code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _snake_case = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Optional[int]: for attribute in key.split("." ): __UpperCAmelCase : List[str] = getattr(__lowerCAmelCase, __lowerCAmelCase ) if weight_type is not None: __UpperCAmelCase : Tuple = getattr(__lowerCAmelCase, __lowerCAmelCase ).shape else: __UpperCAmelCase : Dict = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCAmelCase : str = value elif weight_type == "weight_v": __UpperCAmelCase : str = value elif weight_type == "bias": __UpperCAmelCase : Tuple = value else: __UpperCAmelCase : Optional[int] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : str = [] __UpperCAmelCase : Tuple = fairseq_model.state_dict() __UpperCAmelCase : List[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, hf_model.config.feat_extract_norm == "group", ) __UpperCAmelCase : Any = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Tuple = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(__lowerCAmelCase )[0].split("." )[-2] __UpperCAmelCase : Any = mapped_key.replace("*", __lowerCAmelCase ) if "weight_g" in name: __UpperCAmelCase : Dict = "weight_g" elif "weight_v" in name: __UpperCAmelCase : Dict = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: __UpperCAmelCase : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : str = "weight" else: __UpperCAmelCase : str = None set_recursively(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Tuple = name.split("." ) __UpperCAmelCase : List[Any] = int(items[0] ) __UpperCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : Dict = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : Optional[int] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None ) -> int: # load the pre-trained checkpoints __UpperCAmelCase : str = torch.load(__lowerCAmelCase ) __UpperCAmelCase : Dict = WavLMConfigOrig(checkpoint["cfg"] ) __UpperCAmelCase : Optional[int] = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: __UpperCAmelCase : Optional[int] = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: __UpperCAmelCase : str = WavLMConfig() __UpperCAmelCase : Union[str, Any] = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase, __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') _snake_case = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]: # Initialise PyTorch model __UpperCAmelCase : Tuple = AlbertConfig.from_json_file(snake_case__ ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : Optional[Any] = AlbertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(snake_case__, snake_case__, snake_case__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _snake_case = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def _UpperCamelCase ( snake_case__, snake_case__=None ) -> List[Any]: require_version(deps[pkg], snake_case__ )
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _snake_case ( _lowercase ): lowerCamelCase__: int = "ibert" def __init__( self: Union[str, Any] , __lowerCamelCase: List[str]=3_05_22 , __lowerCamelCase: str=7_68 , __lowerCamelCase: str=12 , __lowerCamelCase: List[str]=12 , __lowerCamelCase: Optional[int]=30_72 , __lowerCamelCase: List[str]="gelu" , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: Optional[Any]=5_12 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: List[str]=1e-12 , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: int=0 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: Tuple="absolute" , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[str]="none" , **__lowerCamelCase: Dict , ) -> int: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Dict = position_embedding_type __UpperCAmelCase : Dict = quant_mode __UpperCAmelCase : Tuple = force_dequant class _snake_case ( _lowercase ): @property def _lowerCamelCase ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCAmelCase : int = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ = None, ) -> Tuple: __UpperCAmelCase : Optional[int] = {} if train_file is not None: __UpperCAmelCase : str = [train_file] if eval_file is not None: __UpperCAmelCase : List[Any] = [eval_file] if test_file is not None: __UpperCAmelCase : Optional[Any] = [test_file] __UpperCAmelCase : Optional[int] = datasets.load_dataset("csv", data_files=snake_case__ ) __UpperCAmelCase : Tuple = list(ds[list(files.keys() )[0]].features.keys() ) __UpperCAmelCase : str = features_name.pop(snake_case__ ) __UpperCAmelCase : List[Any] = list(set(ds[list(files.keys() )[0]][label_name] ) ) __UpperCAmelCase : Union[str, Any] = {label: i for i, label in enumerate(snake_case__ )} __UpperCAmelCase : List[str] = tokenizer.model_input_names __UpperCAmelCase : Any = {} if len(snake_case__ ) == 1: for k in files.keys(): __UpperCAmelCase : Optional[int] = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( example[features_name[0]], truncation=snake_case__, max_length=snake_case__, padding="max_length" ), batched=snake_case__, ) elif len(snake_case__ ) == 2: for k in files.keys(): __UpperCAmelCase : str = ds[k].map( lambda snake_case__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=snake_case__, max_length=snake_case__, padding="max_length", ), batched=snake_case__, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __UpperCAmelCase : List[str] = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __UpperCAmelCase : int = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __UpperCAmelCase : Any = {k: v for k, v in ex.items() if k in input_names} __UpperCAmelCase : Union[str, Any] = labelaid[ex[label_name]] yield (d, label) __UpperCAmelCase : List[str] = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __UpperCAmelCase : Tuple = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __UpperCAmelCase : List[str] = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __UpperCAmelCase : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __UpperCAmelCase : List[Any] = ( tf.data.Dataset.from_generator( snake_case__, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __UpperCAmelCase : int = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _snake_case = logging.getLogger(__name__) @dataclass class _snake_case : lowerCamelCase__: int = field(metadata={"help": "Which column contains the label"} ) lowerCamelCase__: str = field(default=_lowercase , metadata={"help": "The path of the training file"} ) lowerCamelCase__: Optional[str] = field(default=_lowercase , metadata={"help": "The path of the development file"} ) lowerCamelCase__: Optional[str] = field(default=_lowercase , metadata={"help": "The path of the test file"} ) lowerCamelCase__: int = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : lowerCamelCase__: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase__: Optional[str] = field( default=_lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def _UpperCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) __UpperCAmelCase : Dict = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=snake_case__, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(snake_case__ ), labelaid=snake_case__, idalabel={id: label for label, id in labelaid.items()}, finetuning_task="text-classification", cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): __UpperCAmelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool(".bin" in model_args.model_name_or_path ), config=snake_case__, cache_dir=model_args.cache_dir, ) def compute_metrics(snake_case__ ) -> Dict: __UpperCAmelCase : str = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __UpperCAmelCase : Dict = TFTrainer( model=snake_case__, args=snake_case__, train_dataset=snake_case__, eval_dataset=snake_case__, compute_metrics=snake_case__, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __UpperCAmelCase : List[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __UpperCAmelCase : Optional[Any] = trainer.evaluate() __UpperCAmelCase : List[Any] = os.path.join(training_args.output_dir, "eval_results.txt" ) with open(snake_case__, "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(snake_case__ ) return results if __name__ == "__main__": main()
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _snake_case ( _lowercase ): lowerCamelCase__: List[str] = "mctct" def __init__( self: Any , __lowerCamelCase: Any=80_65 , __lowerCamelCase: Dict=15_36 , __lowerCamelCase: Union[str, Any]=36 , __lowerCamelCase: str=61_44 , __lowerCamelCase: int=4 , __lowerCamelCase: Dict=3_84 , __lowerCamelCase: Tuple=9_20 , __lowerCamelCase: Union[str, Any]=1e-5 , __lowerCamelCase: Tuple=0.3 , __lowerCamelCase: Union[str, Any]="relu" , __lowerCamelCase: Any=0.02 , __lowerCamelCase: List[Any]=0.3 , __lowerCamelCase: str=0.3 , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Any=2 , __lowerCamelCase: List[str]=1 , __lowerCamelCase: Tuple=0.3 , __lowerCamelCase: str=1 , __lowerCamelCase: Dict=(7,) , __lowerCamelCase: Any=(3,) , __lowerCamelCase: Tuple=80 , __lowerCamelCase: str=1 , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: int="sum" , __lowerCamelCase: Any=False , **__lowerCamelCase: Optional[int] , ) -> Dict: super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) __UpperCAmelCase : Any = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : List[Any] = attention_head_dim __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : Tuple = layerdrop __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = pad_token_id __UpperCAmelCase : Optional[int] = bos_token_id __UpperCAmelCase : Optional[int] = eos_token_id __UpperCAmelCase : Optional[Any] = conv_glu_dim __UpperCAmelCase : int = conv_dropout __UpperCAmelCase : Optional[Any] = num_conv_layers __UpperCAmelCase : int = input_feat_per_channel __UpperCAmelCase : List[str] = input_channels __UpperCAmelCase : Optional[Any] = conv_channels __UpperCAmelCase : Union[str, Any] = ctc_loss_reduction __UpperCAmelCase : str = ctc_zero_infinity # prevents config testing fail with exporting to json __UpperCAmelCase : Optional[Any] = list(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Tuple = DiTPipeline lowerCamelCase__: Union[str, Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS lowerCamelCase__: Tuple = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } lowerCamelCase__: Any = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS lowerCamelCase__: Dict = False def _lowerCamelCase ( self: List[Any] ) -> Tuple: torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=10_00 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCamelCase , ) __UpperCAmelCase : Optional[int] = AutoencoderKL() __UpperCAmelCase : str = DDIMScheduler() __UpperCAmelCase : Union[str, Any] = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any]=0 ) -> Optional[Any]: if str(__lowerCamelCase ).startswith("mps" ): __UpperCAmelCase : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __UpperCAmelCase : List[str] = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = "cpu" __UpperCAmelCase : Union[str, Any] = self.get_dummy_components() __UpperCAmelCase : Tuple = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : int = self.get_dummy_inputs(__lowerCamelCase ) __UpperCAmelCase : List[str] = pipe(**__lowerCamelCase ).images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __UpperCAmelCase : Any = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __UpperCAmelCase : Optional[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1e-3 ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self: List[str] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: int ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Tuple = torch.manual_seed(0 ) __UpperCAmelCase : Dict = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __UpperCAmelCase : Dict = ["vase", "umbrella", "white shark", "white wolf"] __UpperCAmelCase : Any = pipe.get_label_ids(__lowerCamelCase ) __UpperCAmelCase : Tuple = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: __UpperCAmelCase : Tuple = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __UpperCAmelCase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __UpperCAmelCase : Optional[Any] = ["vase", "umbrella"] __UpperCAmelCase : Optional[Any] = pipe.get_label_ids(__lowerCamelCase ) __UpperCAmelCase : List[str] = torch.manual_seed(0 ) __UpperCAmelCase : List[str] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case = ['''small''', '''medium''', '''large'''] _snake_case = '''lm_head.decoder.weight''' _snake_case = '''lm_head.weight''' def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : str = torch.load(snake_case__ ) __UpperCAmelCase : str = d.pop(snake_case__ ) os.makedirs(snake_case__, exist_ok=snake_case__ ) torch.save(snake_case__, os.path.join(snake_case__, snake_case__ ) ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) _snake_case = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case = os.path.join(args.dialogpt_path, F'{MODEL}_ft.pkl') _snake_case = F'./DialoGPT-{MODEL}' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: int = 32 , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 2_55 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __lowerCamelCase: Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __lowerCamelCase: bool = True , __lowerCamelCase: Dict=7 , __lowerCamelCase: Union[str, Any]=30 , __lowerCamelCase: Dict=4_00 , __lowerCamelCase: Tuple=3 , ) -> int: __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = do_resize __UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 2_88} __UpperCAmelCase : str = size_divisor __UpperCAmelCase : Optional[Any] = do_rescale __UpperCAmelCase : Dict = rescale_factor __UpperCAmelCase : Any = do_normalize __UpperCAmelCase : Dict = do_center_crop __UpperCAmelCase : List[Any] = image_mean __UpperCAmelCase : Optional[int] = image_std __UpperCAmelCase : Any = do_pad __UpperCAmelCase : int = batch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Optional[Any] = min_resolution __UpperCAmelCase : Optional[int] = max_resolution def _lowerCamelCase ( self: Union[str, Any] ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: int=False ) -> Any: if not batched: __UpperCAmelCase : Optional[Any] = self.size["shortest_edge"] __UpperCAmelCase : List[str] = image_inputs[0] if isinstance(__lowerCamelCase , Image.Image ): __UpperCAmelCase : int = image.size else: __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2] __UpperCAmelCase : Optional[Any] = size / min(__lowerCamelCase , __lowerCamelCase ) if h < w: __UpperCAmelCase : Tuple = size, scale * w else: __UpperCAmelCase : Optional[Any] = scale * h, size __UpperCAmelCase : Optional[int] = int((13_33 / 8_00) * size ) if max(__lowerCamelCase , __lowerCamelCase ) > max_size: __UpperCAmelCase : int = max_size / max(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = newh * scale __UpperCAmelCase : str = neww * scale __UpperCAmelCase : Optional[Any] = int(newh + 0.5 ), int(neww + 0.5 ) __UpperCAmelCase : str = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __UpperCAmelCase : List[Any] = [] for image in image_inputs: __UpperCAmelCase : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __UpperCAmelCase : List[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0] __UpperCAmelCase : Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = BridgeTowerImageProcessor if is_vision_available() else None def _lowerCamelCase ( self: Optional[Any] ) -> Dict: __UpperCAmelCase : List[Any] = BridgeTowerImageProcessingTester(self ) @property def _lowerCamelCase ( self: List[str] ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) ) def _lowerCamelCase ( self: Any ) -> int: pass def _lowerCamelCase ( self: int ) -> Any: # Initialize image processor __UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : str = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: # Initialize image processor __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : Optional[int] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values __UpperCAmelCase : str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def _lowerCamelCase ( self: Any ) -> Any: # Initialize image processor __UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __UpperCAmelCase : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''microsoft/trocr-base-handwritten''': ( '''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json''' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "trocr" lowerCamelCase__: List[str] = ["past_key_values"] lowerCamelCase__: Any = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self: Tuple , __lowerCamelCase: List[str]=5_02_65 , __lowerCamelCase: List[str]=10_24 , __lowerCamelCase: List[str]=12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Optional[Any]=40_96 , __lowerCamelCase: Any="gelu" , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[Any]=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Tuple=0 , __lowerCamelCase: Any=2 , **__lowerCamelCase: Dict , ) -> Any: __UpperCAmelCase : int = vocab_size __UpperCAmelCase : int = d_model __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : Union[str, Any] = decoder_attention_heads __UpperCAmelCase : Optional[Any] = decoder_ffn_dim __UpperCAmelCase : Optional[int] = activation_function __UpperCAmelCase : int = max_position_embeddings __UpperCAmelCase : str = dropout __UpperCAmelCase : List[Any] = attention_dropout __UpperCAmelCase : Union[str, Any] = activation_dropout __UpperCAmelCase : List[str] = init_std __UpperCAmelCase : Optional[Any] = decoder_layerdrop __UpperCAmelCase : List[Any] = use_cache __UpperCAmelCase : Union[str, Any] = scale_embedding __UpperCAmelCase : str = use_learned_position_embeddings __UpperCAmelCase : Tuple = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = BlenderbotSmallTokenizer lowerCamelCase__: Dict = False def _lowerCamelCase ( self: int ) -> Union[str, Any]: super().setUp() __UpperCAmelCase : Union[str, Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __UpperCAmelCase : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : Union[str, Any] = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __UpperCAmelCase : Optional[Any] = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _lowerCamelCase ( self: Optional[int] , **__lowerCamelCase: int ) -> str: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = "adapt act apte" __UpperCAmelCase : int = "adapt act apte" return input_text, output_text def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : int = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : Optional[Any] = "adapt act apte" __UpperCAmelCase : Tuple = ["adapt", "act", "ap@@", "te"] __UpperCAmelCase : str = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCAmelCase : int = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Any = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [13_84] __UpperCAmelCase : List[Any] = "I am a small frog." __UpperCAmelCase : Optional[Any] = tok([src_text] , padding=__lowerCamelCase , truncation=__lowerCamelCase )["input_ids"] __UpperCAmelCase : Dict = tok.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase : str = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __UpperCAmelCase : List[str] = "I am a small frog ." __UpperCAmelCase : Optional[Any] = "." __UpperCAmelCase : Union[str, Any] = tok(__lowerCamelCase )["input_ids"] __UpperCAmelCase : List[Any] = tok(__lowerCamelCase )["input_ids"] assert encoded[-1] == encoded_dot[0]
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
from __future__ import annotations from random import choice def _UpperCamelCase ( snake_case__ ) -> int: return choice(snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : List[Any] = random_pivot(snake_case__ ) # partition based on pivot # linear time __UpperCAmelCase : str = [e for e in lst if e < pivot] __UpperCAmelCase : int = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(snake_case__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(snake_case__ ) < k - 1: return kth_number(snake_case__, k - len(snake_case__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(snake_case__, snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCamelCase ( snake_case__, snake_case__=7 ) -> Optional[Any]: __UpperCAmelCase : Dict = None if token is not None: __UpperCAmelCase : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) __UpperCAmelCase : List[Any] = "636036" __UpperCAmelCase : str = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' __UpperCAmelCase : Tuple = requests.get(snake_case__, headers=snake_case__ ).json() return result["workflow_runs"] def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Any = get_daily_ci_runs(snake_case__ ) __UpperCAmelCase : Dict = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __UpperCAmelCase : Optional[Any] = workflow_run["id"] break return workflow_run_id def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Optional[int] = get_last_daily_ci_runs(snake_case__ ) if workflow_run_id is not None: __UpperCAmelCase : List[Any] = get_artifacts_links(worflow_run_id=snake_case__, token=snake_case__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __UpperCAmelCase : List[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case__, artifact_url=snake_case__, output_dir=snake_case__, token=snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: get_last_daily_ci_artifacts(snake_case__, snake_case__, snake_case__ ) __UpperCAmelCase : Union[str, Any] = {} for artifact_name in artifact_names: __UpperCAmelCase : Dict = os.path.join(snake_case__, f'''{artifact_name}.zip''' ) if os.path.isfile(snake_case__ ): __UpperCAmelCase : int = {} with zipfile.ZipFile(snake_case__ ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case__ ): # read the file with z.open(snake_case__ ) as f: __UpperCAmelCase : Optional[Any] = f.read().decode("UTF-8" ) return results
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Tuple ) -> List[str]: __UpperCAmelCase : Optional[int] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) __UpperCAmelCase : List[Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase : Union[str, Any] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase : Dict = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase : int = model(__lowerCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) ) @slow def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : str = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) __UpperCAmelCase : Tuple = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCAmelCase : Union[str, Any] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCAmelCase : Tuple = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCAmelCase : Any = model(__lowerCamelCase )["last_hidden_state"].detach() self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __lowerCamelCase , atol=1e-3 ) )
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import numpy as np import qiskit def _UpperCamelCase ( snake_case__ = 8, snake_case__ = None ) -> str: __UpperCAmelCase : List[Any] = np.random.default_rng(seed=snake_case__ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __UpperCAmelCase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. __UpperCAmelCase : Dict = rng.integers(2, size=snake_case__ ) # The set of states Alice will prepare. __UpperCAmelCase : Union[str, Any] = rng.integers(2, size=snake_case__ ) # Measurement basis for Bob's qubits. __UpperCAmelCase : int = rng.integers(2, size=snake_case__ ) # Quantum Circuit to simulate BB84 __UpperCAmelCase : Any = qiskit.QuantumCircuit(snake_case__, name="BB84" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case__ ): if alice_state[index] == 1: bbaa_circ.x(snake_case__ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case__ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case__ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __UpperCAmelCase : Tuple = qiskit.Aer.get_backend("aer_simulator" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __UpperCAmelCase : List[Any] = qiskit.execute(snake_case__, snake_case__, shots=1, seed_simulator=snake_case__ ) # Returns the result of measurement. __UpperCAmelCase : Dict = job.result().get_counts(snake_case__ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __UpperCAmelCase : List[str] = "".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case__, snake_case__, snake_case__ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __UpperCAmelCase : Tuple = gen_key[:key_len] if len(snake_case__ ) >= key_len else gen_key.ljust(snake_case__, "0" ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import math import random def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> float: if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value _snake_case = 0.0_2 def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: __UpperCAmelCase : Optional[int] = float(2 * (random.randint(1, 100 )) - 1 ) for _ in range(snake_case__ ): # Forward propagation __UpperCAmelCase : List[str] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __UpperCAmelCase : Tuple = (expected / 100) - layer_a # Error delta __UpperCAmelCase : Optional[Any] = layer_1_error * sigmoid_function(snake_case__, snake_case__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input('''Expected value: ''')) _snake_case = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _snake_case = logging.get_logger(__name__) @dataclass class _snake_case ( _lowercase ): lowerCamelCase__: Dict = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self: Dict , **__lowerCamelCase: Union[str, Any] ) -> int: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: __UpperCAmelCase : Optional[Any] = deprecated_arg[3:] __UpperCAmelCase : Any = not kwargs.pop(__lowerCamelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("tpu_name" , self.tpu_name ) __UpperCAmelCase : List[str] = kwargs.pop("device_idx" , self.device_idx ) __UpperCAmelCase : str = kwargs.pop("eager_mode" , self.eager_mode ) __UpperCAmelCase : List[Any] = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**__lowerCamelCase ) lowerCamelCase__: str = field( default=_lowercase , metadata={"help": "Name of TPU"} , ) lowerCamelCase__: int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Benchmark models in eager model."} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def _lowerCamelCase ( self: List[str] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["tf"] ) __UpperCAmelCase : List[Any] = None if self.tpu: try: if self.tpu_name: __UpperCAmelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: __UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: __UpperCAmelCase : int = None return tpu @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) __UpperCAmelCase : Dict = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) __UpperCAmelCase : int = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU __UpperCAmelCase : str = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _lowerCamelCase ( self: Tuple ) -> bool: requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def _lowerCamelCase ( self: Union[str, Any] ) -> "tf.distribute.Strategy": requires_backends(self , ["tf"] ) return self._setup_strategy @property def _lowerCamelCase ( self: Optional[Any] ) -> str: requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def _lowerCamelCase ( self: List[str] ) -> int: requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowerCamelCase ( self: Union[str, Any] ) -> bool: return self.n_gpu > 0
