code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def _UpperCamelCase ( snake_case__ = 6008_5147_5143 ) -> int: try: __UpperCAmelCase : int = int(snake_case__ ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Dict = 2 while i * i <= n: while n % i == 0: __UpperCAmelCase : List[Any] = i n //= i i += 1 if n > 1: __UpperCAmelCase : str = n return int(snake_case__ ) if __name__ == "__main__": print(F'{solution() = }')
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _snake_case : def __init__( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple=13 , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: str=3 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: Any=True , __lowerCamelCase: str=True , __lowerCamelCase: int=32 , __lowerCamelCase: Dict=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: Any=37 , __lowerCamelCase: Dict="gelu" , __lowerCamelCase: List[Any]=0.1 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: int=10 , __lowerCamelCase: int=0.02 , __lowerCamelCase: Optional[int]="divided_space_time" , __lowerCamelCase: Optional[Any]=None , ) -> Optional[int]: __UpperCAmelCase : int = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : List[str] = image_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : Optional[Any] = patch_size __UpperCAmelCase : Optional[Any] = num_frames __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = attention_type __UpperCAmelCase : Optional[int] = initializer_range __UpperCAmelCase : Optional[Any] = scope __UpperCAmelCase : Dict = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __UpperCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 __UpperCAmelCase : List[Any] = (num_frames) * self.num_patches_per_frame + 1 def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : str = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Optional[int] ) -> List[str]: __UpperCAmelCase : Tuple = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __UpperCAmelCase : Union[str, Any] = self.num_labels return config def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> List[str]: __UpperCAmelCase : Optional[int] = TimesformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __UpperCAmelCase : Any = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Union[str, Any]: __UpperCAmelCase : Any = TimesformerForVideoClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __UpperCAmelCase : List[Any] = model(snake_case__ ) # verify the logits shape __UpperCAmelCase : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , snake_case__ ) def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( A_ , A_ , unittest.TestCase ): lowerCamelCase__: Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowerCamelCase__: Any = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) lowerCamelCase__: List[str] = False lowerCamelCase__: Optional[Any] = False lowerCamelCase__: Optional[int] = False lowerCamelCase__: Union[str, Any] = False def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Any = TimesformerModelTester(self ) __UpperCAmelCase : Any = ConfigTester( self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int]=False ) -> Any: __UpperCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) if return_labels: if model_class in get_values(snake_case__ ): __UpperCAmelCase : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) return inputs_dict def _lowerCamelCase ( self: Dict ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: pass def _lowerCamelCase ( self: Tuple ) -> Tuple: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _lowerCamelCase ( self: int ) -> Dict: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(snake_case__ ) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _lowerCamelCase ( self: int ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*snake_case__ ) @slow def _lowerCamelCase ( self: Tuple ) -> List[str]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = TimesformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _lowerCamelCase ( self: Any ) -> Tuple: if not self.has_attentions: pass else: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Union[str, Any] = True for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = self.model_tester.seq_length __UpperCAmelCase : Union[str, Any] = self.model_tester.num_frames __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = False __UpperCAmelCase : Any = True __UpperCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) __UpperCAmelCase : List[str] = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCAmelCase : Dict = True __UpperCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : str = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) __UpperCAmelCase : int = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __UpperCAmelCase : str = len(snake_case__ ) # Check attention is always last and order is fine __UpperCAmelCase : int = True __UpperCAmelCase : List[str] = True __UpperCAmelCase : str = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) self.assertEqual(out_len + 1 , len(snake_case__ ) ) __UpperCAmelCase : Dict = outputs.attentions self.assertEqual(len(snake_case__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowerCamelCase ( self: Any ) -> List[Any]: def check_hidden_states_output(__lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] ): __UpperCAmelCase : List[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) __UpperCAmelCase : Optional[int] = outputs.hidden_states __UpperCAmelCase : Optional[Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(snake_case__ ) , snake_case__ ) __UpperCAmelCase : List[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _UpperCamelCase ( ) -> List[str]: __UpperCAmelCase : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) __UpperCAmelCase : int = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: int ) -> Tuple: return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : Tuple = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( snake_case__ ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : List[Any] = prepare_video() __UpperCAmelCase : Union[str, Any] = image_processor(video[:8] , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Any = model(**snake_case__ ) # verify the logits __UpperCAmelCase : Tuple = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) __UpperCAmelCase : Optional[Any] = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _snake_case = get_logger(__name__) _snake_case = r'''\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n''' class _snake_case : @add_start_docstrings(_a ) def __call__( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case : @add_start_docstrings(_a ) def __call__( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] ) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case ( __SCREAMING_SNAKE_CASE ): @add_start_docstrings(_a ) def __call__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: Dict , **__lowerCamelCase: Dict ) -> List[Any]: for processor in self: __UpperCAmelCase : Union[str, Any] = inspect.signature(processor.__call__ ).parameters if len(_a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __UpperCAmelCase : Tuple = processor(_a , _a , _a , **_a ) else: __UpperCAmelCase : List[str] = processor(_a , _a , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Tuple , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: if not isinstance(_a , _a ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __UpperCAmelCase : str = temperature def __call__( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: str ) -> Dict: __UpperCAmelCase : List[Any] = scores / self.temperature return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: int = -float("Inf" ) , __lowerCamelCase: Any = 1 ) -> int: if not isinstance(_a , _a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_a , _a ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __UpperCAmelCase : Any = top_p __UpperCAmelCase : str = filter_value __UpperCAmelCase : List[str] = min_tokens_to_keep def __call__( self: str , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: int ) -> str: __UpperCAmelCase , __UpperCAmelCase : Dict = lax.top_k(_a , scores.shape[-1] ) __UpperCAmelCase : Optional[Any] = jnp.full_like(_a , self.filter_value ) __UpperCAmelCase : Optional[int] = jax.nn.softmax(_a , axis=-1 ).cumsum(axis=-1 ) __UpperCAmelCase : Union[str, Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __UpperCAmelCase : List[str] = jnp.roll(_a , 1 ) score_mask |= score_mask.at[:, 0].set(_a ) # min tokens to keep __UpperCAmelCase : Any = score_mask.at[:, : self.min_tokens_to_keep].set(_a ) __UpperCAmelCase : List[str] = jnp.where(_a , _a , _a ) __UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(_a , _a )[-1] return next_scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any = -float("Inf" ) , __lowerCamelCase: List[str] = 1 ) -> Union[str, Any]: if not isinstance(_a , _a ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __UpperCAmelCase : Any = max(_a , _a ) __UpperCAmelCase : int = filter_value def __call__( self: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : List[str] = scores.shape __UpperCAmelCase : Dict = jnp.full(batch_size * vocab_size , self.filter_value ) __UpperCAmelCase : Tuple = min(self.top_k , scores.shape[-1] ) # Safety check __UpperCAmelCase , __UpperCAmelCase : str = lax.top_k(_a , _a ) __UpperCAmelCase : Optional[Any] = jnp.broadcast_to((jnp.arange(_a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __UpperCAmelCase : str = topk_scores.flatten() __UpperCAmelCase : Union[str, Any] = topk_indices.flatten() + shift __UpperCAmelCase : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_a ) __UpperCAmelCase : int = next_scores_flat.reshape(_a , _a ) return next_scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[str] , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : List[str] = bos_token_id def __call__( self: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : int = jnp.full(scores.shape , -float("inf" ) ) __UpperCAmelCase : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) __UpperCAmelCase : int = jnp.where(_a , new_scores.at[:, self.bos_token_id].set(0 ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase : Tuple = max_length __UpperCAmelCase : Dict = eos_token_id def __call__( self: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int ) -> Union[str, Any]: __UpperCAmelCase : Tuple = jnp.full(scores.shape , -float("inf" ) ) __UpperCAmelCase : Optional[Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __UpperCAmelCase : List[Any] = jnp.where(_a , new_scores.at[:, self.eos_token_id].set(0 ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] ) -> Dict: if not isinstance(_a , _a ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_a , _a ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __UpperCAmelCase : List[str] = min_length __UpperCAmelCase : Dict = eos_token_id def __call__( self: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple ) -> Optional[Any]: # create boolean flag to decide if min length penalty should be applied __UpperCAmelCase : int = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __UpperCAmelCase : Optional[int] = jnp.where(_a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Any ) -> Optional[Any]: __UpperCAmelCase : str = list(_a ) __UpperCAmelCase : Any = begin_index def __call__( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ) -> Tuple: __UpperCAmelCase : Any = 1 - jnp.bool_(cur_len - self.begin_index ) __UpperCAmelCase : str = jnp.where(_a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _a ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> Tuple: __UpperCAmelCase : int = list(_a ) def __call__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] ) -> Dict: __UpperCAmelCase : int = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Dict , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : List[str] = dict(_a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __UpperCAmelCase : str = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __UpperCAmelCase : Optional[Any] = force_token_array.at[index].set(_a ) __UpperCAmelCase : Union[str, Any] = jnp.intaa(_a ) def __call__( self: str , __lowerCamelCase: str , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ) -> Optional[Any]: def _force_token(__lowerCamelCase: Dict ): __UpperCAmelCase : Optional[Any] = scores.shape[0] __UpperCAmelCase : Dict = self.force_token_array[generation_idx] __UpperCAmelCase : Union[str, Any] = jnp.ones_like(_a , dtype=scores.dtype ) * -float("inf" ) __UpperCAmelCase : List[str] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __UpperCAmelCase : Optional[Any] = lax.dynamic_update_slice(_a , _a , (0, current_token) ) return new_scores __UpperCAmelCase : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_a ) , lambda: scores , ) , ) return scores class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = generate_config.eos_token_id __UpperCAmelCase : int = generate_config.no_timestamps_token_id __UpperCAmelCase : List[Any] = generate_config.no_timestamps_token_id + 1 __UpperCAmelCase : str = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a , "max_initial_timestamp_index" ): __UpperCAmelCase : Union[str, Any] = generate_config.max_initial_timestamp_index else: __UpperCAmelCase : Dict = model_config.vocab_size if self.max_initial_timestamp_index is None: __UpperCAmelCase : int = model_config.vocab_size def __call__( self: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> Optional[int]: # suppress <|notimestamps|> which is handled by without_timestamps __UpperCAmelCase : List[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(__lowerCamelCase: Any , __lowerCamelCase: str ): __UpperCAmelCase : Optional[int] = jnp.where((cur_len - self.begin_index) >= 1 , _a , _a ) __UpperCAmelCase : List[Any] = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _a , ) __UpperCAmelCase : List[Any] = jnp.where((cur_len - self.begin_index) < 2 , _a , _a ) __UpperCAmelCase : Optional[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _a , _a , ) return jnp.where( _a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _a , ) __UpperCAmelCase : int = jax.vmap(_a )(_a , _a ) __UpperCAmelCase : List[Any] = jnp.where(cur_len == self.begin_index , _a , _a ) __UpperCAmelCase : Optional[Any] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _a , ) __UpperCAmelCase : Optional[int] = self.timestamp_begin + self.max_initial_timestamp_index __UpperCAmelCase : List[Any] = jnp.where( _a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _a , ) # if sum of probability over timestamps is above any other token, sample timestamp __UpperCAmelCase : Any = jax.nn.log_softmax(_a , axis=-1 ) def handle_cumulative_probs(__lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ): __UpperCAmelCase : List[str] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __UpperCAmelCase : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _a , ) __UpperCAmelCase : Tuple = jax.vmap(_a )(_a , _a ) return scores
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Any = "upernet" def __init__( self: str , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Dict=[1, 2, 3, 6] , __lowerCamelCase: Dict=True , __lowerCamelCase: List[str]=0.4 , __lowerCamelCase: Optional[int]=3_84 , __lowerCamelCase: Union[str, Any]=2_56 , __lowerCamelCase: List[Any]=1 , __lowerCamelCase: Optional[int]=False , __lowerCamelCase: Union[str, Any]=2_55 , **__lowerCamelCase: Tuple , ) -> List[str]: super().__init__(**__lowerCamelCase ) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Any = CONFIG_MAPPING['resnet'](out_features=["stage1", "stage2", "stage3", "stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : int = backbone_config.get("model_type" ) __UpperCAmelCase : str = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[Any] = config_class.from_dict(__lowerCamelCase ) __UpperCAmelCase : List[Any] = backbone_config __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Dict = initializer_range __UpperCAmelCase : int = pool_scales __UpperCAmelCase : List[str] = use_auxiliary_head __UpperCAmelCase : Optional[Any] = auxiliary_loss_weight __UpperCAmelCase : Optional[int] = auxiliary_in_channels __UpperCAmelCase : Any = auxiliary_channels __UpperCAmelCase : Dict = auxiliary_num_convs __UpperCAmelCase : Optional[Any] = auxiliary_concat_input __UpperCAmelCase : str = loss_ignore_index def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : str = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : List[str] = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["stage2", "stage3", "stage4"], ) __UpperCAmelCase : Any = DetaConfig( backbone_config=_lowerCamelCase, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=_lowerCamelCase, with_box_refine=_lowerCamelCase, two_stage=_lowerCamelCase, ) # set labels __UpperCAmelCase : Any = """huggingface/label-files""" if "o365" in model_name: __UpperCAmelCase : str = 366 __UpperCAmelCase : Union[str, Any] = """object365-id2label.json""" else: __UpperCAmelCase : str = 91 __UpperCAmelCase : Any = """coco-detection-id2label.json""" __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : str = json.load(open(cached_download(hf_hub_url(_lowerCamelCase, _lowerCamelCase, repo_type="dataset" ) ), "r" ) ) __UpperCAmelCase : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : str = idalabel __UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__ ) -> List[Any]: __UpperCAmelCase : Any = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = dct.pop(_lowerCamelCase ) __UpperCAmelCase : Tuple = val def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCAmelCase : int = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCAmelCase : int = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __UpperCAmelCase : Optional[Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : List[str] = in_proj_weight[:dim, :] __UpperCAmelCase : int = in_proj_bias[: dim] __UpperCAmelCase : Dict = in_proj_weight[ dim : dim * 2, : ] __UpperCAmelCase : Optional[Any] = in_proj_bias[ dim : dim * 2 ] __UpperCAmelCase : List[str] = in_proj_weight[ -dim :, : ] __UpperCAmelCase : Optional[int] = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : Optional[int] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCAmelCase : List[Any] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __UpperCAmelCase : str = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase : Optional[Any] = in_proj_weight[:hidden_size, :] __UpperCAmelCase : Tuple = in_proj_bias[:hidden_size] __UpperCAmelCase : Any = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCAmelCase : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] __UpperCAmelCase : Optional[Any] = in_proj_weight[-hidden_size:, :] __UpperCAmelCase : Optional[int] = in_proj_bias[-hidden_size:] def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Dict = Image.open(requests.get(_lowerCamelCase, stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[Any] = get_deta_config(_lowerCamelCase ) # load original state dict if model_name == "deta-swin-large": __UpperCAmelCase : List[Any] = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Optional[int] = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365", filename="deta_swin_pt_o365.pth" ) else: raise ValueError(f'''Model name {model_name} not supported''' ) __UpperCAmelCase : str = torch.load(_lowerCamelCase, map_location="cpu" )["""model"""] # original state dict for name, param in state_dict.items(): print(_lowerCamelCase, param.shape ) # rename keys __UpperCAmelCase : List[str] = create_rename_keys(_lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) read_in_swin_q_k_v(_lowerCamelCase, config.backbone_config ) read_in_decoder_q_k_v(_lowerCamelCase, _lowerCamelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) __UpperCAmelCase : Tuple = val if "input_proj" in key: __UpperCAmelCase : List[str] = state_dict.pop(_lowerCamelCase ) __UpperCAmelCase : Any = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCAmelCase : int = state_dict.pop(_lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = val # finally, create HuggingFace model and load state dict __UpperCAmelCase : Dict = DetaForObjectDetection(_lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __UpperCAmelCase : Dict = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(_lowerCamelCase ) # load image processor __UpperCAmelCase : str = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image __UpperCAmelCase : Optional[int] = prepare_img() __UpperCAmelCase : Tuple = processor(images=_lowerCamelCase, return_tensors="pt" ) __UpperCAmelCase : Union[str, Any] = encoding["""pixel_values"""] __UpperCAmelCase : List[str] = model(pixel_values.to(_lowerCamelCase ) ) # verify logits print("Logits:", outputs.logits[0, :3, :3] ) print("Boxes:", outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCAmelCase : Tuple = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __UpperCAmelCase : Optional[int] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __UpperCAmelCase : Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __UpperCAmelCase : List[str] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(_lowerCamelCase ), atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(_lowerCamelCase ), atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase : List[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 __UpperCAmelCase : List[Any] = test_metrics @require_cpu def _lowerCamelCase ( self: int ) -> Any: debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCamelCase ( self: List[Any] ) -> List[Any]: debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCamelCase ( self: Any ) -> Union[str, Any]: self.test_metrics.main() @require_multi_gpu def _lowerCamelCase ( self: List[str] ) -> Tuple: print(f'''Found {torch.cuda.device_count()} devices.''' ) __UpperCAmelCase : Dict = ["torchrun", f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(lowercase_ , env=os.environ.copy() )
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import argparse import os import re import packaging.version _snake_case = '''examples/''' _snake_case = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } _snake_case = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } _snake_case = '''README.md''' def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int: with open(__a, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : Tuple = f.read() __UpperCAmelCase : str = REPLACE_PATTERNS[pattern] __UpperCAmelCase : List[str] = replace.replace("VERSION", __a ) __UpperCAmelCase : List[Any] = re_pattern.sub(__a, __a ) with open(__a, "w", encoding="utf-8", newline="\n" ) as f: f.write(__a ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: for folder, directories, fnames in os.walk(__a ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__a, __a ), __a, pattern="examples" ) def _UpperCamelCase ( snake_case__, snake_case__=False ) -> int: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__a, __a, __a ) if not patch: update_version_in_examples(__a ) def _UpperCamelCase ( ) -> List[str]: __UpperCAmelCase : Optional[Any] = '''🤗 Transformers currently provides the following architectures''' __UpperCAmelCase : str = '''1. Want to contribute a new model?''' with open(__a, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : Optional[int] = f.readlines() # Find the start of the list. __UpperCAmelCase : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __UpperCAmelCase : List[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __UpperCAmelCase : Tuple = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc", "https://huggingface.co/docs/transformers/model_doc", ) index += 1 with open(__a, "w", encoding="utf-8", newline="\n" ) as f: f.writelines(__a ) def _UpperCamelCase ( ) -> List[str]: with open(REPLACE_FILES["init"], "r" ) as f: __UpperCAmelCase : Optional[Any] = f.read() __UpperCAmelCase : Optional[Any] = REPLACE_PATTERNS['''init'''][0].search(__a ).groups()[0] return packaging.version.parse(__a ) def _UpperCamelCase ( snake_case__=False ) -> str: __UpperCAmelCase : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can\'t create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __UpperCAmelCase : List[Any] = default_version.base_version elif patch: __UpperCAmelCase : str = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: __UpperCAmelCase : List[str] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. __UpperCAmelCase : Dict = input(f'''Which version are you releasing? [{default_version}]''' ) if len(__a ) == 0: __UpperCAmelCase : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(__a, patch=__a ) if not patch: print("Cleaning main README, don\'t forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _UpperCamelCase ( ) -> Tuple: __UpperCAmelCase : str = get_version() __UpperCAmelCase : int = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' __UpperCAmelCase : List[Any] = current_version.base_version # Check with the user we got that right. __UpperCAmelCase : Union[str, Any] = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(__a ) == 0: __UpperCAmelCase : List[str] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(__a ) print("Cleaning main README, don\'t forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') _snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
from datetime import datetime import requests def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[str] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" __UpperCAmelCase : Tuple = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase__ ).content if __name__ == "__main__": _snake_case = input('''Enter Video/IGTV url: ''').strip() _snake_case = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4' with open(file_name, '''wb''') as fp: fp.write(download_video(url)) print(F'Done. Video saved to disk as {file_name}.')
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _snake_case = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( ) -> Optional[int]: __UpperCAmelCase : str = "https://pypi.org/pypi/diffusers/json" __UpperCAmelCase : List[str] = json.loads(request.urlopen(a_ ).read() )["releases"].keys() return sorted(a_, key=lambda snake_case__ : version.Version(a_ ) ) def _UpperCamelCase ( ) -> Optional[Any]: # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(a_ ) os.makedirs(a_, exist_ok=a_ ) __UpperCAmelCase : List[str] = Path(a_ ) / "__init__.py" if not init_path.exists(): init_path.touch() def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: init_hf_modules() __UpperCAmelCase : Tuple = Path(a_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(a_, exist_ok=a_ ) __UpperCAmelCase : Any = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def _UpperCamelCase ( snake_case__ ) -> str: with open(a_, "r", encoding="utf-8" ) as f: __UpperCAmelCase : int = f.read() # Imports of the form `import .xxx` __UpperCAmelCase : List[Any] = re.findall("^\s*import\s+\.(\S+)\s*$", a_, flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", a_, flags=re.MULTILINE ) # Unique-ify return list(set(a_ ) ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : List[Any] = False __UpperCAmelCase : int = [module_file] __UpperCAmelCase : int = [] # Let's recurse through all relative imports while not no_change: __UpperCAmelCase : str = [] for f in files_to_check: new_imports.extend(get_relative_imports(a_ ) ) __UpperCAmelCase : Union[str, Any] = Path(a_ ).parent __UpperCAmelCase : Optional[int] = [str(module_path / m ) for m in new_imports] __UpperCAmelCase : Union[str, Any] = [f for f in new_import_files if f not in all_relative_imports] __UpperCAmelCase : List[Any] = [f'''{f}.py''' for f in new_import_files] __UpperCAmelCase : Optional[Any] = len(a_ ) == 0 all_relative_imports.extend(a_ ) return all_relative_imports def _UpperCamelCase ( snake_case__ ) -> int: with open(a_, "r", encoding="utf-8" ) as f: __UpperCAmelCase : List[Any] = f.read() # Imports of the form `import xxx` __UpperCAmelCase : List[Any] = re.findall("^\s*import\s+(\S+)\s*$", a_, flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import", a_, flags=re.MULTILINE ) # Only keep the top-level module __UpperCAmelCase : Union[str, Any] = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all __UpperCAmelCase : List[str] = list(set(a_ ) ) __UpperCAmelCase : List[str] = [] for imp in imports: try: importlib.import_module(a_ ) except ImportError: missing_packages.append(a_ ) if len(a_ ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f'''{', '.join(a_ )}. Run `pip install {' '.join(a_ )}`''' ) return get_relative_imports(a_ ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Tuple = module_path.replace(os.path.sep, "." ) __UpperCAmelCase : Union[str, Any] = importlib.import_module(a_ ) if class_name is None: return find_pipeline_class(a_ ) return getattr(a_, a_ ) def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: from ..pipelines import DiffusionPipeline __UpperCAmelCase : Union[str, Any] = dict(inspect.getmembers(a_, inspect.isclass ) ) __UpperCAmelCase : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, a_ ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'''Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:''' f''' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in''' f''' {loaded_module}.''' ) __UpperCAmelCase : Optional[int] = cls return pipeline_class def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = None, snake_case__ = False, snake_case__ = False, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = False, ) -> List[str]: __UpperCAmelCase : Dict = str(a_ ) __UpperCAmelCase : str = os.path.join(a_, a_ ) if os.path.isfile(a_ ): __UpperCAmelCase : List[Any] = module_file_or_url __UpperCAmelCase : Optional[int] = "local" elif pretrained_model_name_or_path.count("/" ) == 0: __UpperCAmelCase : Dict = get_diffusers_versions() # cut ".dev0" __UpperCAmelCase : Dict = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: __UpperCAmelCase : Optional[int] = latest_version if latest_version[1:] in available_versions else "main" logger.info(f'''Defaulting to latest_version: {revision}.''' ) elif revision in available_versions: __UpperCAmelCase : List[Any] = f'''v{revision}''' elif revision == "main": __UpperCAmelCase : int = revision else: raise ValueError( f'''`custom_revision`: {revision} does not exist. Please make sure to choose one of''' f''' {', '.join(available_versions + ['main'] )}.''' ) # community pipeline on GitHub __UpperCAmelCase : Any = COMMUNITY_PIPELINES_URL.format(revision=a_, pipeline=a_ ) try: __UpperCAmelCase : Any = cached_download( a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, ) __UpperCAmelCase : Optional[int] = "git" __UpperCAmelCase : int = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise else: try: # Load from URL or cache if already cached __UpperCAmelCase : str = hf_hub_download( a_, a_, cache_dir=a_, force_download=a_, proxies=a_, resume_download=a_, local_files_only=a_, use_auth_token=a_, ) __UpperCAmelCase : List[Any] = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(f'''Could not locate the {module_file} inside {pretrained_model_name_or_path}.''' ) raise # Check we have all the requirements in our environment __UpperCAmelCase : Any = check_imports(a_ ) # Now we move the module inside our cached dynamic modules. __UpperCAmelCase : Union[str, Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(a_ ) __UpperCAmelCase : Union[str, Any] = Path(a_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(a_, submodule_path / module_file ) for module_needed in modules_needed: __UpperCAmelCase : Tuple = f'''{module_needed}.py''' shutil.copy(os.path.join(a_, a_ ), submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(a_, a_ ): __UpperCAmelCase : str = use_auth_token elif use_auth_token is True: __UpperCAmelCase : str = HfFolder.get_token() else: __UpperCAmelCase : List[str] = None __UpperCAmelCase : Union[str, Any] = model_info(a_, revision=a_, token=a_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. __UpperCAmelCase : List[str] = submodule_path / commit_hash __UpperCAmelCase : List[Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(a_ ) if not (submodule_path / module_file).exists(): shutil.copy(a_, submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( a_, f'''{module_needed}.py''', cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, ) return os.path.join(a_, a_ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = None, snake_case__ = None, snake_case__ = False, snake_case__ = False, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = False, **snake_case__, ) -> List[Any]: __UpperCAmelCase : Tuple = get_cached_module_file( a_, a_, cache_dir=a_, force_download=a_, resume_download=a_, proxies=a_, use_auth_token=a_, revision=a_, local_files_only=a_, ) return get_class_in_module(a_, final_module.replace(".py", "" ) )
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import csv import tweepy # Twitter API credentials _snake_case = '' _snake_case = '' _snake_case = '' _snake_case = '' def _UpperCamelCase ( snake_case__ ) -> None: # authorize twitter, initialize tweepy __UpperCAmelCase : Union[str, Any] = tweepy.OAuthHandler(_UpperCamelCase, _UpperCamelCase ) auth.set_access_token(_UpperCamelCase, _UpperCamelCase ) __UpperCAmelCase : int = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets __UpperCAmelCase : List[str] = [] # make initial request for most recent tweets (200 is the maximum allowed count) __UpperCAmelCase : Tuple = api.user_timeline(screen_name=_UpperCamelCase, count=200 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one __UpperCAmelCase : int = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(f'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates __UpperCAmelCase : Optional[Any] = api.user_timeline( screen_name=_UpperCamelCase, count=200, max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one __UpperCAmelCase : Dict = alltweets[-1].id - 1 print(f'''...{len(_UpperCamelCase )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv __UpperCAmelCase : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f'''new_{screen_name}_tweets.csv''', "w" ) as f: __UpperCAmelCase : Optional[int] = csv.writer(_UpperCamelCase ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: _snake_case = json.load(f) @require_torch class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: str , __lowerCamelCase: Union[str, Any] ) -> List[str]: return FSMTTokenizer.from_pretrained(_lowerCamelCase ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : Dict = FSMTForConditionalGeneration.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["en-ru", 26.0], ["ru-en", 22.0], ["en-de", 22.0], ["de-en", 29.0], ] ) @slow def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] ) -> str: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality __UpperCAmelCase : List[str] = f'''facebook/wmt19-{pair}''' __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(_lowerCamelCase ) __UpperCAmelCase : List[str] = self.get_model(_lowerCamelCase ) __UpperCAmelCase : Optional[Any] = bleu_data[pair]['''src'''] __UpperCAmelCase : Dict = bleu_data[pair]['''tgt'''] __UpperCAmelCase : Tuple = tokenizer(_lowerCamelCase , return_tensors="pt" , truncation=_lowerCamelCase , padding="longest" ).to(_lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __UpperCAmelCase : Tuple = tokenizer.batch_decode( _lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) __UpperCAmelCase : int = calculate_bleu(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) self.assertGreaterEqual(scores["bleu"] , _lowerCamelCase )
