A : Tuple = """ """.join(inputs.strip().split() )
else:
_A : List[str] = inputs
_A : Dict = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" )
if not self.keep_accents:
_A : Optional[Any] = unicodedata.normalize("""NFKD""" , _a )
_A : int = """""".join([c for c in outputs if not unicodedata.combining(_a )] )
if self.do_lower_case:
_A : Union[str, Any] = outputs.lower()
return outputs
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = self.preprocess_text(_a )
_A : Union[str, Any] = self.sp_model.encode(_a , out_type=_a )
_A : int = []
for piece in pieces:
if len(_a ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit():
_A : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_a , """""" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
_A : List[Any] = cur_pieces[1:]
else:
_A : Tuple = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_a )
else:
new_pieces.append(_a )
return new_pieces
def a__ ( self , _a ) -> Dict:
return self.sp_model.PieceToId(_a )
def a__ ( self , _a ) -> int:
return self.sp_model.IdToPiece(_a )
def a__ ( self , _a ) -> Optional[int]:
_A : List[Any] = """""".join(_a ).replace(_a , """ """ ).strip()
return out_string
def a__ ( self , _a , _a = False , _a = None , _a = True , **_a , ) -> str:
_A : Any = kwargs.pop("""use_source_tokenizer""" , _a )
_A : Tuple = self.convert_ids_to_tokens(_a , skip_special_tokens=_a )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_A : int = []
_A : Any = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_a ) )
_A : Dict = []
sub_texts.append(_a )
else:
current_sub_text.append(_a )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(_a ) )
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
_A : Tuple = """""".join(_a )
_A : List[Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_A : Tuple = self.clean_up_tokenization(_a )
return clean_text
else:
return text
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Tuple = [self.sep_token_id]
_A : Dict = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def a__ ( self , _a , _a = None , _a = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is not None:
return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1, 1]
return ([0] * len(_a )) + [1, 1]
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Union[str, Any] = [self.sep_token_id]
_A : Tuple = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : List[Any] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , """wb""" ) as fi:
_A : str = self.sp_model.serialized_model_proto()
fi.write(_a )
return (out_vocab_file,)
| 343 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 1 |
import qiskit
def lowerCAmelCase_ ( snake_case_ = 2 ):
_A : Any = qubits
# Using Aer's simulator
_A : Dict = qiskit.Aer.get_backend("""aer_simulator""" )
# Creating a Quantum Circuit acting on the q register
_A : str = qiskit.QuantumCircuit(snake_case_,snake_case_ )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1,snake_case_ ):
# Adding CX (CNOT) gate
circuit.cx(i - 1,snake_case_ )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(snake_case_ ) ),list(range(snake_case_ ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
_A : str = qiskit.execute(snake_case_,snake_case_,shots=1000 )
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
print(f"""Total count for various states are: {quantum_entanglement(3)}""")
| 343 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 1 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = MgpstrTokenizer
_a = False
_a = {}
_a = False
def a__ ( self ) -> int:
super().setUp()
# fmt: off
_A : List[Any] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
_A : int = dict(zip(_a , range(len(_a ) ) ) )
_A : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_a ) + """\n""" )
def a__ ( self , **_a ) -> Dict:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , _a ) -> List[Any]:
_A : List[Any] = """tester"""
_A : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def a__ ( self ) -> Any:
pass
def a__ ( self ) -> Optional[int]:
_A : Any = self.get_tokenizers(do_lower_case=_a )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A : List[str] = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
_A : int = tokenizer.encode([special_token] , add_special_tokens=_a )
self.assertEqual(len(_a ) , 1 )
_A : Any = tokenizer.decode(_a , skip_special_tokens=_a )
self.assertTrue(special_token not in decoded )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_A , _A : Optional[int] = self.get_input_output_texts(_a )
_A : int = tokenizer.tokenize(_a )
_A : Tuple = tokenizer.convert_tokens_to_ids(_a )
_A : Dict = tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
_A : List[Any] = tokenizer.convert_ids_to_tokens(_a )
self.assertNotEqual(len(_a ) , 0 )
_A : Optional[int] = tokenizer.decode(_a )
self.assertIsInstance(_a , _a )
self.assertEqual(text_a.replace(""" """ , """""" ) , _a )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def a__ ( self ) -> int:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def a__ ( self ) -> Optional[int]:
pass
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowercase ( UpperCamelCase__ ):
_a = "sew-d"
def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3072 , _a=2 , _a=512 , _a=256 , _a=True , _a=True , _a=("p2c", "c2p") , _a="layer_norm" , _a="gelu_python" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.02 , _a=1e-7 , _a=1e-5 , _a="group" , _a="gelu" , _a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a=False , _a=128 , _a=16 , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="mean" , _a=False , _a=False , _a=256 , _a=0 , _a=1 , _a=2 , **_a , ) -> Any:
super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a )
_A : List[str] = hidden_size
_A : Any = feat_extract_norm
_A : int = feat_extract_activation
_A : Dict = list(_a )
_A : Tuple = list(_a )
_A : int = list(_a )
_A : Optional[int] = conv_bias
_A : Tuple = num_conv_pos_embeddings
_A : Optional[Any] = num_conv_pos_embedding_groups
_A : Optional[Any] = len(self.conv_dim )
_A : Optional[int] = num_hidden_layers
_A : List[Any] = intermediate_size
_A : Optional[int] = squeeze_factor
_A : Dict = max_position_embeddings
_A : Tuple = position_buckets
_A : Optional[int] = share_att_key
_A : str = relative_attention
_A : int = norm_rel_ebd
_A : List[Any] = list(_a )
_A : List[Any] = hidden_act
_A : Union[str, Any] = num_attention_heads
_A : int = hidden_dropout
_A : List[Any] = attention_dropout
_A : List[str] = activation_dropout
_A : str = feat_proj_dropout
_A : Any = final_dropout
_A : str = layer_norm_eps
_A : Optional[int] = feature_layer_norm_eps
_A : Any = initializer_range
_A : List[str] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_A : str = apply_spec_augment
_A : Dict = mask_time_prob
_A : Union[str, Any] = mask_time_length
_A : Tuple = mask_time_min_masks
_A : str = mask_feature_prob
_A : Union[str, Any] = mask_feature_length
_A : str = mask_feature_min_masks
# ctc loss
_A : Any = ctc_loss_reduction
_A : Optional[Any] = ctc_zero_infinity
# sequence classification
_A : Optional[int] = use_weighted_layer_sum
_A : int = classifier_proj_size
@property
def a__ ( self ) -> Tuple:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
from __future__ import annotations
import numpy as np
def lowerCAmelCase_ ( snake_case_ ):
_A , _A : Any = np.shape(snake_case_ )
if rows != columns:
_A : Optional[Any] = (
"""'table' has to be of square shaped array but got a """
f'''{rows}x{columns} array:\n{table}'''
)
raise ValueError(snake_case_ )
_A : List[Any] = np.zeros((rows, columns) )
_A : Optional[int] = np.zeros((rows, columns) )
for i in range(snake_case_ ):
for j in range(snake_case_ ):
_A : Tuple = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) )
if upper[j][j] == 0:
raise ArithmeticError("""No LU decomposition exists""" )
_A : Tuple = (table[i][j] - total) / upper[j][j]
_A : Optional[int] = 1
for j in range(snake_case_,snake_case_ ):
_A : Optional[int] = sum(lower[i][k] * upper[k][j] for k in range(snake_case_ ) )
_A : Optional[Any] = table[i][j] - total
return lower, upper
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER","False" ) ) is not True,reason="Skipping test because should only be run when releasing minor transformers version",)
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_5_0, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "pytorch",
"script": "run_ddp.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_0_0, "eval_accuracy": 0.7, "eval_loss": 0.6},
},
{
"framework": "tensorflow",
"script": "run_tf_dist.py",
"model_name_or_path": "distilbert-base-cased",
"instance_type": "ml.p3.16xlarge",
"results": {"train_runtime": 6_0_0, "eval_accuracy": 0.6, "eval_loss": 0.7},
},
] )
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Any:
if self.framework == "pytorch":
subprocess.run(
F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=_a , )
assert hasattr(self , """env""" )
def a__ ( self , _a ) -> Dict:
_A : List[Any] = F'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}'''
# distributed data settings
_A : str = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_a , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_a , py_version="""py36""" , )
def a__ ( self , _a ) -> str:
TrainingJobAnalytics(_a ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' )
@parameterized.expand([(2,)] )
def a__ ( self , _a ) -> Union[str, Any]:
# create estimator
_A : Tuple = self.create_estimator(_a )
# run training
estimator.fit()
# result dataframe
_A : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_A : int = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] )
_A : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A : str = (
Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 99_9999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy )
assert all(t <= self.results["""eval_loss"""] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , _a )
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
_snake_case = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/trocr-base-handwritten": (
"https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowercase ( UpperCamelCase__ ):
_a = "trocr"
_a = ["past_key_values"]
_a = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self , _a=5_0265 , _a=1024 , _a=12 , _a=16 , _a=4096 , _a="gelu" , _a=512 , _a=0.1 , _a=0.0 , _a=0.0 , _a=2 , _a=0.02 , _a=0.0 , _a=True , _a=False , _a=True , _a=True , _a=1 , _a=0 , _a=2 , **_a , ) -> str:
_A : List[Any] = vocab_size
_A : int = d_model
_A : int = decoder_layers
_A : Tuple = decoder_attention_heads
_A : List[str] = decoder_ffn_dim
_A : Tuple = activation_function
_A : Dict = max_position_embeddings
_A : Any = dropout
_A : Union[str, Any] = attention_dropout
_A : List[Any] = activation_dropout
_A : Tuple = init_std
_A : str = decoder_layerdrop
_A : Any = use_cache
_A : Union[str, Any] = scale_embedding
_A : Optional[int] = use_learned_position_embeddings
_A : str = layernorm_embedding
super().__init__(
pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , decoder_start_token_id=_a , **_a , )
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
_snake_case = 1.054571817e-34 # unit of ℏ : J * s
_snake_case = 3e8 # unit of c : m * s^-1
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
_A : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_A : List[str] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_A : Dict = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
import pytest
_snake_case = "__dummy_dataset1__"
_snake_case = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def lowerCAmelCase_ ( ):
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowerCAmelCase_ ( ):
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = dataset_loading_script_name
_A : Any = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=snake_case_ )
_A : List[Any] = script_dir / f'''{script_name}.py'''
with open(snake_case_,"""w""" ) as f:
f.write(snake_case_ )
return str(snake_case_ )
| 343 |
import argparse
import json
import numpy
import torch
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
# Load checkpoint
_A : Optional[int] = torch.load(snake_case_,map_location="""cpu""" )
_A : Any = chkpt["""model"""]
# We have the base model one level deeper than the original XLM repository
_A : Any = {}
for k, v in state_dict.items():
if "pred_layer" in k:
_A : Tuple = v
else:
_A : Dict = v
_A : Optional[Any] = chkpt["""params"""]
_A : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(snake_case_,(torch.FloatTensor, numpy.ndarray) )}
_A : str = chkpt["""dico_word2id"""]
_A : Optional[Any] = {s + """</w>""" if s.find("""@@""" ) == -1 and i > 13 else s.replace("""@@""","""""" ): i for s, i in vocab.items()}
# Save pytorch-model
_A : Dict = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_A : Any = pytorch_dump_folder_path + """/""" + CONFIG_NAME
_A : Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""vocab_file"""]
print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' )
torch.save(snake_case_,snake_case_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
print(f'''Save vocab file to {pytorch_config_dump_path}''' )
with open(snake_case_,"""w""",encoding="""utf-8""" ) as f:
f.write(json.dumps(snake_case_,indent=2 ) + """\n""" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_snake_case = parser.parse_args()
convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
"configuration_blenderbot_small": [
"BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotSmallConfig",
"BlenderbotSmallOnnxConfig",
],
"tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["BlenderbotSmallTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotSmallForCausalLM",
"BlenderbotSmallForConditionalGeneration",
"BlenderbotSmallModel",
"BlenderbotSmallPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TFBlenderbotSmallForConditionalGeneration",
"TFBlenderbotSmallModel",
"TFBlenderbotSmallPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"FlaxBlenderbotSmallForConditionalGeneration",
"FlaxBlenderbotSmallModel",
"FlaxBlenderbotSmallPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase ( UpperCamelCase__ ):
_a = ["image_processor", "tokenizer"]
_a = "BlipImageProcessor"
_a = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , _a , _a ) -> Any:
_A : List[Any] = False
super().__init__(_a , _a )