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _snake_case : def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: int=3 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: str=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: List[str]=37 , __lowerCamelCase: int="gelu" , __lowerCamelCase: List[Any]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: str=10 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Any="divided_space_time" , __lowerCamelCase: int=None , ) -> Optional[Any]: __UpperCAmelCase : Any = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : str = patch_size __UpperCAmelCase : List[Any] = num_frames __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Dict = attention_type __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Any = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2 __UpperCAmelCase : str = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[str] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Any = self.num_labels return config def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Dict: __UpperCAmelCase : int = TimesformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict ) -> Any: __UpperCAmelCase : str = TimesformerForVideoClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase ) # verify the logits shape __UpperCAmelCase : Optional[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase__: Dict = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__: Optional[int] = False lowerCamelCase__: Optional[Any] = False lowerCamelCase__: List[str] = False lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = TimesformerModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester( self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int=False ) -> Tuple: __UpperCAmelCase : List[Any] = copy.deepcopy(__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): __UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _lowerCamelCase ( self: List[str] ) -> Tuple: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : int = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> int: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: str ) -> Union[str, Any]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = TimesformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Any: if not self.has_attentions: pass else: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = True for model_class in self.all_model_classes: __UpperCAmelCase : List[Any] = self.model_tester.seq_length __UpperCAmelCase : Union[str, Any] = self.model_tester.num_frames __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[str] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : int = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : int = True __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Tuple = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : List[Any] = len(__lowerCamelCase ) # Check attention is always last and order is fine __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + 1 , len(__lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = outputs.attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: def check_hidden_states_output(__lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str ): __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.hidden_states __UpperCAmelCase : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) __UpperCAmelCase : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Dict = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) __UpperCAmelCase : Dict = np.load(snake_case__ ) return list(snake_case__ ) @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : int = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_video() __UpperCAmelCase : Any = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" _snake_case = [0, 2, 4, 6, 8] _snake_case = [1, 3, 5, 7, 9] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __UpperCAmelCase : Optional[int] = 0 for digit in range(10 ): __UpperCAmelCase : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, snake_case__, snake_case__ ) return result __UpperCAmelCase : Tuple = 0 for digita in range(10 ): __UpperCAmelCase : Union[str, Any] = digita if (remainder + digita) % 2 == 0: __UpperCAmelCase : List[str] = ODD_DIGITS else: __UpperCAmelCase : Any = EVEN_DIGITS for digita in other_parity_digits: __UpperCAmelCase : List[Any] = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, snake_case__, snake_case__, ) return result def _UpperCamelCase ( snake_case__ = 9 ) -> int: __UpperCAmelCase : Union[str, Any] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(snake_case__, 0, [0] * length, snake_case__ ) return result if __name__ == "__main__": print(F'{solution() = }')
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: str=13 , __lowerCamelCase: int=32 , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: int=[10, 20, 30, 40] , __lowerCamelCase: Union[str, Any]=[2, 2, 3, 2] , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[str]=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Any=3 , __lowerCamelCase: Any=None , ) -> Optional[int]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : Dict = num_stages __UpperCAmelCase : Any = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Dict = out_features __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Union[str, Any] = scope __UpperCAmelCase : Union[str, Any] = num_stages def _lowerCamelCase ( self: Optional[int] ) -> List[str]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowerCamelCase , loss_ignore_index=2_55 , num_labels=self.num_labels , ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Any ) -> Union[str, Any]: __UpperCAmelCase : Tuple = UperNetForSemanticSegmentation(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Tuple = config_and_inputs __UpperCAmelCase : Union[str, Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () lowerCamelCase__: Any = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} lowerCamelCase__: str = False lowerCamelCase__: List[str] = False lowerCamelCase__: List[Any] = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Optional[int] = False lowerCamelCase__: Dict = False def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[Any] = UperNetModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: Tuple ) -> Dict: return def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__lowerCamelCase ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Dict: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) @unittest.skip(reason="UperNet does not use inputs_embeds" ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: pass @unittest.skip(reason="UperNet does not support input and output embeddings" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]: pass @unittest.skip(reason="UperNet does not have a base model" ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: pass @require_torch_multi_gpu @unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowerCamelCase ( self: Dict ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self: int ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]: def check_hidden_states_output(__lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ): __UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = _config_zero_init(__lowerCamelCase ) __UpperCAmelCase : str = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(config=__lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason="UperNet does not have tied weights" ) def _lowerCamelCase ( self: Tuple ) -> int: pass @slow def _lowerCamelCase ( self: int ) -> Tuple: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = UperNetForSemanticSegmentation.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> int: __UpperCAmelCase : Tuple = hf_hub_download( repo_id="hf-internal-testing/fixtures_ade20k", repo_type="dataset", filename="ADE_val_00000001.jpg" ) __UpperCAmelCase : Union[str, Any] = Image.open(snake_case__ ).convert("RGB" ) return image @require_torch @require_vision @slow class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: str ) -> str: __UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" ) __UpperCAmelCase : Optional[int] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__lowerCamelCase ) __UpperCAmelCase : Optional[int] = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : int = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" ) __UpperCAmelCase : int = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__lowerCamelCase ) __UpperCAmelCase : Any = prepare_img() __UpperCAmelCase : int = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**__lowerCamelCase ) __UpperCAmelCase : Any = torch.Size((1, model.config.num_labels, 5_12, 5_12) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Tuple = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _snake_case ( _lowercase ): lowerCamelCase__: Dict = ["image_processor", "tokenizer"] lowerCamelCase__: int = "OwlViTImageProcessor" lowerCamelCase__: str = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self: Tuple , __lowerCamelCase: Any=None , __lowerCamelCase: int=None , **__lowerCamelCase: Optional[int] ) -> str: __UpperCAmelCase : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __lowerCamelCase , ) __UpperCAmelCase : Any = kwargs.pop("feature_extractor" ) __UpperCAmelCase : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__lowerCamelCase , __lowerCamelCase ) def __call__( self: Dict , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Tuple=None , __lowerCamelCase: Dict=None , __lowerCamelCase: Any="max_length" , __lowerCamelCase: List[Any]="np" , **__lowerCamelCase: Tuple ) -> Dict: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__lowerCamelCase , __lowerCamelCase ) or (isinstance(__lowerCamelCase , __lowerCamelCase ) and not isinstance(text[0] , __lowerCamelCase )): __UpperCAmelCase : int = [self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )] elif isinstance(__lowerCamelCase , __lowerCamelCase ) and isinstance(text[0] , __lowerCamelCase ): __UpperCAmelCase : str = [] # Maximum number of queries across batch __UpperCAmelCase : Optional[int] = max([len(__lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__lowerCamelCase ) != max_num_queries: __UpperCAmelCase : Union[str, Any] = t + [" "] * (max_num_queries - len(__lowerCamelCase )) __UpperCAmelCase : List[Any] = self.tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) encodings.append(__lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": __UpperCAmelCase : Union[str, Any] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : Optional[int] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCAmelCase : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : str = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCAmelCase : int = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) __UpperCAmelCase : Optional[Any] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCAmelCase : int = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) __UpperCAmelCase : List[str] = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) __UpperCAmelCase : Dict = BatchEncoding() __UpperCAmelCase : Optional[int] = input_ids __UpperCAmelCase : int = attention_mask if query_images is not None: __UpperCAmelCase : int = BatchEncoding() __UpperCAmelCase : Optional[int] = self.image_processor( __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ).pixel_values __UpperCAmelCase : Union[str, Any] = query_pixel_values if images is not None: __UpperCAmelCase : str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) if text is not None and images is not None: __UpperCAmelCase : List[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCAmelCase : List[str] = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> Dict: return self.image_processor.post_process(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: int , *__lowerCamelCase: str , **__lowerCamelCase: Optional[int] ) -> List[Any]: return self.image_processor.post_process_object_detection(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]: return self.image_processor.post_process_image_guided_detection(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: str ) -> Any: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Any ) -> Optional[int]: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Optional[int] ) -> Any: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , ) return self.image_processor_class @property def _lowerCamelCase ( self: Union[str, Any] ) -> Any: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , ) return self.image_processor
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: _enforce_args(snake_case__, snake_case__ ) if n == 0: return 0 __UpperCAmelCase : Optional[int] = float("-inf" ) for i in range(1, n + 1 ): __UpperCAmelCase : str = max( snake_case__, prices[i - 1] + naive_cut_rod_recursive(n - i, snake_case__ ) ) return max_revue def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: _enforce_args(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case__, snake_case__, snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: __UpperCAmelCase : List[str] = float("-inf" ) for i in range(1, n + 1 ): __UpperCAmelCase : Optional[Any] = max( snake_case__, prices[i - 1] + _top_down_cut_rod_recursive(n - i, snake_case__, snake_case__ ), ) __UpperCAmelCase : int = max_revenue return max_rev[n] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Dict: _enforce_args(snake_case__, snake_case__ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. __UpperCAmelCase : Any = [float("-inf" ) for _ in range(n + 1 )] __UpperCAmelCase : Union[str, Any] = 0 for i in range(1, n + 1 ): __UpperCAmelCase : str = max_rev[i] for j in range(1, i + 1 ): __UpperCAmelCase : Optional[Any] = max(snake_case__, prices[j - 1] + max_rev[i - j] ) __UpperCAmelCase : int = max_revenue_i return max_rev[n] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: if n < 0: __UpperCAmelCase : List[Any] = f'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(snake_case__ ) if n > len(snake_case__ ): __UpperCAmelCase : str = ( "Each integral piece of rod must have a corresponding price. " f'''Got n = {n} but length of prices = {len(snake_case__ )}''' ) raise ValueError(snake_case__ ) def _UpperCamelCase ( ) -> Optional[Any]: __UpperCAmelCase : Dict = [6, 10, 12, 15, 20, 23] __UpperCAmelCase : Optional[int] = len(snake_case__ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. __UpperCAmelCase : List[str] = 36 __UpperCAmelCase : Union[str, Any] = top_down_cut_rod(snake_case__, snake_case__ ) __UpperCAmelCase : Optional[int] = bottom_up_cut_rod(snake_case__, snake_case__ ) __UpperCAmelCase : Union[str, Any] = naive_cut_rod_recursive(snake_case__, snake_case__ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } _snake_case = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } _snake_case = '''</w>''' _snake_case = '''@@ ''' def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: __UpperCAmelCase : Any = set() __UpperCAmelCase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[int] = char return pairs # Speech2Text2 has no max input length _snake_case = {'''facebook/s2t-wav2vec2-large-en-de''': 1024} class _snake_case ( _lowercase ): lowerCamelCase__: int = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: Dict="<unk>" , __lowerCamelCase: List[str]=False , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: int , ) -> Dict: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = do_lower_case with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[str] = json.load(__lowerCamelCase ) __UpperCAmelCase : int = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[str] = None else: with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : Optional[Any] = merges_handle.read().split("\n" )[:-1] __UpperCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges] __UpperCAmelCase : Union[str, Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : Optional[Any] = {} @property def _lowerCamelCase ( self: int ) -> int: return len(self.decoder ) def _lowerCamelCase ( self: Any ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : List[str] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : int = [] __UpperCAmelCase : Union[str, Any] = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Tuple = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : Any = tuple(__lowerCamelCase ) __UpperCAmelCase : List[Any] = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : str = get_pairs(__lowerCamelCase ) __UpperCAmelCase : List[Any] = " ".join(__lowerCamelCase ) if word == "\n " + BPE_TOKEN_MERGES: __UpperCAmelCase : str = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase ): __UpperCAmelCase : Dict = word.replace(__lowerCamelCase , "" ) __UpperCAmelCase : Dict = word.replace(" " , __lowerCamelCase ) __UpperCAmelCase : Dict = word return word def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Dict: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: __UpperCAmelCase : str = text.lower() __UpperCAmelCase : List[Any] = text.split() __UpperCAmelCase : Tuple = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) ) return split_tokens def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str ) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int ) -> str: __UpperCAmelCase : Any = self.decoder.get(__lowerCamelCase , self.unk_token ) return result def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] ) -> str: __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) # make sure @@ tokens are concatenated __UpperCAmelCase : Union[str, Any] = "".join(string.split(__lowerCamelCase ) ) return string def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[int] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Union[str, Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return (vocab_file, merges_file)
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import warnings from .generation import TFGenerationMixin class _snake_case ( _lowercase ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowercase , )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def _UpperCamelCase ( snake_case__ = "laptop" ) -> DataFrame: __UpperCAmelCase : Tuple = f'''https://www.amazon.in/laptop/s?k={product}''' __UpperCAmelCase : Dict = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } __UpperCAmelCase : Any = BeautifulSoup(requests.get(snake_case__, headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles __UpperCAmelCase : Union[str, Any] = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div", attrs={"class": "s-result-item", "data-component-type": "s-search-result"}, ), soup.find_all("div", attrs={"class": "a-row a-size-base a-color-base"} ), ): try: __UpperCAmelCase : List[str] = item.ha.text __UpperCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"] __UpperCAmelCase : Optional[int] = item.find("span", attrs={"class": "a-offscreen"} ).text try: __UpperCAmelCase : Tuple = item.find("span", attrs={"class": "a-icon-alt"} ).text except AttributeError: __UpperCAmelCase : Any = "Not available" try: __UpperCAmelCase : List[str] = ( "₹" + item.find( "span", attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: __UpperCAmelCase : Optional[Any] = "" try: __UpperCAmelCase : Optional[int] = float( ( ( float(product_mrp.strip("₹" ).replace(",", "" ) ) - float(product_price.strip("₹" ).replace(",", "" ) ) ) / float(product_mrp.strip("₹" ).replace(",", "" ) ) ) * 100 ) except ValueError: __UpperCAmelCase : int = float("nan" ) except AttributeError: pass __UpperCAmelCase : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] __UpperCAmelCase : List[Any] = " " __UpperCAmelCase : int = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case = '''headphones''' get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : str = SwinConfig() __UpperCAmelCase : Optional[Any] = swin_name.split("_" ) __UpperCAmelCase : List[str] = name_split[1] __UpperCAmelCase : List[Any] = int(name_split[4] ) __UpperCAmelCase : List[str] = int(name_split[3][-1] ) if model_size == "tiny": __UpperCAmelCase : Optional[Any] = 96 __UpperCAmelCase : Optional[Any] = (2, 2, 6, 2) __UpperCAmelCase : Tuple = (3, 6, 12, 24) elif model_size == "small": __UpperCAmelCase : Any = 96 __UpperCAmelCase : List[str] = (2, 2, 18, 2) __UpperCAmelCase : List[str] = (3, 6, 12, 24) elif model_size == "base": __UpperCAmelCase : Any = 128 __UpperCAmelCase : Tuple = (2, 2, 18, 2) __UpperCAmelCase : Tuple = (4, 8, 16, 32) else: __UpperCAmelCase : Optional[int] = 192 __UpperCAmelCase : List[str] = (2, 2, 18, 2) __UpperCAmelCase : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: __UpperCAmelCase : Optional[int] = 2_1841 else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : Optional[int] = "huggingface/label-files" __UpperCAmelCase : Tuple = "imagenet-1k-id2label.json" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : List[str] = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : Tuple = img_size __UpperCAmelCase : str = num_classes __UpperCAmelCase : int = embed_dim __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : int = num_heads __UpperCAmelCase : List[str] = window_size return config def _UpperCamelCase ( snake_case__ ) -> Any: if "patch_embed.proj" in name: __UpperCAmelCase : List[str] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __UpperCAmelCase : List[str] = name.replace("patch_embed.norm", "embeddings.norm" ) if "layers" in name: __UpperCAmelCase : Optional[Any] = "encoder." + name if "attn.proj" in name: __UpperCAmelCase : Union[str, Any] = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: __UpperCAmelCase : Any = name.replace("attn", "attention.self" ) if "norm1" in name: __UpperCAmelCase : Tuple = name.replace("norm1", "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : List[str] = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : Optional[Any] = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : List[Any] = name.replace("mlp.fc2", "output.dense" ) if name == "norm.weight": __UpperCAmelCase : Any = "layernorm.weight" if name == "norm.bias": __UpperCAmelCase : Optional[int] = "layernorm.bias" if "head" in name: __UpperCAmelCase : str = name.replace("head", "classifier" ) else: __UpperCAmelCase : int = "swin." + name return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Dict = orig_state_dict.pop(snake_case__ ) if "mask" in key: continue elif "qkv" in key: __UpperCAmelCase : Any = key.split("." ) __UpperCAmelCase : Union[str, Any] = int(key_split[1] ) __UpperCAmelCase : Optional[int] = int(key_split[3] ) __UpperCAmelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase : Dict = val[:dim, :] __UpperCAmelCase : Tuple = val[ dim : dim * 2, : ] __UpperCAmelCase : Any = val[-dim:, :] else: __UpperCAmelCase : Optional[int] = val[ :dim ] __UpperCAmelCase : Any = val[ dim : dim * 2 ] __UpperCAmelCase : Union[str, Any] = val[ -dim: ] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Tuple = timm.create_model(snake_case__, pretrained=snake_case__ ) timm_model.eval() __UpperCAmelCase : Union[str, Any] = get_swin_config(snake_case__ ) __UpperCAmelCase : Optional[Any] = SwinForImageClassification(snake_case__ ) model.eval() __UpperCAmelCase : List[Any] = convert_state_dict(timm_model.state_dict(), snake_case__ ) model.load_state_dict(snake_case__ ) __UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_", "-" ) ) ) __UpperCAmelCase : int = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) __UpperCAmelCase : Tuple = image_processor(images=snake_case__, return_tensors="pt" ) __UpperCAmelCase : int = timm_model(inputs["pixel_values"] ) __UpperCAmelCase : Any = model(**snake_case__ ).logits assert torch.allclose(snake_case__, snake_case__, atol=1e-3 ) print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _snake_case = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple=13 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: Union[str, Any]=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: Union[str, Any]=[2, 2, 3, 2] , __lowerCamelCase: Dict=True , __lowerCamelCase: Dict=True , __lowerCamelCase: int=37 , __lowerCamelCase: str="gelu" , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: Any=["stage2", "stage3", "stage4"] , __lowerCamelCase: int=[2, 3, 4] , __lowerCamelCase: List[str]=None , ) -> List[Any]: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : str = num_stages __UpperCAmelCase : Optional[Any] = hidden_sizes __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : str = is_training __UpperCAmelCase : Any = use_labels __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : str = out_features __UpperCAmelCase : int = out_indices __UpperCAmelCase : Optional[int] = scope def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] ) -> str: __UpperCAmelCase : Union[str, Any] = ConvNextModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: str ) -> int: __UpperCAmelCase : Optional[int] = ConvNextForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Any = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : str = None __UpperCAmelCase : List[str] = ConvNextBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> Tuple: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) lowerCamelCase__: Dict = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Union[str, Any] = True lowerCamelCase__: str = False lowerCamelCase__: Optional[Any] = False lowerCamelCase__: Dict = False lowerCamelCase__: Optional[Any] = False def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : Dict = ConvNextModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Any ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: Any ) -> Union[str, Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def _lowerCamelCase ( self: Tuple ) -> List[str]: pass def _lowerCamelCase ( self: str ) -> Dict: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: def check_hidden_states_output(__lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] ): __UpperCAmelCase : List[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : List[Any] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[str] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: List[str] ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = ConvNextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[str]: __UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: List[str] ) -> Optional[int]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(__lowerCamelCase ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) @require_torch class _snake_case ( unittest.TestCase , _lowercase ): lowerCamelCase__: Optional[int] = (ConvNextBackbone,) if is_torch_available() else () lowerCamelCase__: Optional[Any] = ConvNextConfig lowerCamelCase__: Optional[Any] = False def _lowerCamelCase ( self: Tuple ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = ConvNextModelTester(self )