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) _snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Dict: for attribute in key.split("." ): __UpperCAmelCase : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if weight_type is not None: __UpperCAmelCase : int = getattr(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ).shape else: __UpperCAmelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": __UpperCAmelCase : List[str] = value elif weight_type == "bias": __UpperCAmelCase : int = value else: __UpperCAmelCase : Union[str, Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : Optional[Any] = fairseq_model.state_dict() __UpperCAmelCase : str = hf_model.feature_extractor __UpperCAmelCase : Optional[int] = hf_model.adapter for name, value in fairseq_dict.items(): __UpperCAmelCase : List[Any] = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, hf_model.config.feat_extract_norm == "group", ) __UpperCAmelCase : str = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: __UpperCAmelCase : Dict = True if "*" in mapped_key: __UpperCAmelCase : List[Any] = name.split(__SCREAMING_SNAKE_CASE )[0].split("." )[-2] __UpperCAmelCase : List[str] = mapped_key.replace("*", __SCREAMING_SNAKE_CASE ) if "weight_g" in name: __UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : Dict = """weight_v""" elif "bias" in name: __UpperCAmelCase : Any = """bias""" elif "weight" in name: __UpperCAmelCase : List[Any] = """weight""" else: __UpperCAmelCase : Any = None set_recursively(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] __UpperCAmelCase : Any = name.split("." ) __UpperCAmelCase : Optional[int] = int(items[0] ) __UpperCAmelCase : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Optional[int] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : Tuple = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __UpperCAmelCase : List[str] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = full_name.split("adaptor." )[-1] __UpperCAmelCase : Dict = name.split("." ) if items[1].isdigit(): __UpperCAmelCase : int = int(items[1] ) else: __UpperCAmelCase : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' __UpperCAmelCase : Dict = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' __UpperCAmelCase : Any = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' __UpperCAmelCase : str = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' __UpperCAmelCase : Optional[Any] = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' __UpperCAmelCase : int = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' __UpperCAmelCase : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: __UpperCAmelCase : int = emb.weight.shape __UpperCAmelCase : List[str] = nn.Linear(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, bias=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = emb.weight.data return lin_layer @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, ) -> Dict: __UpperCAmelCase : Dict = WavaVecaConfig.from_pretrained( __SCREAMING_SNAKE_CASE, add_adapter=__SCREAMING_SNAKE_CASE, adapter_stride=__SCREAMING_SNAKE_CASE, adapter_kernel_size=__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE, output_hidden_size=__SCREAMING_SNAKE_CASE, ) __UpperCAmelCase : Dict = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) # load model __UpperCAmelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, }, ) __UpperCAmelCase : Dict = model[0].eval() # load feature extractor __UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE, use_auth_token=__SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder __UpperCAmelCase : List[Any] = WavaVecaModel(__SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder, __SCREAMING_SNAKE_CASE ) # load decoder weights __UpperCAmelCase : Optional[Any] = MBartForCausalLM(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=__SCREAMING_SNAKE_CASE ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __UpperCAmelCase : str = SpeechEncoderDecoderModel(encoder=__SCREAMING_SNAKE_CASE, decoder=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : int = False __UpperCAmelCase : Optional[Any] = MBartaaTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = hf_wavavec.config.to_dict() __UpperCAmelCase : Optional[Any] = tokenizer.pad_token_id __UpperCAmelCase : Optional[Any] = tokenizer.bos_token_id __UpperCAmelCase : List[Any] = tokenizer.eos_token_id __UpperCAmelCase : Dict = """mbart50""" __UpperCAmelCase : int = """wav2vec2""" __UpperCAmelCase : Dict = tokenizer.eos_token_id __UpperCAmelCase : List[str] = 25_0004 __UpperCAmelCase : Union[str, Any] = tokenizer.eos_token_id __UpperCAmelCase : Optional[int] = SpeechEncoderDecoderConfig.from_dict(__SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250004, type=int, help='''`decoder_start_token_id` of model config''') _snake_case = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _snake_case ( __lowercase ): lowerCamelCase__: List[Any] = (KDPMaDiscreteScheduler,) lowerCamelCase__: str = 10 def _lowerCamelCase ( self: str , **__lowerCamelCase: int ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = { "num_train_timesteps": 11_00, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**_a ) return config def _lowerCamelCase ( self: List[str] ) -> Optional[int]: for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def _lowerCamelCase ( self: int ) -> Tuple: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase : List[str] = self.scheduler_classes[0] __UpperCAmelCase : int = self.get_scheduler_config(prediction_type="v_prediction" ) __UpperCAmelCase : Dict = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : Optional[int] = self.dummy_model() __UpperCAmelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : List[str] = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : Dict = scheduler.scale_model_input(_a , _a ) __UpperCAmelCase : int = model(_a , _a ) __UpperCAmelCase : Any = scheduler.step(_a , _a , _a ) __UpperCAmelCase : Dict = output.prev_sample __UpperCAmelCase : List[Any] = torch.sum(torch.abs(_a ) ) __UpperCAmelCase : Optional[int] = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.00_02 ) < 1e-3 def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: if torch_device == "mps": return __UpperCAmelCase : str = self.scheduler_classes[0] __UpperCAmelCase : List[Any] = self.get_scheduler_config() __UpperCAmelCase : Optional[int] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) __UpperCAmelCase : Optional[Any] = self.dummy_model() __UpperCAmelCase : Any = self.dummy_sample_deter * scheduler.init_noise_sigma __UpperCAmelCase : str = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): __UpperCAmelCase : List[Any] = scheduler.scale_model_input(_a , _a ) __UpperCAmelCase : Dict = model(_a , _a ) __UpperCAmelCase : List[str] = scheduler.step(_a , _a , _a ) __UpperCAmelCase : Tuple = output.prev_sample __UpperCAmelCase : str = torch.sum(torch.abs(_a ) ) __UpperCAmelCase : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 def _lowerCamelCase ( self: Optional[int] ) -> int: if torch_device == "mps": return __UpperCAmelCase : Union[str, Any] = self.scheduler_classes[0] __UpperCAmelCase : Any = self.get_scheduler_config() __UpperCAmelCase : Dict = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) __UpperCAmelCase : Tuple = self.dummy_model() __UpperCAmelCase : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __UpperCAmelCase : Any = scheduler.scale_model_input(_a , _a ) __UpperCAmelCase : Dict = model(_a , _a ) __UpperCAmelCase : Tuple = scheduler.step(_a , _a , _a ) __UpperCAmelCase : List[str] = output.prev_sample __UpperCAmelCase : Dict = torch.sum(torch.abs(_a ) ) __UpperCAmelCase : Dict = torch.mean(torch.abs(_a ) ) if str(_a ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.41_25 ) < 1e-2 assert abs(result_mean.item() - 0.02_66 ) < 1e-3
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) _snake_case = parser.parse_args() _snake_case = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _snake_case ( __snake_case , unittest.TestCase ): lowerCamelCase__: Union[str, Any] = CpmAntTokenizer lowerCamelCase__: str = False def _lowerCamelCase ( self: List[str] ) -> int: super().setUp() __UpperCAmelCase : Optional[int] = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) __UpperCAmelCase : Tuple = '''今天天气真好!''' __UpperCAmelCase : int = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __UpperCAmelCase : int = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __UpperCAmelCase : List[Any] = '''今天天气真好!''' __UpperCAmelCase : Dict = [tokenizer.bos_token] + tokens __UpperCAmelCase : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) __UpperCAmelCase : Optional[Any] = tokenizer.decode(a_ ) self.assertEqual(a_ , a_ )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class _snake_case ( SCREAMING_SNAKE_CASE_ ): lowerCamelCase__: Optional[Any] = "luke" def __init__( self: List[Any] , __lowerCamelCase: Dict=5_02_67 , __lowerCamelCase: Optional[int]=50_00_00 , __lowerCamelCase: List[str]=7_68 , __lowerCamelCase: Union[str, Any]=2_56 , __lowerCamelCase: List[Any]=12 , __lowerCamelCase: Optional[Any]=12 , __lowerCamelCase: str=30_72 , __lowerCamelCase: Optional[Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: str=5_12 , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Tuple=1 , __lowerCamelCase: List[str]=0 , __lowerCamelCase: Optional[Any]=2 , **__lowerCamelCase: Optional[Any] , ) -> List[Any]: super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Any = entity_vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Union[str, Any] = entity_emb_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Any = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : int = type_vocab_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Any = use_entity_aware_attention __UpperCAmelCase : Union[str, Any] = classifier_dropout
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: while b: __UpperCAmelCase , __UpperCAmelCase : int = b, a % b return a def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: return a if b == 0 else euclidean_gcd_recursive(snake_case__, a % b ) def _UpperCamelCase ( ) -> Union[str, Any]: print(f'''euclidean_gcd(3, 5) = {euclidean_gcd(3, 5 )}''' ) print(f'''euclidean_gcd(5, 3) = {euclidean_gcd(5, 3 )}''' ) print(f'''euclidean_gcd(1, 3) = {euclidean_gcd(1, 3 )}''' ) print(f'''euclidean_gcd(3, 6) = {euclidean_gcd(3, 6 )}''' ) print(f'''euclidean_gcd(6, 3) = {euclidean_gcd(6, 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3, 5 )}''' ) print(f'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5, 3 )}''' ) print(f'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1, 3 )}''' ) print(f'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3, 6 )}''' ) print(f'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6, 3 )}''' ) if __name__ == "__main__": main()
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : str = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _UpperCamelCase ( snake_case__ = 5000 ) -> Optional[int]: __UpperCAmelCase : int = [(i * (3 * i - 1)) // 2 for i in range(1, snake_case_ )] for i, pentagonal_i in enumerate(snake_case_ ): for j in range(snake_case_, len(snake_case_ ) ): __UpperCAmelCase : Union[str, Any] = pentagonal_nums[j] __UpperCAmelCase : Dict = pentagonal_i + pentagonal_j __UpperCAmelCase : List[Any] = pentagonal_j - pentagonal_i if is_pentagonal(snake_case_ ) and is_pentagonal(snake_case_ ): return b return -1 if __name__ == "__main__": print(F'{solution() = }')
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _snake_case ( __UpperCamelCase ): def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str ) -> int: with open(__lowerCamelCase , encoding="utf-8" ) as input_file: __UpperCAmelCase : int = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __UpperCAmelCase : List[Any] = input_file.read() __UpperCAmelCase : Optional[Any] = regexp.search(__lowerCamelCase ) return match def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str ) -> Any: with open(__lowerCamelCase , encoding="utf-8" ) as input_file: __UpperCAmelCase : List[str] = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __UpperCAmelCase : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __UpperCAmelCase : Tuple = regexp.finditer(__lowerCamelCase ) __UpperCAmelCase : str = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowerCamelCase ( self: Tuple ) -> Any: __UpperCAmelCase : int = Path("./datasets" ) __UpperCAmelCase : Optional[int] = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCamelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : List[Any] = Path("./datasets" ) __UpperCAmelCase : Dict = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCamelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
_snake_case = { 0: '''0''', 1: '''1''', 2: '''2''', 3: '''3''', 4: '''4''', 5: '''5''', 6: '''6''', 7: '''7''', 8: '''8''', 9: '''9''', 10: '''a''', 11: '''b''', 12: '''c''', 13: '''d''', 14: '''e''', 15: '''f''', } def _UpperCamelCase ( snake_case__ ) -> Tuple: assert type(A__ ) in (int, float) and decimal == int(A__ ) __UpperCAmelCase : Optional[Any] = int(A__ ) __UpperCAmelCase : Dict = "" __UpperCAmelCase : int = False if decimal < 0: __UpperCAmelCase : Tuple = True decimal *= -1 while decimal > 0: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(A__, 16 ) __UpperCAmelCase : List[str] = values[remainder] + hexadecimal __UpperCAmelCase : Any = "0x" + hexadecimal if negative: __UpperCAmelCase : Tuple = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Dict ) -> Optional[int]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __UpperCAmelCase : Dict = [[1, 2, 4], [1, 2, 3, 4]] __UpperCAmelCase : List[str] = DisjunctiveConstraint(__lowerCAmelCase ) self.assertTrue(isinstance(dc.token_ids , __lowerCAmelCase ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __UpperCAmelCase : List[str] = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCAmelCase ): DisjunctiveConstraint(__lowerCAmelCase ) # fails here def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : str = [[1, 2, 3], [1, 2, 4]] __UpperCAmelCase : str = DisjunctiveConstraint(__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = dc.update(1 ) __UpperCAmelCase : str = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = dc.update(2 ) __UpperCAmelCase : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = dc.update(3 ) __UpperCAmelCase : Any = stepped is True and completed is True and reset is False self.assertTrue(__lowerCAmelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def _lowerCamelCase ( self: List[str] ) -> List[str]: __UpperCAmelCase : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __UpperCAmelCase : Any = DisjunctiveConstraint(__lowerCAmelCase ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from __future__ import annotations def _UpperCamelCase ( snake_case__ ) -> None: create_state_space_tree(_UpperCamelCase, [], 0, [0 for i in range(len(_UpperCamelCase ) )] ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, ) -> None: if index == len(_UpperCamelCase ): print(_UpperCamelCase ) return for i in range(len(_UpperCamelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __UpperCAmelCase : List[str] = True create_state_space_tree(_UpperCamelCase, _UpperCamelCase, index + 1, _UpperCamelCase ) current_sequence.pop() __UpperCAmelCase : Any = False _snake_case = [3, 1, 2, 4] generate_all_permutations(sequence) _snake_case = ["A", "B", "C"] generate_all_permutations(sequence_a)
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
_snake_case = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _snake_case = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _snake_case = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: assert len(str(lowerCAmelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCAmelCase : List[str] = year // 100 __UpperCAmelCase : Optional[int] = (5 * (century % 4) + 2) % 7 __UpperCAmelCase : Any = year % 100 __UpperCAmelCase : List[Any] = centurian % 12 __UpperCAmelCase : Optional[Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCAmelCase : str = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCAmelCase : Optional[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
_snake_case = tuple[float, float, float] _snake_case = tuple[float, float, float] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Vectorad: __UpperCAmelCase : Optional[int] = end_pointa[0] - end_pointa[0] __UpperCAmelCase : Optional[int] = end_pointa[1] - end_pointa[1] __UpperCAmelCase : int = end_pointa[2] - end_pointa[2] return (x, y, z) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Vectorad: __UpperCAmelCase : str = ab[1] * ac[2] - ab[2] * ac[1] # *i __UpperCAmelCase : Optional[int] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __UpperCAmelCase : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def _UpperCamelCase ( snake_case__, snake_case__ ) -> bool: return tuple(round(a__, a__ ) for x in vector ) == (0, 0, 0) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ = 10 ) -> bool: __UpperCAmelCase : str = create_vector(a__, a__ ) __UpperCAmelCase : Optional[int] = create_vector(a__, a__ ) return is_zero_vector(get_ad_vectors_cross(a__, a__ ), a__ )