_A : Optional[int] = self.image_processor
def __call__( self , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
_A : Dict = self.tokenizer
_A : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
return text_encoding
# add pixel_values
_A : int = self.image_processor(_a , return_tensors=_a )
if text is not None:
_A : List[Any] = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_token_type_ids=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
else:
_A : int = None
if text_encoding is not None:
encoding_image_processor.update(_a )
return encoding_image_processor
def a__ ( self , *_a , **_a ) -> Any:
return self.tokenizer.batch_decode(*_a , **_a )
def a__ ( self , *_a , **_a ) -> List[str]:
return self.tokenizer.decode(*_a , **_a )
@property
def a__ ( self ) -> Optional[Any]:
_A : Any = self.tokenizer.model_input_names
_A : List[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 343 | 1 |
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
_snake_case = logging.get_logger(__name__)
class lowercase ( UpperCamelCase__ ):
def __init__( self , *_a , **_a ) -> None:
warnings.warn(
"""The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use FlavaImageProcessor instead.""" , _a , )
super().__init__(*_a , **_a )
| 343 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : Tuple = 0
if start < end:
_A : Tuple = randint(snake_case_,snake_case_ )
_A : Any = a[end]
_A : int = a[pivot]
_A : int = temp
_A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ )
count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 )
count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ )
return count
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
_A : str = 0
_A : List[str] = randint(snake_case_,snake_case_ )
_A : Union[str, Any] = a[end]
_A : List[str] = a[pivot]
_A : List[Any] = temp
_A : List[str] = start - 1
for index in range(snake_case_,snake_case_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_A : Union[str, Any] = new_pivot_index + 1
_A : List[Any] = a[new_pivot_index]
_A : Optional[int] = a[index]
_A : List[Any] = temp
_A : Optional[Any] = a[new_pivot_index + 1]
_A : Any = a[end]
_A : Dict = temp
return new_pivot_index + 1, count
_snake_case = TemporaryFile()
_snake_case = 100 # 1000 elements are to be sorted
_snake_case , _snake_case = 0, 1 # mean and standard deviation
_snake_case = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
_snake_case = np.load(outfile)
_snake_case = len(M) - 1
_snake_case = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 343 | 1 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_snake_case = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_snake_case = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_snake_case = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Any = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] )
return (item, float(snake_case_ ))
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Optional[int] = random.randint(0,len(snake_case_ ) - 1 )
_A : Dict = parent_a[:random_slice] + parent_a[random_slice:]
_A : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : List[Any] = list(snake_case_ )
if random.uniform(0,1 ) < MUTATION_PROBABILITY:
_A : str = random.choice(snake_case_ )
return "".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,):
_A : Optional[Any] = []
# Generate more children proportionally to the fitness score.
_A : Optional[int] = int(parent_a[1] * 100 ) + 1
_A : int = 10 if child_n >= 10 else child_n
for _ in range(snake_case_ ):
_A : List[Any] = population_score[random.randint(0,snake_case_ )][0]
_A , _A : List[str] = crossover(parent_a[0],snake_case_ )
# Append new string to the population list.
pop.append(mutate(snake_case_,snake_case_ ) )
pop.append(mutate(snake_case_,snake_case_ ) )
return pop
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ = True ):
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
_A : Union[str, Any] = f'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(snake_case_ )
# Verify that the target contains no genes besides the ones inside genes variable.
_A : Any = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_A : Optional[Any] = f'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(snake_case_ )
# Generate random starting population.
_A : Optional[int] = []
for _ in range(snake_case_ ):
population.append("""""".join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) )
# Just some logs to know what the algorithms is doing.
_A , _A : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(snake_case_ )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_A : Dict = [evaluate(snake_case_,snake_case_ ) for item in population]
# Check if there is a matching evolution.
_A : Optional[int] = sorted(snake_case_,key=lambda snake_case_ : x[1],reverse=snake_case_ )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'''\nGeneration: {generation}'''
f'''\nTotal Population:{total_population}'''
f'''\nBest score: {population_score[0][1]}'''
f'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_A : List[str] = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(snake_case_ )
# Normalize population score to be between 0 and 1.
_A : Dict = [
(item, score / len(snake_case_ )) for item, score in population_score
]
# This is selection
for i in range(snake_case_ ):
population.extend(select(population_score[int(snake_case_ )],snake_case_,snake_case_ ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(snake_case_ ) > N_POPULATION:
break
if __name__ == "__main__":
_snake_case = (
"This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"
)
_snake_case = list(
" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
"nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\"
)
_snake_case , _snake_case , _snake_case = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 343 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"MIT/ast-finetuned-audioset-10-10-0.4593": (
"https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"
),
}
class lowercase ( UpperCamelCase__ ):
_a = "audio-spectrogram-transformer"
def __init__( self , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1e-12 , _a=16 , _a=True , _a=10 , _a=10 , _a=1024 , _a=128 , **_a , ) -> List[Any]:
super().__init__(**_a )
_A : Any = hidden_size
_A : Tuple = num_hidden_layers
_A : List[str] = num_attention_heads
_A : Any = intermediate_size
_A : Optional[Any] = hidden_act
_A : Optional[Any] = hidden_dropout_prob
_A : Any = attention_probs_dropout_prob
_A : Optional[Any] = initializer_range
_A : Optional[Any] = layer_norm_eps
_A : str = patch_size
_A : Tuple = qkv_bias
_A : Dict = frequency_stride
_A : Union[str, Any] = time_stride
_A : Any = max_length
_A : Tuple = num_mel_bins
| 343 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase ( UpperCamelCase__ ):
_a = 42
_a = 42
def __init__( self , _a , _a ) -> Dict:
super().__init__()
self.register_modules(unet=_a , scheduler=_a )
@torch.no_grad()
def __call__( self , _a = 1 , _a = 50 , _a = None , _a = "pil" , _a = True , **_a , ) -> Union[Tuple, ImagePipelineOutput]:
_A : Optional[Any] = self.unet.config.sample_size
_A : Dict = (batch_size, 3, img_size, img_size)
_A : str = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A : Dict = randn_tensor(_a , generator=_a , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_a )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A : Union[str, Any] = self.scheduler.schedule[t]
_A : Dict = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A : List[Any] = self.scheduler.add_noise_to_input(_a , _a , generator=_a )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A : int = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A : Any = self.scheduler.step(_a , _a , _a , _a )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A : List[str] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A : Optional[int] = self.scheduler.step_correct(
_a , _a , _a , _a , step_output.prev_sample , step_output["""derivative"""] , )
_A : Union[str, Any] = step_output.prev_sample
_A : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 )
_A : List[str] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A : str = self.numpy_to_pil(_a )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_a )
| 343 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def lowerCAmelCase_ ( ):
_A : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""-f""" )
_A : Optional[Any] = parser.parse_args()
return args.f
class lowercase ( UpperCamelCase__ ):
def a__ ( self ) -> None:
_A : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_a )
def a__ ( self , _a ) -> Dict:
_A : Tuple = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , """run_glue_deebert.py""" )
with patch.object(_a , """argv""" , _a ):
_A : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_a , 0.666 )
@slow
@require_torch_non_multi_gpu
def a__ ( self ) -> Optional[int]:
_A : Tuple = """
--model_type roberta
--model_name_or_path roberta-base
--task_name MRPC
--do_train
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--max_seq_length 128
--per_gpu_eval_batch_size=1
--per_gpu_train_batch_size=8
--learning_rate 2e-4
--num_train_epochs 3
--overwrite_output_dir
--seed 42
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--save_steps 0
--overwrite_cache
--eval_after_first_stage
""".split()
self.run_and_check(_a )
_A : Optional[Any] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--eval_each_highway
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
_A : List[str] = """
--model_type roberta
--model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--task_name MRPC
--do_eval
--do_lower_case
--data_dir ./tests/fixtures/tests_samples/MRPC/
--output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage
--plot_data_dir ./examples/deebert/results/
--max_seq_length 128
--early_exit_entropy 0.1
--eval_highway
--overwrite_cache
--per_gpu_eval_batch_size=1
""".split()
self.run_and_check(_a )
| 343 | 1 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]:
_A : Optional[int] = parent
_A : Dict = batch_size
_A : Any = image_size
_A : Optional[int] = patch_size
_A : Optional[int] = num_channels
_A : List[Any] = is_training
_A : Optional[Any] = use_labels
_A : Any = hidden_size
_A : Any = num_hidden_layers
_A : List[Any] = num_attention_heads
_A : int = intermediate_size
_A : Dict = hidden_act
_A : Optional[int] = hidden_dropout_prob
_A : str = attention_probs_dropout_prob
_A : Any = type_sequence_label_size
_A : str = initializer_range
_A : Tuple = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_A : List[Any] = (image_size // patch_size) ** 2
_A : str = num_patches + 1
def a__ ( self ) -> Dict:
_A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : List[str] = None
if self.use_labels:
_A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A : List[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Union[str, Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[str] = ViTMSNModel(config=_a )
model.to(_a )
model.eval()
_A : List[str] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self , _a , _a , _a ) -> List[str]:
_A : Union[str, Any] = self.type_sequence_label_size
_A : Tuple = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a , labels=_a )
print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" )
print("""Labels: {labels}""" )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_A : Dict = 1
_A : str = ViTMSNForImageClassification(_a )
model.to(_a )
model.eval()
_A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_A : int = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a__ ( self ) -> Any:
_A : Optional[int] = self.prepare_config_and_inputs()
_A , _A , _A : Dict = config_and_inputs
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Tuple:
_A : Tuple = ViTMSNModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViTMSN does not use inputs_embeds""" )
def a__ ( self ) -> int:
pass
def a__ ( self ) -> Any:
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Tuple = model_class(_a )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_A : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> str:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : str = [*signature.parameters.keys()]
_A : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> List[Any]:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Any:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = ViTMSNModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> int:
return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[int]:
torch.manual_seed(2 )
_A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a )
_A : Tuple = self.default_image_processor
_A : Dict = prepare_img()
_A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : int = model(**_a )
# verify the logits
_A : Union[str, Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 | 1 |
import argparse
import json
import os
import torch
from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Load configuration defined in the metadata file
with open(snake_case_ ) as metadata_file:
_A : List[str] = json.load(snake_case_ )
_A : str = LukeConfig(use_entity_aware_attention=snake_case_,**metadata["""model_config"""] )
# Load in the weights from the checkpoint_path
_A : List[str] = torch.load(snake_case_,map_location="""cpu""" )
# Load the entity vocab file
_A : Dict = load_entity_vocab(snake_case_ )
_A : Tuple = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] )
# Add special tokens to the token vocabulary for downstream tasks
_A : List[Any] = AddedToken("""<ent>""",lstrip=snake_case_,rstrip=snake_case_ )
_A : List[Any] = AddedToken("""<ent2>""",lstrip=snake_case_,rstrip=snake_case_ )
tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(f'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(snake_case_ )
with open(os.path.join(snake_case_,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ),"""w""" ) as f:
json.dump(snake_case_,snake_case_ )
_A : Any = LukeTokenizer.from_pretrained(snake_case_ )
# Initialize the embeddings of the special tokens
_A : str = state_dict["""embeddings.word_embeddings.weight"""]
_A : int = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 )
_A : Optional[Any] = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 )
_A : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
_A : Any = f'''encoder.layer.{layer_index}.attention.self.'''