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _snake_case = '''main''' # Default branch name _snake_case = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2''' # One particular commit (not the top of `main`) _snake_case = '''aaaaaaa''' # This commit does not exist, so we should 404. _snake_case = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684''' # Sha-1 of config.json on the top of `main`, for checking purposes _snake_case = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3''' @contextlib.contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def _UpperCamelCase ( ) -> List[str]: print("Bonjour!" ) yield print("Au revoir!" ) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class _snake_case ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] ) -> Tuple: with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] ) -> Optional[Any]: with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> Union[str, Any]: with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def _lowerCamelCase ( self: List[str] ) -> Optional[int]: self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_tf def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] ) @require_flax def _lowerCamelCase ( self: Dict ) -> int: # Flax models don't have labels self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) self.assertEqual(find_labels(__lowerCamelCase ) , [] ) class _snake_case ( _lowercase ): pass self.assertEqual(find_labels(__lowerCamelCase ) , [] )
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
from string import ascii_lowercase, ascii_uppercase def _UpperCamelCase ( snake_case__ ) -> str: if not sentence: return "" __UpperCAmelCase : Optional[Any] = dict(zip(snake_case__, snake_case__ ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _snake_case : lowerCamelCase__: int lowerCamelCase__: Node | None = None lowerCamelCase__: Node | None = None def _UpperCamelCase ( ) -> Node | None: __UpperCAmelCase : Union[str, Any] = Node(1 ) __UpperCAmelCase : Dict = Node(2 ) __UpperCAmelCase : str = Node(3 ) __UpperCAmelCase : Optional[int] = Node(4 ) __UpperCAmelCase : str = Node(5 ) return tree def _UpperCamelCase ( snake_case__ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCamelCase ( snake_case__ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCamelCase ( snake_case__ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCamelCase ( snake_case__ ) -> int: return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def _UpperCamelCase ( snake_case__ ) -> Sequence[Node | None]: __UpperCAmelCase : list[Any] = [] if root is None: return output __UpperCAmelCase : Optional[int] = deque([root] ) while process_queue: __UpperCAmelCase : str = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCamelCase ( snake_case__, snake_case__ ) -> Sequence[Node | None]: __UpperCAmelCase : list[Any] = [] def populate_output(snake_case__, snake_case__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(snake_case__, snake_case__ ) return output def _UpperCamelCase ( snake_case__, snake_case__ ) -> Sequence[Node | None]: __UpperCAmelCase : list[Any] = [] def populate_output(snake_case__, snake_case__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(snake_case__, snake_case__ ) return output def _UpperCamelCase ( snake_case__ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] __UpperCAmelCase : list[Sequence[Node | None]] = [] __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : str = height(snake_case__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(snake_case__, snake_case__ ) ) __UpperCAmelCase : Dict = 1 else: output.append(get_nodes_from_right_to_left(snake_case__, snake_case__ ) ) __UpperCAmelCase : Optional[int] = 0 return output def _UpperCamelCase ( ) -> None: # Main function for testing. __UpperCAmelCase : Tuple = make_tree() print(f'''In-order Traversal: {inorder(snake_case__ )}''' ) print(f'''Pre-order Traversal: {preorder(snake_case__ )}''' ) print(f'''Post-order Traversal: {postorder(snake_case__ )}''', "\n" ) print(f'''Height of Tree: {height(snake_case__ )}''', "\n" ) print("Complete Level Order Traversal: " ) print(level_order(snake_case__ ), "\n" ) print("Level-wise order Traversal: " ) for level in range(1, height(snake_case__ ) + 1 ): print(f'''Level {level}:''', get_nodes_from_left_to_right(snake_case__, level=snake_case__ ) ) print("\nZigZag order Traversal: " ) print(zigzag(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _snake_case = ['''gpt2'''] _snake_case = '''gpt2''' if is_tf_available(): class _snake_case ( tf.Module ): def __init__( self: List[Any] , __lowerCamelCase: Dict ) -> str: super().__init__() __UpperCAmelCase : Union[str, Any] = tokenizer __UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = TFGPTaLMHeadModel.from_config(__lowerCamelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="text" ),) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = self.tokenizer(__lowerCamelCase ) __UpperCAmelCase : List[Any] = tokenized["input_ids"].to_tensor() __UpperCAmelCase : Tuple = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __UpperCAmelCase : List[str] = self.model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase )["logits"] return outputs @require_tf @require_keras_nlp class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: int ) -> Dict: super().setUp() __UpperCAmelCase : List[str] = [GPTaTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __UpperCAmelCase : int = [TFGPTaTokenizer.from_pretrained(__lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __UpperCAmelCase : Union[str, Any] = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] __UpperCAmelCase : List[str] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _lowerCamelCase ( self: Dict ) -> Dict: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __UpperCAmelCase : Any = tokenizer([test_inputs] , return_tensors="tf" ) __UpperCAmelCase : Dict = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __UpperCAmelCase : int = python_outputs[key].numpy() __UpperCAmelCase : str = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__lowerCamelCase , tf.intaa ) == tf_outputs_values ) ) @slow def _lowerCamelCase ( self: int ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : int = tf.function(__lowerCamelCase ) for test_inputs in self.test_sentences: __UpperCAmelCase : Any = tf.constant(__lowerCamelCase ) __UpperCAmelCase : Any = compiled_tokenizer(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = tf_tokenizer(__lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _lowerCamelCase ( self: str ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : List[str] = ModelToSave(tokenizer=__lowerCamelCase ) __UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase : List[Any] = model.serving(__lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __UpperCAmelCase : Union[str, Any] = Path(__lowerCamelCase ) / "saved.model" tf.saved_model.save(__lowerCamelCase , __lowerCamelCase , signatures={"serving_default": model.serving} ) __UpperCAmelCase : Dict = tf.saved_model.load(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = loaded_model.signatures["serving_default"](__lowerCamelCase )["output_0"] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _lowerCamelCase ( self: Dict ) -> Tuple: for tf_tokenizer in self.tf_tokenizers: __UpperCAmelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase : Any = tf_tokenizer(__lowerCamelCase ) # Build model with some sample inputs __UpperCAmelCase : Any = tf_tokenizer.get_config() __UpperCAmelCase : Dict = TFGPTaTokenizer.from_config(__lowerCamelCase ) __UpperCAmelCase : str = model_from_config(__lowerCamelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _lowerCamelCase ( self: str ) -> str: for tf_tokenizer in self.tf_tokenizers: # for the test to run __UpperCAmelCase : int = 12_31_23 for max_length in [3, 5, 10_24]: __UpperCAmelCase : Any = tf.convert_to_tensor([self.test_sentences[0]] ) __UpperCAmelCase : List[str] = tf_tokenizer(__lowerCamelCase , max_length=__lowerCamelCase ) __UpperCAmelCase : Dict = out["input_ids"].numpy().shape[1] assert out_length == max_length
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( _lowercase ): lowerCamelCase__: Union[str, Any] = "new-model" if is_tf_available(): class _snake_case ( _lowercase ): lowerCamelCase__: List[str] = NewModelConfig @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : int = "bert-base-cased" __UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : int = "bert-base-cased" __UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> Optional[Any]: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow def _lowerCamelCase ( self: List[str] ) -> List[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @slow @require_tensorflow_probability def _lowerCamelCase ( self: str ) -> str: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Any = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 1_44_10 ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(model.num_parameters() , 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 1_44_10 ) def _lowerCamelCase ( self: Any ) -> str: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __UpperCAmelCase : int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = copy.deepcopy(model.config ) __UpperCAmelCase : str = ["FunnelBaseModel"] __UpperCAmelCase : List[str] = TFAutoModel.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : List[Any] = TFAutoModel.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Dict: try: AutoConfig.register("new-model" , __lowerCamelCase ) __UpperCAmelCase : List[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): auto_class.register(__lowerCamelCase , __lowerCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : int = BertModelTester(self ).get_config() __UpperCAmelCase : Tuple = NewModelConfig(**tiny_config.to_dict() ) __UpperCAmelCase : Optional[int] = auto_class.from_config(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Any = auto_class.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def _lowerCamelCase ( self: Any ) -> List[Any]: with self.assertRaisesRegex( __lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ): __UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("bert-base" ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: with self.assertRaisesRegex( __lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" ) def _lowerCamelCase ( self: List[Any] ) -> Any: with self.assertRaisesRegex( __lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def _lowerCamelCase ( self: List[str] ) -> List[Any]: with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ): __UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: # Make sure we have cached the model. __UpperCAmelCase : int = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint __UpperCAmelCase : str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if index == number_of_items: return 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Optional[Any] = 0 __UpperCAmelCase : Any = knapsack(snake_case__, snake_case__, snake_case__, snake_case__, index + 1 ) if weights[index] <= max_weight: __UpperCAmelCase : Dict = values[index] + knapsack( snake_case__, snake_case__, snake_case__, max_weight - weights[index], index + 1 ) return max(snake_case__, snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" def _UpperCamelCase ( snake_case__ ) -> list[int]: if num <= 0: raise ValueError("Input must be a positive integer" ) __UpperCAmelCase : List[Any] = [True] * (num + 1) __UpperCAmelCase : List[str] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, snake_case__ ): __UpperCAmelCase : Optional[int] = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "poolformer" def __init__( self: List[Any] , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: List[Any]=16 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: List[str]=4.0 , __lowerCamelCase: Union[str, Any]=[2, 2, 6, 2] , __lowerCamelCase: List[Any]=[64, 1_28, 3_20, 5_12] , __lowerCamelCase: Tuple=[7, 3, 3, 3] , __lowerCamelCase: Dict=[4, 2, 2, 2] , __lowerCamelCase: Any=[2, 1, 1, 1] , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=1e-5 , __lowerCamelCase: Optional[Any]=0.02 , **__lowerCamelCase: Any , ) -> Optional[Any]: __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : str = patch_size __UpperCAmelCase : int = stride __UpperCAmelCase : Dict = padding __UpperCAmelCase : List[Any] = pool_size __UpperCAmelCase : str = hidden_sizes __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : Optional[Any] = depths __UpperCAmelCase : Any = patch_sizes __UpperCAmelCase : int = strides __UpperCAmelCase : List[str] = num_encoder_blocks __UpperCAmelCase : Optional[int] = drop_path_rate __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Dict = use_layer_scale __UpperCAmelCase : Tuple = layer_scale_init_value __UpperCAmelCase : Optional[int] = initializer_range super().__init__(**__lowerCamelCase ) class _snake_case ( _lowercase ): lowerCamelCase__: Any = version.parse("1.11" ) @property def _lowerCamelCase ( self: int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self: Dict ) -> float: return 2e-3
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Any = PegasusTokenizer lowerCamelCase__: Optional[int] = PegasusTokenizerFast lowerCamelCase__: Optional[Any] = True lowerCamelCase__: Dict = True def _lowerCamelCase ( self: Union[str, Any] ) -> str: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Any = PegasusTokenizer(__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Dict ) -> Optional[Any]: return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def _lowerCamelCase ( self: List[str] , **__lowerCamelCase: Tuple ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] ) -> List[str]: return ("This is a test", "This is a test") def _lowerCamelCase ( self: List[str] ) -> str: __UpperCAmelCase : Dict = "</s>" __UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Any: __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(__lowerCamelCase ) , 11_03 ) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : int = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) __UpperCAmelCase : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] __UpperCAmelCase : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : List[str] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCAmelCase : Tuple = "<mask_1> To ensure a <mask_2> flow of bank resolutions." __UpperCAmelCase : Optional[int] = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Optional[int] = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 __UpperCAmelCase : Any = "To ensure a smooth flow of bank resolutions." __UpperCAmelCase : str = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] __UpperCAmelCase : Tuple = tokenizer([raw_input_str] , return_tensors=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : Tuple = ["This is going to be way too long." * 1_50, "short example"] __UpperCAmelCase : Any = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : Dict = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) __UpperCAmelCase : Any = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. @slow def _lowerCamelCase ( self: int ) -> List[str]: # fmt: off __UpperCAmelCase : str = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = PegasusTokenizer lowerCamelCase__: Union[str, Any] = PegasusTokenizerFast lowerCamelCase__: List[Any] = True lowerCamelCase__: Optional[Any] = True def _lowerCamelCase ( self: Optional[int] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Optional[Any] = PegasusTokenizer(__lowerCamelCase , offset=0 , mask_token_sent=__lowerCamelCase , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: List[Any] ) -> Tuple: return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def _lowerCamelCase ( self: Union[str, Any] , **__lowerCamelCase: Union[str, Any] ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: return ("This is a test", "This is a test") def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCAmelCase : str = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) __UpperCAmelCase : List[str] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] __UpperCAmelCase : str = py_tokenizer([raw_input_str] , return_tensors=__lowerCamelCase , add_special_tokens=__lowerCamelCase ).input_ids[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Tuple = ["This is going to be way too long." * 10_00, "short example"] __UpperCAmelCase : Union[str, Any] = ["not super long but more than 5 tokens", "tiny"] __UpperCAmelCase : Tuple = self._large_tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) __UpperCAmelCase : int = self._large_tokenizer( text_target=__lowerCamelCase , max_length=5 , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCamelCase ) == 2 # input_ids, attention_mask. def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[int] = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) __UpperCAmelCase : Any = self._large_tokenizer(__lowerCamelCase ).input_ids self.assertListEqual( __lowerCamelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = '''MobileNetV1Config''' # Base docstring _snake_case = '''google/mobilenet_v1_1.0_224''' _snake_case = [1, 1024, 7, 7] # Image classification docstring _snake_case = '''google/mobilenet_v1_1.0_224''' _snake_case = '''tabby, tabby cat''' _snake_case = [ '''google/mobilenet_v1_1.0_224''', '''google/mobilenet_v1_0.75_192''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None ) -> Tuple: __UpperCAmelCase : Dict = {} if isinstance(snake_case__, snake_case__ ): __UpperCAmelCase : Optional[int] = model.mobilenet_va else: __UpperCAmelCase : str = model __UpperCAmelCase : Optional[Any] = "MobilenetV1/Conv2d_0/" __UpperCAmelCase : Any = backbone.conv_stem.convolution.weight __UpperCAmelCase : List[Any] = backbone.conv_stem.normalization.bias __UpperCAmelCase : List[Any] = backbone.conv_stem.normalization.weight __UpperCAmelCase : int = backbone.conv_stem.normalization.running_mean __UpperCAmelCase : Dict = backbone.conv_stem.normalization.running_var for i in range(13 ): __UpperCAmelCase : Any = i + 1 __UpperCAmelCase : int = i * 2 __UpperCAmelCase : Dict = backbone.layer[pt_index] __UpperCAmelCase : List[str] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' __UpperCAmelCase : List[Any] = pointer.convolution.weight __UpperCAmelCase : str = pointer.normalization.bias __UpperCAmelCase : Dict = pointer.normalization.weight __UpperCAmelCase : Any = pointer.normalization.running_mean __UpperCAmelCase : Tuple = pointer.normalization.running_var __UpperCAmelCase : Optional[Any] = backbone.layer[pt_index + 1] __UpperCAmelCase : str = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' __UpperCAmelCase : Optional[int] = pointer.convolution.weight __UpperCAmelCase : Tuple = pointer.normalization.bias __UpperCAmelCase : Any = pointer.normalization.weight __UpperCAmelCase : Optional[Any] = pointer.normalization.running_mean __UpperCAmelCase : Any = pointer.normalization.running_var if isinstance(snake_case__, snake_case__ ): __UpperCAmelCase : List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/" __UpperCAmelCase : str = model.classifier.weight __UpperCAmelCase : Tuple = model.classifier.bias return tf_to_pt_map def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model __UpperCAmelCase : str = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : Tuple = {} for name, shape in init_vars: logger.info(f'''Loading TF weight {name} with shape {shape}''' ) __UpperCAmelCase : int = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array # Build TF to PyTorch weights loading map __UpperCAmelCase : Union[str, Any] = _build_tf_to_pytorch_map(snake_case__, snake_case__, snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(f'''Importing {name}''' ) if name not in tf_weights: logger.info(f'''{name} not in tf pre-trained weights, skipping''' ) continue __UpperCAmelCase : List[Any] = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) __UpperCAmelCase : Optional[Any] = np.transpose(snake_case__, (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer __UpperCAmelCase : int = array.squeeze().transpose() else: __UpperCAmelCase : Optional[Any] = np.transpose(snake_case__, (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' ) __UpperCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__, snake_case__ ) tf_weights.pop(name + "/RMSProp", snake_case__ ) tf_weights.pop(name + "/RMSProp_1", snake_case__ ) tf_weights.pop(name + "/ExponentialMovingAverage", snake_case__ ) logger.info(f'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' ) return model def _UpperCamelCase ( snake_case__, snake_case__ ) -> torch.Tensor: __UpperCAmelCase : Optional[Any] = features.shape[-2:] __UpperCAmelCase : Union[str, Any] = conv_layer.stride __UpperCAmelCase : Optional[Any] = conv_layer.kernel_size if in_height % stride_height == 0: __UpperCAmelCase : Optional[Any] = max(kernel_height - stride_height, 0 ) else: __UpperCAmelCase : Optional[int] = max(kernel_height - (in_height % stride_height), 0 ) if in_width % stride_width == 0: __UpperCAmelCase : Tuple = max(kernel_width - stride_width, 0 ) else: __UpperCAmelCase : Optional[Any] = max(kernel_width - (in_width % stride_width), 0 ) __UpperCAmelCase : List[str] = pad_along_width // 2 __UpperCAmelCase : List[str] = pad_along_width - pad_left __UpperCAmelCase : int = pad_along_height // 2 __UpperCAmelCase : List[str] = pad_along_height - pad_top __UpperCAmelCase : int = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__, snake_case__, "constant", 0.0 ) class _snake_case ( nn.Module ): def __init__( self: Dict , __lowerCamelCase: MobileNetVaConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = 1 , __lowerCamelCase: Optional[int] = 1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[bool] = True , __lowerCamelCase: Optional[bool or str] = True , ) -> None: super().__init__() __UpperCAmelCase : Optional[int] = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) __UpperCAmelCase : str = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) __UpperCAmelCase : str = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode="zeros" , ) if use_normalization: __UpperCAmelCase : str = nn.BatchNormad( num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , ) else: __UpperCAmelCase : Any = None if use_activation: if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCamelCase ): __UpperCAmelCase : int = ACTaFN[config.hidden_act] else: __UpperCAmelCase : Union[str, Any] = config.hidden_act else: __UpperCAmelCase : List[Any] = None def _lowerCamelCase ( self: Tuple , __lowerCamelCase: torch.Tensor ) -> torch.Tensor: if self.config.tf_padding: __UpperCAmelCase : Tuple = apply_tf_padding(__lowerCamelCase , self.convolution ) __UpperCAmelCase : Any = self.convolution(__lowerCamelCase ) if self.normalization is not None: __UpperCAmelCase : Any = self.normalization(__lowerCamelCase ) if self.activation is not None: __UpperCAmelCase : List[Any] = self.activation(__lowerCamelCase ) return features class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = MobileNetVaConfig lowerCamelCase__: List[str] = load_tf_weights_in_mobilenet_va lowerCamelCase__: List[Any] = "mobilenet_v1" lowerCamelCase__: Dict = "pixel_values" lowerCamelCase__: int = False def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[nn.Linear, nn.Convad] ) -> None: if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _snake_case = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _lowercase , ) class _snake_case ( _lowercase ): def __init__( self: Optional[int] , __lowerCamelCase: MobileNetVaConfig , __lowerCamelCase: bool = True ) -> Union[str, Any]: super().