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Dict: try: __UpperCAmelCase : List[str] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __UpperCAmelCase : Dict = default else: # KEY is set, convert it to True or False. try: __UpperCAmelCase : List[str] = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value _snake_case = parse_flag_from_env('''RUN_SLOW''', default=False) def _UpperCamelCase ( snake_case__ ) -> List[Any]: return unittest.skip("Test was skipped" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> List[str]: return unittest.skipUnless(_run_slow_tests, "test is slow" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Tuple: return unittest.skipUnless(not torch.cuda.is_available(), "test requires only a CPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: return unittest.skipUnless(torch.cuda.is_available(), "test requires a GPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return unittest.skipUnless(is_xpu_available(), "test requires a XPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> str: return unittest.skipUnless( is_transformers_available() and is_datasets_available(), "test requires the Hugging Face suite" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Dict: return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> int: return unittest.skipUnless(is_tpu_available(), "test requires TPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> int: return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Any: return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return unittest.skipUnless(is_safetensors_available(), "test requires safetensors" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> str: return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Tuple: return unittest.skipUnless(is_torch_version(">=", "1.12.0" ), "test requires torch version >= 1.12.0" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__=None, snake_case__=None ) -> int: if test_case is None: return partial(UpperCamelCase__, version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version(">=", UpperCamelCase__ ), f'''test requires torch version >= {version}''' )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> str: return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Any: return unittest.skipUnless(is_wandb_available(), "test requires wandb" )(UpperCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml" )(UpperCamelCase__ ) _snake_case = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: return unittest.skipUnless( _atleast_one_tracker_available, "test requires at least one tracker to be available and for `comet_ml` to not be installed", )(UpperCamelCase__ ) class _snake_case ( unittest.TestCase ): lowerCamelCase__: Optional[int] = True @classmethod def _lowerCamelCase ( cls: Union[str, Any] ) -> int: __UpperCAmelCase : List[Any] = tempfile.mkdtemp() @classmethod def _lowerCamelCase ( cls: Tuple ) -> Tuple: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def _lowerCamelCase ( self: Optional[int] ) -> Any: if self.clear_on_setup: for path in Path(self.tmpdir ).glob("**/*" ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(_a ) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> str: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[mock.Mock, List[mock.Mock]] ) -> Any: __UpperCAmelCase : Dict = mocks if isinstance(_a , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : Any = AcceleratorState() __UpperCAmelCase : List[str] = tensor[None].clone().to(state.device ) __UpperCAmelCase : Union[str, Any] = gather(UpperCamelCase__ ).cpu() __UpperCAmelCase : Dict = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i], UpperCamelCase__ ): return False return True class _snake_case : def __init__( self: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : List[Any] = returncode __UpperCAmelCase : str = stdout __UpperCAmelCase : Any = stderr async def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: while True: __UpperCAmelCase : str = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=None, snake_case__=None, snake_case__=False, snake_case__=False ) -> str: if echo: print("\nRunning: ", " ".join(UpperCamelCase__ ) ) __UpperCAmelCase : List[Any] = await asyncio.create_subprocess_exec( cmd[0], *cmd[1:], stdin=UpperCamelCase__, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE, env=UpperCamelCase__, ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : List[Any] = [] def tee(snake_case__, snake_case__, snake_case__, snake_case__="" ): __UpperCAmelCase : int = line.decode("utf-8" ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__, UpperCamelCase__, file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout, lambda snake_case__ : tee(UpperCamelCase__, UpperCamelCase__, sys.stdout, label="stdout:" ) ) ), asyncio.create_task(_read_stream(p.stderr, lambda snake_case__ : tee(UpperCamelCase__, UpperCamelCase__, sys.stderr, label="stderr:" ) ) ), ], timeout=UpperCamelCase__, ) return _RunOutput(await p.wait(), UpperCamelCase__, UpperCamelCase__ ) def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=None, snake_case__=180, snake_case__=False, snake_case__=True ) -> Optional[Any]: __UpperCAmelCase : List[str] = asyncio.get_event_loop() __UpperCAmelCase : Any = loop.run_until_complete( _stream_subprocess(UpperCamelCase__, env=UpperCamelCase__, stdin=UpperCamelCase__, timeout=UpperCamelCase__, quiet=UpperCamelCase__, echo=UpperCamelCase__ ) ) __UpperCAmelCase : Union[str, Any] = " ".join(UpperCamelCase__ ) if result.returncode > 0: __UpperCAmelCase : Tuple = "\n".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) return result class _snake_case ( _lowercase ): pass def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Any: try: __UpperCAmelCase : int = subprocess.check_output(UpperCamelCase__, stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__, "decode" ): __UpperCAmelCase : List[Any] = output.decode("utf-8" ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'''Command `{' '.join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import random from .binary_exp_mod import bin_exp_mod def _UpperCamelCase ( snake_case__, snake_case__=1000 ) -> int: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCAmelCase : str = n - 1 __UpperCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCAmelCase : List[Any] = 0 while count < prec: __UpperCAmelCase : Tuple = random.randint(2, n - 1 ) __UpperCAmelCase : str = bin_exp_mod(_a, _a, _a ) if b != 1: __UpperCAmelCase : Union[str, Any] = True for _ in range(_a ): if b == n - 1: __UpperCAmelCase : Union[str, Any] = False break __UpperCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": _snake_case = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCamelCase ( snake_case__ ) -> str: return 1 / (1 + np.exp(-z )) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: return (-y * np.log(_UpperCAmelCase ) - (1 - y) * np.log(1 - h )).mean() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = np.dot(_UpperCAmelCase, _UpperCAmelCase ) return np.sum(y * scores - np.log(1 + np.exp(_UpperCAmelCase ) ) ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=7_0000 ) -> Tuple: __UpperCAmelCase : List[str] = np.zeros(x.shape[1] ) for iterations in range(_UpperCAmelCase ): __UpperCAmelCase : Any = np.dot(_UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : Any = sigmoid_function(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = np.dot(x.T, h - y ) / y.size __UpperCAmelCase : Union[str, Any] = theta - alpha * gradient # updating the weights __UpperCAmelCase : Optional[Any] = np.dot(_UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : List[Any] = sigmoid_function(_UpperCAmelCase ) __UpperCAmelCase : str = cost_function(_UpperCAmelCase, _UpperCAmelCase ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _snake_case = datasets.load_iris() _snake_case = iris.data[:, :2] _snake_case = (iris.target != 0) * 1 _snake_case = 0.1 _snake_case = logistic_reg(alpha, x, y, max_iterations=70000) print('''theta: ''', theta) # printing the theta i.e our weights vector def _UpperCamelCase ( snake_case__ ) -> Optional[int]: return sigmoid_function( np.dot(_UpperCAmelCase, _UpperCAmelCase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (_snake_case) = (x[:, 0].min(), x[:, 0].max()) (_snake_case) = (x[:, 1].min(), x[:, 1].max()) (_snake_case) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _snake_case = np.c_[xxa.ravel(), xxa.ravel()] _snake_case = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _snake_case = '''true''' def _UpperCamelCase ( snake_case__, snake_case__=82, snake_case__=16 ) -> Union[str, Any]: set_seed(42 ) __UpperCAmelCase : Dict = RegressionModel() __UpperCAmelCase : Any = deepcopy(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Dict = RegressionDataset(length=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Optional[int] = DataLoader(SCREAMING_SNAKE_CASE_, batch_size=SCREAMING_SNAKE_CASE_ ) model.to(accelerator.device ) __UpperCAmelCase , __UpperCAmelCase : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return model, ddp_model, dataloader def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Union[str, Any]: __UpperCAmelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) __UpperCAmelCase : Optional[Any] = load_dataset("glue", "mrpc", split="validation" ) def tokenize_function(snake_case__ ): __UpperCAmelCase : Union[str, Any] = tokenizer(examples["sentence1"], examples["sentence2"], truncation=SCREAMING_SNAKE_CASE_, max_length=SCREAMING_SNAKE_CASE_ ) return outputs with accelerator.main_process_first(): __UpperCAmelCase : str = dataset.map( SCREAMING_SNAKE_CASE_, batched=SCREAMING_SNAKE_CASE_, remove_columns=["idx", "sentence1", "sentence2"], ) __UpperCAmelCase : Any = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(snake_case__ ): if use_longest: return tokenizer.pad(SCREAMING_SNAKE_CASE_, padding="longest", return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE_, padding="max_length", max_length=128, return_tensors="pt" ) return DataLoader(SCREAMING_SNAKE_CASE_, shuffle=SCREAMING_SNAKE_CASE_, collate_fn=SCREAMING_SNAKE_CASE_, batch_size=16 ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : int = Accelerator(dispatch_batches=SCREAMING_SNAKE_CASE_, split_batches=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Union[str, Any] = get_dataloader(SCREAMING_SNAKE_CASE_, not dispatch_batches ) __UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased", return_dict=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase : Dict = accelerator.prepare(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : List[str] = [] for batch in dataloader: __UpperCAmelCase , __UpperCAmelCase : int = batch.values() with torch.no_grad(): __UpperCAmelCase : Dict = model(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(SCREAMING_SNAKE_CASE_ ) targs.append(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase : Tuple = torch.cat(SCREAMING_SNAKE_CASE_ ), torch.cat(SCREAMING_SNAKE_CASE_ ) return logits, targs def _UpperCamelCase ( snake_case__, snake_case__=82, snake_case__=False, snake_case__=False, snake_case__=16 ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = get_basic_setup(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = generate_predictions(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) assert ( len(SCREAMING_SNAKE_CASE_ ) == num_samples ), f'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(SCREAMING_SNAKE_CASE_ )}''' def _UpperCamelCase ( snake_case__ = False, snake_case__ = False ) -> Optional[int]: __UpperCAmelCase : List[Any] = evaluate.load("glue", "mrpc" ) __UpperCAmelCase , __UpperCAmelCase : Any = get_mrpc_setup(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # First do baseline __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = setup["no"] model.to(SCREAMING_SNAKE_CASE_ ) model.eval() for batch in dataloader: batch.to(SCREAMING_SNAKE_CASE_ ) with torch.inference_mode(): __UpperCAmelCase : Optional[Any] = model(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : str = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_, references=batch["labels"] ) __UpperCAmelCase : Optional[int] = metric.compute() # Then do distributed __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCAmelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Tuple = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : Any = batch["labels"] __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=SCREAMING_SNAKE_CASE_, references=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : Any = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key], distributed[key] ), f'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : List[Any] = Accelerator(split_batches=SCREAMING_SNAKE_CASE_, dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCAmelCase : int = Accelerator(split_batches=SCREAMING_SNAKE_CASE_, dispatch_batches=SCREAMING_SNAKE_CASE_ ) if accelerator.is_local_main_process: print(f'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(SCREAMING_SNAKE_CASE_, 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) __UpperCAmelCase : Optional[int] = Accelerator() test_torch_metrics(SCREAMING_SNAKE_CASE_, 512 ) accelerator.state._reset_state() def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
from __future__ import annotations import time import numpy as np _snake_case = [8, 5, 9, 7] _snake_case = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _snake_case : def __init__( self: int , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , ) -> Tuple: __UpperCAmelCase : List[Any] = claim_vector __UpperCAmelCase : Tuple = allocated_resources_table __UpperCAmelCase : Any = maximum_claim_table def _lowerCamelCase ( self: List[Any] ) -> Dict: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def _lowerCamelCase ( self: Dict ) -> int: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def _lowerCamelCase ( self: Optional[int] ) -> Any: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def _lowerCamelCase ( self: List[Any] ) -> List[str]: return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def _lowerCamelCase ( self: List[Any] , **__lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.__need() __UpperCAmelCase : Optional[Any] = self.__allocated_resources_table __UpperCAmelCase : Optional[int] = self.__available_resources() __UpperCAmelCase : Union[str, Any] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: __UpperCAmelCase : List[Any] = False for each_need in need_list: __UpperCAmelCase : List[Any] = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: __UpperCAmelCase : List[str] = False break if execution: __UpperCAmelCase : int = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __UpperCAmelCase : Optional[Any] = original_need_index print(f'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack __UpperCAmelCase : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f'''P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}''' + " ".join(f'''{it:>8}''' for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f'''P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}''' + " ".join(f'''{it:>8}''' for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _UpperCamelCase ( snake_case__ ) -> List[str]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __UpperCAmelCase : Optional[int] = model_type_to_module_name(_snake_case ) __UpperCAmelCase : Union[str, Any] = importlib.import_module(f'''.{module_name}''', "transformers.models" ) try: return getattr(_snake_case, _snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_snake_case, "__name__", _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __UpperCAmelCase : Union[str, Any] = importlib.import_module("transformers" ) if hasattr(_snake_case, _snake_case ): return getattr(_snake_case, _snake_case ) return None def _UpperCamelCase ( snake_case__, snake_case__ = None, snake_case__ = False, snake_case__ = False, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = False, **snake_case__, ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = get_file_from_repo( _snake_case, _snake_case, cache_dir=_snake_case, force_download=_snake_case, resume_download=_snake_case, proxies=_snake_case, use_auth_token=_snake_case, revision=_snake_case, local_files_only=_snake_case, ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(_snake_case, encoding="utf-8" ) as reader: return json.load(_snake_case ) class _snake_case : def __init__( self: Optional[Any] ) -> Dict: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_a ) def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: Dict , **__lowerCamelCase: Any ) -> str: __UpperCAmelCase : Optional[Any] = kwargs.pop("config" , _a ) __UpperCAmelCase : List[Any] = kwargs.pop("trust_remote_code" , _a ) __UpperCAmelCase : List[Any] = True __UpperCAmelCase : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(_a , **_a ) __UpperCAmelCase : Optional[Any] = config_dict.get("feature_extractor_type" , _a ) __UpperCAmelCase : Tuple = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __UpperCAmelCase : int = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_a , _a ): __UpperCAmelCase : Dict = AutoConfig.from_pretrained(_a , **_a ) # It could be in `config.feature_extractor_type`` __UpperCAmelCase : Union[str, Any] = getattr(_a , "feature_extractor_type" , _a ) if hasattr(_a , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: __UpperCAmelCase : Tuple = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: __UpperCAmelCase : List[str] = feature_extractor_class_from_name(_a ) __UpperCAmelCase : Dict = feature_extractor_auto_map is not None __UpperCAmelCase : str = feature_extractor_class is not None or type(_a ) in FEATURE_EXTRACTOR_MAPPING __UpperCAmelCase : Dict = resolve_trust_remote_code( _a , _a , _a , _a ) if has_remote_code and trust_remote_code: __UpperCAmelCase : Union[str, Any] = get_class_from_dynamic_module( _a , _a , **_a ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("code_revision" , _a ) if os.path.isdir(_a ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_a , **_a ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_a , **_a ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_a ) in FEATURE_EXTRACTOR_MAPPING: __UpperCAmelCase : Dict = FEATURE_EXTRACTOR_MAPPING[type(_a )] return feature_extractor_class.from_dict(_a , **_a ) raise ValueError( f'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' f'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> List[str]: FEATURE_EXTRACTOR_MAPPING.register(_a , _a )
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
from __future__ import annotations from collections.abc import MutableSequence class _snake_case : def __init__( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: MutableSequence[float] ) -> Dict: if len(_a ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) __UpperCAmelCase : list[float] = list(_a ) __UpperCAmelCase : Dict = degree def __add__( self: int , __lowerCamelCase: Polynomial ) -> Optional[int]: if self.degree > polynomial_a.degree: __UpperCAmelCase : Optional[int] = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , _a ) else: __UpperCAmelCase : List[Any] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , _a ) def __sub__( self: int , __lowerCamelCase: Polynomial ) -> Any: return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self: Tuple ) -> Union[str, Any]: return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self: Optional[Any] , __lowerCamelCase: Polynomial ) -> Any: __UpperCAmelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , _a ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: int | float ) -> int: __UpperCAmelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self: Optional[int] ) -> Dict: __UpperCAmelCase : Optional[int] = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_a ) return polynomial def __repr__( self: int ) -> List[str]: return self.__str__() def _lowerCamelCase ( self: Optional[int] ) -> List[Any]: __UpperCAmelCase : list[float] = [0] * self.degree for i in range(self.degree ): __UpperCAmelCase : List[Any] = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , _a ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int | float = 0 ) -> Union[str, Any]: __UpperCAmelCase : list[float] = [0] * (self.degree + 2) __UpperCAmelCase : List[str] = constant for i in range(self.degree + 1 ): __UpperCAmelCase : Tuple = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , _a ) def __eq__( self: Union[str, Any] , __lowerCamelCase: object ) -> Optional[int]: if not isinstance(_a , _a ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self: List[Any] , __lowerCamelCase: object ) -> Optional[int]: return not self.__eq__(_a )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