_A : Optional[Any] = state_dict[prefix + matrix_name]
_A : List[Any] = state_dict[prefix + matrix_name]
_A : List[Any] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
_A : str = state_dict["""entity_embeddings.entity_embeddings.weight"""]
_A : Union[str, Any] = entity_emb[entity_vocab["""[MASK]"""]]
_A : Dict = LukeModel(config=snake_case_ ).eval()
_A , _A : Tuple = model.load_state_dict(snake_case_,strict=snake_case_ )
if not (len(snake_case_ ) == 1 and missing_keys[0] == "embeddings.position_ids"):
raise ValueError(f'''Missing keys {", ".join(snake_case_ )}. Expected only missing embeddings.position_ids''' )
if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )):
raise ValueError(
"""Unexpected keys"""
f''' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}''' )
# Check outputs
_A : str = LukeTokenizer.from_pretrained(snake_case_,task="""entity_classification""" )
_A : Dict = (
"""Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the"""
""" new world number one avoid a humiliating second- round exit at Wimbledon ."""
)
_A : int = (39, 42)
_A : Optional[int] = tokenizer(snake_case_,entity_spans=[span],add_prefix_space=snake_case_,return_tensors="""pt""" )
_A : List[Any] = model(**snake_case_ )
# Verify word hidden states
if model_size == "large":
_A : List[str] = torch.Size((1, 42, 1024) )
_A : Optional[Any] = torch.tensor(
[[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] )
else: # base
_A : Tuple = torch.Size((1, 42, 768) )
_A : str = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3],snake_case_,atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
_A : Optional[Any] = torch.Size((1, 1, 1024) )
_A : str = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] )
else: # base
_A : int = torch.Size((1, 1, 768) )
_A : Dict = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] )
if not (outputs.entity_last_hidden_state.shape != expected_shape):
raise ValueError(
f'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
f''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3],snake_case_,atol=1e-4 ):
raise ValueError
# Finally, save our PyTorch model and tokenizer
print("""Saving PyTorch model to {}""".format(snake_case_ ) )
model.save_pretrained(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : Any = {}
with open(snake_case_,"""r""",encoding="""utf-8""" ) as f:
for index, line in enumerate(snake_case_ ):
_A , _A : List[str] = line.rstrip().split("""\t""" )
_A : str = index
return entity_vocab
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
_snake_case = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 343 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "spiece.model"}
_snake_case = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
_snake_case = {
"AI-Sweden/gpt-sw3-126m": 2048,
"AI-Sweden/gpt-sw3-350m": 2048,
"AI-Sweden/gpt-sw3-1.6b": 2048,
"AI-Sweden/gpt-sw3-6.7b": 2048,
"AI-Sweden/gpt-sw3-20b": 2048,
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ["input_ids", "attention_mask"]
def __init__( self , _a , _a=False , _a=False , _a=False , _a=None , _a=None , _a=None , _a=None , _a = None , **_a , ) -> None:
_A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs
_A : int = kwargs.get("""name_or_path""" )
if name_or_path is None:
logger.warning(
"""name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,"""
""" you are testing the model, this can safely be ignored""" )
_A : Union[str, Any] = """None"""
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
_A : Any = """<|endoftext|>""" if eos_token is None else eos_token
_A : List[Any] = """<unk>""" if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
_A : Optional[int] = unk_token if pad_token is None else pad_token
_A : Dict = eos_token if bos_token is None else bos_token
else:
_A : Dict = """<pad>""" if pad_token is None else pad_token
_A : Union[str, Any] = """<s>""" if bos_token is None else bos_token
super().__init__(
do_lower_case=_a , remove_space=_a , keep_accents=_a , bos_token=_a , eos_token=_a , unk_token=_a , pad_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
_A : Dict = do_lower_case
_A : Any = remove_space
_A : Dict = keep_accents
_A : List[Any] = vocab_file
_A : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_a )
# Used for whitespace normalization in input texts
# fmt : off
_A : Tuple = {""" """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """ """, """""", """"""}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
_A : Dict = re.compile(
F'''[{"".join(map(_a , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]''' )
def __getstate__( self ) -> Dict:
_A : List[Any] = self.__dict__.copy()
_A : Tuple = None
return state
def __setstate__( self , _a ) -> Union[str, Any]:
_A : Optional[Any] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_A : Optional[Any] = {}
_A : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def a__ ( self ) -> int:
return len(self.sp_model )
def a__ ( self , _a ) -> str:
_A : int = self.non_printing_characters_re.sub("""""" , _a )
# Normalize whitespaces
_A : List[Any] = """""".join([char if char not in self.whitespaces else """ """ for char in text] )
# NFC Unicode normalization
_A : Optional[Any] = unicodedata.normalize("""NFC""" , _a )
return text
def a__ ( self , _a , **_a ) -> List[str]:
_A : Optional[int] = self.preprocess_text(_a )
return self.sp_model.encode(_a , out_type=_a )
def a__ ( self , _a ) -> int:
return self.sp_model.PieceToId(_a )
def a__ ( self , _a ) -> str:
return self.sp_model.IdToPiece(_a )
@staticmethod
def a__ ( _a ) -> str:
return out_string
def a__ ( self , _a ) -> str:
_A : List[str] = []
_A : Union[str, Any] = """"""
_A : Union[str, Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_a ) + token
_A : Optional[int] = True
_A : Union[str, Any] = []
else:
current_sub_tokens.append(_a )
_A : Optional[Any] = False
out_string += self.sp_model.decode(_a )
return out_string
def a__ ( self ) -> Dict[str, int]:
_A : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def a__ ( self , _a , _a = None ) -> Tuple[str]:
if not os.path.isdir(_a ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
_A : int = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , """wb""" ) as fi:
_A : Tuple = self.sp_model.serialized_model_proto()
fi.write(_a )
return (out_vocab_file,)
def a__ ( self , _a , _a = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]:
if isinstance(_a , _a ):
_A : int = self.preprocess_text(_a )
_A : Dict = self.sp_model.encode(_a )
else:
_A : int = [self.preprocess_text(_a ) for t in text]
_A : Any = self.sp_model.encode(_a )
if return_tensors is True or return_tensors == "pt":
_A : Optional[Any] = torch.tensor(_a )
return token_ids
def a__ ( self , _a ) -> str:
return self.sp_model.decode(_a )
def a__ ( self , _a ) -> List[int]:
_A : Union[str, Any] = [F'''User: {text}''' if is_user else F'''Bot: {text}''' for is_user, text in conversation.iter_texts()]
_A : Tuple = (
F'''{self.eos_token}{self.bos_token}''' + F'''{self.bos_token}'''.join(_a ) + F'''{self.bos_token}Bot:'''
)
return self.encode(text=_a )
| 343 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_snake_case = logging.get_logger(__name__)
class lowercase ( UpperCamelCase__ ):
_a = ["pixel_values"]
def __init__( self , _a = True , _a = None , _a = PIL.Image.BICUBIC , _a = True , _a = None , _a = 1 / 255 , _a = True , _a = True , _a = None , _a = None , **_a , ) -> None:
super().__init__(**_a )
_A : Optional[Any] = size if size is not None else {"""height""": 256, """width""": 256}
_A : Dict = get_size_dict(_a )
_A : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_A : Dict = get_size_dict(_a , param_name="""crop_size""" )
_A : int = do_resize
_A : str = size
_A : Union[str, Any] = resample
_A : List[Any] = do_center_crop
_A : Optional[int] = crop_size
_A : int = do_rescale
_A : Tuple = rescale_factor
_A : List[Any] = do_normalize
_A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_A : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def a__ ( self , _a , _a , _a = PIL.Image.BICUBIC , _a = None , **_a , ) -> np.ndarray:
_A : int = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return resize(
_a , size=(size["""height"""], size["""width"""]) , resample=_a , data_format=_a , **_a )
def a__ ( self , _a , _a , _a = None , **_a , ) -> np.ndarray:
_A : int = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' )
return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a )
def a__ ( self , _a , _a , _a = None , **_a , ) -> List[Any]:
return rescale(_a , scale=_a , data_format=_a , **_a )
def a__ ( self , _a , _a , _a , _a = None , **_a , ) -> np.ndarray:
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def a__ ( self , _a , _a = None , _a = None , _a=None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ) -> PIL.Image.Image:
_A : Optional[int] = do_resize if do_resize is not None else self.do_resize
_A : Any = resample if resample is not None else self.resample
_A : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop
_A : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
_A : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_A : Any = do_normalize if do_normalize is not None else self.do_normalize
_A : int = image_mean if image_mean is not None else self.image_mean
_A : Optional[Any] = image_std if image_std is not None else self.image_std
_A : Dict = size if size is not None else self.size
_A : int = get_size_dict(_a )
_A : List[Any] = crop_size if crop_size is not None else self.crop_size
_A : Optional[Any] = get_size_dict(_a , param_name="""crop_size""" )
_A : Dict = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_A : Dict = [to_numpy_array(_a ) for image in images]
if do_resize:
_A : List[Any] = [self.resize(image=_a , size=_a , resample=_a ) for image in images]
if do_center_crop:
_A : List[Any] = [self.center_crop(image=_a , size=_a ) for image in images]
if do_rescale:
_A : Any = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
_A : Tuple = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
_A : Tuple = [to_channel_dimension_format(_a , _a ) for image in images]
_A : int = {"""pixel_values""": images}
return BatchFeature(data=_a , tensor_type=_a )
| 343 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_snake_case = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ = 1000 ):
_A : List[Any] = 3
_A : Tuple = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import flax
import jax
import jax.numpy as jnp
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils_flax import (
CommonSchedulerState,
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
add_noise_common,
get_velocity_common,
)
@flax.struct.dataclass
class lowercase :
_a = 42
# setable values
_a = 42
_a = 42
_a = None
@classmethod