__init__(__lowerCamelCase ) __UpperCAmelCase : int = config __UpperCAmelCase : Optional[Any] = 32 __UpperCAmelCase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth ) __UpperCAmelCase : Dict = MobileNetVaConvLayer( __lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , ) __UpperCAmelCase : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] __UpperCAmelCase : str = nn.ModuleList() for i in range(13 ): __UpperCAmelCase : List[str] = out_channels if strides[i] == 2 or i == 0: depth *= 2 __UpperCAmelCase : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , ) ) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , ) ) __UpperCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any ) -> int: raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: __UpperCAmelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) __UpperCAmelCase : Optional[int] = self.conv_stem(__lowerCamelCase ) __UpperCAmelCase : Tuple = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): __UpperCAmelCase : List[str] = layer_module(__lowerCamelCase ) if output_hidden_states: __UpperCAmelCase : Any = all_hidden_states + (hidden_states,) __UpperCAmelCase : Any = hidden_states if self.pooler is not None: __UpperCAmelCase : Union[str, Any] = torch.flatten(self.pooler(__lowerCamelCase ) , start_dim=1 ) else: __UpperCAmelCase : List[Any] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowercase , ) class _snake_case ( _lowercase ): def __init__( self: int , __lowerCamelCase: MobileNetVaConfig ) -> None: super().__init__(__lowerCamelCase ) __UpperCAmelCase : str = config.num_labels __UpperCAmelCase : Any = MobileNetVaModel(__lowerCamelCase ) __UpperCAmelCase : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head __UpperCAmelCase : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase ) __UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: __UpperCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Dict = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Optional[Any] = self.classifier(self.dropout(__lowerCamelCase ) ) __UpperCAmelCase : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase : Tuple = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase : str = "single_label_classification" else: __UpperCAmelCase : Optional[Any] = "multi_label_classification" if self.config.problem_type == "regression": __UpperCAmelCase : Optional[int] = MSELoss() if self.num_labels == 1: __UpperCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase : Optional[Any] = loss_fct(__lowerCamelCase , __lowerCamelCase ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase : str = CrossEntropyLoss() __UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase : List[str] = BCEWithLogitsLoss() __UpperCAmelCase : List[str] = loss_fct(__lowerCamelCase , __lowerCamelCase ) if not return_dict: __UpperCAmelCase : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int: if len(snake_case__ ) != len(snake_case__ ): raise ValueError("The length of profit and weight must be same." ) if max_weight <= 0: raise ValueError("max_weight must greater than zero." ) if any(p < 0 for p in profit ): raise ValueError("Profit can not be negative." ) if any(w < 0 for w in weight ): raise ValueError("Weight can not be negative." ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. __UpperCAmelCase : Optional[int] = [p / w for p, w in zip(snake_case__, snake_case__ )] # Creating a copy of the list and sorting profit/weight in ascending order __UpperCAmelCase : str = sorted(snake_case__ ) # declaring useful variables __UpperCAmelCase : int = len(snake_case__ ) __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Union[str, Any] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight __UpperCAmelCase : Union[str, Any] = sorted_profit_by_weight[length - i - 1] __UpperCAmelCase : List[str] = profit_by_weight.index(snake_case__ ) __UpperCAmelCase : Optional[Any] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _snake_case = [int(x) for x in input('''Input profits separated by spaces: ''').split()] _snake_case = [int(x) for x in input('''Input weights separated by spaces: ''').split()] _snake_case = int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> List[str]: __UpperCAmelCase : List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __UpperCAmelCase : Optional[int] = 128 elif "12-12" in model_name: __UpperCAmelCase : int = 12 __UpperCAmelCase : int = 12 elif "14-14" in model_name: __UpperCAmelCase : Dict = 14 __UpperCAmelCase : Dict = 14 elif "16-16" in model_name: __UpperCAmelCase : Optional[Any] = 16 __UpperCAmelCase : List[str] = 16 else: raise ValueError("Model not supported" ) __UpperCAmelCase : Tuple = "huggingface/label-files" if "speech-commands" in model_name: __UpperCAmelCase : List[Any] = 35 __UpperCAmelCase : Optional[int] = "speech-commands-v2-id2label.json" else: __UpperCAmelCase : Tuple = 527 __UpperCAmelCase : str = "audioset-id2label.json" __UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Union[str, Any] = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Any = idalabel __UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__ ) -> Dict: if "module.v" in name: __UpperCAmelCase : Tuple = name.replace("module.v", "audio_spectrogram_transformer" ) if "cls_token" in name: __UpperCAmelCase : Optional[int] = name.replace("cls_token", "embeddings.cls_token" ) if "dist_token" in name: __UpperCAmelCase : Any = name.replace("dist_token", "embeddings.distillation_token" ) if "pos_embed" in name: __UpperCAmelCase : Any = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: __UpperCAmelCase : int = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: __UpperCAmelCase : Tuple = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: __UpperCAmelCase : Dict = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: __UpperCAmelCase : int = name.replace("attn", "attention.self" ) if "norm1" in name: __UpperCAmelCase : Any = name.replace("norm1", "layernorm_before" ) if "norm2" in name: __UpperCAmelCase : Dict = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase : int = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase : Any = name.replace("mlp.fc2", "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __UpperCAmelCase : str = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: __UpperCAmelCase : Tuple = name.replace("module.mlp_head.0", "classifier.layernorm" ) if "module.mlp_head.1" in name: __UpperCAmelCase : List[str] = name.replace("module.mlp_head.1", "classifier.dense" ) return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Any = orig_state_dict.pop(snake_case__ ) if "qkv" in key: __UpperCAmelCase : Any = key.split("." ) __UpperCAmelCase : Dict = int(key_split[3] ) __UpperCAmelCase : str = config.hidden_size if "weight" in key: __UpperCAmelCase : Tuple = val[:dim, :] __UpperCAmelCase : int = val[dim : dim * 2, :] __UpperCAmelCase : Optional[Any] = val[-dim:, :] else: __UpperCAmelCase : Optional[int] = val[:dim] __UpperCAmelCase : int = val[dim : dim * 2] __UpperCAmelCase : Any = val[-dim:] else: __UpperCAmelCase : List[Any] = val return orig_state_dict def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[Any] = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(snake_case__, snake_case__ ) @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = get_audio_spectrogram_transformer_config(snake_case__ ) __UpperCAmelCase : Optional[int] = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict __UpperCAmelCase : str = model_name_to_url[model_name] __UpperCAmelCase : Optional[int] = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" ) # remove some keys remove_keys(snake_case__ ) # rename some keys __UpperCAmelCase : Optional[Any] = convert_state_dict(snake_case__, snake_case__ ) # load 🤗 model __UpperCAmelCase : Union[str, Any] = ASTForAudioClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __UpperCAmelCase : List[Any] = -4.267_7393 if "speech-commands" not in model_name else -6.84_5978 __UpperCAmelCase : Optional[Any] = 4.568_9974 if "speech-commands" not in model_name else 5.565_4526 __UpperCAmelCase : Optional[Any] = 1024 if "speech-commands" not in model_name else 128 __UpperCAmelCase : int = ASTFeatureExtractor(mean=snake_case__, std=snake_case__, max_length=snake_case__ ) if "speech-commands" in model_name: __UpperCAmelCase : str = load_dataset("speech_commands", "v0.02", split="validation" ) __UpperCAmelCase : List[str] = dataset[0]["audio"]["array"] else: __UpperCAmelCase : Dict = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset", ) __UpperCAmelCase : List[str] = torchaudio.load(snake_case__ ) __UpperCAmelCase : Dict = waveform.squeeze().numpy() __UpperCAmelCase : Tuple = feature_extractor(snake_case__, sampling_rate=1_6000, return_tensors="pt" ) # forward pass __UpperCAmelCase : Tuple = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __UpperCAmelCase : List[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __UpperCAmelCase : Optional[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __UpperCAmelCase : Union[str, Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __UpperCAmelCase : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __UpperCAmelCase : Any = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __UpperCAmelCase : List[Any] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __UpperCAmelCase : Union[str, Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(snake_case__ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _snake_case : def __init__( self: Optional[int] , __lowerCamelCase: Collection[float] | None = None ) -> None: if components is None: __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Dict = list(__lowerCamelCase ) def __len__( self: Optional[int] ) -> int: return len(self.__components ) def __str__( self: Optional[Any] ) -> str: return "(" + ",".join(map(__lowerCamelCase , self.__components ) ) + ")" def __add__( self: str , __lowerCamelCase: Vector ) -> Vector: __UpperCAmelCase : List[Any] = len(self ) if size == len(__lowerCamelCase ): __UpperCAmelCase : Tuple = [self.__components[i] + other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: raise Exception("must have the same size" ) def __sub__( self: List[str] , __lowerCamelCase: Vector ) -> Vector: __UpperCAmelCase : Union[str, Any] = len(self ) if size == len(__lowerCamelCase ): __UpperCAmelCase : int = [self.__components[i] - other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return Vector(__lowerCamelCase ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self: Any , __lowerCamelCase: float ) -> Vector: ... @overload def __mul__( self: Dict , __lowerCamelCase: Vector ) -> float: ... def __mul__( self: Tuple , __lowerCamelCase: float | Vector ) -> float | Vector: if isinstance(__lowerCamelCase , (float, int) ): __UpperCAmelCase : int = [c * other for c in self.__components] return Vector(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(self ) == len(__lowerCamelCase ): __UpperCAmelCase : Union[str, Any] = len(self ) __UpperCAmelCase : List[str] = [self.__components[i] * other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )] return sum(__lowerCamelCase ) else: # error case raise Exception("invalid operand!" ) def _lowerCamelCase ( self: Optional[int] ) -> Vector: return Vector(self.__components ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int ) -> float: if isinstance(__lowerCamelCase , __lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: float ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCAmelCase : List[str] = value def _lowerCamelCase ( self: int ) -> float: if len(self.__components ) == 0: raise Exception("Vector is empty" ) __UpperCAmelCase : int = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCamelCase ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Vector , __lowerCamelCase: bool = False ) -> float: __UpperCAmelCase : Optional[int] = self * other __UpperCAmelCase : Optional[int] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCamelCase ( snake_case__ ) -> Vector: assert isinstance(snake_case__, snake_case__ ) return Vector([0] * dimension ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Vector: assert isinstance(snake_case__, snake_case__ ) and (isinstance(snake_case__, snake_case__ )) __UpperCAmelCase : Union[str, Any] = [0] * dimension __UpperCAmelCase : Any = 1 return Vector(snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Vector: assert ( isinstance(snake_case__, snake_case__ ) and isinstance(snake_case__, snake_case__ ) and (isinstance(snake_case__, (int, float) )) ) return x * scalar + y def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Vector: random.seed(snake_case__ ) __UpperCAmelCase : int = [random.randint(snake_case__, snake_case__ ) for _ in range(snake_case__ )] return Vector(snake_case__ ) class _snake_case : def __init__( self: int , __lowerCamelCase: list[list[float]] , __lowerCamelCase: int , __lowerCamelCase: int ) -> None: __UpperCAmelCase : List[str] = matrix __UpperCAmelCase : Any = w __UpperCAmelCase : Any = h def __str__( self: List[str] ) -> str: __UpperCAmelCase : Optional[int] = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self: str , __lowerCamelCase: Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase : Tuple = [] for i in range(self.__height ): __UpperCAmelCase : List[Any] = [ self.__matrix[i][j] + other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self: Optional[int] , __lowerCamelCase: Matrix ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase : Optional[Any] = [] for i in range(self.__height ): __UpperCAmelCase : Any = [ self.__matrix[i][j] - other.component(__lowerCamelCase , __lowerCamelCase ) for j in range(self.__width ) ] matrix.append(__lowerCamelCase ) return Matrix(__lowerCamelCase , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self: Dict , __lowerCamelCase: float ) -> Matrix: ... @overload def __mul__( self: Optional[Any] , __lowerCamelCase: Vector ) -> Vector: ... def __mul__( self: Optional[Any] , __lowerCamelCase: float | Vector ) -> Vector | Matrix: if isinstance(__lowerCamelCase , __lowerCamelCase ): # matrix-vector if len(__lowerCamelCase ) == self.__width: __UpperCAmelCase : List[Any] = zero_vector(self.__height ) for i in range(self.__height ): __UpperCAmelCase : Optional[Any] = [ self.__matrix[i][j] * other.component(__lowerCamelCase ) for j in range(self.__width ) ] ans.change_component(__lowerCamelCase , sum(__lowerCamelCase ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(__lowerCamelCase , (int, float) ): # matrix-scalar __UpperCAmelCase : List[Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowerCamelCase , self.__width , self.__height ) return None def _lowerCamelCase ( self: List[str] ) -> int: return self.__height def _lowerCamelCase ( self: Dict ) -> int: return self.__width def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: float ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCAmelCase : str = value else: raise Exception("change_component: indices out of bounds" ) def _lowerCamelCase ( self: Any , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) __UpperCAmelCase : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCamelCase ) ): __UpperCAmelCase : str = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant() def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: int ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCamelCase , __lowerCamelCase ) else: raise Exception("Indices out of bounds" ) def _lowerCamelCase ( self: Optional[int] ) -> float: if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCAmelCase : Any = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCamelCase ) for y in range(self.__width ) ] return sum(__lowerCamelCase ) def _UpperCamelCase ( snake_case__ ) -> Matrix: __UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(snake_case__ )] return Matrix(snake_case__, snake_case__, snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Matrix: random.seed(snake_case__ ) __UpperCAmelCase : list[list[float]] = [ [random.randint(snake_case__, snake_case__ ) for _ in range(snake_case__ )] for _ in range(snake_case__ ) ] return Matrix(snake_case__, snake_case__, snake_case__ )
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _snake_case = open # noqa: we just need to have a builtin inside this module to test it properly
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "xlm-roberta" def __init__( self: Union[str, Any] , __lowerCamelCase: Dict=3_05_22 , __lowerCamelCase: Optional[Any]=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: List[str]=12 , __lowerCamelCase: Tuple=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: str=5_12 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: Union[str, Any]=1e-12 , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: List[Any]="absolute" , __lowerCamelCase: List[Any]=True , __lowerCamelCase: int=None , **__lowerCamelCase: Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Tuple = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Union[str, Any] = position_embedding_type __UpperCAmelCase : Union[str, Any] = use_cache __UpperCAmelCase : Union[str, Any] = classifier_dropout class _snake_case ( _lowercase ): @property def _lowerCamelCase ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCAmelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: __UpperCAmelCase : Dict = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
def _UpperCamelCase ( snake_case__ ) -> list: def merge(snake_case__, snake_case__ ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(snake_case__ ) <= 1: return collection __UpperCAmelCase : Union[str, Any] = len(snake_case__ ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() _snake_case = input('''Enter numbers separated by a comma:\n''').strip() _snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: int = GPTSwaTokenizer lowerCamelCase__: int = False lowerCamelCase__: str = True lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : int = GPTSwaTokenizer(__lowerCamelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = "This is a test" __UpperCAmelCase : Any = "This is a test" return input_text, output_text def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = "<s>" __UpperCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__lowerCamelCase ) , 20_00 ) def _lowerCamelCase ( self: List[str] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 20_00 ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = GPTSwaTokenizer(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4_65, 2_87, 2_65, 6_31, 8_42] ) __UpperCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on __UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase : List[str] = GPTSwaTokenizer(__lowerCamelCase ) __UpperCAmelCase : str = ["This is a test", "I was born in 92000, and this is falsé."] __UpperCAmelCase : Optional[int] = [ [4_65, 2_87, 2_65, 6_31, 8_42], [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertListEqual(tokenizer.encode_fast(__lowerCamelCase ) , __lowerCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.decode_fast(__lowerCamelCase ) , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[int] ) -> Dict: __UpperCAmelCase : str = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off __UpperCAmelCase : List[Any] = {"input_ids": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__lowerCamelCase , )
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Optional[Any] = UniSpeechSatForSequenceClassification.from_pretrained(snake_case__, config=snake_case__ ) __UpperCAmelCase : int = downstream_dict["projector.weight"] __UpperCAmelCase : Optional[Any] = downstream_dict["projector.bias"] __UpperCAmelCase : Tuple = downstream_dict["model.post_net.linear.weight"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(snake_case__, config=snake_case__ ) __UpperCAmelCase : Dict = downstream_dict["model.linear.weight"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.linear.bias"] return model def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int: __UpperCAmelCase : Optional[int] = UniSpeechSatForXVector.from_pretrained(snake_case__, config=snake_case__ ) __UpperCAmelCase : str = downstream_dict["connector.weight"] __UpperCAmelCase : Any = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCAmelCase : Optional[Any] = downstream_dict[ f'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] __UpperCAmelCase : Tuple = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] __UpperCAmelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] __UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] __UpperCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] __UpperCAmelCase : int = downstream_dict["objective.W"] return model @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : Dict = torch.load(snake_case__, map_location="cpu" ) __UpperCAmelCase : List[Any] = checkpoint["Downstream"] __UpperCAmelCase : List[Any] = UniSpeechSatConfig.from_pretrained(snake_case__ ) __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( snake_case__, return_attention_mask=snake_case__, do_normalize=snake_case__ ) __UpperCAmelCase : Optional[int] = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): __UpperCAmelCase : Any = convert_classification(snake_case__, snake_case__, snake_case__ ) elif arch.endswith("ForAudioFrameClassification" ): __UpperCAmelCase : Optional[int] = convert_diarization(snake_case__, snake_case__, snake_case__ ) elif arch.endswith("ForXVector" ): __UpperCAmelCase : Any = convert_xvector(snake_case__, snake_case__, snake_case__ ) else: raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: __UpperCAmelCase : Optional[int] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') _snake_case = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import math import os import sys def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : Any = "" try: with open(snake_case__, "rb" ) as binary_file: __UpperCAmelCase : str = binary_file.read() for dat in data: __UpperCAmelCase : List[Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> None: lexicon.pop(snake_case__ ) __UpperCAmelCase : Dict = last_match_id if math.loga(snake_case__ ).is_integer(): for curr_key in lexicon: __UpperCAmelCase : Any = "0" + lexicon[curr_key] __UpperCAmelCase : List[Any] = bin(snake_case__ )[2:] def _UpperCamelCase ( snake_case__ ) -> str: __UpperCAmelCase : List[Any] = {"0": "0", "1": "1"} __UpperCAmelCase : Tuple = "", "" __UpperCAmelCase : Optional[Any] = len(snake_case__ ) for i in range(len(snake_case__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __UpperCAmelCase : Optional[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(snake_case__, snake_case__, snake_case__, snake_case__ ) index += 1 __UpperCAmelCase : Dict = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __UpperCAmelCase : Dict = lexicon[curr_string] result += last_match_id return result def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Dict = os.path.getsize(snake_case__ ) __UpperCAmelCase : Tuple = bin(snake_case__ )[2:] __UpperCAmelCase : List[Any] = len(snake_case__ ) return "0" * (length_length - 1) + file_length_binary + compressed def _UpperCamelCase ( snake_case__, snake_case__ ) -> None: __UpperCAmelCase : Tuple = 8 try: with open(snake_case__, "wb" ) as opened_file: __UpperCAmelCase : Dict = [ to_write[i : i + byte_length] for i in range(0, len(snake_case__ ), snake_case__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(snake_case__, 2 ).to_bytes(1, byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _UpperCamelCase ( snake_case__, snake_case__ ) -> None: __UpperCAmelCase : List[Any] = read_file_binary(snake_case__ ) __UpperCAmelCase : int = compress_data(snake_case__ ) __UpperCAmelCase : Dict = add_file_length(snake_case__, snake_case__ ) write_file_binary(snake_case__, snake_case__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import copy import re class _snake_case : lowerCamelCase__: List[str] = "hp" lowerCamelCase__: List[str] = {} lowerCamelCase__: Tuple = None @classmethod def _lowerCamelCase ( cls: Any , __lowerCamelCase: Any , __lowerCamelCase: Any ) -> Dict: __UpperCAmelCase : List[str] = prefix __UpperCAmelCase : int = defaults cls.build_naming_info() @staticmethod def _lowerCamelCase ( __lowerCamelCase: Dict , __lowerCamelCase: Tuple ) -> Tuple: if len(__lowerCamelCase ) == 0: return "" __UpperCAmelCase : Union[str, Any] = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__lowerCamelCase ) + 1 ): __UpperCAmelCase : List[str] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: __UpperCAmelCase : List[str] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__lowerCamelCase: Tuple ): __UpperCAmelCase : Optional[int] = "" while integer != 0: __UpperCAmelCase : Union[str, Any] = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s __UpperCAmelCase : Dict = 0 while True: __UpperCAmelCase : int = word + "#" + int_to_alphabetic(__lowerCamelCase ) if sword in info["reverse_short_word"]: continue else: __UpperCAmelCase : List[str] = sword break __UpperCAmelCase : str = short_word __UpperCAmelCase : int = word return short_word @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any , __lowerCamelCase: List[str] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = param_name.split("_" ) __UpperCAmelCase : str = [TrialShortNamer.shortname_for_word(__lowerCamelCase , __lowerCamelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name __UpperCAmelCase : List[str] = ["", "_"] for separator in separators: __UpperCAmelCase : Any = separator.join(__lowerCamelCase ) if shortname not in info["reverse_short_param"]: __UpperCAmelCase : Optional[Any] = shortname __UpperCAmelCase : int = param_name return shortname return param_name @staticmethod def _lowerCamelCase ( __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : List[Any] = TrialShortNamer.shortname_for_key(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = short_name __UpperCAmelCase : Tuple = param_name @classmethod def _lowerCamelCase ( cls: Dict ) -> Any: if cls.NAMING_INFO is not None: return __UpperCAmelCase : Union[str, Any] = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } __UpperCAmelCase : str = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = info @classmethod def _lowerCamelCase ( cls: Union[str, Any] , __lowerCamelCase: Optional[int] ) -> str: cls.build_naming_info() assert cls.PREFIX is not None __UpperCAmelCase : Any = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue __UpperCAmelCase : Any = cls.NAMING_INFO["short_param"][k] if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : int = 1 if v else 0 __UpperCAmelCase : str = "" if isinstance(__lowerCamelCase , (int, float) ) else "-" __UpperCAmelCase : Tuple = f'''{key}{sep}{v}''' name.append(__lowerCamelCase ) return "_".join(__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: Dict ) -> Any: __UpperCAmelCase : Any = repr[len(cls.PREFIX ) + 1 :] if repr == "": __UpperCAmelCase : str = [] else: __UpperCAmelCase : Union[str, Any] = repr.split("_" ) __UpperCAmelCase : str = {} for value in values: if "-" in value: __UpperCAmelCase : Tuple = value.split("-" ) else: __UpperCAmelCase : List[str] = re.sub("[0-9.]" , "" , __lowerCamelCase ) __UpperCAmelCase : List[Any] = float(re.sub("[^0-9.]" , "" , __lowerCamelCase ) ) __UpperCAmelCase : int = cls.NAMING_INFO["reverse_short_param"][p_k] __UpperCAmelCase : int = p_v for k in cls.DEFAULTS: if k not in parameters: __UpperCAmelCase : Dict = cls.DEFAULTS[k] return parameters