def _UpperCamelCase ( snake_case__ ) -> bool: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__lowerCAmelCase ) == 0: raise ValueError("Input list must be a non empty list" ) if len(__lowerCAmelCase ) == 1: return True __UpperCAmelCase : Any = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _UpperCamelCase ( snake_case__ ) -> float: if not isinstance(__lowerCAmelCase, __lowerCAmelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__lowerCAmelCase ) == 0: raise ValueError("Input list must be a non empty list" ) __UpperCAmelCase : Any = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _snake_case : def __init__( self: List[Any] , __lowerCamelCase: List[Any] , ) -> List[Any]: __UpperCAmelCase : int = parent __UpperCAmelCase : Optional[int] = 13 __UpperCAmelCase : Tuple = 7 __UpperCAmelCase : List[str] = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : Union[str, Any] = 99 __UpperCAmelCase : Any = 32 __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : List[str] = 37 __UpperCAmelCase : str = 'gelu' __UpperCAmelCase : Dict = 0.1 __UpperCAmelCase : Optional[int] = 0.1 __UpperCAmelCase : Optional[Any] = 5_12 __UpperCAmelCase : List[Any] = 16 __UpperCAmelCase : Dict = 2 __UpperCAmelCase : Optional[int] = 0.02 __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Dict = 4 __UpperCAmelCase : str = None def _lowerCamelCase ( self: List[Any] ) -> int: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_input_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None __UpperCAmelCase : List[str] = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : str = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: Any ) -> List[Any]: ( __UpperCAmelCase ) : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Dict , __lowerCamelCase: Any ) -> Any: __UpperCAmelCase : Optional[int] = TFEsmModel(config=__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} __UpperCAmelCase : str = model(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = [input_ids, input_mask] __UpperCAmelCase : int = model(__lowerCamelCase ) __UpperCAmelCase : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = TFEsmModel(config=__lowerCamelCase ) __UpperCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } __UpperCAmelCase : Tuple = model(__lowerCamelCase ) __UpperCAmelCase : Tuple = [input_ids, input_mask] __UpperCAmelCase : List[Any] = model(__lowerCamelCase , encoder_hidden_states=__lowerCamelCase ) # Also check the case where encoder outputs are not passed __UpperCAmelCase : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : Any = TFEsmForMaskedLM(config=__lowerCamelCase ) __UpperCAmelCase : List[Any] = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: List[str] ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : int = TFEsmForTokenClassification(config=__lowerCamelCase ) __UpperCAmelCase : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} __UpperCAmelCase : int = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: List[str] ) -> Any: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Optional[int] = config_and_inputs __UpperCAmelCase : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _snake_case ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) lowerCamelCase__: Any = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: Tuple = False def _lowerCamelCase ( self: Optional[int] ) -> int: __UpperCAmelCase : Dict = TFEsmModelTester(self ) __UpperCAmelCase : Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: str ) -> int: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: List[Any] ) -> List[str]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> str: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Optional[Any] ) -> Dict: for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : str = TFEsmModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("Protein models do not support embedding resizing." ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: pass @unittest.skip("Protein models do not support embedding resizing." ) def _lowerCamelCase ( self: List[Any] ) -> Any: pass def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer __UpperCAmelCase : Optional[int] = model.get_bias() assert isinstance(__lowerCamelCase , __lowerCamelCase ) for k, v in name.items(): assert isinstance(__lowerCamelCase , tf.Variable ) else: __UpperCAmelCase : Optional[Any] = model.get_output_embeddings() assert x is None __UpperCAmelCase : Dict = model.get_bias() assert name is None @require_tf class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: str ) -> Dict: __UpperCAmelCase : Optional[Any] = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __UpperCAmelCase : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCAmelCase : Dict = model(__lowerCamelCase )[0] __UpperCAmelCase : List[str] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCamelCase ) # compare the actual values for a slice. __UpperCAmelCase : Dict = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : str = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) __UpperCAmelCase : List[str] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) __UpperCAmelCase : Optional[int] = model(__lowerCamelCase )[0] # compare the actual values for a slice. __UpperCAmelCase : str = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case = 0 _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case = tuple[int, int] class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict , ) -> Any: __UpperCAmelCase : Union[str, Any] = pos_x __UpperCAmelCase : Union[str, Any] = pos_y __UpperCAmelCase : Tuple = (pos_y, pos_x) __UpperCAmelCase : Union[str, Any] = goal_x __UpperCAmelCase : str = goal_y __UpperCAmelCase : List[Any] = g_cost __UpperCAmelCase : List[Any] = parent __UpperCAmelCase : Union[str, Any] = self.calculate_heuristic() __UpperCAmelCase : List[str] = self.g_cost + self.h_cost def _lowerCamelCase ( self: Any ) -> Union[str, Any]: __UpperCAmelCase : Optional[int] = self.pos_x - self.goal_x __UpperCAmelCase : Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: str , __lowerCamelCase: List[str] ) -> List[str]: return self.f_cost < other.f_cost class _snake_case : def __init__( self: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = [self.start] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : Dict = False def _lowerCamelCase ( self: str ) -> Optional[int]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCAmelCase : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__SCREAMING_SNAKE_CASE ) self.closed_nodes.append(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = self.get_successors(__SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) return [self.start.pos] def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any ) -> List[Any]: __UpperCAmelCase : int = [] for action in delta: __UpperCAmelCase : Union[str, Any] = parent.pos_x + action[1] __UpperCAmelCase : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __SCREAMING_SNAKE_CASE , ) ) return successors def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = node __UpperCAmelCase : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCAmelCase : int = current_node.parent path.reverse() return path class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> List[str]: __UpperCAmelCase : int = AStar(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = AStar(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Tuple = False def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __UpperCAmelCase : Optional[Any] = self.fwd_astar.open_nodes.pop(0 ) __UpperCAmelCase : str = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(__SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : str = current_bwd_node __UpperCAmelCase : Dict = current_fwd_node __UpperCAmelCase : Optional[Any] = { self.fwd_astar: self.fwd_astar.get_successors(__SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(__SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __UpperCAmelCase : Union[str, Any] = astar.open_nodes.pop( astar.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(__SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : List[str] = self.fwd_astar.retrace_path(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[Any] = self.bwd_astar.retrace_path(__SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() __UpperCAmelCase : Optional[int] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case = time.time() _snake_case = AStar(init, goal) _snake_case = a_star.search() _snake_case = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') _snake_case = time.time() _snake_case = BidirectionalAStar(init, goal) _snake_case = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } _snake_case = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class _snake_case ( snake_case_ ): lowerCamelCase__: Dict = VOCAB_FILES_NAMES lowerCamelCase__: str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: str = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: int = RealmTokenizer def __init__( self: Any , __lowerCamelCase: Any=None , __lowerCamelCase: str=None , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple="[UNK]" , __lowerCamelCase: str="[SEP]" , __lowerCamelCase: Any="[PAD]" , __lowerCamelCase: Union[str, Any]="[CLS]" , __lowerCamelCase: str="[MASK]" , __lowerCamelCase: int=True , __lowerCamelCase: Dict=None , **__lowerCamelCase: List[str] , ) -> Optional[int]: super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): __UpperCAmelCase : Union[str, Any] = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) __UpperCAmelCase : Optional[Any] = do_lower_case __UpperCAmelCase : Union[str, Any] = strip_accents __UpperCAmelCase : str = tokenize_chinese_chars __UpperCAmelCase : Union[str, Any] = normalizer_class(**__lowerCamelCase ) __UpperCAmelCase : int = do_lower_case def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Dict ) -> Optional[Any]: __UpperCAmelCase : List[str] = PaddingStrategy.MAX_LENGTH __UpperCAmelCase : Tuple = text __UpperCAmelCase : Optional[int] = kwargs.pop("text_pair" , __lowerCamelCase ) __UpperCAmelCase : List[Any] = kwargs.pop("return_tensors" , __lowerCamelCase ) __UpperCAmelCase : List[str] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(__lowerCamelCase ): if batch_text_pair is not None: __UpperCAmelCase : List[str] = batch_text_pair[idx] else: __UpperCAmelCase : Dict = None __UpperCAmelCase : List[Any] = super().__call__(__lowerCamelCase , __lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = encoded_candidates.get("input_ids" ) __UpperCAmelCase : Tuple = encoded_candidates.get("attention_mask" ) __UpperCAmelCase : str = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowerCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowerCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowerCamelCase ) __UpperCAmelCase : List[str] = {key: item for key, item in output_data.items() if len(__lowerCamelCase ) != 0} return BatchEncoding(__lowerCamelCase , tensor_type=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Any=None ) -> int: __UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict = None ) -> List[int]: __UpperCAmelCase : Optional[int] = [self.sep_token_id] __UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self: int , __lowerCamelCase: Dict , __lowerCamelCase: Optional[int] = None ) -> Tuple[str]: __UpperCAmelCase : List[str] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _snake_case = get_tests_dir('''fixtures''') class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: __UpperCAmelCase : List[str] = mock.Mock() __UpperCAmelCase : List[str] = 5_00 __UpperCAmelCase : List[str] = {} __UpperCAmelCase : Dict = HTTPError __UpperCAmelCase : str = {} # Download this model to make sure it's in the cache. __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=_lowerCAmelCase ) as mock_head: __UpperCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" ) # This check we did call the fake head request mock_head.assert_called() def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : str = WavaVecaFeatureExtractor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" ) @is_staging_test class _snake_case ( unittest.TestCase ): @classmethod def _lowerCamelCase ( cls: Union[str, Any] ) -> Dict: __UpperCAmelCase : Optional[int] = TOKEN HfFolder.save_token(_lowerCAmelCase ) @classmethod def _lowerCamelCase ( cls: str ) -> Dict: try: delete_repo(token=cls._token , repo_id="test-feature-extractor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" ) except HTTPError: pass def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token ) __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id="test-feature-extractor" , push_to_hub=_lowerCAmelCase , use_auth_token=self._token ) __UpperCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(f'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token ) __UpperCAmelCase : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCAmelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=_lowerCAmelCase , use_auth_token=self._token ) __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCAmelCase , getattr(_lowerCAmelCase , _lowerCAmelCase ) ) def _lowerCamelCase ( self: Dict ) -> Any: CustomFeatureExtractor.register_for_auto_class() __UpperCAmelCase : Dict = CustomFeatureExtractor.from_pretrained(_lowerCAmelCase ) feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , ) __UpperCAmelCase : Tuple = AutoFeatureExtractor.from_pretrained( f'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowerCAmelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def _UpperCamelCase ( snake_case__ ) -> int: random.seed(_A ) np.random.seed(_A ) torch.manual_seed(_A ) torch.cuda.manual_seed_all(_A ) # ^^ safe to call this function even if cuda is not available class _snake_case : def __init__( self: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple = 0.99_99 , __lowerCamelCase: Any = 0.0 , __lowerCamelCase: List[str] = 0 , __lowerCamelCase: Tuple = False , __lowerCamelCase: Optional[Any] = 1.0 , __lowerCamelCase: Any = 2 / 3 , __lowerCamelCase: List[Any] = None , __lowerCamelCase: Tuple = None , **__lowerCamelCase: List[Any] , ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): __UpperCAmelCase : Tuple = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : Tuple = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __UpperCAmelCase : str = True if kwargs.get("max_value" , _SCREAMING_SNAKE_CASE ) is not None: __UpperCAmelCase : Dict = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = kwargs["max_value"] if kwargs.get("min_value" , _SCREAMING_SNAKE_CASE ) is not None: __UpperCAmelCase : str = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = kwargs["min_value"] __UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = [p.clone().detach() for p in parameters] if kwargs.get("device" , _SCREAMING_SNAKE_CASE ) is not None: __UpperCAmelCase : Any = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE ) self.to(device=kwargs["device"] ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : str = decay __UpperCAmelCase : Optional[Any] = min_decay __UpperCAmelCase : Union[str, Any] = update_after_step __UpperCAmelCase : str = use_ema_warmup __UpperCAmelCase : str = inv_gamma __UpperCAmelCase : str = power __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Any = None # set in `step()` __UpperCAmelCase : Any = model_cls __UpperCAmelCase : str = model_config @classmethod def _lowerCamelCase ( cls: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> "EMAModel": __UpperCAmelCase , __UpperCAmelCase : Dict = model_cls.load_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = model_cls.from_pretrained(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Any = cls(model.parameters() , model_cls=_SCREAMING_SNAKE_CASE , model_config=model.config ) ema_model.load_state_dict(_SCREAMING_SNAKE_CASE ) return ema_model def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: int ) -> List[Any]: if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) __UpperCAmelCase : Any = self.model_cls.from_config(self.model_config ) __UpperCAmelCase : str = self.state_dict() state_dict.pop("shadow_params" , _SCREAMING_SNAKE_CASE ) model.register_to_config(**_SCREAMING_SNAKE_CASE ) self.copy_to(model.parameters() ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[int] ) -> float: __UpperCAmelCase : Union[str, Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __UpperCAmelCase : Dict = 1 - (1 + step / self.inv_gamma) ** -self.power else: __UpperCAmelCase : Dict = (1 + step) / (10 + step) __UpperCAmelCase : Optional[Any] = min(_SCREAMING_SNAKE_CASE , self.decay ) # make sure decay is not smaller than min_decay __UpperCAmelCase : Optional[Any] = max(_SCREAMING_SNAKE_CASE , self.min_decay ) return cur_decay_value @torch.no_grad() def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any ) -> List[Any]: if isinstance(_SCREAMING_SNAKE_CASE , torch.nn.Module ): __UpperCAmelCase : str = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , _SCREAMING_SNAKE_CASE , standard_warn=_SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : Union[str, Any] = parameters.parameters() __UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __UpperCAmelCase : int = self.get_decay(self.optimization_step ) __UpperCAmelCase : Any = decay __UpperCAmelCase : Union[str, Any] = 1 - decay __UpperCAmelCase : Optional[Any] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __UpperCAmelCase : Dict = deepspeed.zero.GatheredParameters(_SCREAMING_SNAKE_CASE , modifier_rank=_SCREAMING_SNAKE_CASE ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[int] ) -> None: __UpperCAmelCase : str = list(_SCREAMING_SNAKE_CASE ) for s_param, param in zip(self.shadow_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(s_param.to(param.device ).data ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Union[str, Any]=None ) -> None: __UpperCAmelCase : List[Any] = [ p.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if p.is_floating_point() else p.to(device=_SCREAMING_SNAKE_CASE ) for p in self.shadow_params ] def _lowerCamelCase ( self: List[str] ) -> dict: return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Tuple ) -> None: __UpperCAmelCase : Optional[int] = [param.detach().cpu().clone() for param in parameters] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Dict ) -> None: if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , _SCREAMING_SNAKE_CASE ): param.data.copy_(c_param.data ) # Better memory-wise. __UpperCAmelCase : List[Any] = None def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int ) -> None: __UpperCAmelCase : Any = copy.deepcopy(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[str] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) __UpperCAmelCase : Tuple = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid min_decay" ) __UpperCAmelCase : List[Any] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid optimization_step" ) __UpperCAmelCase : Optional[int] = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid update_after_step" ) __UpperCAmelCase : Any = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , _SCREAMING_SNAKE_CASE ): raise ValueError("Invalid use_ema_warmup" ) __UpperCAmelCase : List[str] = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) __UpperCAmelCase : List[str] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) __UpperCAmelCase : List[str] = state_dict.get("shadow_params" , _SCREAMING_SNAKE_CASE ) if shadow_params is not None: __UpperCAmelCase : Dict = shadow_params if not isinstance(self.shadow_params , _SCREAMING_SNAKE_CASE ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import os from typing import Dict, List, Tuple, TypeVar, Union _snake_case = TypeVar('''T''') _snake_case = Union[List[T], Tuple[T, ...]] _snake_case = Union[T, List[T], Dict[str, T]] _snake_case = Union[str, bytes, os.PathLike]