def a__ ( cls , _a , _a , _a ) -> Tuple:
return cls(common=_a , init_noise_sigma=_a , timesteps=_a )
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = [e.name for e in FlaxKarrasDiffusionSchedulers]
_a = 42
@property
def a__ ( self ) -> Dict:
return True
@register_to_config
def __init__( self , _a = 1000 , _a = 0.0001 , _a = 0.02 , _a = "linear" , _a = None , _a = "fixed_small" , _a = True , _a = "epsilon" , _a = jnp.floataa , ) -> Tuple:
_A : Tuple = dtype
def a__ ( self , _a = None ) -> DDPMSchedulerState:
if common is None:
_A : Dict = CommonSchedulerState.create(self )
# standard deviation of the initial noise distribution
_A : Union[str, Any] = jnp.array(1.0 , dtype=self.dtype )
_A : Tuple = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1]
return DDPMSchedulerState.create(
common=_a , init_noise_sigma=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a = None ) -> jnp.ndarray:
return sample
def a__ ( self , _a , _a , _a = () ) -> DDPMSchedulerState:
_A : Any = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_A : Dict = (jnp.arange(0 , _a ) * step_ratio).round()[::-1]
return state.replace(
num_inference_steps=_a , timesteps=_a , )
def a__ ( self , _a , _a , _a=None , _a=None ) -> Optional[int]:
_A : Optional[Any] = state.common.alphas_cumprod[t]
_A : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
_A : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t]
if variance_type is None:
_A : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
_A : Optional[Any] = jnp.clip(_a , a_min=1e-20 )
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
_A : Any = jnp.log(jnp.clip(_a , a_min=1e-20 ) )
elif variance_type == "fixed_large":
_A : Optional[Any] = state.common.betas[t]
elif variance_type == "fixed_large_log":
# Glide max_log
_A : Tuple = jnp.log(state.common.betas[t] )
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
_A : str = variance
_A : Union[str, Any] = state.common.betas[t]
_A : Tuple = (predicted_variance + 1) / 2
_A : List[str] = frac * max_log + (1 - frac) * min_log
return variance
def a__ ( self , _a , _a , _a , _a , _a = None , _a = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]:
_A : Dict = timestep
if key is None:
_A : int = jax.random.PRNGKey(0 )
if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]:
_A , _A : List[str] = jnp.split(_a , sample.shape[1] , axis=1 )
else:
_A : int = None
# 1. compute alphas, betas
_A : int = state.common.alphas_cumprod[t]
_A : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) )
_A : Union[str, Any] = 1 - alpha_prod_t
_A : Optional[int] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
_A : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
_A : Optional[int] = model_output
elif self.config.prediction_type == "v_prediction":
_A : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` '''
""" for the FlaxDDPMScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
_A : Union[str, Any] = jnp.clip(_a , -1 , 1 )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t
_A : Dict = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_A : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
def random_variance():
_A : Tuple = jax.random.split(_a , num=1 )
_A : Dict = jax.random.normal(_a , shape=model_output.shape , dtype=self.dtype )
return (self._get_variance(_a , _a , predicted_variance=_a ) ** 0.5) * noise
_A : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) )
_A : Union[str, Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample, state)
return FlaxDDPMSchedulerOutput(prev_sample=_a , state=_a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return add_noise_common(state.common , _a , _a , _a )
def a__ ( self , _a , _a , _a , _a , ) -> jnp.ndarray:
return get_velocity_common(state.common , _a , _a , _a )
def __len__( self ) -> List[Any]:
return self.config.num_train_timesteps
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_snake_case = {
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ["ConvNextFeatureExtractor"]
_snake_case = ["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 343 |
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ):
# Format the message.
if name is None:
_A : Union[str, Any] = None
else:
_A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}"""
_A : Tuple = fmt.format(snake_case_ )
# Print and recurse (if needed).
if isinstance(snake_case_,snake_case_ ):
if msg is not None:
print(snake_case_ )
for k in val.keys():
recursive_print(snake_case_,val[k],spaces + 2 )
elif isinstance(snake_case_,torch.Tensor ):
print(snake_case_,""":""",val.size() )
else:
print(snake_case_,""":""",snake_case_ )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
_A : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
_A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
_A : Tuple = param.view(*snake_case_ )
_A : Any = param.transpose(0,2 )
_A : int = param.transpose(1,2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
_A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
_A : int = param.view(*snake_case_ )
_A : Any = param.transpose(0,1 ).contiguous()
_A : Optional[int] = param.view(*snake_case_ )
return param
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ):
# The converted output model.
_A : Any = {}
# old versions did not store training args
_A : str = input_state_dict.get("""args""",snake_case_ )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
_A : Union[str, Any] = ds_args.padded_vocab_size
_A : List[Any] = ds_args.max_position_embeddings
_A : Optional[int] = ds_args.hidden_size
_A : List[Any] = ds_args.num_layers
_A : List[str] = ds_args.num_attention_heads
_A : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
_A : Union[str, Any] = config.n_head
# The hidden_size per head.
_A : List[Any] = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
_A : Tuple = input_state_dict["""checkpoint_version"""]
else:
_A : Any = 0.0
# The model.
_A : Any = input_state_dict["""model"""]
# The language model.
_A : Tuple = model["""language_model"""]
# The embeddings.
_A : Any = lm["""embedding"""]
# The word embeddings.
_A : Dict = embeddings["""word_embeddings"""]["""weight"""]
# Truncate the embedding table to vocab_size rows.
_A : Union[str, Any] = word_embeddings[: config.vocab_size, :]
_A : Tuple = word_embeddings
# The position embeddings.
_A : Tuple = embeddings["""position_embeddings"""]["""weight"""]
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
_A : Any = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' )
# Store the position embeddings.
_A : Optional[int] = pos_embeddings
# The transformer.
_A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""]
# The regex to extract layer names.
_A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" )
# The simple map of names for "automated" rules.
_A : Union[str, Any] = {
"""attention.dense""": """.attn.c_proj.""",
"""self_attention.dense""": """.attn.c_proj.""",
"""mlp.dense_h_to_4h""": """.mlp.c_fc.""",
"""mlp.dense_4h_to_h""": """.mlp.c_proj.""",
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
_A : List[str] = layer_re.match(snake_case_ )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_A : Tuple = int(m.group(1 ) )
# The name of the operation.
_A : Optional[Any] = m.group(2 )
# Is it a weight or a bias?
_A : Dict = m.group(3 )
# The name of the layer.
_A : Optional[Any] = f'''transformer.h.{layer_idx}'''
# For layernorm(s), simply store the layer norm.
if op_name.endswith("""layernorm""" ):
_A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2"""
_A : List[str] = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
_A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view(
1,1,snake_case_,snake_case_ )
_A : Any = causal_mask
# Insert a "dummy" tensor for masked_bias.
_A : List[str] = torch.tensor(-1e4,dtype=torch.floataa )
_A : Tuple = masked_bias
_A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
_A : Tuple = out_val.transpose(0,1 ).contiguous()
# Store.
_A : Any = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
_A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ )
# Store. No change of shape.
_A : Tuple = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
_A : List[str] = megatron_to_transformers[op_name]
_A : Any = val.transpose(0,1 )
# Copy the bias.
elif weight_or_bias == "bias":
_A : Dict = megatron_to_transformers[op_name]
_A : List[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
_A : Optional[Any] = transformer["""final_layernorm.weight"""]
_A : Dict = transformer["""final_layernorm.bias"""]
# For LM head, transformers' wants the matrix to weight embeddings.
_A : List[str] = word_embeddings
# It should be done!
return output_state_dict
def lowerCAmelCase_ ( ):
# Create the argument parser.
_A : Any = argparse.ArgumentParser()
parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" )
parser.add_argument(
"""path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",)
parser.add_argument(
"""--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",)
_A : Optional[int] = parser.parse_args()
# Extract the basename.
_A : Any = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' )
if args.path_to_checkpoint.endswith(""".zip""" ):
with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint:
with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict:
_A : Tuple = torch.load(snake_case_,map_location="""cpu""" )
else:
_A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" )
_A : Optional[Any] = input_state_dict.get("""args""",snake_case_ )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
_A : Union[str, Any] = """gelu_fast"""
elif ds_args.openai_gelu:
_A : int = """gelu_new"""
else:
_A : Optional[Any] = """gelu"""
else:
# in the very early days this used to be "gelu_new"
_A : Any = """gelu_new"""
# Spell out all parameters in case the defaults change.
_A : Any = GPTaConfig(
vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,)
else:
_A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file )
_A : List[str] = ["""GPT2LMHeadModel"""]
# Convert.
print("""Converting""" )
_A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(snake_case_,snake_case_ )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
_A : int = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
_A : Any = """gpt2"""
elif tokenizer_type == "PretrainedFromHF":
_A : List[Any] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' )
else:
_A : Optional[Any] = """gpt2"""
_A : List[str] = AutoTokenizer.from_pretrained(snake_case_ )
_A : Tuple = type(snake_case_ ).__name__
_A : Union[str, Any] = tokenizer_class
# Store the config to file.
print("""Saving config""" )
config.save_pretrained(snake_case_ )
# Save tokenizer based on args
print(f'''Adding {tokenizer_class} tokenizer files''' )
tokenizer.save_pretrained(snake_case_ )