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from __future__ import annotations def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, ) -> float: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( snake_case__, nominal_annual_percentage_rate / 365, number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _snake_case = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class _snake_case ( _lowercase ): lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Whether to use SortishSampler or not."} ) lowerCamelCase__: bool = field( default=_lowercase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowerCamelCase__: Optional[int] = field( default=_lowercase , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowerCamelCase__: Optional[Union[str, Path, GenerationConfig]] = field( default=_lowercase , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : str = super().to_dict() for k, v in d.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = v.to_dict() return d
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
import itertools import math def _UpperCamelCase ( snake_case__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(snake_case__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : int = 2 while True: if is_prime(snake_case__ ): yield num num += 1 def _UpperCamelCase ( snake_case__ = 1_0001 ) -> int: return next(itertools.islice(prime_generator(), nth - 1, snake_case__ ) ) if __name__ == "__main__": print(F'{solution() = }')
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _snake_case = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _snake_case = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _snake_case = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: Any ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: str , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[str]=False ) -> Union[str, Any]: if rouge_types is None: __UpperCAmelCase : int = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __UpperCAmelCase : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=__lowerCamelCase , use_stemmer=__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : Tuple = scoring.BootstrapAggregator() else: __UpperCAmelCase : int = [] for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Dict = scorer.score(__lowerCamelCase , __lowerCamelCase ) if use_aggregator: aggregator.add_scores(__lowerCamelCase ) else: scores.append(__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : str = aggregator.aggregate() else: __UpperCAmelCase : Optional[int] = {} for key in scores[0]: __UpperCAmelCase : Dict = [score[key] for score in scores] return result
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[int] = MgpstrTokenizer lowerCamelCase__: List[Any] = False lowerCamelCase__: Optional[int] = {} lowerCamelCase__: Dict = False def _lowerCamelCase ( self: int ) -> str: super().setUp() # fmt: off __UpperCAmelCase : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) def _lowerCamelCase ( self: Tuple , **__lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : Optional[Any] = "tester" __UpperCAmelCase : int = "tester" return input_text, output_text @unittest.skip("MGP-STR always lower cases letters." ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Union[str, Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode([special_token] , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Union[str, Any] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Dict ) -> List[Any]: __UpperCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Union[str, Any] = self.get_input_output_texts(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertNotEqual(len(__lowerCamelCase ) , 0 ) __UpperCAmelCase : int = tokenizer.decode(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(text_a.replace(" " , "" ) , __lowerCamelCase ) @unittest.skip("MGP-STR tokenizer only handles one sequence." ) def _lowerCamelCase ( self: Tuple ) -> List[str]: pass @unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" ) def _lowerCamelCase ( self: List[Any] ) -> List[str]: pass
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
from math import factorial def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(snake_case__, snake_case__ ) or not isinstance(snake_case__, snake_case__ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) __UpperCAmelCase : List[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __UpperCAmelCase : Dict = float(factorial(snake_case__ ) ) coefficient /= factorial(snake_case__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.7_5))
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class _snake_case ( _lowercase ): lowerCamelCase__: str = "ctrl" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: Optional[Any] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Tuple , __lowerCamelCase: str=24_65_34 , __lowerCamelCase: Union[str, Any]=2_56 , __lowerCamelCase: str=12_80 , __lowerCamelCase: int=81_92 , __lowerCamelCase: str=48 , __lowerCamelCase: List[str]=16 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Dict=1e-6 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: List[str]=True , **__lowerCamelCase: List[str] , ) -> Dict: __UpperCAmelCase : Tuple = vocab_size __UpperCAmelCase : int = n_positions __UpperCAmelCase : Optional[int] = n_embd __UpperCAmelCase : int = n_layer __UpperCAmelCase : Tuple = n_head __UpperCAmelCase : Optional[Any] = dff __UpperCAmelCase : List[Any] = resid_pdrop __UpperCAmelCase : Dict = embd_pdrop __UpperCAmelCase : Any = layer_norm_epsilon __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Dict = use_cache super().__init__(**__lowerCamelCase )
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
def _UpperCamelCase ( snake_case__ ) -> bool: __UpperCAmelCase : Any = 0 for ch in input_str: __UpperCAmelCase : Optional[Any] = ord(snake_case__ ) __UpperCAmelCase : Union[str, Any] = pow(2, snake_case__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Any: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __UpperCAmelCase : List[Any] = TapasConfig.from_json_file(snake_case__ ) # set absolute/relative position embeddings parameter __UpperCAmelCase : Optional[int] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __UpperCAmelCase : str = TapasForQuestionAnswering(config=snake_case__ ) elif task == "WTQ": # run_task_main.py hparams __UpperCAmelCase : Union[str, Any] = 4 __UpperCAmelCase : Any = True # hparam_utils.py hparams __UpperCAmelCase : int = 0.66_4694 __UpperCAmelCase : List[str] = 0.20_7951 __UpperCAmelCase : Tuple = 0.12_1194 __UpperCAmelCase : Tuple = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = False __UpperCAmelCase : int = 0.035_2513 __UpperCAmelCase : Any = TapasForQuestionAnswering(config=snake_case__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __UpperCAmelCase : List[Any] = 4 __UpperCAmelCase : Union[str, Any] = False # hparam_utils.py hparams __UpperCAmelCase : Tuple = 36.4519 __UpperCAmelCase : List[str] = 0.90_3421 __UpperCAmelCase : Dict = 222.088 __UpperCAmelCase : Dict = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[Any] = 0.76_3141 __UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=snake_case__ ) elif task == "TABFACT": __UpperCAmelCase : Optional[int] = TapasForSequenceClassification(config=snake_case__ ) elif task == "MLM": __UpperCAmelCase : Tuple = TapasForMaskedLM(config=snake_case__ ) elif task == "INTERMEDIATE_PRETRAINING": __UpperCAmelCase : List[str] = TapasModel(config=snake_case__ ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(snake_case__, snake_case__, snake_case__ ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(snake_case__ ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) __UpperCAmelCase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512 ) tokenizer.save_pretrained(snake_case__ ) print("Used relative position embeddings:", model.config.reset_position_index_per_cell ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = '''RegNetConfig''' # Base docstring _snake_case = '''facebook/regnet-y-040''' _snake_case = [1, 1088, 7, 7] # Image classification docstring _snake_case = '''facebook/regnet-y-040''' _snake_case = '''tabby, tabby cat''' _snake_case = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int = 3 , __lowerCamelCase: int = 1 , __lowerCamelCase: int = 1 , __lowerCamelCase: Optional[str] = "relu" , **__lowerCamelCase: Any , ) -> Dict: super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCAmelCase : Optional[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCAmelCase : Union[str, Any] = tf.keras.layers.ConvaD( filters=__lowerCamelCase , kernel_size=__lowerCamelCase , strides=__lowerCamelCase , padding="VALID" , groups=__lowerCamelCase , use_bias=__lowerCamelCase , name="convolution" , ) __UpperCAmelCase : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) __UpperCAmelCase : List[Any] = ACTaFN[activation] if activation is not None else tf.identity def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> Union[str, Any]: __UpperCAmelCase : int = self.convolution(self.padding(__lowerCamelCase ) ) __UpperCAmelCase : str = self.normalization(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: str , __lowerCamelCase: RegNetConfig , **__lowerCamelCase: Union[str, Any] ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = config.num_channels __UpperCAmelCase : List[Any] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Dict ) -> int: __UpperCAmelCase : str = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCAmelCase : Dict = tf.transpose(__lowerCamelCase , perm=(0, 2, 3, 1) ) __UpperCAmelCase : Optional[int] = self.embedder(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Dict , __lowerCamelCase: int , __lowerCamelCase: int = 2 , **__lowerCamelCase: List[str] ) -> Dict: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = tf.keras.layers.ConvaD( filters=__lowerCamelCase , kernel_size=1 , strides=__lowerCamelCase , use_bias=__lowerCamelCase , name="convolution" ) __UpperCAmelCase : Union[str, Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: bool = False ) -> tf.Tensor: return self.normalization(self.convolution(__lowerCamelCase ) , training=__lowerCamelCase ) class _snake_case ( tf.keras.layers.Layer ): def __init__( self: int , __lowerCamelCase: int , __lowerCamelCase: int , **__lowerCamelCase: int ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase , name="pooler" ) __UpperCAmelCase : str = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=__lowerCamelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def _lowerCamelCase ( self: Any , __lowerCamelCase: str ) -> Tuple: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCAmelCase : Any = self.pooler(__lowerCamelCase ) for layer_module in self.attention: __UpperCAmelCase : List[str] = layer_module(__lowerCamelCase ) __UpperCAmelCase : List[str] = hidden_state * pooled return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Union[str, Any] , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 1 , **__lowerCamelCase: int ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = in_channels != out_channels or stride != 1 __UpperCAmelCase : Dict = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Union[str, Any] = ( TFRegNetShortCut(__lowerCamelCase , stride=__lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCAmelCase : List[str] = [ TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase , name="layer.2" ), ] __UpperCAmelCase : Any = ACTaFN[config.hidden_act] def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Tuple = hidden_state for layer_module in self.layers: __UpperCAmelCase : Dict = layer_module(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.shortcut(__lowerCamelCase ) hidden_state += residual __UpperCAmelCase : int = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: str , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 1 , **__lowerCamelCase: int ) -> Optional[Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : str = in_channels != out_channels or stride != 1 __UpperCAmelCase : Tuple = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Dict = ( TFRegNetShortCut(__lowerCamelCase , stride=__lowerCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) __UpperCAmelCase : Optional[Any] = [ TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( __lowerCamelCase , stride=__lowerCamelCase , groups=__lowerCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(__lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(__lowerCamelCase , kernel_size=1 , activation=__lowerCamelCase , name="layer.3" ), ] __UpperCAmelCase : List[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self: Any , __lowerCamelCase: str ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCAmelCase : str = layer_module(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.shortcut(__lowerCamelCase ) hidden_state += residual __UpperCAmelCase : List[Any] = self.activation(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: Dict , __lowerCamelCase: RegNetConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int = 2 , __lowerCamelCase: int = 2 , **__lowerCamelCase: Any ) -> Optional[int]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : List[str] = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer __UpperCAmelCase : Tuple = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , stride=__lowerCamelCase , name="layers.0" ), *[layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any ) -> Dict: for layer_module in self.layers: __UpperCAmelCase : Union[str, Any] = layer_module(__lowerCamelCase ) return hidden_state class _snake_case ( tf.keras.layers.Layer ): def __init__( self: List[str] , __lowerCamelCase: RegNetConfig , **__lowerCamelCase: Optional[Any] ) -> str: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : int = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) __UpperCAmelCase : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , depth=__lowerCamelCase , name=f'''stages.{i+1}''' ) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCAmelCase : str = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase : Dict = hidden_states + (hidden_state,) __UpperCAmelCase : Union[str, Any] = stage_module(__lowerCamelCase ) if output_hidden_states: __UpperCAmelCase : Dict = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase ) @keras_serializable class _snake_case ( tf.keras.layers.Layer ): lowerCamelCase__: int = RegNetConfig def __init__( self: Dict , __lowerCamelCase: Any , **__lowerCamelCase: Union[str, Any] ) -> Optional[int]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = config __UpperCAmelCase : List[Any] = TFRegNetEmbeddings(__lowerCamelCase , name="embedder" ) __UpperCAmelCase : Tuple = TFRegNetEncoder(__lowerCamelCase , name="encoder" ) __UpperCAmelCase : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase , name="pooler" ) @unpack_inputs def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.embedder(__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = self.encoder( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : Dict = encoder_outputs[0] __UpperCAmelCase : Optional[Any] = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules __UpperCAmelCase : Optional[int] = tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) __UpperCAmelCase : int = tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCAmelCase : Dict = tuple([tf.transpose(__lowerCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict = RegNetConfig lowerCamelCase__: List[Any] = "regnet" lowerCamelCase__: Dict = "pixel_values" @property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )} _snake_case = r''' Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. ''' _snake_case = r''' Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _lowercase , ) class _snake_case ( _lowercase ): def __init__( self: List[str] , __lowerCamelCase: RegNetConfig , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ) -> Tuple: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : str = TFRegNetMainLayer(__lowerCamelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: tf.Tensor , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Dict=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( pixel_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowercase , ) class _snake_case ( _lowercase , _lowercase ): def __init__( self: Tuple , __lowerCamelCase: RegNetConfig , *__lowerCamelCase: str , **__lowerCamelCase: List[str] ) -> List[str]: super().__init__(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = config.num_labels __UpperCAmelCase : Union[str, Any] = TFRegNetMainLayer(__lowerCamelCase , name="regnet" ) # classification head __UpperCAmelCase : Optional[Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: tf.Tensor = None , __lowerCamelCase: tf.Tensor = None , __lowerCamelCase: bool = None , __lowerCamelCase: bool = None , __lowerCamelCase: Union[str, Any]=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCAmelCase : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( __lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , training=__lowerCamelCase ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Optional[int] = self.classifier[0](__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.classifier[1](__lowerCamelCase ) __UpperCAmelCase : Optional[int] = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase , logits=__lowerCamelCase ) if not return_dict: __UpperCAmelCase : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): def __init__( self: Optional[int] , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> None: warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: int = ["sentencepiece"] def __init__( self: Dict , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: str = ["sentencepiece"] def __init__( self: int , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: int = ["sentencepiece"] def __init__( self: Union[str, Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ) -> Any: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Any = ["sentencepiece"] def __init__( self: Union[str, Any] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> int: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Optional[Any] = ["sentencepiece"] def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[str] = ["sentencepiece"] def __init__( self: Any , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Union[str, Any] ) -> Dict: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Tuple = ["sentencepiece"] def __init__( self: int , *__lowerCamelCase: str , **__lowerCamelCase: Any ) -> Any: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: str = ["sentencepiece"] def __init__( self: Tuple , *__lowerCamelCase: str , **__lowerCamelCase: Tuple ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Dict = ["sentencepiece"] def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: int ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> str: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: str = ["sentencepiece"] def __init__( self: int , *__lowerCamelCase: List[Any] , **__lowerCamelCase: List[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[str] = ["sentencepiece"] def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: int = ["sentencepiece"] def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> Optional[int]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: str , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Tuple = ["sentencepiece"] def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Any = ["sentencepiece"] def __init__( self: List[str] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[str] = ["sentencepiece"] def __init__( self: Tuple , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Dict ) -> int: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[str] = ["sentencepiece"] def __init__( self: Any , *__lowerCamelCase: List[Any] , **__lowerCamelCase: int ) -> Tuple: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Union[str, Any] = ["sentencepiece"] def __init__( self: Union[str, Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Optional[int] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Optional[int] = ["sentencepiece"] def __init__( self: str , *__lowerCamelCase: str , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: str = ["sentencepiece"] def __init__( self: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Tuple = ["sentencepiece"] def __init__( self: int , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Any: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Tuple = ["sentencepiece"] def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> List[str]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: int = ["sentencepiece"] def __init__( self: List[str] , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ) -> str: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[str] = ["sentencepiece"] def __init__( self: Union[str, Any] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: Optional[int] = ["sentencepiece"] def __init__( self: List[Any] , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> List[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: int = ["sentencepiece"] def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> Optional[Any]: requires_backends(self , ["sentencepiece"] ) class _snake_case ( metaclass=_lowercase ): lowerCamelCase__: List[Any] = ["sentencepiece"] def __init__( self: int , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ) -> Any: requires_backends(self , ["sentencepiece"] )
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
def _UpperCamelCase ( snake_case__ ) -> int: assert isinstance(snake_case__, snake_case__ ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __UpperCAmelCase : Any = f'''The input value of [n={number}] has to be > 0''' raise ValueError(snake_case__ ) else: __UpperCAmelCase : int = sylvester(number - 1 ) __UpperCAmelCase : Tuple = num - 1 __UpperCAmelCase : List[str] = num return lower * upper + 1 if __name__ == "__main__": print(F'The 8th number in Sylvester\'s sequence: {sylvester(8)}')