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import unittest import numpy as np def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ = None, ) -> List[Any]: __UpperCAmelCase : Dict = np.shape(snake_case__ ) __UpperCAmelCase : Any = np.shape(snake_case__ ) __UpperCAmelCase : Optional[Any] = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: __UpperCAmelCase : Any = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: __UpperCAmelCase : str = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(snake_case__ ) __UpperCAmelCase : Tuple = pseudo_inv if a_inv is None: try: __UpperCAmelCase : Optional[Any] = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Any ) -> None: __UpperCAmelCase : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase : str = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase : Dict = np.array([[2, 1], [6, 3]] ) __UpperCAmelCase : Optional[Any] = schur_complement(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase : List[str] = np.block([[a, b], [b.T, c]] ) __UpperCAmelCase : Any = np.linalg.det(lowerCamelCase__ ) __UpperCAmelCase : Tuple = np.linalg.det(lowerCamelCase__ ) __UpperCAmelCase : str = np.linalg.det(lowerCamelCase__ ) self.assertAlmostEqual(lowerCamelCase__ , det_a * det_s ) def _lowerCamelCase ( self: Dict ) -> None: __UpperCAmelCase : List[str] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase : str = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase : Optional[Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(lowerCamelCase__ ): schur_complement(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _lowerCamelCase ( self: Union[str, Any] ) -> None: __UpperCAmelCase : int = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) __UpperCAmelCase : str = np.array([[0, 3], [3, 0], [2, 3]] ) __UpperCAmelCase : List[Any] = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(lowerCamelCase__ ): schur_complement(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
def _UpperCamelCase ( snake_case__ ) -> List[str]: for i in range(0, A__ ): for _ in range(0, n - i - 1 ): # printing spaces print(" ", end="" ) for _ in range(0, i + 1 ): # printing stars print("* ", end="" ) print() def _UpperCamelCase ( snake_case__ ) -> List[Any]: for i in range(A__, 0, -1 ): for _ in range(A__, 0, -1 ): # printing stars print("* ", end="" ) print() for _ in range(n - i + 1, 0, -1 ): # printing spaces print(" ", end="" ) def _UpperCamelCase ( snake_case__ ) -> str: if n <= 0: print(" ... .... nothing printing :(" ) return floyd(A__ ) # upper half reverse_floyd(A__ ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') _snake_case = 1 while K: _snake_case = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _snake_case = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] __UpperCAmelCase : List[Any] = (low + high) // 2 __UpperCAmelCase : Dict = max_subarray(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = max_subarray(_UpperCAmelCase, mid + 1, _UpperCAmelCase ) __UpperCAmelCase : int = max_cross_sum(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> tuple[int, int, float]: __UpperCAmelCase : Optional[int] = float("-inf" ), -1 __UpperCAmelCase : int = float("-inf" ), -1 __UpperCAmelCase : int | float = 0 for i in range(_UpperCAmelCase, low - 1, -1 ): summ += arr[i] if summ > left_sum: __UpperCAmelCase : Union[str, Any] = summ __UpperCAmelCase : List[Any] = i __UpperCAmelCase : Union[str, Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: __UpperCAmelCase : Any = summ __UpperCAmelCase : Tuple = i return max_left, max_right, (left_sum + right_sum) def _UpperCamelCase ( snake_case__ ) -> float: __UpperCAmelCase : Any = [randint(1, _UpperCAmelCase ) for _ in range(_UpperCAmelCase )] __UpperCAmelCase : str = time.time() max_subarray(_UpperCAmelCase, 0, input_size - 1 ) __UpperCAmelCase : Dict = time.time() return end - start def _UpperCamelCase ( ) -> None: __UpperCAmelCase : int = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] __UpperCAmelCase : int = [time_max_subarray(_UpperCAmelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(_UpperCAmelCase, _UpperCAmelCase ): print(_UpperCAmelCase, "\t\t", _UpperCAmelCase ) plt.plot(_UpperCAmelCase, _UpperCAmelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
import string from math import logaa def _UpperCamelCase ( snake_case__, snake_case__ ) -> int: __UpperCAmelCase : Optional[Any] = document.translate( str.maketrans("", "", string.punctuation ) ).replace("\n", "" ) __UpperCAmelCase : Any = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> tuple[int, int]: __UpperCAmelCase : int = corpus.lower().translate( str.maketrans("", "", string.punctuation ) ) # strip all punctuation and replace it with '' __UpperCAmelCase : List[str] = corpus_without_punctuation.split("\n" ) __UpperCAmelCase : Dict = term.lower() return (len([doc for doc in docs if term in doc] ), len(a__ )) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ), 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ), 3 ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: return round(tf * idf, 3 )
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _snake_case = { '''facebook/maskformer-swin-base-ade''': ( '''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json''' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _snake_case = logging.get_logger(__name__) class _snake_case ( __lowercase ): lowerCamelCase__: Any = '''maskformer''' lowerCamelCase__: List[Any] = {'''hidden_size''': '''mask_feature_size'''} lowerCamelCase__: List[Any] = ['''resnet''', '''swin'''] lowerCamelCase__: List[str] = ['''detr'''] def __init__( self: Optional[int] , __lowerCamelCase: int = 2_56 , __lowerCamelCase: int = 2_56 , __lowerCamelCase: float = 0.1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[Dict] = None , __lowerCamelCase: Optional[Dict] = None , __lowerCamelCase: float = 0.02 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: float = 1.0 , __lowerCamelCase: float = 20.0 , __lowerCamelCase: Optional[bool] = None , **__lowerCamelCase: Optional[Any] , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __UpperCAmelCase : List[Any] = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __UpperCAmelCase : str = backbone_config.pop("model_type" ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Optional[int] = config_class.from_dict(UpperCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __UpperCAmelCase : Any = DetrConfig() else: # verify that the decoder is supported __UpperCAmelCase : List[str] = ( decoder_config.pop("model_type" ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __UpperCAmelCase : Optional[int] = CONFIG_MAPPING[decoder_type] __UpperCAmelCase : Optional[int] = config_class.from_dict(UpperCAmelCase__ ) __UpperCAmelCase : List[Any] = backbone_config __UpperCAmelCase : Any = decoder_config # main feature dimension for the model __UpperCAmelCase : List[Any] = fpn_feature_size __UpperCAmelCase : Optional[int] = mask_feature_size # initializer __UpperCAmelCase : Union[str, Any] = init_std __UpperCAmelCase : List[str] = init_xavier_std # Hungarian matcher && loss __UpperCAmelCase : Tuple = cross_entropy_weight __UpperCAmelCase : int = dice_weight __UpperCAmelCase : Any = mask_weight __UpperCAmelCase : List[str] = use_auxiliary_loss __UpperCAmelCase : Optional[Any] = no_object_weight __UpperCAmelCase : Union[str, Any] = output_auxiliary_logits __UpperCAmelCase : Optional[int] = self.decoder_config.encoder_attention_heads __UpperCAmelCase : Any = self.decoder_config.num_hidden_layers super().__init__(**UpperCAmelCase__ ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: PretrainedConfig , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[str] ) -> Union[str, Any]: return cls( backbone_config=UpperCAmelCase__ , decoder_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def _lowerCamelCase ( self: Optional[int] ) -> Dict[str, any]: __UpperCAmelCase : Tuple = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[int] = self.backbone_config.to_dict() __UpperCAmelCase : Any = self.decoder_config.to_dict() __UpperCAmelCase : Optional[Any] = self.__class__.model_type return output
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _snake_case = { "sample_size": 32, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1000, "block_out_channels": [32, 64], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _snake_case = { "sample_size": 64, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1000, "block_out_channels": [192, 192 * 2, 192 * 3, 192 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } _snake_case = { "sample_size": 256, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], "attention_head_dim": 64, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } _snake_case = { "num_train_timesteps": 40, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } _snake_case = { "num_train_timesteps": 201, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } _snake_case = { "num_train_timesteps": 151, "sigma_min": 0.0_0_2, "sigma_max": 8_0.0, } def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: if isinstance(__lowerCAmelCase, __lowerCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Dict: __UpperCAmelCase : Dict = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] __UpperCAmelCase : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] __UpperCAmelCase : Tuple = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] __UpperCAmelCase : Tuple = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] __UpperCAmelCase : int = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] __UpperCAmelCase : str = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] __UpperCAmelCase : Optional[Any] = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] __UpperCAmelCase : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] __UpperCAmelCase : Dict = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] __UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: __UpperCAmelCase : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.weight'''] __UpperCAmelCase : Optional[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=None ) -> Optional[Any]: __UpperCAmelCase : str = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3, dim=0 ) __UpperCAmelCase : Dict = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3, dim=0 ) __UpperCAmelCase : Optional[Any] = checkpoint[f'''{old_prefix}.norm.weight'''] __UpperCAmelCase : str = checkpoint[f'''{old_prefix}.norm.bias'''] __UpperCAmelCase : Union[str, Any] = weight_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Tuple = weight_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : str = bias_k.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Optional[Any] = weight_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : Optional[int] = bias_v.squeeze(-1 ).squeeze(-1 ) __UpperCAmelCase : List[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) __UpperCAmelCase : Optional[int] = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = torch.load(__lowerCAmelCase, map_location="cpu" ) __UpperCAmelCase : Any = {} __UpperCAmelCase : List[str] = checkpoint["""time_embed.0.weight"""] __UpperCAmelCase : List[str] = checkpoint["""time_embed.0.bias"""] __UpperCAmelCase : Any = checkpoint["""time_embed.2.weight"""] __UpperCAmelCase : Dict = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: __UpperCAmelCase : List[str] = checkpoint["""label_emb.weight"""] __UpperCAmelCase : List[str] = checkpoint["""input_blocks.0.0.weight"""] __UpperCAmelCase : Dict = checkpoint["""input_blocks.0.0.bias"""] __UpperCAmelCase : int = unet_config["""down_block_types"""] __UpperCAmelCase : Dict = unet_config["""layers_per_block"""] __UpperCAmelCase : List[Any] = unet_config["""attention_head_dim"""] __UpperCAmelCase : Union[str, Any] = unet_config["""block_out_channels"""] __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : str = channels_list[0] for i, layer_type in enumerate(__lowerCAmelCase ): __UpperCAmelCase : Any = channels_list[i] __UpperCAmelCase : int = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowerCAmelCase ): __UpperCAmelCase : Tuple = f'''down_blocks.{i}.resnets.{j}''' __UpperCAmelCase : Tuple = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : Tuple = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : List[Any] = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, has_skip=__lowerCAmelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowerCAmelCase ): __UpperCAmelCase : Any = f'''down_blocks.{i}.resnets.{j}''' __UpperCAmelCase : List[Any] = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : Any = True if j == 0 and downsample_block_has_skip else False __UpperCAmelCase : Any = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, has_skip=__lowerCAmelCase ) __UpperCAmelCase : List[str] = f'''down_blocks.{i}.attentions.{j}''' __UpperCAmelCase : List[Any] = f'''input_blocks.{current_layer}.1''' __UpperCAmelCase : Optional[int] = convert_attention( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __UpperCAmelCase : Any = f'''down_blocks.{i}.downsamplers.0''' __UpperCAmelCase : Any = f'''input_blocks.{current_layer}.0''' __UpperCAmelCase : Union[str, Any] = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) current_layer += 1 __UpperCAmelCase : Any = current_channels # hardcoded the mid-block for now __UpperCAmelCase : int = """mid_block.resnets.0""" __UpperCAmelCase : int = """middle_block.0""" __UpperCAmelCase : Optional[int] = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) __UpperCAmelCase : Tuple = """mid_block.attentions.0""" __UpperCAmelCase : int = """middle_block.1""" __UpperCAmelCase : Optional[int] = convert_attention(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = """mid_block.resnets.1""" __UpperCAmelCase : Tuple = """middle_block.2""" __UpperCAmelCase : Optional[Any] = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = unet_config["""up_block_types"""] for i, layer_type in enumerate(__lowerCAmelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : List[Any] = f'''up_blocks.{i}.resnets.{j}''' __UpperCAmelCase : str = f'''output_blocks.{current_layer}.0''' __UpperCAmelCase : Tuple = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, has_skip=__lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __UpperCAmelCase : int = f'''up_blocks.{i}.upsamplers.0''' __UpperCAmelCase : Dict = f'''output_blocks.{current_layer-1}.1''' __UpperCAmelCase : Optional[Any] = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __UpperCAmelCase : List[Any] = f'''up_blocks.{i}.resnets.{j}''' __UpperCAmelCase : List[Any] = f'''output_blocks.{current_layer}.0''' __UpperCAmelCase : Any = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, has_skip=__lowerCAmelCase ) __UpperCAmelCase : Optional[int] = f'''up_blocks.{i}.attentions.{j}''' __UpperCAmelCase : int = f'''output_blocks.{current_layer}.1''' __UpperCAmelCase : Union[str, Any] = convert_attention( __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) current_layer += 1 if i != len(__lowerCAmelCase ) - 1: __UpperCAmelCase : Optional[int] = f'''up_blocks.{i}.upsamplers.0''' __UpperCAmelCase : Any = f'''output_blocks.{current_layer-1}.2''' __UpperCAmelCase : int = convert_resnet(__lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase, __lowerCAmelCase ) __UpperCAmelCase : int = checkpoint["""out.0.weight"""] __UpperCAmelCase : Union[str, Any] = checkpoint["""out.0.bias"""] __UpperCAmelCase : List[Any] = checkpoint["""out.2.weight"""] __UpperCAmelCase : Optional[int] = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _snake_case = parser.parse_args() _snake_case = strabool(args.class_cond) _snake_case = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _snake_case = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _snake_case = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _snake_case = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _snake_case = None _snake_case = con_pt_to_diffuser(args.unet_path, unet_config) _snake_case = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _snake_case = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _snake_case = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _snake_case = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _snake_case = CMStochasticIterativeScheduler(**scheduler_config) _snake_case = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" from ... import PretrainedConfig _snake_case = { 'sijunhe/nezha-cn-base': 'https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json', } class _snake_case ( _A ): lowerCamelCase__: List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowerCamelCase__: int = "nezha" def __init__( self: Any , __lowerCamelCase: Optional[int]=2_11_28 , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=12 , __lowerCamelCase: Dict=12 , __lowerCamelCase: List[str]=30_72 , __lowerCamelCase: Optional[int]="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: List[Any]=5_12 , __lowerCamelCase: Optional[Any]=64 , __lowerCamelCase: str=2 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Dict=1e-12 , __lowerCamelCase: Any=0.1 , __lowerCamelCase: Any=0 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: str=True , **__lowerCamelCase: Optional[Any] , ) -> int: super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : Any = hidden_act __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : str = max_relative_position __UpperCAmelCase : Union[str, Any] = type_vocab_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[str] = layer_norm_eps __UpperCAmelCase : Optional[Any] = classifier_dropout __UpperCAmelCase : Dict = use_cache