# Store the state_dict to file.
_A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" )
print(f'''Saving checkpoint to "{output_checkpoint_file}"''' )
torch.save(snake_case_,snake_case_ )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 343 | 1 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=3 , _a=32 , _a=3 , _a=10 , _a=[10, 20, 30, 40] , _a=[1, 1, 2, 1] , _a=True , _a=True , _a="relu" , _a=3 , _a=None , ) -> List[Any]:
_A : List[str] = parent
_A : Optional[Any] = batch_size
_A : Dict = image_size
_A : Tuple = num_channels
_A : str = embeddings_size
_A : List[Any] = hidden_sizes
_A : Optional[Any] = depths
_A : Union[str, Any] = is_training
_A : List[Any] = use_labels
_A : str = hidden_act
_A : List[str] = num_labels
_A : Any = scope
_A : Any = len(_a )
def a__ ( self ) -> List[str]:
_A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : int = None
if self.use_labels:
_A : str = ids_tensor([self.batch_size] , self.num_labels )
_A : Tuple = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Optional[Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def a__ ( self , _a , _a , _a ) -> int:
_A : Dict = TFResNetModel(config=_a )
_A : List[Any] = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> Any:
_A : Any = self.num_labels
_A : List[str] = TFResNetForImageClassification(_a )
_A : Any = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = self.prepare_config_and_inputs()
_A , _A , _A : Tuple = config_and_inputs
_A : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_a = (
{"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification}
if is_tf_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> str:
_A : Tuple = TFResNetModelTester(self )
_A : List[str] = ConfigTester(self , config_class=_a , has_text_modality=_a )
def a__ ( self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> Any:
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""" )
def a__ ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""" )
def a__ ( self ) -> Any:
pass
def a__ ( self ) -> List[str]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Dict = model_class(_a )
_A : List[Any] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : Any = [*signature.parameters.keys()]
_A : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Optional[Any]:
_A : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
_A : Optional[Any] = model(**self._prepare_for_class(_a , _a ) )
_A : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : int = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common()
_A : Any = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
_A : Any = layer_type
_A : Tuple = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Optional[int] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> Optional[int]:
_A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[Any]:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : int = TFResNetModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> Any:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def a__ ( self ) -> Optional[int]:
_A : str = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_A : Tuple = self.default_image_processor
_A : Tuple = prepare_img()
_A : Any = image_processor(images=_a , return_tensors="""tf""" )
# forward pass
_A : Optional[Any] = model(**_a )
# verify the logits
_A : Dict = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Optional[Any] = tf.constant([-11.1069, -9.7877, -8.3777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _a , atol=1e-4 ) )
| 343 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
_snake_case = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
_snake_case = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
_a = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
_snake_case = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
_snake_case = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
_snake_case = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(UpperCamelCase__ )
class lowercase :
def __call__( self , _a , _a = None , _a = None , _a = False , _a = False , _a = None , _a = None , _a = None , **_a , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
_a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
elif titles is None or texts is None:
_A : Optional[Any] = titles if texts is None else texts
return super().__call__(
_a , _a , padding=_a , truncation=_a , max_length=_a , return_tensors=_a , return_attention_mask=_a , **_a , )
_A : Dict = titles if not isinstance(_a , _a ) else [titles]
_A : Tuple = texts if not isinstance(_a , _a ) else [texts]
_A : Any = len(_a )
_A : Optional[Any] = questions if not isinstance(_a , _a ) else [questions] * n_passages
if len(_a ) != len(_a ):
raise ValueError(
F'''There should be as many titles than texts but got {len(_a )} titles and {len(_a )} texts.''' )
_A : str = super().__call__(_a , _a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = super().__call__(_a , add_special_tokens=_a , padding=_a , truncation=_a )["""input_ids"""]
_A : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(_a , _a )
]
}
if return_attention_mask is not False:
_A : Any = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
_A : str = attention_mask
return self.pad(_a , padding=_a , max_length=_a , return_tensors=_a )
def a__ ( self , _a , _a , _a = 16 , _a = 64 , _a = 4 , ) -> List[DPRSpanPrediction]:
_A : Dict = reader_input["""input_ids"""]
_A , _A , _A : Tuple = reader_output[:3]
_A : List[str] = len(_a )
_A : Tuple = sorted(range(_a ) , reverse=_a , key=relevance_logits.__getitem__ )
_A : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
_A : Tuple = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
_A : int = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
_A : Tuple = sequence_ids.index(self.pad_token_id )
else:
_A : Tuple = len(_a )
_A : Union[str, Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_a , top_spans=_a , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_a , start_index=_a , end_index=_a , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(_a ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def a__ ( self , _a , _a , _a , _a , ) -> List[DPRSpanPrediction]:
_A : Tuple = []
for start_index, start_score in enumerate(_a ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
_A : Tuple = sorted(_a , key=lambda _a : x[1] , reverse=_a )
_A : Union[str, Any] = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(F'''Wrong span indices: [{start_index}:{end_index}]''' )
_A : Dict = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(F'''Span is too long: {length} > {max_answer_length}''' )
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(_a ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(UpperCamelCase__ )
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = READER_PRETRAINED_VOCAB_FILES_MAP
_a = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = READER_PRETRAINED_INIT_CONFIGURATION
_a = ["input_ids", "attention_mask"]
| 343 | 1 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=3 , _a=True , _a=True , _a=0.1 , _a=0.1 , _a=224 , _a=1000 , _a=[3, 3, 6, 4] , _a=[48, 56, 112, 220] , ) -> Optional[int]:
_A : Tuple = parent
_A : Optional[Any] = batch_size
_A : str = num_channels
_A : Optional[Any] = is_training
_A : List[Any] = use_labels
_A : Dict = hidden_dropout_prob
_A : List[Any] = attention_probs_dropout_prob
_A : Dict = num_labels
_A : Tuple = image_size
_A : Dict = layer_depths
_A : Union[str, Any] = embed_dims
def a__ ( self ) -> List[str]:
_A : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : Any = None
if self.use_labels:
_A : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
_A : Optional[Any] = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> Dict:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_a , layer_scale_init_value=1e-5 , )
def a__ ( self , _a , _a , _a ) -> Optional[Any]:
_A : str = SwiftFormerModel(config=_a )
model.to(_a )
model.eval()
_A : Optional[Any] = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def a__ ( self , _a , _a , _a ) -> Dict:
_A : List[Any] = self.num_labels
_A : Tuple = SwiftFormerForImageClassification(_a )
model.to(_a )
model.eval()
_A : str = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
_A : str = SwiftFormerForImageClassification(_a )
model.to(_a )
model.eval()
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : Optional[Any] = model(_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self ) -> int:
((_A) , (_A) , (_A)) : Union[str, Any] = self.prepare_config_and_inputs()
_A : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
_a = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
_a = False
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : Tuple = SwiftFormerModelTester(self )
_A : Union[str, Any] = ConfigTester(
self , config_class=_a , has_text_modality=_a , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def a__ ( self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> int:
_A , _A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : int = model_class(_a )
_A : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_a , nn.Linear ) )
def a__ ( self ) -> List[str]:
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = model_class(_a )
_A : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : Tuple = [*signature.parameters.keys()]
_A : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> str:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> List[Any]:
_A : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[Any]:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Union[str, Any] = SwiftFormerModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@unittest.skip(reason="""SwiftFormer does not output attentions""" )
def a__ ( self ) -> Optional[int]:
pass
def a__ ( self ) -> Dict:
def check_hidden_states_output(_a , _a , _a ):
_A : Optional[int] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Union[str, Any] = outputs.hidden_states
_A : Optional[Any] = 8
self.assertEqual(len(_a ) , _a ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(_a ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
_A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Dict = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> Tuple:
def _config_zero_init(_a ):
_A : List[Any] = copy.deepcopy(_a )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(_a , _a , 1e-10 )
if isinstance(getattr(_a , _a , _a ) , _a ):
_A : int = _config_zero_init(getattr(_a , _a ) )
setattr(_a , _a , _a )
return configs_no_init
_A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Dict = _config_zero_init(_a )
for model_class in self.all_model_classes:
_A : str = model_class(config=_a )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def a__ ( self ) -> str:
pass
def lowerCAmelCase_ ( ):
_A : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> Union[str, Any]:
return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Any:
_A : Dict = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_a )
_A : Optional[int] = self.default_image_processor
_A : str = prepare_img()
_A : Optional[int] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Union[str, Any] = model(**_a )
# verify the logits
_A : str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Union[str, Any] = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
| 343 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class lowercase ( unittest.TestCase ):
@property
def a__ ( self ) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def a__ ( self ) -> List[Any]:
_A : int = ort.SessionOptions()
_A : Any = False
return options
def a__ ( self ) -> Union[str, Any]:
_A : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo.png""" )
_A : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" )
_A : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" )
# using the PNDM scheduler by default
_A : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = """A red cat sitting on a park bench"""
_A : Optional[Any] = np.random.RandomState(0 )
_A : Dict = pipe(
prompt=_a , image=_a , mask_image=_a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=_a , output_type="""np""" , )
_A : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1e-2
| 343 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 343 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_ ):
create_state_space_tree(snake_case_,[],0,[0 for i in range(len(snake_case_ ) )] )
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,):
if index == len(snake_case_ ):
print(snake_case_ )
return
for i in range(len(snake_case_ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_A : Optional[Any] = True
create_state_space_tree(snake_case_,snake_case_,index + 1,snake_case_ )
current_sequence.pop()
_A : str = False
_snake_case = [3, 1, 2, 4]
generate_all_permutations(sequence)
_snake_case = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 343 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_bert import BertTokenizer
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"vocab_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
"bert-base-multilingual-uncased": (
"https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt"
),
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt"
),
"bert-base-cased-finetuned-mrpc": (
"https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt"
),
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
"bert-base-german-dbmdz-uncased": (
"https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt"
),
"wietsedv/bert-base-dutch-cased": (