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Any ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCamelCase , "tf_padding" ) ) self.parent.assertTrue(hasattr(__lowerCamelCase , "depth_multiplier" ) ) class _snake_case : def __init__( self: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int]=13 , __lowerCamelCase: Tuple=3 , __lowerCamelCase: Any=32 , __lowerCamelCase: List[str]=0.25 , __lowerCamelCase: Optional[Any]=8 , __lowerCamelCase: str=True , __lowerCamelCase: Optional[Any]=10_24 , __lowerCamelCase: Tuple=32 , __lowerCamelCase: Tuple="relu6" , __lowerCamelCase: Any=0.1 , __lowerCamelCase: str=0.02 , __lowerCamelCase: str=True , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: List[Any]=None , ) -> Tuple: __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Any = num_channels __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = depth_multiplier __UpperCAmelCase : str = min_depth __UpperCAmelCase : str = tf_padding __UpperCAmelCase : List[str] = int(last_hidden_size * depth_multiplier ) __UpperCAmelCase : str = output_stride __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Union[str, Any] = classifier_dropout_prob __UpperCAmelCase : str = use_labels __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : str = num_labels __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Any = scope def _lowerCamelCase ( self: Optional[int] ) -> int: __UpperCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : str = None __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self: List[Any] ) -> Tuple: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : int = MobileNetVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] ) -> Tuple: __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : Optional[Any] = MobileNetVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase : Dict = config_and_inputs __UpperCAmelCase : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () lowerCamelCase__: Union[str, Any] = ( {"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Any = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Tuple = False def _lowerCamelCase ( self: Optional[Any] ) -> str: __UpperCAmelCase : Optional[int] = MobileNetVaModelTester(self ) __UpperCAmelCase : str = MobileNetVaConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV1 does not use inputs_embeds" ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: pass @unittest.skip(reason="MobileNetV1 does not support input and output embeddings" ) def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass @unittest.skip(reason="MobileNetV1 does not output attentions" ) def _lowerCamelCase ( self: int ) -> int: pass def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = model_class(__lowerCamelCase ) __UpperCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> List[str]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Tuple: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple ): __UpperCAmelCase : Dict = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : Optional[int] = outputs.hidden_states __UpperCAmelCase : Dict = 26 self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : int = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = MobileNetVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> Optional[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v1_1.0_224" ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self: int ) -> int: __UpperCAmelCase : Optional[Any] = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v1_1.0_224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Union[str, Any] = prepare_img() __UpperCAmelCase : List[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : Tuple = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = RobertaTokenizer lowerCamelCase__: Tuple = RobertaTokenizerFast lowerCamelCase__: int = True lowerCamelCase__: List[str] = {"cls_token": "<s>"} def _lowerCamelCase ( self: int ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCAmelCase : str = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] __UpperCAmelCase : str = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] __UpperCAmelCase : int = {"unk_token": "<unk>"} __UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowerCamelCase ) ) def _lowerCamelCase ( self: int , **__lowerCamelCase: Optional[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , **__lowerCamelCase: List[Any] ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[int] ) -> int: __UpperCAmelCase : str = "lower newer" __UpperCAmelCase : Dict = "lower newer" return input_text, output_text def _lowerCamelCase ( self: Optional[Any] ) -> str: __UpperCAmelCase : Dict = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCAmelCase : Optional[int] = "lower newer" __UpperCAmelCase : List[Any] = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] __UpperCAmelCase : Dict = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = tokens + [tokenizer.unk_token] __UpperCAmelCase : List[str] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> List[str]: __UpperCAmelCase : Optional[int] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=__lowerCamelCase ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def _lowerCamelCase ( self: Union[str, Any] ) -> int: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained("roberta-base" ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode("sequence builders" , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.encode( "sequence builders" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) __UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase , __lowerCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = "Encode this sequence." __UpperCAmelCase : int = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # Testing spaces after special tokens __UpperCAmelCase : Optional[int] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )} ) # mask token has a left space __UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = "Encode <mask> sequence" __UpperCAmelCase : List[Any] = "Encode <mask>sequence" __UpperCAmelCase : str = tokenizer.encode(__lowerCamelCase ) __UpperCAmelCase : int = encoded.index(__lowerCamelCase ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase ) __UpperCAmelCase : Dict = encoded.index(__lowerCamelCase ) __UpperCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> int: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Tuple = "A, <mask> AllenNLP sentence." __UpperCAmelCase : Dict = tokenizer_r.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = tokenizer_p.encode_plus(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_token_type_ids=__lowerCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) __UpperCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) __UpperCAmelCase : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( __lowerCamelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def _lowerCamelCase ( self: Tuple ) -> Tuple: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCAmelCase : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , __lowerCamelCase ) self.assertEqual(post_processor_state["trim_offsets"] , __lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : Dict = "hello" # `hello` is a token in the vocabulary of `pretrained_name` __UpperCAmelCase : Optional[int] = f'''{text_of_1_token} {text_of_1_token}''' __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : List[str] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : Union[str, Any] = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : List[Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : str = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , ) __UpperCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained( __lowerCamelCase , use_fast=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer_r(__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) , )
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: _snake_case = None _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } _snake_case = { '''google/rembert''': 256, } _snake_case = '''▁''' class _snake_case ( _lowercase ): lowerCamelCase__: List[str] = VOCAB_FILES_NAMES lowerCamelCase__: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: int = RemBertTokenizer def __init__( self: str , __lowerCamelCase: List[str]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Any=True , __lowerCamelCase: Any=True , __lowerCamelCase: Any=False , __lowerCamelCase: Tuple="[CLS]" , __lowerCamelCase: str="[SEP]" , __lowerCamelCase: Tuple="<unk>" , __lowerCamelCase: Dict="[SEP]" , __lowerCamelCase: int="<pad>" , __lowerCamelCase: List[str]="[CLS]" , __lowerCamelCase: Optional[int]="[MASK]" , **__lowerCamelCase: Union[str, Any] , ) -> Tuple: # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : List[Any] = do_lower_case __UpperCAmelCase : Tuple = remove_space __UpperCAmelCase : int = keep_accents __UpperCAmelCase : List[Any] = vocab_file __UpperCAmelCase : Optional[int] = False if not self.vocab_file else True def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : Tuple = [self.sep_token_id] __UpperCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self: str , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : str = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error("Vocabulary path ({}) should be a directory".format(__lowerCamelCase ) ) return __UpperCAmelCase : str = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import os # Precomputes a list of the 100 first triangular numbers _snake_case = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : Dict = os.path.dirname(os.path.realpath(snake_case__ ) ) __UpperCAmelCase : Dict = os.path.join(snake_case__, "words.txt" ) __UpperCAmelCase : List[Any] = "" with open(snake_case__ ) as f: __UpperCAmelCase : str = f.readline() __UpperCAmelCase : Optional[Any] = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] __UpperCAmelCase : Optional[Any] = [ word for word in [sum(ord(snake_case__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(snake_case__ ) if __name__ == "__main__": print(solution())
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( '''The `inpainting.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionInpaintPipeline` instead.''' )
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple[int, int]: def constraint_to_multiple_of(snake_case__, snake_case__, snake_case__=0, snake_case__=None ): __UpperCAmelCase : Tuple = round(val / multiple ) * multiple if max_val is not None and x > max_val: __UpperCAmelCase : Tuple = math.floor(val / multiple ) * multiple if x < min_val: __UpperCAmelCase : List[str] = math.ceil(val / multiple ) * multiple return x __UpperCAmelCase : Tuple = (output_size, output_size) if isinstance(snake_case__, snake_case__ ) else output_size __UpperCAmelCase : int = get_image_size(snake_case__ ) __UpperCAmelCase : List[Any] = output_size # determine new height and width __UpperCAmelCase : int = output_height / input_height __UpperCAmelCase : Union[str, Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width __UpperCAmelCase : int = scale_width else: # fit height __UpperCAmelCase : Optional[int] = scale_height __UpperCAmelCase : Dict = constraint_to_multiple_of(scale_height * input_height, multiple=snake_case__ ) __UpperCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width, multiple=snake_case__ ) return (new_height, new_width) class _snake_case ( _lowercase ): lowerCamelCase__: int = ["pixel_values"] def __init__( self: Tuple , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: bool = False , __lowerCamelCase: int = 1 , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 2_55 , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , **__lowerCamelCase: List[Any] , ) -> None: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Tuple = size if size is not None else {"height": 3_84, "width": 3_84} __UpperCAmelCase : Optional[Any] = get_size_dict(__lowerCamelCase ) __UpperCAmelCase : List[Any] = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Dict = keep_aspect_ratio __UpperCAmelCase : Dict = ensure_multiple_of __UpperCAmelCase : str = resample __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Optional[Any] = rescale_factor __UpperCAmelCase : Optional[Any] = do_normalize __UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self: Dict , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: bool = False , __lowerCamelCase: int = 1 , __lowerCamelCase: PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: str , ) -> np.ndarray: __UpperCAmelCase : Any = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) __UpperCAmelCase : Optional[Any] = get_resize_output_image_size( __lowerCamelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=__lowerCamelCase , multiple=__lowerCamelCase , ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[int, float] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: str , ) -> Any: return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: int , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: Optional[Any] , ) -> np.ndarray: return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: ImageInput , __lowerCamelCase: bool = None , __lowerCamelCase: int = None , __lowerCamelCase: bool = None , __lowerCamelCase: int = None , __lowerCamelCase: PILImageResampling = None , __lowerCamelCase: bool = None , __lowerCamelCase: float = None , __lowerCamelCase: bool = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase: Optional[int] , ) -> PIL.Image.Image: __UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[Any] = size if size is not None else self.size __UpperCAmelCase : Optional[Any] = get_size_dict(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio __UpperCAmelCase : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of __UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample __UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Any = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __UpperCAmelCase : Union[str, Any] = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: __UpperCAmelCase : List[Any] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: __UpperCAmelCase : Optional[int] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: __UpperCAmelCase : Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] __UpperCAmelCase : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __UpperCAmelCase : List[str] = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Tuple] = None ) -> Optional[Any]: __UpperCAmelCase : List[str] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCamelCase ) != len(__lowerCamelCase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(__lowerCamelCase ): __UpperCAmelCase : List[str] = target_sizes.numpy() __UpperCAmelCase : Tuple = [] for idx in range(len(__lowerCamelCase ) ): __UpperCAmelCase : List[str] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCamelCase ) else: __UpperCAmelCase : Dict = logits.argmax(dim=1 ) __UpperCAmelCase : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
import re def _UpperCamelCase ( snake_case__ ) -> bool: __UpperCAmelCase : Union[str, Any] = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(snake_case__, snake_case__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: TransformeraDModel , __lowerCamelCase: AutoencoderKL , __lowerCamelCase: KarrasDiffusionSchedulers , __lowerCamelCase: Optional[Dict[int, str]] = None , ) -> Dict: super().__init__() self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase ) # create a imagenet -> id dictionary for easier use __UpperCAmelCase : List[str] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __UpperCAmelCase : Any = int(__lowerCamelCase ) __UpperCAmelCase : List[str] = dict(sorted(self.labels.items() ) ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, List[str]] ) -> List[int]: if not isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : int = list(__lowerCamelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self: Optional[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: float = 4.0 , __lowerCamelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase: int = 50 , __lowerCamelCase: Optional[str] = "pil" , __lowerCamelCase: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCAmelCase : List[str] = len(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.transformer.config.sample_size __UpperCAmelCase : str = self.transformer.config.in_channels __UpperCAmelCase : List[str] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , ) __UpperCAmelCase : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 ) __UpperCAmelCase : Dict = torch.tensor([10_00] * batch_size , device=self.device ) __UpperCAmelCase : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __UpperCAmelCase : Optional[Any] = latent_model_input[: len(__lowerCamelCase ) // 2] __UpperCAmelCase : List[str] = torch.cat([half, half] , dim=0 ) __UpperCAmelCase : List[str] = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = t if not torch.is_tensor(__lowerCamelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __UpperCAmelCase : List[Any] = latent_model_input.device.type == "mps" if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = torch.floataa if is_mps else torch.floataa else: __UpperCAmelCase : int = torch.intaa if is_mps else torch.intaa __UpperCAmelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __UpperCAmelCase : Tuple = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __UpperCAmelCase : Any = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __UpperCAmelCase : Any = self.transformer( __lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample # perform guidance if guidance_scale > 1: __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __UpperCAmelCase : Tuple = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 ) __UpperCAmelCase : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __UpperCAmelCase : int = torch.cat([half_eps, half_eps] , dim=0 ) __UpperCAmelCase : int = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __UpperCAmelCase : Optional[int] = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 ) else: __UpperCAmelCase : Union[str, Any] = noise_pred # compute previous image: x_t -> x_t-1 __UpperCAmelCase : List[Any] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample if guidance_scale > 1: __UpperCAmelCase : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: __UpperCAmelCase : Optional[int] = latent_model_input __UpperCAmelCase : Dict = 1 / self.vae.config.scaling_factor * latents __UpperCAmelCase : List[str] = self.vae.decode(__lowerCamelCase ).sample __UpperCAmelCase : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __UpperCAmelCase : List[str] = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCamelCase )
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _snake_case = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''MaskFormerFeatureExtractor'''] _snake_case = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] _snake_case = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = "decision_transformer" lowerCamelCase__: str = ["past_key_values"] lowerCamelCase__: int = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self: Dict , __lowerCamelCase: Optional[Any]=17 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: Optional[int]=1_28 , __lowerCamelCase: Tuple=40_96 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Any=10_24 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: List[str]=1 , __lowerCamelCase: int=None , __lowerCamelCase: Any="relu" , __lowerCamelCase: List[Any]=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[int]=1e-5 , __lowerCamelCase: int=0.02 , __lowerCamelCase: Tuple=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[int]=5_02_56 , __lowerCamelCase: List[Any]=5_02_56 , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Optional[Any]=False , **__lowerCamelCase: Any , ) -> str: __UpperCAmelCase : Optional[Any] = state_dim __UpperCAmelCase : Dict = act_dim __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Dict = max_ep_len __UpperCAmelCase : List[Any] = action_tanh __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = n_positions __UpperCAmelCase : Tuple = n_layer __UpperCAmelCase : Union[str, Any] = n_head __UpperCAmelCase : Tuple = n_inner __UpperCAmelCase : Tuple = activation_function __UpperCAmelCase : int = resid_pdrop __UpperCAmelCase : Dict = embd_pdrop __UpperCAmelCase : str = attn_pdrop __UpperCAmelCase : List[str] = layer_norm_epsilon __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : str = scale_attn_weights __UpperCAmelCase : int = use_cache __UpperCAmelCase : Tuple = scale_attn_by_inverse_layer_idx __UpperCAmelCase : Union[str, Any] = reorder_and_upcast_attn __UpperCAmelCase : Optional[Any] = bos_token_id __UpperCAmelCase : Any = eos_token_id super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _UpperCamelCase ( snake_case__, snake_case__=0.999, snake_case__="cosine", ) -> List[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __UpperCAmelCase : Union[str, Any] = [] for i in range(snake_case__ ): __UpperCAmelCase : Union[str, Any] = i / num_diffusion_timesteps __UpperCAmelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ), snake_case__ ) ) return torch.tensor(snake_case__, dtype=torch.floataa ) class _snake_case ( _lowercase , _lowercase ): lowerCamelCase__: Dict = [e.name for e in KarrasDiffusionSchedulers] lowerCamelCase__: Optional[int] = 2 @register_to_config def __init__( self: Optional[Any] , __lowerCamelCase: int = 10_00 , __lowerCamelCase: float = 0.0_00_85 , __lowerCamelCase: float = 0.0_12 , __lowerCamelCase: str = "linear" , __lowerCamelCase: Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase: str = "epsilon" , __lowerCamelCase: str = "linspace" , __lowerCamelCase: int = 0 , ) -> int: if trained_betas is not None: __UpperCAmelCase : Any = torch.tensor(__lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __UpperCAmelCase : Optional[Any] = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __UpperCAmelCase : Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __UpperCAmelCase : Optional[int] = betas_for_alpha_bar(__lowerCamelCase ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __UpperCAmelCase : Union[str, Any] = 1.0 - self.betas __UpperCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any]=None ) -> int: if schedule_timesteps is None: __UpperCAmelCase : List[str] = self.timesteps __UpperCAmelCase : List[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __UpperCAmelCase : Union[str, Any] = 1 if len(__lowerCamelCase ) > 1 else 0 else: __UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep __UpperCAmelCase : Dict = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self: Dict , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor: __UpperCAmelCase : Optional[int] = self.index_for_timestep(__lowerCamelCase ) if self.state_in_first_order: __UpperCAmelCase : List[Any] = self.sigmas[step_index] else: __UpperCAmelCase : Optional[int] = self.sigmas_interpol[step_index] __UpperCAmelCase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Union[str, torch.device] = None , __lowerCamelCase: Optional[int] = None , ) -> Optional[int]: __UpperCAmelCase : List[str] = num_inference_steps __UpperCAmelCase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __UpperCAmelCase : Any = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __UpperCAmelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : List[str] = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __UpperCAmelCase : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __UpperCAmelCase : Dict = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __UpperCAmelCase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __UpperCAmelCase : Tuple = torch.from_numpy(np.log(__lowerCamelCase ) ).to(__lowerCamelCase ) __UpperCAmelCase : Any = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase ) __UpperCAmelCase : str = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ) # interpolate sigmas __UpperCAmelCase : Any = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __UpperCAmelCase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __UpperCAmelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__lowerCamelCase ).startswith("mps" ): # mps does not support float64 __UpperCAmelCase : Dict = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase , dtype=torch.floataa ) else: __UpperCAmelCase : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase ) # interpolate timesteps __UpperCAmelCase : List[str] = self.sigma_to_t(__lowerCamelCase ).to(__lowerCamelCase , dtype=timesteps.dtype ) __UpperCAmelCase : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __UpperCAmelCase : int = torch.cat([timesteps[:1], interleaved_timesteps] ) __UpperCAmelCase : List[str] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __UpperCAmelCase : List[Any] = defaultdict(__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[Any] ) -> List[str]: # get log sigma __UpperCAmelCase : List[str] = sigma.log() # get distribution __UpperCAmelCase : Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range __UpperCAmelCase : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __UpperCAmelCase : int = low_idx + 1 __UpperCAmelCase : str = self.log_sigmas[low_idx] __UpperCAmelCase : List[Any] = self.log_sigmas[high_idx] # interpolate sigmas __UpperCAmelCase : str = (low - log_sigma) / (low - high) __UpperCAmelCase : Optional[Any] = w.clamp(0 , 1 ) # transform interpolation to time range __UpperCAmelCase : Any = (1 - w) * low_idx + w * high_idx __UpperCAmelCase : str = t.view(sigma.shape ) return t @property def _lowerCamelCase ( self: str ) -> int: return self.sample is None def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase: Union[float, torch.FloatTensor] , __lowerCamelCase: Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]: __UpperCAmelCase : int = self.index_for_timestep(__lowerCamelCase ) # advance index counter by 1 __UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __UpperCAmelCase : List[Any] = self.sigmas[step_index] __UpperCAmelCase : Optional[Any] = self.sigmas_interpol[step_index + 1] __UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __UpperCAmelCase : Tuple = self.sigmas[step_index - 1] __UpperCAmelCase : str = self.sigmas_interpol[step_index] __UpperCAmelCase : Union[str, Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __UpperCAmelCase : str = 0 __UpperCAmelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __UpperCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol __UpperCAmelCase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __UpperCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __UpperCAmelCase : List[Any] = sigma_interpol - sigma_hat # store for 2nd order step __UpperCAmelCase : List[str] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __UpperCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __UpperCAmelCase : Optional[Any] = sigma_next - sigma_hat __UpperCAmelCase : Tuple = self.sample __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: torch.FloatTensor , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples __UpperCAmelCase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ): # mps does not support float64 __UpperCAmelCase : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __UpperCAmelCase : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __UpperCAmelCase : Optional[Any] = self.timesteps.to(original_samples.device ) __UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device ) __UpperCAmelCase : List[Any] = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps] __UpperCAmelCase : Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __UpperCAmelCase : Optional[Any] = sigma.unsqueeze(-1 ) __UpperCAmelCase : str = original_samples + noise * sigma return noisy_samples def __len__( self: str ) -> Tuple: return self.config.num_train_timesteps