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _snake_case = True except ImportError: _snake_case = False _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase ( snake_case__ ) -> Tuple: return AddNewModelCommand(args.testing, args.testing_file, path=args.path ) class _snake_case ( __SCREAMING_SNAKE_CASE ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: ArgumentParser ) -> List[str]: __UpperCAmelCase : int = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=_SCREAMING_SNAKE_CASE , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=_SCREAMING_SNAKE_CASE , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self: List[Any] , __lowerCamelCase: bool , __lowerCamelCase: str , __lowerCamelCase: List[str]=None , *__lowerCamelCase: Dict ) -> List[str]: __UpperCAmelCase : int = testing __UpperCAmelCase : str = testing_file __UpperCAmelCase : Union[str, Any] = path def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __UpperCAmelCase : List[str] = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(_SCREAMING_SNAKE_CASE ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) __UpperCAmelCase : List[str] = ( Path(_SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) __UpperCAmelCase : Tuple = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(_SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , "r" ) as configuration_file: __UpperCAmelCase : List[Any] = json.load(_SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=_SCREAMING_SNAKE_CASE , extra_context=_SCREAMING_SNAKE_CASE , ) __UpperCAmelCase : str = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: __UpperCAmelCase : Union[str, Any] = json.load(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Optional[int] = configuration["lowercase_modelname"] __UpperCAmelCase : List[str] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f'''{directory}/configuration.json''' ) __UpperCAmelCase : Optional[Any] = "PyTorch" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : int = "TensorFlow" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : Optional[int] = "Flax" in generate_tensorflow_pytorch_and_flax __UpperCAmelCase : int = f'''{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}''' os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) os.makedirs(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}''' , exist_ok=_SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py''' , "w" ): pass shutil.move( f'''{directory}/__init__.py''' , f'''{model_dir}/__init__.py''' , ) shutil.move( f'''{directory}/configuration_{lowercase_model_name}.py''' , f'''{model_dir}/configuration_{lowercase_model_name}.py''' , ) def remove_copy_lines(__lowerCamelCase: str ): with open(_SCREAMING_SNAKE_CASE , "r" ) as f: __UpperCAmelCase : Dict = f.readlines() with open(_SCREAMING_SNAKE_CASE , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(_SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f'''{directory}/modeling_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_{lowercase_model_name}.py''' ) if output_tensorflow: if not self._testing: remove_copy_lines(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_tf_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_tf_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_tf_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_tf_{lowercase_model_name}.py''' ) if output_flax: if not self._testing: remove_copy_lines(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/modeling_flax_{lowercase_model_name}.py''' , f'''{model_dir}/modeling_flax_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' , f'''{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py''' , ) else: os.remove(f'''{directory}/modeling_flax_{lowercase_model_name}.py''' ) os.remove(f'''{directory}/test_modeling_flax_{lowercase_model_name}.py''' ) shutil.move( f'''{directory}/{lowercase_model_name}.md''' , f'''{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md''' , ) shutil.move( f'''{directory}/tokenization_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}.py''' , ) shutil.move( f'''{directory}/tokenization_fast_{lowercase_model_name}.py''' , f'''{model_dir}/tokenization_{lowercase_model_name}_fast.py''' , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: List[str] ): # Create temp file __UpperCAmelCase : Optional[int] = mkstemp() __UpperCAmelCase : Dict = False with fdopen(_SCREAMING_SNAKE_CASE , "w" ) as new_file: with open(_SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(_SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: __UpperCAmelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(_SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f'''Line {line_to_copy_below} was not found in file.''' ) # Copy the file permissions from the old file to the new file copymode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Remove original file remove(_SCREAMING_SNAKE_CASE ) # Move new file move(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def skip_units(__lowerCamelCase: List[str] ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__lowerCamelCase: List[str] ): with open(_SCREAMING_SNAKE_CASE ) as datafile: __UpperCAmelCase : int = [] __UpperCAmelCase : List[str] = False __UpperCAmelCase : str = False for line in datafile: if "# To replace in: " in line and "##" not in line: __UpperCAmelCase : Optional[int] = line.split("\"" )[1] __UpperCAmelCase : Tuple = skip_units(_SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: __UpperCAmelCase : List[str] = line.split("\"" )[1] __UpperCAmelCase : str = skip_units(_SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Union[str, Any] = [] elif "# Replace with" in line and "##" not in line: __UpperCAmelCase : List[Any] = [] elif "##" not in line: lines_to_copy.append(_SCREAMING_SNAKE_CASE ) remove(_SCREAMING_SNAKE_CASE ) replace_in_files(f'''{directory}/to_replace_{lowercase_model_name}.py''' ) os.rmdir(_SCREAMING_SNAKE_CASE )
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _snake_case = 250004 _snake_case = 250020 @require_sentencepiece @require_tokenizers class _snake_case ( __snake_case , unittest.TestCase ): lowerCamelCase__: Optional[Any] = MBartaaTokenizer lowerCamelCase__: str = MBartaaTokenizerFast lowerCamelCase__: Tuple = True lowerCamelCase__: List[str] = True def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Union[str, Any] = MBartaaTokenizer(lowerCamelCase_ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : Tuple = """<s>""" __UpperCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def _lowerCamelCase ( self: Dict ) -> Tuple: __UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : Any = MBartaaTokenizer(lowerCamelCase_ , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=lowerCamelCase_ ) __UpperCAmelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __UpperCAmelCase : Tuple = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) __UpperCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: # fmt: off __UpperCAmelCase : Dict = {"""input_ids""": [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def _lowerCamelCase ( self: Dict ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __UpperCAmelCase : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : Any = tokenizer_r.save_pretrained(lowerCamelCase_ ) __UpperCAmelCase : Any = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) __UpperCAmelCase : Any = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way __UpperCAmelCase : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) __UpperCAmelCase : Optional[Any] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase : Union[str, Any] = tempfile.mkdtemp() __UpperCAmelCase : int = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) __UpperCAmelCase : str = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way __UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(lowerCamelCase_ ) __UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) __UpperCAmelCase : Tuple = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) __UpperCAmelCase : Union[str, Any] = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): lowerCamelCase__: List[Any] = "facebook/mbart-large-50-one-to-many-mmt" lowerCamelCase__: Tuple = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCamelCase__: int = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCamelCase__: Optional[int] = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def _lowerCamelCase ( cls: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) __UpperCAmelCase : str = 1 return cls def _lowerCamelCase ( self: Optional[Any] ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 25_00_38 ) def _lowerCamelCase ( self: Any ) -> str: __UpperCAmelCase : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def _lowerCamelCase ( self: Optional[int] ) -> int: self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) __UpperCAmelCase : List[str] = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __UpperCAmelCase : Tuple = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) __UpperCAmelCase : int = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def _lowerCamelCase ( self: str ) -> Optional[Any]: __UpperCAmelCase : Optional[int] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) __UpperCAmelCase : Optional[Any] = 10 __UpperCAmelCase : Optional[int] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_00_53, 25_00_01] ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : List[str] = tempfile.mkdtemp() __UpperCAmelCase : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) __UpperCAmelCase : Any = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: __UpperCAmelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors="pt" ) __UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) __UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __UpperCAmelCase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _lowerCamelCase ( self: int ) -> str: __UpperCAmelCase : str = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors="pt" ) __UpperCAmelCase : List[str] = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors="pt" ) __UpperCAmelCase : Optional[int] = targets["""input_ids"""] __UpperCAmelCase : str = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCamelCase ( self: List[str] ) -> Any: __UpperCAmelCase : Tuple = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS "input_ids": [[25_00_04, 62, 30_34, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_00_01, } , )
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _snake_case = logging.get_logger(__name__) class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = ["""input_features""", """is_longer"""] def __init__( self: Tuple , __lowerCamelCase: List[Any]=64 , __lowerCamelCase: Any=4_80_00 , __lowerCamelCase: Optional[Any]=4_80 , __lowerCamelCase: List[str]=10 , __lowerCamelCase: Union[str, Any]=10_24 , __lowerCamelCase: int=0.0 , __lowerCamelCase: int=False , __lowerCamelCase: Optional[int] = 0 , __lowerCamelCase: Dict = 1_40_00 , __lowerCamelCase: Union[str, Any] = None , __lowerCamelCase: Dict = "fusion" , __lowerCamelCase: Optional[Any] = "repeatpad" , **__lowerCamelCase: List[Any] , ) -> Optional[int]: super().__init__( feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , return_attention_mask=_lowercase , **_lowercase , ) __UpperCAmelCase : Tuple = top_db __UpperCAmelCase : Tuple = truncation __UpperCAmelCase : Any = padding __UpperCAmelCase : Tuple = fft_window_size __UpperCAmelCase : List[str] = (fft_window_size >> 1) + 1 __UpperCAmelCase : Any = hop_length __UpperCAmelCase : List[str] = max_length_s __UpperCAmelCase : Union[str, Any] = max_length_s * sampling_rate __UpperCAmelCase : Optional[int] = sampling_rate __UpperCAmelCase : Optional[int] = frequency_min __UpperCAmelCase : List[str] = frequency_max __UpperCAmelCase : int = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm=_lowercase , mel_scale="htk" , ) __UpperCAmelCase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_lowercase , min_frequency=_lowercase , max_frequency=_lowercase , sampling_rate=_lowercase , norm="slaney" , mel_scale="slaney" , ) def _lowerCamelCase ( self: Dict ) -> Dict[str, Any]: __UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple = None ) -> np.ndarray: __UpperCAmelCase : str = spectrogram( _lowercase , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_lowercase , log_mel="dB" , ) return log_mel_spectrogram.T def _lowerCamelCase ( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : str = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : Dict = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __UpperCAmelCase : int = [0] # randomly choose index for each part __UpperCAmelCase : List[str] = np.random.choice(ranges[0] ) __UpperCAmelCase : Union[str, Any] = np.random.choice(ranges[1] ) __UpperCAmelCase : Any = np.random.choice(ranges[2] ) __UpperCAmelCase : Optional[Any] = mel[idx_front : idx_front + chunk_frames, :] __UpperCAmelCase : Optional[int] = mel[idx_middle : idx_middle + chunk_frames, :] __UpperCAmelCase : Dict = mel[idx_back : idx_back + chunk_frames, :] __UpperCAmelCase : List[str] = torch.tensor(mel[None, None, :] ) __UpperCAmelCase : Dict = torch.nn.functional.interpolate( _lowercase , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_lowercase ) __UpperCAmelCase : str = mel_shrink[0][0].numpy() __UpperCAmelCase : Any = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": __UpperCAmelCase : Any = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __UpperCAmelCase : str = len(_lowercase ) - max_length __UpperCAmelCase : Any = np.random.randint(0 , overflow + 1 ) __UpperCAmelCase : Union[str, Any] = waveform[idx : idx + max_length] __UpperCAmelCase : Dict = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __UpperCAmelCase : Union[str, Any] = self._np_extract_fbank_features(_lowercase , self.mel_filters ) __UpperCAmelCase : int = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __UpperCAmelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __UpperCAmelCase : Tuple = np.stack([mel, mel, mel, mel] , axis=0 ) __UpperCAmelCase : Any = False else: __UpperCAmelCase : Optional[Any] = self._random_mel_fusion(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase : Dict = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: __UpperCAmelCase : int = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __UpperCAmelCase : Union[str, Any] = int(max_length / len(_lowercase ) ) __UpperCAmelCase : Tuple = np.stack(np.tile(_lowercase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __UpperCAmelCase : str = int(max_length / len(_lowercase ) ) __UpperCAmelCase : Tuple = np.stack(np.tile(_lowercase , _lowercase ) ) __UpperCAmelCase : Tuple = np.pad(_lowercase , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": __UpperCAmelCase : str = self._np_extract_fbank_features(_lowercase , self.mel_filters ) __UpperCAmelCase : Optional[int] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __UpperCAmelCase : Optional[int] = self._np_extract_fbank_features(_lowercase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self: Dict , __lowerCamelCase: Dict , __lowerCamelCase: Tuple = None , __lowerCamelCase: int = None , __lowerCamelCase: str = None , __lowerCamelCase: int = None , __lowerCamelCase: List[str] = None , **__lowerCamelCase: Any , ) -> BatchFeature: __UpperCAmelCase : List[str] = truncation if truncation is not None else self.truncation __UpperCAmelCase : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __UpperCAmelCase : Optional[Any] = isinstance(_lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __UpperCAmelCase : List[Any] = is_batched_numpy or ( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __UpperCAmelCase : Tuple = [np.asarray(_lowercase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowercase , np.ndarray ): __UpperCAmelCase : str = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __UpperCAmelCase : int = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __UpperCAmelCase : Any = [np.asarray(_lowercase )] # convert to mel spectrogram, truncate and pad if needed. __UpperCAmelCase : int = [ self._get_input_mel(_lowercase , max_length if max_length else self.nb_max_samples , _lowercase , _lowercase ) for waveform in raw_speech ] __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(_lowercase ) is_longer.append(_lowercase ) if truncation == "fusion" and sum(_lowercase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __UpperCAmelCase : Optional[Any] = np.random.randint(0 , len(_lowercase ) ) __UpperCAmelCase : Union[str, Any] = True if isinstance(input_mel[0] , _lowercase ): __UpperCAmelCase : str = [np.asarray(_lowercase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __UpperCAmelCase : List[Any] = [[longer] for longer in is_longer] __UpperCAmelCase : List[Any] = {"input_features": input_mel, "is_longer": is_longer} __UpperCAmelCase : List[str] = BatchFeature(_lowercase ) if return_tensors is not None: __UpperCAmelCase : Union[str, Any] = input_features.convert_to_tensors(_lowercase ) return input_features