"https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json",
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json",
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json",
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json",
"bert-base-multilingual-uncased": (
"https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json"
),
"bert-base-multilingual-cased": (
"https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json"
),
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json",
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json",
"bert-large-uncased-whole-word-masking": (
"https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json"
),
"bert-large-cased-whole-word-masking": (
"https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json"
),
"bert-large-uncased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"
),
"bert-large-cased-whole-word-masking-finetuned-squad": (
"https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json"
),
"bert-base-cased-finetuned-mrpc": (
"https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json"
),
"bert-base-german-dbmdz-cased": (
"https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json"
),
"bert-base-german-dbmdz-uncased": (
"https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json"
),
"TurkuNLP/bert-base-finnish-cased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json"
),
"TurkuNLP/bert-base-finnish-uncased-v1": (
"https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json"
),
"wietsedv/bert-base-dutch-cased": (
"https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json"
),
},
}
_snake_case = {
"bert-base-uncased": 512,
"bert-large-uncased": 512,
"bert-base-cased": 512,
"bert-large-cased": 512,
"bert-base-multilingual-uncased": 512,
"bert-base-multilingual-cased": 512,
"bert-base-chinese": 512,
"bert-base-german-cased": 512,
"bert-large-uncased-whole-word-masking": 512,
"bert-large-cased-whole-word-masking": 512,
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
"bert-base-cased-finetuned-mrpc": 512,
"bert-base-german-dbmdz-cased": 512,
"bert-base-german-dbmdz-uncased": 512,
"TurkuNLP/bert-base-finnish-cased-v1": 512,
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
"wietsedv/bert-base-dutch-cased": 512,
}
_snake_case = {
"bert-base-uncased": {"do_lower_case": True},
"bert-large-uncased": {"do_lower_case": True},
"bert-base-cased": {"do_lower_case": False},
"bert-large-cased": {"do_lower_case": False},
"bert-base-multilingual-uncased": {"do_lower_case": True},
"bert-base-multilingual-cased": {"do_lower_case": False},
"bert-base-chinese": {"do_lower_case": False},
"bert-base-german-cased": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
}
class lowercase ( UpperCamelCase__ ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_INIT_CONFIGURATION
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = BertTokenizer
def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ) -> Dict:
super().__init__(
_a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , )
_A : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , _a ) != do_lower_case
or normalizer_state.get("""strip_accents""" , _a ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , _a ) != tokenize_chinese_chars
):
_A : Union[str, Any] = getattr(_a , normalizer_state.pop("""type""" ) )
_A : Union[str, Any] = do_lower_case
_A : Tuple = strip_accents
_A : Union[str, Any] = tokenize_chinese_chars
_A : Optional[int] = normalizer_class(**_a )
_A : Dict = do_lower_case
def a__ ( self , _a , _a=None ) -> Tuple:
_A : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a__ ( self , _a , _a = None ) -> List[int]:
_A : Tuple = [self.sep_token_id]
_A : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self , _a , _a = None ) -> Tuple[str]:
_A : Dict = self._tokenizer.model.save(_a , name=_a )
return tuple(_a )
| 343 |
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = filter(lambda snake_case_ : p.requires_grad,model.parameters() )
_A : str = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_snake_case = logging.getLogger(__name__)
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if metric == "rouge2":
_A : Optional[int] = """{val_avg_rouge2:.4f}-{step_count}"""
elif metric == "bleu":
_A : Dict = """{val_avg_bleu:.4f}-{step_count}"""
elif metric == "em":
_A : List[str] = """{val_avg_em:.4f}-{step_count}"""
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
""" function.""" )
_A : Optional[int] = ModelCheckpoint(
dirpath=snake_case_,filename=snake_case_,monitor=f'''val_{metric}''',mode="""max""",save_top_k=3,every_n_epochs=1,)
return checkpoint_callback
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return EarlyStopping(
monitor=f'''val_{metric}''',mode="""min""" if """loss""" in metric else """max""",patience=snake_case_,verbose=snake_case_,)
class lowercase ( pl.Callback ):
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(_a )
@rank_zero_only
def a__ ( self , _a , _a , _a , _a=True ) -> None:
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_A : int = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["""log""", """progress_bar""", """preds"""]} )
# Log results
_A : Dict = Path(pl_module.hparams.output_dir )
if type_path == "test":
_A : List[Any] = od / """test_results.txt"""
_A : List[Any] = od / """test_generations.txt"""
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_A : Optional[int] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_A : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=_a )
generations_file.parent.mkdir(exist_ok=_a )
with open(_a , """a+""" ) as writer:
for key in sorted(_a ):
if key in ["log", "progress_bar", "preds"]:
continue
_A : List[Any] = metrics[key]
if isinstance(_a , torch.Tensor ):
_A : str = val.item()
_A : str = F'''{key}: {val:.6f}\n'''
writer.write(_a )
if not save_generations:
return
if "preds" in metrics:
_A : List[Any] = """\n""".join(metrics["""preds"""] )
generations_file.open("""w+""" ).write(_a )
@rank_zero_only
def a__ ( self , _a , _a ) -> str:
try:
_A : int = pl_module.model.model.num_parameters()
except AttributeError:
_A : str = pl_module.model.num_parameters()
_A : Optional[int] = count_trainable_parameters(_a )
# mp stands for million parameters
trainer.logger.log_metrics({"""n_params""": npars, """mp""": npars / 1e6, """grad_mp""": n_trainable_pars / 1e6} )
@rank_zero_only
def a__ ( self , _a , _a ) -> Optional[int]:
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(_a , _a , """test""" )
@rank_zero_only
def a__ ( self , _a , _a ) -> Tuple:
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 343 | 1 |
def lowerCAmelCase_ ( snake_case_ ):
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
_A : Union[str, Any] = [True] * (num + 1)
_A : Optional[Any] = 2
while p * p <= num:
if primes[p]:
for i in range(p * p,num + 1,snake_case_ ):
_A : str = False
p += 1
return [prime for prime in range(2,num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 343 |
from __future__ import annotations
from collections.abc import Callable
_snake_case = list[list[float | int]]
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(size + 1 )] for _ in range(snake_case_ )]
_A : int
_A : int
_A : int
_A : int
_A : int
_A : float
for row in range(snake_case_ ):
for col in range(snake_case_ ):
_A : Dict = matrix[row][col]
_A : List[Any] = vector[row][0]
_A : List[Any] = 0
_A : Optional[Any] = 0
while row < size and col < size:
# pivoting
_A : Any = max((abs(augmented[rowa][col] ), rowa) for rowa in range(snake_case_,snake_case_ ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
_A , _A : Optional[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1,snake_case_ ):
_A : str = augmented[rowa][col] / augmented[row][col]
_A : List[Any] = 0
for cola in range(col + 1,size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1,snake_case_ ):
for row in range(snake_case_ ):
_A : int = augmented[row][col] / augmented[col][col]
for cola in range(snake_case_,size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row],10 )] for row in range(snake_case_ )
]
def lowerCAmelCase_ ( snake_case_ ):
_A : int = len(snake_case_ )
_A : Matrix = [[0 for _ in range(snake_case_ )] for _ in range(snake_case_ )]
_A : Matrix = [[0] for _ in range(snake_case_ )]
_A : Matrix
_A : int
_A : int
_A : int
for x_val, y_val in enumerate(snake_case_ ):
for col in range(snake_case_ ):
_A : str = (x_val + 1) ** (size - col - 1)
_A : List[str] = y_val
_A : Any = solve(snake_case_,snake_case_ )
def interpolated_func(snake_case_ ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(snake_case_ ) )
return interpolated_func
def lowerCAmelCase_ ( snake_case_ ):
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowerCAmelCase_ ( snake_case_ = question_function,snake_case_ = 10 ):
_A : list[int] = [func(snake_case_ ) for x_val in range(1,order + 1 )]
_A : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1,order + 1 )
]
_A : int = 0
_A : Callable[[int], int]
_A : int
for poly in polynomials:
_A : Optional[int] = 1
while func(snake_case_ ) == poly(snake_case_ ):
x_val += 1
ret += poly(snake_case_ )
return ret
if __name__ == "__main__":
print(f"""{solution() = }""")
| 343 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_snake_case = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine"
def lowerCAmelCase_ ( ):
_A : Tuple = _ask_options(
"""In which compute environment are you running?""",["""This machine""", """AWS (Amazon SageMaker)"""],_convert_compute_environment,)
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
_A : Optional[Any] = get_sagemaker_input()
else:
_A : Dict = get_cluster_input()
return config
def lowerCAmelCase_ ( snake_case_=None ):
if subparsers is not None:
_A : Dict = subparsers.add_parser("""config""",description=snake_case_ )
else:
_A : Tuple = argparse.ArgumentParser("""Accelerate config command""",description=snake_case_ )
parser.add_argument(
"""--config_file""",default=snake_case_,help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
),)
if subparsers is not None:
parser.set_defaults(func=snake_case_ )
return parser
def lowerCAmelCase_ ( snake_case_ ):
_A : List[str] = get_user_input()
if args.config_file is not None:
_A : str = args.config_file
else:
if not os.path.isdir(snake_case_ ):
os.makedirs(snake_case_ )
_A : Union[str, Any] = default_yaml_config_file
if config_file.endswith(""".json""" ):
config.to_json_file(snake_case_ )
else:
config.to_yaml_file(snake_case_ )
print(f'''accelerate configuration saved at {config_file}''' )
def lowerCAmelCase_ ( ):
_A : List[str] = config_command_parser()
_A : str = parser.parse_args()
config_command(snake_case_ )
if __name__ == "__main__":
main()
| 343 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
_snake_case = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowerCAmelCase_ ( snake_case_ = "mumbai" ):
_A : Optional[Any] = BeautifulSoup(requests.get(url + location ).content,"""html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""",attrs={"""data-tn-component""": """organicJob"""} ):
_A : Tuple = job.find("""a""",attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
_A : Optional[int] = job.find("""span""",{"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 343 | 1 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = PegasusTokenizer
_a = PegasusTokenizerFast
_a = True
_a = True
def a__ ( self ) -> int:
super().setUp()
# We have a SentencePiece fixture for testing
_A : Any = PegasusTokenizer(_a )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def a__ ( self ) -> Any:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def a__ ( self , **_a ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , _a ) -> Union[str, Any]:
return ("This is a test", "This is a test")
def a__ ( self ) -> List[Any]:
_A : Optional[Any] = """</s>"""
_A : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a )
def a__ ( self ) -> Any:
_A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_a ) , 1103 )
def a__ ( self ) -> Optional[Any]:
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def a__ ( self ) -> Any:
_A : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_A : List[Any] = self.tokenizer_class.from_pretrained(self.tmpdirname )
_A : int = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
_A : int = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
_A : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
self.assertListEqual(_a , _a )
def a__ ( self ) -> List[str]:
_A : Dict = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_A : int = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
_A : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
_A : Any = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0]
self.assertListEqual(_a , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Optional[Any] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
_A : Any = """To ensure a smooth flow of bank resolutions."""
_A : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
_A : Optional[Any] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0]
self.assertListEqual(_a , _a )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def a__ ( self ) -> Any:
_A : Dict = ["""This is going to be way too long.""" * 150, """short example"""]
_A : Union[str, Any] = ["""not super long but more than 5 tokens""", """tiny"""]
_A : List[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" )
_A : List[Any] = self._large_tokenizer(
text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(_a ) == 2 # input_ids, attention_mask.