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def _UpperCamelCase ( ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = torch.nn.Linear(2, 4 ) __UpperCAmelCase : Dict = torch.optim.AdamW(model.parameters(), lr=1.0 ) __UpperCAmelCase : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(snake_case__, max_lr=0.01, steps_per_epoch=2, epochs=1 ) __UpperCAmelCase : Any = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __UpperCAmelCase : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(snake_case__ ) class _snake_case ( _lowercase ): @require_cuda def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : str = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Tuple = Accelerator(cpu=__lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : Dict = Accelerator() __UpperCAmelCase : Optional[Any] = GradientState() assert state.num_steps == 1 __UpperCAmelCase : Optional[Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True __UpperCAmelCase : str = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCamelCase ( self: str ) -> Dict: __UpperCAmelCase : Union[str, Any] = Accelerator() __UpperCAmelCase : List[str] = create_components() ( __UpperCAmelCase ) : Any = accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = Accelerator() __UpperCAmelCase : Dict = create_components() accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Any ): pass with patch("torch.cuda.set_device" , __lowerCamelCase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): __UpperCAmelCase : Any = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: __UpperCAmelCase : str = Accelerator() __UpperCAmelCase : Tuple = create_components() accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = get_signature(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCamelCase ) # make sure random weights don't match load_random_weights(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) < 1e-3 ) def _lowerCamelCase ( self: Dict ) -> Dict: __UpperCAmelCase : List[str] = Accelerator() __UpperCAmelCase : Dict = create_components() accelerator.prepare(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = get_signature(__lowerCamelCase ) # saving hook def save_config(__lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] ): __UpperCAmelCase : List[Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(__lowerCamelCase , "data.json" ) , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) # loading hook def load_config(__lowerCamelCase: int , __lowerCamelCase: Dict ): with open(os.path.join(__lowerCamelCase , "data.json" ) , "r" ) as f: __UpperCAmelCase : Optional[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : str = config["class_name"] __UpperCAmelCase : Tuple = accelerator.register_save_state_pre_hook(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = accelerator.register_load_state_pre_hook(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCamelCase ) # make sure random weights don't match with hooks load_random_weights(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded __UpperCAmelCase : List[Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowerCamelCase ) # make sure random weights don't match with hooks removed load_random_weights(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) > 1e-3 ) # random class name to verify correct one is loaded __UpperCAmelCase : List[str] = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__lowerCamelCase ) self.assertTrue(abs(model_signature - get_signature(__lowerCamelCase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : int = Accelerator() __UpperCAmelCase : Optional[Any] = create_components() __UpperCAmelCase : str = None # This should work __UpperCAmelCase : List[Any] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertTrue(dummy_obj is None ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = Accelerator() __UpperCAmelCase : List[Any] = create_components() __UpperCAmelCase : List[str] = [1, 2, 3] # This should work __UpperCAmelCase : List[str] = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(__lowerCamelCase , "_is_accelerate_prepared" , __lowerCamelCase ) , __lowerCamelCase , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: from transformers import AutoModelForCausalLM __UpperCAmelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__lowerCamelCase , device_map={"": 0} , ) __UpperCAmelCase : Dict = Accelerator() # This should work __UpperCAmelCase : str = accelerator.prepare(__lowerCamelCase ) @slow @require_bnb def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: from transformers import AutoModelForCausalLM __UpperCAmelCase : List[str] = Accelerator() with init_empty_weights(): __UpperCAmelCase : List[str] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() __UpperCAmelCase : Optional[Any] = infer_auto_device_map(__lowerCamelCase ) __UpperCAmelCase : Any = "cpu" __UpperCAmelCase : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=__lowerCamelCase , load_in_abit=__lowerCamelCase , llm_inta_enable_fpaa_cpu_offload=__lowerCamelCase ) # This should not work and get value error with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : List[str] = accelerator.prepare(__lowerCamelCase ) @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self: Dict ) -> List[str]: from transformers import AutoModelForCausalLM __UpperCAmelCase : Union[str, Any] = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): __UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() __UpperCAmelCase : Any = infer_auto_device_map(__lowerCamelCase ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__lowerCamelCase , device_map=__lowerCamelCase , ) __UpperCAmelCase : Any = Accelerator() # This should not work and get value error with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = accelerator.prepare(__lowerCamelCase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self: Optional[int] ) -> int: from transformers import AutoModelForCausalLM with init_empty_weights(): __UpperCAmelCase : Dict = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) __UpperCAmelCase : int = infer_auto_device_map(__lowerCamelCase ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : List[Any] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=__lowerCamelCase , device_map=__lowerCamelCase , ) __UpperCAmelCase : Any = Accelerator() # This should work __UpperCAmelCase : int = accelerator.prepare(__lowerCamelCase ) @require_cuda def _lowerCamelCase ( self: Optional[int] ) -> Any: __UpperCAmelCase : int = torch.nn.Linear(10 , 10 ) __UpperCAmelCase : int = torch.optim.SGD(model.parameters() , lr=0.01 ) __UpperCAmelCase : List[str] = Accelerator(cpu=__lowerCamelCase ) __UpperCAmelCase : int = accelerator.prepare(__lowerCamelCase )
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: List[str] = IFPipeline lowerCamelCase__: Union[str, Any] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} lowerCamelCase__: Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__: Tuple = PipelineTesterMixin.required_optional_params - {"latents"} def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: return self._get_dummy_components() def _lowerCamelCase ( self: Dict , __lowerCamelCase: Dict , __lowerCamelCase: int=0 ) -> Dict: if str(__lowerCamelCase ).startswith("mps" ): __UpperCAmelCase : int = torch.manual_seed(__lowerCamelCase ) else: __UpperCAmelCase : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) __UpperCAmelCase : Tuple = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def _lowerCamelCase ( self: int ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowerCamelCase ( self: Tuple ) -> List[str]: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowerCamelCase ( self: str ) -> Dict: self._test_save_load_local() def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: str ) -> Optional[int]: # if __UpperCAmelCase : int = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) __UpperCAmelCase : Tuple = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) __UpperCAmelCase : Dict = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __UpperCAmelCase : Optional[Any] = None __UpperCAmelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __UpperCAmelCase : Union[str, Any] = IFImgaImgPipeline(**pipe_a.components ) __UpperCAmelCase : Any = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __UpperCAmelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) __UpperCAmelCase : Optional[Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] ) -> int: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Optional[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Optional[int] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : Any = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 __UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : Union[str, Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : int = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Dict ) -> Dict: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : str = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : List[str] = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : Tuple = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Dict = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , original_image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Dict = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: str ) -> Optional[int]: # pipeline 1 _start_torch_memory_measurement() __UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : List[Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , num_inference_steps=2 , generator=__lowerCamelCase , output_type="np" , ) __UpperCAmelCase : int = output.images[0] assert image.shape == (64, 64, 3) __UpperCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) # pipeline 2 _start_torch_memory_measurement() __UpperCAmelCase : Dict = torch.Generator(device="cpu" ).manual_seed(0 ) __UpperCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__lowerCamelCase ) __UpperCAmelCase : int = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=__lowerCamelCase , negative_prompt_embeds=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , original_image=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=2 , output_type="np" , ) __UpperCAmelCase : Dict = output.images[0] assert image.shape == (2_56, 2_56, 3) __UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 __UpperCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _snake_case = False class _snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = "A painting of a squirrel eating a burger " __UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = generator.manual_seed(0 ) __UpperCAmelCase : Dict = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) __UpperCAmelCase : Tuple = "A painting of a squirrel eating a burger " __UpperCAmelCase : str = torch.manual_seed(0 ) __UpperCAmelCase : str = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __UpperCAmelCase : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Tuple = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: # Initialise PyTorch model __UpperCAmelCase : List[Any] = MobileBertConfig.from_json_file(snake_case__ ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : Optional[Any] = MobileBertForPreTraining(snake_case__ ) # Load weights from tf checkpoint __UpperCAmelCase : Union[str, Any] = load_tf_weights_in_mobilebert(snake_case__, snake_case__, snake_case__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) _snake_case = [ '''cross_validation.py''', '''gradient_accumulation.py''', '''local_sgd.py''', '''multi_process_metrics.py''', '''memory.py''', '''automatic_gradient_accumulation.py''', '''fsdp_with_peak_mem_tracking.py''', '''deepspeed_with_config_support.py''', '''megatron_lm_gpt_pretraining.py''', ] class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Any , __lowerCamelCase: str , __lowerCamelCase: bool , __lowerCamelCase: str = None , __lowerCamelCase: list = None ) -> str: __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = os.path.abspath(os.path.join("examples" , "by_feature" ) ) __UpperCAmelCase : List[Any] = os.path.abspath("examples" ) for item in os.listdir(__lowerCamelCase ): if item not in EXCLUDE_EXAMPLES: __UpperCAmelCase : List[Any] = os.path.join(__lowerCamelCase , __lowerCamelCase ) if os.path.isfile(__lowerCamelCase ) and ".py" in item_path: with self.subTest( tested_script=__lowerCamelCase , feature_script=__lowerCamelCase , tested_section="main()" if parser_only else "training_function()" , ): __UpperCAmelCase : List[Any] = compare_against_test( os.path.join(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = "\n".join(__lowerCamelCase ) if special_strings is not None: for string in special_strings: __UpperCAmelCase : Dict = diff.replace(__lowerCamelCase , "" ) self.assertEqual(__lowerCamelCase , "" ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: self.one_complete_example("complete_nlp_example.py" , __lowerCamelCase ) self.one_complete_example("complete_nlp_example.py" , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : Union[str, Any] = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) __UpperCAmelCase : List[str] = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.one_complete_example("complete_cv_example.py" , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class _snake_case ( _lowercase ): lowerCamelCase__: Dict = False @classmethod def _lowerCamelCase ( cls: Tuple ) -> Any: super().setUpClass() __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : str = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __UpperCAmelCase : Any = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def _lowerCamelCase ( cls: Tuple ) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def _lowerCamelCase ( self: Union[str, Any] ) -> Any: __UpperCAmelCase : Tuple = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __UpperCAmelCase : Optional[Any] = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: __UpperCAmelCase : Union[str, Any] = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} '''.split() __UpperCAmelCase : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) self.assertNotIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Dict = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} '''.split() __UpperCAmelCase : Any = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) if torch.cuda.is_available(): __UpperCAmelCase : Dict = torch.cuda.device_count() else: __UpperCAmelCase : int = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) else: self.assertIn("epoch 0:" , __lowerCamelCase ) self.assertIn("epoch 1:" , __lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): __UpperCAmelCase : Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=__lowerCamelCase ) __UpperCAmelCase : Dict = re.findall("({.+})" , __lowerCamelCase ) __UpperCAmelCase : Any = [r for r in results if "accuracy" in r][-1] __UpperCAmelCase : Any = ast.literal_eval(__lowerCamelCase ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Any = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def _lowerCamelCase ( self: Any ) -> int: with tempfile.TemporaryDirectory() as tmpdir: __UpperCAmelCase : int = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(__lowerCamelCase , "tracking" ) ) ) def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : int = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : List[Any] = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _snake_case ( _lowercase ): def __init__( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[Any]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=True , __lowerCamelCase: str=True , __lowerCamelCase: List[str]=False , __lowerCamelCase: Any=False , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: List[Any]=99 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: int=32 , __lowerCamelCase: Any=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: List[Any]=0.1 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=12 , __lowerCamelCase: Any=2 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Any=3 , __lowerCamelCase: Any=4 , __lowerCamelCase: List[Any]="last" , __lowerCamelCase: Any=None , __lowerCamelCase: List[str]=None , ) -> Dict: __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Any = seq_length __UpperCAmelCase : List[Any] = is_training __UpperCAmelCase : int = use_input_lengths __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : int = gelu_activation __UpperCAmelCase : List[str] = sinusoidal_embeddings __UpperCAmelCase : Optional[Any] = causal __UpperCAmelCase : str = asm __UpperCAmelCase : Optional[int] = n_langs __UpperCAmelCase : List[Any] = vocab_size __UpperCAmelCase : int = n_special __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : int = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : List[str] = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[int] = num_choices __UpperCAmelCase : Dict = summary_type __UpperCAmelCase : Optional[int] = use_proj __UpperCAmelCase : List[str] = scope def _lowerCamelCase ( self: Optional[int] ) -> List[str]: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Tuple = None if self.use_input_lengths: __UpperCAmelCase : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCAmelCase : str = None __UpperCAmelCase : int = None __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , 2 ).float() __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Optional[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Optional[int] , ) -> str: __UpperCAmelCase : Dict = FlaubertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : str = model(__lowerCamelCase , lengths=__lowerCamelCase , langs=__lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase , langs=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , ) -> List[str]: __UpperCAmelCase : Optional[Any] = FlaubertWithLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple , ) -> Union[str, Any]: __UpperCAmelCase : Tuple = FlaubertForQuestionAnsweringSimple(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) __UpperCAmelCase : List[Any] = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , ) -> Optional[int]: __UpperCAmelCase : Tuple = FlaubertForQuestionAnswering(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = model(__lowerCamelCase ) __UpperCAmelCase : List[str] = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , p_mask=__lowerCamelCase , ) __UpperCAmelCase : Tuple = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , ) (__UpperCAmelCase ) : int = result_with_labels.to_tuple() __UpperCAmelCase : List[str] = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) (__UpperCAmelCase ) : List[Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , ) -> List[Any]: __UpperCAmelCase : int = FlaubertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : int = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , ) -> Any: __UpperCAmelCase : str = self.num_labels __UpperCAmelCase : List[str] = FlaubertForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: str , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: int , ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.num_choices __UpperCAmelCase : Tuple = FlaubertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Optional[int] = config_and_inputs __UpperCAmelCase : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Tuple = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) lowerCamelCase__: List[str] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] ) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: str=False ) -> int: __UpperCAmelCase : Dict = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCAmelCase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) __UpperCAmelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: __UpperCAmelCase : str = FlaubertModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , emb_dim=37 ) def _lowerCamelCase ( self: int ) -> int: self.config_tester.run_common_tests() def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: int ) -> Tuple: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> Any: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> int: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[str] = FlaubertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCAmelCase : int = True __UpperCAmelCase : Optional[int] = model_class(config=__lowerCamelCase ) __UpperCAmelCase : int = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[Any] = torch.jit.trace( __lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase , os.path.join(__lowerCamelCase , "traced_model.pt" ) ) __UpperCAmelCase : Any = torch.jit.load(os.path.join(__lowerCamelCase , "traced_model.pt" ) , map_location=__lowerCamelCase ) loaded(inputs_dict["input_ids"].to(__lowerCamelCase ) , inputs_dict["attention_mask"].to(__lowerCamelCase ) ) @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: Any ) -> str: __UpperCAmelCase : str = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __UpperCAmelCase : Dict = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase )[0] __UpperCAmelCase : int = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : int = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) )
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
import math class _snake_case : def __init__( self: str , __lowerCamelCase: List[Any]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 __UpperCAmelCase : Optional[Any] = n __UpperCAmelCase : Tuple = [ [math.inf for j in range(0 , __lowerCamelCase )] for i in range(0 , __lowerCamelCase ) ] # adjacency matrix for weight __UpperCAmelCase : List[Any] = [ [math.inf for j in range(0 , __lowerCamelCase )] for i in range(0 , __lowerCamelCase ) ] # dp[i][j] stores minimum distance from i to j def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : List[Any] = w def _lowerCamelCase ( self: Any ) -> str: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __UpperCAmelCase : Union[str, Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _snake_case = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _snake_case = datasets.utils.logging.get_logger(__name__) _snake_case = ['''names''', '''prefix'''] _snake_case = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] _snake_case = ['''encoding_errors''', '''on_bad_lines'''] _snake_case = ['''date_format'''] @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCamelCase__: str = "," lowerCamelCase__: Optional[str] = None lowerCamelCase__: Optional[Union[int, List[int], str]] = "infer" lowerCamelCase__: Optional[List[str]] = None lowerCamelCase__: Optional[List[str]] = None lowerCamelCase__: Optional[Union[int, str, List[int], List[str]]] = None lowerCamelCase__: Optional[Union[List[int], List[str]]] = None lowerCamelCase__: Optional[str] = None lowerCamelCase__: bool = True lowerCamelCase__: Optional[Literal["c", "python", "pyarrow"]] = None lowerCamelCase__: Dict[Union[int, str], Callable[[Any], Any]] = None lowerCamelCase__: Optional[list] = None lowerCamelCase__: Optional[list] = None lowerCamelCase__: bool = False lowerCamelCase__: Optional[Union[int, List[int]]] = None lowerCamelCase__: Optional[int] = None lowerCamelCase__: Optional[Union[str, List[str]]] = None lowerCamelCase__: bool = True lowerCamelCase__: bool = True lowerCamelCase__: bool = False lowerCamelCase__: bool = True lowerCamelCase__: Optional[str] = None lowerCamelCase__: str = "." lowerCamelCase__: Optional[str] = None lowerCamelCase__: str = '"' lowerCamelCase__: int = 0 lowerCamelCase__: Optional[str] = None lowerCamelCase__: Optional[str] = None lowerCamelCase__: Optional[str] = None lowerCamelCase__: Optional[str] = None lowerCamelCase__: bool = True lowerCamelCase__: bool = True lowerCamelCase__: int = 0 lowerCamelCase__: bool = True lowerCamelCase__: bool = False lowerCamelCase__: Optional[str] = None lowerCamelCase__: int = 1_00_00 lowerCamelCase__: Optional[datasets.Features] = None lowerCamelCase__: Optional[str] = "strict" lowerCamelCase__: Literal["error", "warn", "skip"] = "error" lowerCamelCase__: Optional[str] = None def _lowerCamelCase ( self: List[str] ) -> str: if self.delimiter is not None: __UpperCAmelCase : Any = self.delimiter if self.column_names is not None: __UpperCAmelCase : int = self.column_names @property def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _snake_case ( datasets.ArrowBasedBuilder ): lowerCamelCase__: Optional[int] = CsvConfig def _lowerCamelCase ( self: Any ) -> Union[str, Any]: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> List[str]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCamelCase , (str, list, tuple) ): __UpperCAmelCase : int = data_files if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Union[str, Any] = [files] __UpperCAmelCase : int = [dl_manager.iter_files(__lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __UpperCAmelCase : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : str = [files] __UpperCAmelCase : List[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) ) return splits def _lowerCamelCase ( self: Dict , __lowerCamelCase: pa.Table ) -> pa.Table: if self.config.features is not None: __UpperCAmelCase : List[Any] = self.config.features.arrow_schema if all(not require_storage_cast(__lowerCamelCase ) for feature in self.config.features.values() ): # cheaper cast __UpperCAmelCase : Union[str, Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __UpperCAmelCase : Optional[int] = table_cast(__lowerCamelCase , __lowerCamelCase ) return pa_table def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __UpperCAmelCase : int = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ): __UpperCAmelCase : str = pd.read_csv(__lowerCamelCase , iterator=__lowerCamelCase , dtype=__lowerCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(__lowerCamelCase ): __UpperCAmelCase : str = pa.Table.from_pandas(__lowerCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' ) raise