@slow
def a__ ( self ) -> Optional[int]:
# fmt: off
_A : Optional[Any] = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = PegasusTokenizer
_a = PegasusTokenizerFast
_a = True
_a = True
def a__ ( self ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_A : Dict = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def a__ ( self ) -> Tuple:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def a__ ( self , **_a ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , _a ) -> Optional[Any]:
return ("This is a test", "This is a test")
def a__ ( self ) -> Tuple:
_A : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
_A : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname )
_A : Optional[Any] = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
_A : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
_A : Any = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
self.assertListEqual(_a , _a )
@require_torch
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = ["""This is going to be way too long.""" * 1000, """short example"""]
_A : Any = ["""not super long but more than 5 tokens""", """tiny"""]
_A : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" )
_A : Dict = self._large_tokenizer(
text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(_a ) == 2 # input_ids, attention_mask.
def a__ ( self ) -> Optional[int]:
_A : Dict = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
_A : Dict = self._large_tokenizer(_a ).input_ids
self.assertListEqual(
_a , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 343 |
from __future__ import annotations
from decimal import Decimal
from numpy import array
def lowerCAmelCase_ ( snake_case_ ):
_A : Tuple = Decimal
# Check if the provided matrix has 2 rows and 2 columns
# since this implementation only works for 2x2 matrices
if len(snake_case_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2:
# Calculate the determinant of the matrix
_A : List[Any] = float(
d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creates a copy of the matrix with swapped positions of the elements
_A : Tuple = [[0.0, 0.0], [0.0, 0.0]]
_A , _A : List[str] = matrix[1][1], matrix[0][0]
_A , _A : List[str] = -matrix[1][0], -matrix[0][1]
# Calculate the inverse of the matrix
return [
[(float(d(snake_case_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix
]
elif (
len(snake_case_ ) == 3
and len(matrix[0] ) == 3
and len(matrix[1] ) == 3
and len(matrix[2] ) == 3
):
# Calculate the determinant of the matrix using Sarrus rule
_A : List[str] = float(
(
(d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] ))
+ (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] ))
+ (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] ))
)
- (
(d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] ))
+ (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] ))
+ (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] ))
) )
if determinant == 0:
raise ValueError("""This matrix has no inverse.""" )
# Creating cofactor matrix
_A : List[Any] = [
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
[d(0.0 ), d(0.0 ), d(0.0 )],
]
_A : Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - (
d(matrix[1][2] ) * d(matrix[2][1] )
)
_A : Optional[Any] = -(
(d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[1][0] ) * d(matrix[2][1] )) - (
d(matrix[1][1] ) * d(matrix[2][0] )
)
_A : List[Any] = -(
(d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] ))
)
_A : int = (d(matrix[0][0] ) * d(matrix[2][2] )) - (
d(matrix[0][2] ) * d(matrix[2][0] )
)
_A : Union[str, Any] = -(
(d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] ))
)
_A : Any = (d(matrix[0][1] ) * d(matrix[1][2] )) - (
d(matrix[0][2] ) * d(matrix[1][1] )
)
_A : List[str] = -(
(d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] ))
)
_A : Optional[int] = (d(matrix[0][0] ) * d(matrix[1][1] )) - (
d(matrix[0][1] ) * d(matrix[1][0] )
)
# Transpose the cofactor matrix (Adjoint matrix)
_A : List[Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
_A : List[str] = cofactor_matrix[j][i]
# Inverse of the matrix using the formula (1/determinant) * adjoint matrix
_A : Union[str, Any] = array(snake_case_ )
for i in range(3 ):
for j in range(3 ):
inverse_matrix[i][j] /= d(snake_case_ )
# Calculate the inverse of the matrix
return [[float(d(snake_case_ ) ) or 0.0 for n in row] for row in inverse_matrix]
raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
| 343 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DanceDiffusionPipeline
_a = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
_a = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
_a = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
_a = False
_a = False
def a__ ( self ) -> Tuple:
torch.manual_seed(0 )
_A : Optional[int] = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_a , use_timestep_embedding=_a , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , )
_A : int = IPNDMScheduler()
_A : Optional[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
}
return components
def a__ ( self , _a , _a=0 ) -> Optional[int]:
if str(_a ).startswith("""mps""" ):
_A : Dict = torch.manual_seed(_a )
else:
_A : Union[str, Any] = torch.Generator(device=_a ).manual_seed(_a )
_A : str = {
"""batch_size""": 1,
"""generator""": generator,
"""num_inference_steps""": 4,
}
return inputs
def a__ ( self ) -> List[Any]:
_A : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
_A : int = self.get_dummy_components()
_A : str = DanceDiffusionPipeline(**_a )
_A : int = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
_A : List[str] = self.get_dummy_inputs(_a )
_A : Tuple = pipe(**_a )
_A : Optional[Any] = output.audios
_A : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_A : List[Any] = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def a__ ( self ) -> List[str]:
return super().test_save_load_local()
@skip_mps
def a__ ( self ) -> Union[str, Any]:
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
@skip_mps
def a__ ( self ) -> Union[str, Any]:
return super().test_save_load_optional_components()
@skip_mps
def a__ ( self ) -> Optional[Any]:
return super().test_attention_slicing_forward_pass()
def a__ ( self ) -> Tuple:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self ) -> Dict:
_A : Optional[int] = torch_device
_A : Optional[Any] = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" )
_A : Tuple = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
_A : List[Any] = torch.manual_seed(0 )
_A : Union[str, Any] = pipe(generator=_a , num_inference_steps=100 , audio_length_in_s=4.096 )
_A : Optional[Any] = output.audios
_A : Optional[int] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_A : List[Any] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
def a__ ( self ) -> Optional[Any]:
_A : int = torch_device
_A : Tuple = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa )
_A : int = pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
_A : Optional[Any] = torch.manual_seed(0 )
_A : Optional[int] = pipe(generator=_a , num_inference_steps=100 , audio_length_in_s=4.096 )
_A : Tuple = output.audios
_A : List[str] = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_A : Dict = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
| 343 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( UpperCamelCase__ ):
_a = 42
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
@register_to_config
def __init__( self , _a = 32 , _a = 64 , _a = 20 , _a = 768 , _a=77 , _a=4 , _a = 0.0 , _a = "silu" , _a = None , _a = None , _a = "linear" , _a = "prd" , _a = None , _a = None , _a = None , ) -> Any:
super().__init__()
_A : int = num_attention_heads
_A : Union[str, Any] = attention_head_dim
_A : Tuple = num_attention_heads * attention_head_dim
_A : Any = additional_embeddings
_A : Any = time_embed_dim or inner_dim
_A : List[str] = embedding_proj_dim or embedding_dim
_A : Optional[int] = clip_embed_dim or embedding_dim
_A : Union[str, Any] = Timesteps(_a , _a , 0 )
_A : str = TimestepEmbedding(_a , _a , out_dim=_a , act_fn=_a )
_A : Dict = nn.Linear(_a , _a )
if embedding_proj_norm_type is None:
_A : int = None
elif embedding_proj_norm_type == "layer":
_A : Optional[Any] = nn.LayerNorm(_a )
else:
raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' )
_A : Optional[Any] = nn.Linear(_a , _a )
if encoder_hid_proj_type is None:
_A : Union[str, Any] = None
elif encoder_hid_proj_type == "linear":
_A : Tuple = nn.Linear(_a , _a )
else:
raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' )
_A : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _a ) )
if added_emb_type == "prd":
_A : str = nn.Parameter(torch.zeros(1 , 1 , _a ) )
elif added_emb_type is None:
_A : Union[str, Any] = None
else:
raise ValueError(
F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' )
_A : int = nn.ModuleList(
[
BasicTransformerBlock(
_a , _a , _a , dropout=_a , activation_fn="""gelu""" , attention_bias=_a , )
for d in range(_a )
] )
if norm_in_type == "layer":
_A : Union[str, Any] = nn.LayerNorm(_a )
elif norm_in_type is None:
_A : Tuple = None
else:
raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' )
_A : int = nn.LayerNorm(_a )
_A : str = nn.Linear(_a , _a )
_A : Any = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10000.0 )
causal_attention_mask.triu_(1 )
_A : Optional[int] = causal_attention_mask[None, ...]
self.register_buffer("""causal_attention_mask""" , _a , persistent=_a )
_A : Tuple = nn.Parameter(torch.zeros(1 , _a ) )
_A : Dict = nn.Parameter(torch.zeros(1 , _a ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def a__ ( self ) -> Dict[str, AttentionProcessor]:
_A : List[str] = {}
def fn_recursive_add_processors(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
_A : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , _a , _a )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_a , _a , _a )
return processors
def a__ ( self , _a ) -> List[str]:
_A : Optional[int] = len(self.attn_processors.keys() )
if isinstance(_a , _a ) and len(_a ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(_a )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(_a , _a , _a ):
if hasattr(_a , """set_processor""" ):
if not isinstance(_a , _a ):
module.set_processor(_a )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _a , _a )
for name, module in self.named_children():
fn_recursive_attn_processor(_a , _a , _a )
def a__ ( self ) -> Union[str, Any]:
self.set_attn_processor(AttnProcessor() )
def a__ ( self , _a , _a , _a , _a = None , _a = None , _a = True , ) -> Optional[Any]:
_A : Tuple = hidden_states.shape[0]
_A : List[Any] = timestep
if not torch.is_tensor(_a ):
_A : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_A : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_A : Optional[int] = timesteps * torch.ones(_a , dtype=timesteps.dtype , device=timesteps.device )
_A : Dict = self.time_proj(_a )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_A : Tuple = timesteps_projected.to(dtype=self.dtype )
_A : List[Any] = self.time_embedding(_a )
if self.embedding_proj_norm is not None:
_A : Dict = self.embedding_proj_norm(_a )
_A : List[Any] = self.embedding_proj(_a )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_A : List[Any] = self.encoder_hidden_states_proj(_a )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("""`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set""" )
_A : Optional[int] = self.proj_in(_a )
_A : Optional[int] = self.positional_embedding.to(hidden_states.dtype )
_A : Union[str, Any] = []
_A : List[str] = 0
if encoder_hidden_states is not None:
additional_embeds.append(_a )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_A : List[str] = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_A : List[str] = hidden_states[:, None, :]
_A : Dict = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_A : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_a , -1 , -1 )
additional_embeds.append(_a )
_A : str = torch.cat(
_a , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_A : Dict = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_A : Union[str, Any] = F.pad(
_a , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_A : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_A : Optional[Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10000.0
_A : List[Any] = F.pad(_a , (0, self.additional_embeddings) , value=0.0 )
_A : Optional[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_A : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_A : str = self.norm_in(_a )
for block in self.transformer_blocks:
_A : List[Any] = block(_a , attention_mask=_a )
_A : Any = self.norm_out(_a )
if self.prd_embedding is not None:
_A : int = hidden_states[:, -1]
else:
_A : Any = hidden_states[:, additional_embeddings_len:]
_A : Union[str, Any] = self.proj_to_clip_embeddings(_a )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_a )
def a__ ( self , _a ) -> Tuple:
_A : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 343 | 1 |
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class lowercase ( UpperCamelCase__,unittest.TestCase ):
_a = DebertaTokenizer
_a = True
_a = DebertaTokenizerFast
def a__ ( self ) -> int:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_A : List[str] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""[UNK]""",
]
_A : str = dict(zip(_a , range(len(_a ) ) ) )
_A : str = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
_A : Dict = {"""unk_token""": """[UNK]"""}
_A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
_A : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(_a ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(_a ) )
def a__ ( self , **_a ) -> List[Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **_a )
def a__ ( self , _a ) -> Union[str, Any]:
_A : int = """lower newer"""
_A : int = """lower newer"""
return input_text, output_text
def a__ ( self ) -> Optional[int]:
_A : Tuple = self.get_tokenizer()
_A : Optional[int] = """lower newer"""
_A : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
_A : str = tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
_A : Any = tokens + [tokenizer.unk_token]
_A : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
def a__ ( self ) -> str:
_A : Union[str, Any] = self.get_tokenizer()
_A : List[str] = tokenizer("""Hello""" , """World""" )
_A : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd["""token_type_ids"""] , _a )
@slow
def a__ ( self ) -> List[Any]:
_A : int = self.tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
_A : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_a )
_A : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_a )
_A : Tuple = tokenizer.encode(
"""sequence builders""" , add_special_tokens=_a , add_prefix_space=_a )
_A : List[str] = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=_a , add_prefix_space=_a )
_A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_a )
_A : List[str] = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def a__ ( self ) -> Optional[int]:
_A : int = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
_A : Dict = tokenizer_class.from_pretrained("""microsoft/deberta-base""" )
_A : Union[str, Any] = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
_A : Union[str, Any] = tokenizer(_a , padding=_a )
_A : List[str] = [tokenizer.decode(_a , skip_special_tokens=_a ) for seq in encoding["""input_ids"""]]
# fmt: off
_A : Tuple = {
"""input_ids""": [
[1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2]
],
"""token_type_ids""": [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
"""attention_mask""": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
_A : Tuple = [
"""ALBERT: A Lite BERT for Self-supervised Learning of Language Representations""",
"""ALBERT incorporates two parameter reduction techniques""",
"""The first one is a factorized embedding parameterization. By decomposing the large vocabulary"""
""" embedding matrix into two small matrices, we separate the size of the hidden layers from the size of"""
""" vocabulary embedding.""",
]
self.assertDictEqual(encoding.data , _a )
for expected, decoded in zip(_a , _a ):
self.assertEqual(_a , _a )
| 343 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Any = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Any = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
_A : Union[str, Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_A : int = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[str] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : int = None
if token is not None:
_A : List[str] = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : str = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
_A : Optional[Any] = requests.get(snake_case_,headers=snake_case_ ).json()
_A : Any = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_A : Tuple = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(snake_case_ ):
_A : List[Any] = requests.get(url + f'''&page={i + 2}''',headers=snake_case_ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ):
_A : Dict = None
if token is not None:
_A : int = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
_A : Tuple = requests.get(snake_case_,headers=snake_case_,allow_redirects=snake_case_ )
_A : Tuple = result.headers["""Location"""]
_A : Union[str, Any] = requests.get(snake_case_,allow_redirects=snake_case_ )
_A : Dict = os.path.join(snake_case_,f'''{artifact_name}.zip''' )
with open(snake_case_,"""wb""" ) as fp:
fp.write(response.content )
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : List[str] = []
_A : int = []
_A : Tuple = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
_A : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_A : Dict = line[: line.index(""": """ )]
_A : Dict = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_A : List[str] = line[len("""FAILED """ ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
_A : Optional[int] = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` '''
f'''and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
_A : Any = None
if job_name and job_links:
_A : Dict = job_links.get(snake_case_,snake_case_ )
# A list with elements of the form (line of error, error, failed test)
_A : Optional[int] = [x + [y] + [job_link] for x, y in zip(snake_case_,snake_case_ )]
return result
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = []
_A : Optional[int] = [os.path.join(snake_case_,snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_,job_links=snake_case_ ) )
return errors
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : Dict = Counter()
counter.update([x[1] for x in logs] )
_A : Tuple = counter.most_common()
_A : Tuple = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_A : str = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Union[str, Any] = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_A : Dict = test.split("""/""" )[2]
else:
_A : str = None
return test
def lowerCAmelCase_ ( snake_case_,snake_case_=None ):
_A : str = [(x[0], x[1], get_model(x[2] )) for x in logs]
_A : Union[str, Any] = [x for x in logs if x[2] is not None]
_A : Optional[Any] = {x[2] for x in logs}
_A : List[Any] = {}
for test in tests:
_A : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_A : Union[str, Any] = counter.most_common()
_A : Any = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_A : str = sum(error_counts.values() )
if n_errors > 0:
_A : Optional[int] = {"""count""": n_errors, """errors""": error_counts}
_A : Union[str, Any] = dict(sorted(r.items(),key=lambda snake_case_ : item[1]["count"],reverse=snake_case_ ) )
return r
def lowerCAmelCase_ ( snake_case_ ):
_A : Optional[int] = """| no. | error | status |"""
_A : List[Any] = """|-:|:-|:-|"""
_A : List[Any] = [header, sep]
for error in reduced_by_error:
_A : List[str] = reduced_by_error[error]["""count"""]
_A : List[Any] = f'''| {count} | {error[:100]} | |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def lowerCAmelCase_ ( snake_case_ ):
_A : List[Any] = """| model | no. of errors | major error | count |"""
_A : Optional[Any] = """|-:|-:|-:|-:|"""
_A : Union[str, Any] = [header, sep]
for model in reduced_by_model:
_A : Dict = reduced_by_model[model]["""count"""]
_A , _A : str = list(reduced_by_model[model]["""errors"""].items() )[0]
_A : Union[str, Any] = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
_snake_case = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_snake_case = get_job_links(args.workflow_run_id, token=args.token)
_snake_case = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_snake_case = k.find(" / ")
_snake_case = k[index + len(" / ") :]
_snake_case = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_snake_case = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_snake_case = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_snake_case = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_snake_case = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_snake_case = reduce_by_error(errors)
_snake_case = reduce_by_model(errors)
_snake_case = make_github_table(reduced_by_error)
_snake_case = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 343 | 1 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase :
def __init__( self , _a , _a=13 , _a=32 , _a=3 , _a=4 , _a=[10, 20, 30, 40] , _a=[2, 2, 3, 2] , _a=True , _a=True , _a=37 , _a="gelu" , _a=10 , _a=0.02 , _a=["stage2", "stage3", "stage4"] , _a=[2, 3, 4] , _a=None , ) -> List[Any]:
_A : Tuple = parent
_A : Any = batch_size
_A : int = image_size
_A : Tuple = num_channels
_A : List[Any] = num_stages
_A : Any = hidden_sizes
_A : Union[str, Any] = depths
_A : Union[str, Any] = is_training
_A : Tuple = use_labels
_A : Optional[Any] = intermediate_size
_A : Union[str, Any] = hidden_act
_A : Any = num_labels
_A : List[str] = initializer_range
_A : str = out_features
_A : int = out_indices
_A : List[Any] = scope
def a__ ( self ) -> str:
_A : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_A : str = None
if self.use_labels:
_A : int = ids_tensor([self.batch_size] , self.num_labels )
_A : str = self.get_config()
return config, pixel_values, labels
def a__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=_a , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a__ ( self , _a , _a , _a ) -> int:
_A : int = ConvNextModel(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a__ ( self , _a , _a , _a ) -> List[Any]:
_A : Union[str, Any] = ConvNextForImageClassification(_a )
model.to(_a )
model.eval()
_A : List[Any] = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self , _a , _a , _a ) -> str:
_A : List[str] = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : Optional[int] = model(_a )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
_A : Optional[Any] = None
_A : str = ConvNextBackbone(config=_a )
model.to(_a )
model.eval()
_A : int = model(_a )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a__ ( self ) -> int:
_A : int = self.prepare_config_and_inputs()
_A , _A , _A : List[Any] = config_and_inputs
_A : Any = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
_a = (
{"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification}
if is_torch_available()
else {}
)
_a = True
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : int = ConvNextModelTester(self )
_A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def a__ ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a__ ( self ) -> str:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def a__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def a__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def a__ ( self ) -> List[Any]:
pass
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : Optional[Any] = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[Any] = [*signature.parameters.keys()]
_A : int = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _a )
def a__ ( self ) -> Union[str, Any]:
_A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def a__ ( self ) -> Tuple:
_A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*_a )
def a__ ( self ) -> Tuple:
def check_hidden_states_output(_a , _a , _a ):
_A : Tuple = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : Dict = model(**self._prepare_for_class(_a , _a ) )
_A : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_A : Dict = self.model_tester.num_stages
self.assertEqual(len(_a ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_A , _A : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : List[Any] = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_A : Union[str, Any] = True
check_hidden_states_output(_a , _a , _a )
def a__ ( self ) -> int:
_A : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@slow
def a__ ( self ) -> Optional[int]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A : Optional[Any] = ConvNextModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def lowerCAmelCase_ ( ):
_A : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class lowercase ( unittest.TestCase ):
@cached_property
def a__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def a__ ( self ) -> Optional[Any]:
_A : Any = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(_a )
_A : List[str] = self.default_image_processor
_A : int = prepare_img()
_A : Union[str, Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a )
# forward pass
with torch.no_grad():
_A : Dict = model(**_a )
# verify the logits
_A : Optional[Any] = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
_A : Any = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
@require_torch
class lowercase ( unittest.TestCase,UpperCamelCase__ ):
_a = (ConvNextBackbone,) if is_torch_available() else ()
_a = ConvNextConfig
_a = False
def a__ ( self ) -> List[str]:
_A : Optional[int] = ConvNextModelTester(self )
| 343 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> List[str]:
debug_launcher(test_script.main )
def a__ ( self ) -> Any:
debug_launcher(test_ops.main )
| 343 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
"configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"],
"processing_git": ["GitProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"GIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"GitForCausalLM",
"GitModel",
"GitPreTrainedModel",
"GitVisionModel",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 343 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class lowercase ( UpperCamelCase__,UpperCamelCase__ ):
_a = "resnet"
_a = ["basic", "bottleneck"]
def __init__( self , _a=3 , _a=64 , _a=[256, 512, 1024, 2048] , _a=[3, 4, 6, 3] , _a="bottleneck" , _a="relu" , _a=False , _a=None , _a=None , **_a , ) -> int:
super().__init__(**_a )
if layer_type not in self.layer_types:
raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
_A : Optional[Any] = num_channels
_A : List[Any] = embedding_size
_A : int = hidden_sizes
_A : Union[str, Any] = depths
_A : Optional[int] = layer_type
_A : Any = hidden_act
_A : List[Any] = downsample_in_first_stage
_A : int = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(_a ) + 1 )]
_A , _A : str = get_aligned_output_features_output_indices(
out_features=_a , out_indices=_a , stage_names=self.stage_names )
class lowercase ( UpperCamelCase__ ):
_a = version.parse("1.11" )
@property
def a__ ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def a__ ( self ) -> float:
return 1e-3
| 343 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.