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Any=32 , __lowerCamelCase: Dict=3 , __lowerCamelCase: int=10 , __lowerCamelCase: Dict=[10, 20, 30, 40] , __lowerCamelCase: List[str]=[1, 1, 2, 1] , __lowerCamelCase: str=True , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]="relu" , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=None , ) -> Optional[Any]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : Tuple = num_channels __UpperCAmelCase : Any = embeddings_size __UpperCAmelCase : Tuple = hidden_sizes __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Dict = use_labels __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Tuple = num_labels __UpperCAmelCase : Dict = scope __UpperCAmelCase : Union[str, Any] = len(__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[Any] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: List[str] ) -> Optional[int]: return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any] ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = TFRegNetModel(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = model(__lowerCamelCase , training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.num_labels __UpperCAmelCase : str = TFRegNetForImageClassification(__lowerCamelCase ) __UpperCAmelCase : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () lowerCamelCase__: Any = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) lowerCamelCase__: Optional[Any] = False lowerCamelCase__: Dict = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: int = False lowerCamelCase__: Union[str, Any] = False def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : List[str] = TFRegNetModelTester(self ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _lowerCamelCase ( self: Any ) -> Tuple: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def _lowerCamelCase ( self: str ) -> List[str]: super().test_keras_fit() @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _lowerCamelCase ( self: int ) -> Union[str, Any]: pass def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Tuple = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Any = [*signature.parameters.keys()] __UpperCAmelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Optional[int]: def check_hidden_states_output(__lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ): __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase ) __UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : int = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : Union[str, Any] = layer_type __UpperCAmelCase : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : str = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str={} ): __UpperCAmelCase : Tuple = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : List[Any] = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple() def recursive_check(__lowerCamelCase: Any , __lowerCamelCase: Dict ): if isinstance(__lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ): recursive_check(__lowerCamelCase , __lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : int = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) __UpperCAmelCase : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: int ) -> Any: for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCAmelCase : str = self.default_image_processor __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Dict = image_processor(images=__lowerCamelCase , return_tensors="tf" ) # forward pass __UpperCAmelCase : Optional[int] = model(**__lowerCamelCase , training=__lowerCamelCase ) # verify the logits __UpperCAmelCase : List[str] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/data2vec-vision-base-ft''': ( '''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json''' ), } class _snake_case ( _lowercase ): lowerCamelCase__: Union[str, Any] = "data2vec-vision" def __init__( self: List[str] , __lowerCamelCase: str=7_68 , __lowerCamelCase: Optional[Any]=12 , __lowerCamelCase: Optional[Any]=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: int="gelu" , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.0 , __lowerCamelCase: List[str]=0.02 , __lowerCamelCase: Optional[Any]=1e-12 , __lowerCamelCase: Any=2_24 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: int=False , __lowerCamelCase: Any=False , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[str]=False , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=True , __lowerCamelCase: str=[3, 5, 7, 11] , __lowerCamelCase: Optional[int]=[1, 2, 3, 6] , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[Any]=0.4 , __lowerCamelCase: Dict=2_56 , __lowerCamelCase: Any=1 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Dict=2_55 , **__lowerCamelCase: List[Any] , ) -> str: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : int = layer_norm_eps __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Any = patch_size __UpperCAmelCase : Optional[int] = num_channels __UpperCAmelCase : List[str] = use_mask_token __UpperCAmelCase : Tuple = use_absolute_position_embeddings __UpperCAmelCase : Optional[int] = use_relative_position_bias __UpperCAmelCase : str = use_shared_relative_position_bias __UpperCAmelCase : Tuple = layer_scale_init_value __UpperCAmelCase : str = drop_path_rate __UpperCAmelCase : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __UpperCAmelCase : Optional[Any] = out_indices __UpperCAmelCase : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) __UpperCAmelCase : Tuple = use_auxiliary_head __UpperCAmelCase : List[str] = auxiliary_loss_weight __UpperCAmelCase : Optional[int] = auxiliary_channels __UpperCAmelCase : List[str] = auxiliary_num_convs __UpperCAmelCase : Tuple = auxiliary_concat_input __UpperCAmelCase : List[str] = semantic_loss_ignore_index class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self: Dict ) -> float: return 1e-4
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import argparse import os import re _snake_case = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict _snake_case = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings _snake_case = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> Optional[int]: with open(snake_case__, "r", encoding="utf-8" ) as f: __UpperCAmelCase : Optional[Any] = f.read() __UpperCAmelCase : Union[str, Any] = content.split("\n" ) __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[Any] = 0 while line_idx < len(snake_case__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __UpperCAmelCase : Any = len(re.search(r"^(\s*)\S", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 __UpperCAmelCase : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __UpperCAmelCase : Optional[int] = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __UpperCAmelCase : str = sorted(snake_case__, key=lambda snake_case__ : _re_identifier.search(snake_case__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(snake_case__, "w", encoding="utf-8" ) as f: f.write("\n".join(snake_case__ ) ) elif "\n".join(snake_case__ ) != content: return True def _UpperCamelCase ( snake_case__ = False ) -> str: __UpperCAmelCase : Dict = [os.path.join(snake_case__, snake_case__ ) for f in os.listdir(snake_case__ ) if f.endswith(".py" )] __UpperCAmelCase : Any = [sort_auto_mapping(snake_case__, overwrite=snake_case__ ) for fname in fnames] if not overwrite and any(snake_case__ ): __UpperCAmelCase : Dict = [f for f, d in zip(snake_case__, snake_case__ ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(snake_case__ )}. Run `make style` to fix''' " this." ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _snake_case = parser.parse_args() sort_all_auto_mappings(not args.check_only)
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class _snake_case ( _lowercase , _lowercase ): lowerCamelCase__: Any = "swin" lowerCamelCase__: List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self: Optional[Any] , __lowerCamelCase: str=2_24 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Union[str, Any]=96 , __lowerCamelCase: Union[str, Any]=[2, 2, 6, 2] , __lowerCamelCase: Optional[Any]=[3, 6, 12, 24] , __lowerCamelCase: str=7 , __lowerCamelCase: Tuple=4.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: str=0.02 , __lowerCamelCase: Any=1e-5 , __lowerCamelCase: List[Any]=32 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: Optional[Any] , ) -> Union[str, Any]: super().__init__(**__lowerCamelCase ) __UpperCAmelCase : Any = image_size __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Any = embed_dim __UpperCAmelCase : str = depths __UpperCAmelCase : Tuple = len(__lowerCamelCase ) __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : Optional[int] = window_size __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : str = qkv_bias __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : Dict = drop_path_rate __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[int] = use_absolute_embeddings __UpperCAmelCase : Dict = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : str = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __UpperCAmelCase : Any = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __UpperCAmelCase : List[str] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCamelCase ) + 1 )] __UpperCAmelCase : List[str] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names ) class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self: int ) -> float: return 1e-4
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: # initialize config if "resnet-50" in model_name: __UpperCAmelCase : int = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: __UpperCAmelCase : List[Any] = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) __UpperCAmelCase : Optional[Any] = DetrConfig(use_timm_backbone=snake_case__, backbone_config=snake_case__ ) # set label attributes __UpperCAmelCase : Optional[Any] = "panoptic" in model_name if is_panoptic: __UpperCAmelCase : Optional[int] = 250 else: __UpperCAmelCase : Dict = 91 __UpperCAmelCase : Optional[Any] = "huggingface/label-files" __UpperCAmelCase : Tuple = "coco-detection-id2label.json" __UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : List[str] = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : str = idalabel __UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} return config, is_panoptic def _UpperCamelCase ( snake_case__ ) -> Any: # here we list all keys to be renamed (original name on the left, our name on the right) __UpperCAmelCase : Optional[Any] = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( f'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', f'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int: __UpperCAmelCase : List[Any] = state_dict.pop(snake_case__ ) __UpperCAmelCase : Optional[Any] = val def _UpperCamelCase ( snake_case__, snake_case__=False ) -> List[Any]: __UpperCAmelCase : Optional[Any] = "" if is_panoptic: __UpperCAmelCase : Dict = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase : int = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : int = in_proj_weight[:256, :] __UpperCAmelCase : Optional[int] = in_proj_bias[:256] __UpperCAmelCase : Optional[Any] = in_proj_weight[256:512, :] __UpperCAmelCase : Optional[int] = in_proj_bias[256:512] __UpperCAmelCase : Optional[Any] = in_proj_weight[-256:, :] __UpperCAmelCase : Optional[int] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : Tuple = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Any = in_proj_weight[:256, :] __UpperCAmelCase : Tuple = in_proj_bias[:256] __UpperCAmelCase : str = in_proj_weight[256:512, :] __UpperCAmelCase : Dict = in_proj_bias[256:512] __UpperCAmelCase : Any = in_proj_weight[-256:, :] __UpperCAmelCase : str = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __UpperCAmelCase : Union[str, Any] = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __UpperCAmelCase : int = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[:256, :] __UpperCAmelCase : Union[str, Any] = in_proj_bias_cross_attn[:256] __UpperCAmelCase : Optional[Any] = in_proj_weight_cross_attn[256:512, :] __UpperCAmelCase : Any = in_proj_bias_cross_attn[256:512] __UpperCAmelCase : Union[str, Any] = in_proj_weight_cross_attn[-256:, :] __UpperCAmelCase : int = in_proj_bias_cross_attn[-256:] def _UpperCamelCase ( ) -> Union[str, Any]: __UpperCAmelCase : str = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : int = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Tuple: __UpperCAmelCase : Dict = get_detr_config(snake_case__ ) # load original model from torch hub __UpperCAmelCase : Optional[int] = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(f'''Converting model {model_name}...''' ) __UpperCAmelCase : List[Any] = torch.hub.load("facebookresearch/detr", model_name_to_original_name[model_name], pretrained=snake_case__ ).eval() __UpperCAmelCase : Tuple = detr.state_dict() # rename keys for src, dest in create_rename_keys(snake_case__ ): if is_panoptic: __UpperCAmelCase : Dict = "detr." + src rename_key(snake_case__, snake_case__, snake_case__ ) # query, key and value matrices need special treatment read_in_q_k_v(snake_case__, is_panoptic=snake_case__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCAmelCase : Dict = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __UpperCAmelCase : Optional[int] = state_dict.pop(snake_case__ ) __UpperCAmelCase : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __UpperCAmelCase : int = state_dict.pop(snake_case__ ) __UpperCAmelCase : Union[str, Any] = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __UpperCAmelCase : List[Any] = state_dict.pop(snake_case__ ) __UpperCAmelCase : Union[str, Any] = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __UpperCAmelCase : int = state_dict.pop(snake_case__ ) __UpperCAmelCase : Optional[Any] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Optional[Any] = DetrForSegmentation(snake_case__ ) if is_panoptic else DetrForObjectDetection(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # verify our conversion on an image __UpperCAmelCase : Union[str, Any] = "coco_panoptic" if is_panoptic else "coco_detection" __UpperCAmelCase : Union[str, Any] = DetrImageProcessor(format=snake_case__ ) __UpperCAmelCase : str = processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Optional[Any] = encoding["pixel_values"] __UpperCAmelCase : List[Any] = detr(snake_case__ ) __UpperCAmelCase : str = model(snake_case__ ) assert torch.allclose(outputs.logits, original_outputs["pred_logits"], atol=1e-3 ) assert torch.allclose(outputs.pred_boxes, original_outputs["pred_boxes"], atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks, original_outputs["pred_masks"], atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(f'''nielsr/{model_name}''' ) processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') _snake_case = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import random def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = False ) -> dict: __UpperCAmelCase : dict = {i: [] for i in range(snake_case__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case__ ): for j in range(i + 1, snake_case__ ): if random.random() < probability: graph[i].append(snake_case__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case__ ) return graph def _UpperCamelCase ( snake_case__ ) -> dict: return { i: [j for j in range(snake_case__ ) if i != j] for i in range(snake_case__ ) } if __name__ == "__main__": import doctest doctest.testmod()
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : List[str] = "" for i in table: res += inp[i - 1] return res def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: return data[1:] + data[0] def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : List[Any] = "" for i in range(len(snake_case__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : int = int("0b" + data[0] + data[-1], 2 ) __UpperCAmelCase : str = int("0b" + data[1:3], 2 ) return bin(s[row][col] )[2:] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: __UpperCAmelCase : int = message[:4] __UpperCAmelCase : Dict = message[4:] __UpperCAmelCase : Tuple = apply_table(snake_case__, snake_case__ ) __UpperCAmelCase : Dict = xor(snake_case__, snake_case__ ) __UpperCAmelCase : Dict = apply_sbox(snake_case__, temp[:4] ) # noqa: E741 __UpperCAmelCase : List[str] = apply_sbox(snake_case__, temp[4:] ) __UpperCAmelCase : List[str] = "0" * (2 - len(snake_case__ )) + l # noqa: E741 __UpperCAmelCase : Optional[int] = "0" * (2 - len(snake_case__ )) + r __UpperCAmelCase : Dict = apply_table(l + r, snake_case__ ) __UpperCAmelCase : List[Any] = xor(snake_case__, snake_case__ ) return temp + right if __name__ == "__main__": _snake_case = input('''Enter 10 bit key: ''') _snake_case = input('''Enter 8 bit message: ''') _snake_case = [6, 3, 7, 4, 8, 5, 10, 9] _snake_case = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _snake_case = [2, 4, 3, 1] _snake_case = [2, 6, 3, 1, 4, 8, 5, 7] _snake_case = [4, 1, 3, 5, 7, 2, 8, 6] _snake_case = [4, 1, 2, 3, 2, 3, 4, 1] _snake_case = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _snake_case = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _snake_case = apply_table(key, paa_table) _snake_case = temp[:5] _snake_case = temp[5:] _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = left_shift(left) _snake_case = left_shift(right) _snake_case = apply_table(left + right, pa_table) # encryption _snake_case = apply_table(message, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print('''Cipher text is:''', CT) # decryption _snake_case = apply_table(CT, IP) _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = temp[4:] + temp[:4] _snake_case = function(expansion, sa, sa, keya, temp) _snake_case = apply_table(temp, IP_inv) print('''Plain text after decypting is:''', PT)
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _snake_case ( _lowercase ): def __init__( self: Dict , __lowerCamelCase: int , __lowerCamelCase: List[Any]=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Tuple=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: str=False , __lowerCamelCase: str=True , __lowerCamelCase: Dict=99 , __lowerCamelCase: str=32 , __lowerCamelCase: int=5 , __lowerCamelCase: Optional[int]=4 , __lowerCamelCase: Union[str, Any]=64 , __lowerCamelCase: str="gelu" , __lowerCamelCase: str=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: str=16 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: Dict=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: int=2 , __lowerCamelCase: int=2 , __lowerCamelCase: Tuple=4 , __lowerCamelCase: List[Any]=1 , ) -> List[Any]: __UpperCAmelCase : Tuple = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : Tuple = use_input_mask __UpperCAmelCase : int = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : List[str] = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Optional[int] = max_position_embeddings __UpperCAmelCase : Any = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : List[str] = scope __UpperCAmelCase : Optional[int] = q_groups __UpperCAmelCase : List[Any] = k_groups __UpperCAmelCase : int = v_groups __UpperCAmelCase : Optional[Any] = post_attention_groups __UpperCAmelCase : int = intermediate_groups __UpperCAmelCase : Optional[Any] = output_groups def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : str = None __UpperCAmelCase : int = None __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: str ) -> Optional[int]: return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Optional[int] = SqueezeBertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any ) -> Tuple: __UpperCAmelCase : Optional[Any] = SqueezeBertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : List[str] = SqueezeBertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ) -> Dict: __UpperCAmelCase : List[str] = self.num_labels __UpperCAmelCase : Tuple = SqueezeBertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : str = self.num_labels __UpperCAmelCase : Any = SqueezeBertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : Union[str, Any] = SqueezeBertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: __UpperCAmelCase : str = self.prepare_config_and_inputs() (__UpperCAmelCase) : Union[str, Any] = config_and_inputs __UpperCAmelCase : int = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__: Tuple = ( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__: Any = False lowerCamelCase__: Optional[int] = True lowerCamelCase__: Tuple = False def _lowerCamelCase ( self: Union[str, Any] ) -> int: __UpperCAmelCase : List[Any] = SqueezeBertModelTester(self ) __UpperCAmelCase : int = ConfigTester(self , config_class=__lowerCamelCase , dim=37 ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> Dict: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = SqueezeBertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_torch class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : Dict = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) __UpperCAmelCase : List[Any] = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] ) __UpperCAmelCase : List[Any] = model(__lowerCamelCase )[0] __UpperCAmelCase : int = torch.Size((1, 3) ) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-4 ) )
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _snake_case = get_logger(__name__) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Optional[Any]: os.makedirs(snake_case__, exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : str = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : str = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __UpperCAmelCase : List[str] = os.path.join(snake_case__, snake_case__ ) if accelerator.process_index == 0: logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__, snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Union[str, Any] = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __UpperCAmelCase : Tuple = os.path.join(snake_case__, snake_case__ ) logger.info(f'''Saving model to {output_model_file}''' ) torch.save(snake_case__, snake_case__ ) logger.info(f'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : Tuple = os.path.join(snake_case__, f'''{MODEL_NAME}_{model_index}''' ) os.makedirs(snake_case__, exist_ok=snake_case__ ) logger.info(f'''Saving model to {ckpt_dir}''' ) __UpperCAmelCase : Dict = {"model": state_dict} dist_cp.save_state_dict( state_dict=snake_case__, storage_writer=dist_cp.FileSystemWriter(snake_case__ ), planner=DefaultSavePlanner(), ) logger.info(f'''Model saved to {ckpt_dir}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> str: accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(snake_case__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __UpperCAmelCase : int = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin''' __UpperCAmelCase : str = os.path.join(snake_case__, snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) __UpperCAmelCase : int = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __UpperCAmelCase : Tuple = ( f'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __UpperCAmelCase : List[str] = os.path.join(snake_case__, snake_case__ ) logger.info(f'''Loading model from {input_model_file}''' ) __UpperCAmelCase : Dict = torch.load(snake_case__ ) logger.info(f'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __UpperCAmelCase : str = ( os.path.join(snake_case__, f'''{MODEL_NAME}_{model_index}''' ) if f'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading model from {ckpt_dir}''' ) __UpperCAmelCase : Optional[Any] = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=snake_case__, storage_reader=dist_cp.FileSystemReader(snake_case__ ), planner=DefaultLoadPlanner(), ) __UpperCAmelCase : str = state_dict["model"] logger.info(f'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(snake_case__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Any: os.makedirs(snake_case__, exist_ok=snake_case__ ) with FSDP.state_dict_type( snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): __UpperCAmelCase : int = FSDP.optim_state_dict(snake_case__, snake_case__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __UpperCAmelCase : str = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __UpperCAmelCase : Optional[Any] = os.path.join(snake_case__, snake_case__ ) logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(snake_case__, snake_case__ ) logger.info(f'''Optimizer state saved in {output_optimizer_file}''' ) else: __UpperCAmelCase : List[Any] = os.path.join(snake_case__, f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(snake_case__, exist_ok=snake_case__ ) logger.info(f'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(snake_case__ ), planner=DefaultSavePlanner(), ) logger.info(f'''Optimizer state saved in {ckpt_dir}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __UpperCAmelCase : Optional[int] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __UpperCAmelCase : Union[str, Any] = ( f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __UpperCAmelCase : int = os.path.join(snake_case__, snake_case__ ) logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' ) __UpperCAmelCase : Dict = torch.load(snake_case__ ) logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' ) else: __UpperCAmelCase : int = ( os.path.join(snake_case__, f'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if f'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(f'''Loading Optimizer from {ckpt_dir}''' ) __UpperCAmelCase : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict(), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(snake_case__ ), ) __UpperCAmelCase : Tuple = optim_state["optimizer"] logger.info(f'''Optimizer loaded from {ckpt_dir}''' ) __UpperCAmelCase : Optional[Any] = FSDP.optim_state_dict_to_load(snake_case__, snake_case__, snake_case__ ) optimizer.load_state_dict(snake_case__ )
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0