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None ) -> int: assert torch_layer.weight.shape == weight.shape, f'''{torch_layer} layer.weight does not match''' __UpperCAmelCase : Dict = nn.Parameter(SCREAMING_SNAKE_CASE__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f'''{torch_layer} layer.bias does not match''' __UpperCAmelCase : Dict = nn.Parameter(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: __UpperCAmelCase : List[str] = np.asarray(weights[0] ) __UpperCAmelCase : str = np.asarray(weights[1] ) __UpperCAmelCase : int = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).contiguous().view(-1, SCREAMING_SNAKE_CASE__ ), ) set_param( torch_layer.self_attention.value, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).contiguous().view(-1, SCREAMING_SNAKE_CASE__ ), ) set_param( torch_layer.output.dense, torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1, SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0, 1 ), ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : str = np.asarray(weights[0] ) __UpperCAmelCase : Optional[Any] = np.asarray(weights[1] ) __UpperCAmelCase : Dict = np.asarray(weights[2] ) __UpperCAmelCase : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).contiguous().view(-1, SCREAMING_SNAKE_CASE__ ), ) set_param( torch_layer.self_attention.key, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).contiguous().view(-1, SCREAMING_SNAKE_CASE__ ), ) set_param( torch_layer.self_attention.value, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).contiguous().view(-1, SCREAMING_SNAKE_CASE__ ), ) set_param( torch_layer.output.dense, torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1, SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0, 1 ), ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : List[str] = weights[0][0][0] __UpperCAmelCase : Tuple = np.asarray(layer_norm_a[0] ) __UpperCAmelCase : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(SCREAMING_SNAKE_CASE__ ), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) # lsh weights + output __UpperCAmelCase : Dict = weights[0][1] if len(SCREAMING_SNAKE_CASE__ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE__, torch_block.attention, SCREAMING_SNAKE_CASE__ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE__, torch_block.attention, SCREAMING_SNAKE_CASE__ ) # intermediate weighs __UpperCAmelCase : Any = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE__ ) == 4: __UpperCAmelCase : Tuple = intermediate_weights[2] # layernorm 2 __UpperCAmelCase : int = np.asarray(intermediate_weights[0][0] ) __UpperCAmelCase : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(SCREAMING_SNAKE_CASE__ ), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) # intermediate dense __UpperCAmelCase : str = np.asarray(intermediate_weights[1][0] ) __UpperCAmelCase : Union[str, Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0, 1 ).contiguous(), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) # intermediate out __UpperCAmelCase : List[str] = np.asarray(intermediate_weights[4][0] ) __UpperCAmelCase : Dict = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0, 1 ).contiguous(), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Tuple = torch_model.reformer # word embeds __UpperCAmelCase : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(SCREAMING_SNAKE_CASE__ ), ) if isinstance(weights[3], SCREAMING_SNAKE_CASE__ ): __UpperCAmelCase : Dict = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): __UpperCAmelCase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f'''{position_embeddings[emb_idx]} emb does not match''' __UpperCAmelCase : Optional[int] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) __UpperCAmelCase : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): __UpperCAmelCase : List[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # output layer norm __UpperCAmelCase : Tuple = np.asarray(weights[7][0] ) __UpperCAmelCase : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(SCREAMING_SNAKE_CASE__ ), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) # output embeddings __UpperCAmelCase : Tuple = np.asarray(weights[9][0] ) __UpperCAmelCase : Optional[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0, 1 ).contiguous(), torch.tensor(SCREAMING_SNAKE_CASE__ ), ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : List[Any] = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'''Building PyTorch model from configuration: {config}''' ) __UpperCAmelCase : Optional[int] = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__, "rb" ) as f: __UpperCAmelCase : Optional[int] = pickle.load(SCREAMING_SNAKE_CASE__ )["weights"] set_model_weights_in_torch(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, config.hidden_size ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
from sklearn.metrics import fa_score import datasets _snake_case = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' _snake_case = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' _snake_case = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: int ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: str="binary" , __lowerCamelCase: Tuple=None ) -> Union[str, Any]: __UpperCAmelCase : Any = fa_score( __lowerCamelCase , __lowerCamelCase , labels=__lowerCamelCase , pos_label=__lowerCamelCase , average=__lowerCamelCase , sample_weight=__lowerCamelCase ) return {"f1": float(__lowerCamelCase ) if score.size == 1 else score}
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import socket def _UpperCamelCase ( ) -> Tuple: __UpperCAmelCase : Optional[int] = socket.socket(socket.AF_INET, socket.SOCK_STREAM ) __UpperCAmelCase : Union[str, Any] = socket.gethostname() __UpperCAmelCase : Tuple = 1_2312 sock.connect((host, port) ) sock.send(B"Hello server!" ) with open("Received_file", "wb" ) as out_file: print("File opened" ) print("Receiving data..." ) while True: __UpperCAmelCase : int = sock.recv(1024 ) if not data: break out_file.write(_lowerCamelCase ) print("Successfully received the file" ) sock.close() print("Connection closed" ) if __name__ == "__main__": main()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _UpperCamelCase ( snake_case__ ) -> Optional[int]: monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings", set() ) @pytest.fixture def _UpperCamelCase ( snake_case__ ) -> Any: class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Dict ) -> str: __UpperCAmelCase : Optional[int] = metric_id class _snake_case : lowerCamelCase__: int = [MetricMock(_lowercase ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def _lowerCamelCase ( self: List[str] ) -> List[str]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub", HfhMock() ) @pytest.mark.parametrize( "func, args", [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Dict: if "tmp_path" in args: __UpperCAmelCase : str = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(snake_case__, match="https://huggingface.co/docs/evaluate" ): func(*snake_case__ )
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
from jiwer import compute_measures import datasets _snake_case = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" _snake_case = "\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n" _snake_case = "\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: Any ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int=None , __lowerCamelCase: str=None , __lowerCamelCase: List[str]=False ) -> Optional[Any]: if concatenate_texts: return compute_measures(__lowerCamelCase , __lowerCamelCase )["wer"] else: __UpperCAmelCase : Any = 0 __UpperCAmelCase : List[str] = 0 for prediction, reference in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = compute_measures(__lowerCamelCase , __lowerCamelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
def _UpperCamelCase ( snake_case__=2_8123 ) -> Tuple: __UpperCAmelCase : Tuple = [1] * (limit + 1) for i in range(2, int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1, limit // i + 1 ): sum_divs[k * i] += k + i __UpperCAmelCase : Union[str, Any] = set() __UpperCAmelCase : Dict = 0 for n in range(1, limit + 1 ): if sum_divs[n] > n: abundants.add(_SCREAMING_SNAKE_CASE ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int=7 , __lowerCamelCase: Any=3 , __lowerCamelCase: Optional[int]=18 , __lowerCamelCase: Optional[int]=30 , __lowerCamelCase: Optional[Any]=4_00 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Any=[0.5, 0.5, 0.5] , __lowerCamelCase: Optional[Any]=[0.5, 0.5, 0.5] , __lowerCamelCase: Union[str, Any]=False , ) -> int: __UpperCAmelCase : str = size if size is not None else {'''height''': 20, '''width''': 20} __UpperCAmelCase : List[str] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __UpperCAmelCase : Tuple = parent __UpperCAmelCase : Tuple = batch_size __UpperCAmelCase : Union[str, Any] = num_channels __UpperCAmelCase : str = image_size __UpperCAmelCase : List[str] = min_resolution __UpperCAmelCase : str = max_resolution __UpperCAmelCase : Any = do_resize __UpperCAmelCase : List[str] = size __UpperCAmelCase : Tuple = do_center_crop __UpperCAmelCase : List[str] = crop_size __UpperCAmelCase : Dict = do_normalize __UpperCAmelCase : Optional[int] = image_mean __UpperCAmelCase : Tuple = image_std __UpperCAmelCase : Tuple = do_reduce_labels def _lowerCamelCase ( self: int ) -> str: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : int = load_dataset("hf-internal-testing/fixtures_ade20k", split="test" ) __UpperCAmelCase : Union[str, Any] = Image.open(dataset[0]["file"] ) __UpperCAmelCase : List[Any] = Image.open(dataset[1]["file"] ) return image, map def _UpperCamelCase ( ) -> Optional[int]: __UpperCAmelCase : Dict = load_dataset("hf-internal-testing/fixtures_ade20k", split="test" ) __UpperCAmelCase : Tuple = Image.open(ds[0]["file"] ) __UpperCAmelCase : List[Any] = Image.open(ds[1]["file"] ) __UpperCAmelCase : Dict = Image.open(ds[2]["file"] ) __UpperCAmelCase : List[str] = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: Optional[Any] = BeitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase : Tuple = BeitImageProcessingTester(self ) @property def _lowerCamelCase ( self: Any ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "size" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "center_crop" ) ) self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) ) def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) __UpperCAmelCase : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCamelCase ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: pass def _lowerCamelCase ( self: Optional[int] ) -> List[str]: # Initialize image_processing __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , Image.Image ) # Test not batched input __UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self: List[str] ) -> Dict: # Initialize image_processing __UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , np.ndarray ) # Test not batched input __UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : List[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self: str ) -> Optional[Any]: # Initialize image_processing __UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) # Test not batched input __UpperCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __UpperCAmelCase : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def _lowerCamelCase ( self: int ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = [] for image in image_inputs: self.assertIsInstance(__lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __UpperCAmelCase : Any = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched __UpperCAmelCase : List[str] = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test not batched input (PIL images) __UpperCAmelCase : Any = prepare_semantic_single_inputs() __UpperCAmelCase : int = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) # Test batched input (PIL images) __UpperCAmelCase : int = prepare_semantic_batch_inputs() __UpperCAmelCase : str = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __UpperCAmelCase : str = prepare_semantic_single_inputs() __UpperCAmelCase : List[str] = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 1_50 ) __UpperCAmelCase : Tuple = True __UpperCAmelCase : List[str] = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 2_55 )
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home _snake_case = HUGGINGFACE_HUB_CACHE _snake_case = 'config.json' _snake_case = 'diffusion_pytorch_model.bin' _snake_case = 'diffusion_flax_model.msgpack' _snake_case = 'model.onnx' _snake_case = 'diffusion_pytorch_model.safetensors' _snake_case = 'weights.pb' _snake_case = 'https://huggingface.co' _snake_case = default_cache_path _snake_case = 'diffusers_modules' _snake_case = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) _snake_case = ['fp16', 'non-ema'] _snake_case = '.self_attn'
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _snake_case = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex _snake_case = 10 _snake_case = 256 def _UpperCamelCase ( snake_case__ ) -> Optional[MinHash]: if len(_lowerCAmelCase ) < MIN_NUM_TOKENS: return None __UpperCAmelCase : List[str] = MinHash(num_perm=_lowerCAmelCase ) for token in set(_lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def _UpperCamelCase ( snake_case__ ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCAmelCase ) if len(t.strip() ) > 0} class _snake_case : def __init__( self: Dict , *, __lowerCamelCase: float = 0.85 , ) -> Optional[int]: __UpperCAmelCase : List[Any] = duplication_jaccard_threshold __UpperCAmelCase : Any = NUM_PERM __UpperCAmelCase : str = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) __UpperCAmelCase : Any = defaultdict(__lowerCamelCase ) def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple , __lowerCamelCase: MinHash ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = self._index.query(__lowerCamelCase ) if code_key in self._index.keys: print(f'''Duplicate key {code_key}''' ) return self._index.insert(__lowerCamelCase , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowerCamelCase ) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCAmelCase : List[Any] = [base] + list(__lowerCamelCase ) # reformat the cluster to be a list of dict __UpperCAmelCase : int = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster] duplicate_clusters.append(__lowerCamelCase ) return duplicate_clusters def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> str: __UpperCAmelCase : List[Any] = self.get_duplicate_clusters() with open(__lowerCamelCase , "w" ) as f: json.dump(__lowerCamelCase , __lowerCamelCase ) def _UpperCamelCase ( snake_case__ ) -> Optional[int]: __UpperCAmelCase : Dict = element __UpperCAmelCase : Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash, ThreadedIterator(_lowerCAmelCase, max_queue_size=1_0000 ), chunksize=100, ): if data is not None: yield data def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]: __UpperCAmelCase : Any = DuplicationIndex(duplication_jaccard_threshold=_lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCAmelCase ) ), max_queue_size=100 ) ): di.add(_lowerCAmelCase, _lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _UpperCamelCase ( snake_case__, snake_case__ ) -> float: __UpperCAmelCase : str = get_tokens(_lowerCAmelCase ) __UpperCAmelCase : int = get_tokens(_lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _snake_case = None def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[Any]: __UpperCAmelCase : List[str] = [] for elementa in cluster: __UpperCAmelCase : Optional[Any] = _shared_dataset[elementa["base_index"]]["content"] for elementa in extremes: __UpperCAmelCase : List[Any] = _shared_dataset[elementa["base_index"]]["content"] if jaccard_similarity(_lowerCAmelCase, _lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCAmelCase : Tuple = 1 extremes.append(_lowerCAmelCase ) return extremes def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]: global _shared_dataset __UpperCAmelCase : Dict = dataset __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Union[str, Any] = partial(_find_cluster_extremes_shared, jaccard_threshold=_lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCAmelCase, _lowerCAmelCase, ), total=len(_lowerCAmelCase ), ): extremes_list.append(_lowerCAmelCase ) return extremes_list def _UpperCamelCase ( snake_case__, snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: __UpperCAmelCase : Union[str, Any] = make_duplicate_clusters(_lowerCAmelCase, _lowerCAmelCase ) __UpperCAmelCase : Tuple = {x["base_index"] for cluster in duplicate_clusters for x in cluster} __UpperCAmelCase : str = {} __UpperCAmelCase : str = find_extremes(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: __UpperCAmelCase : Dict = element __UpperCAmelCase : Any = duplicate_indices - set(extreme_dict.keys() ) __UpperCAmelCase : Tuple = dataset.filter(lambda snake_case__, snake_case__ : idx not in remove_indices, with_indices=_lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCAmelCase : str = element["base_index"] in extreme_dict if element["is_extreme"]: __UpperCAmelCase : Dict = extreme_dict[element["base_index"]]["copies"] print(f'''Original dataset size: {len(_lowerCAmelCase )}''' ) print(f'''Number of duplicate clusters: {len(_lowerCAmelCase )}''' ) print(f'''Files in duplicate cluster: {len(_lowerCAmelCase )}''' ) print(f'''Unique files in duplicate cluster: {len(_lowerCAmelCase )}''' ) print(f'''Filtered dataset size: {len(_lowerCAmelCase )}''' ) return ds_filter, duplicate_clusters
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "efficientnet" def __init__( self: List[Any] , __lowerCamelCase: List[Any] = 3 , __lowerCamelCase: Any = 6_00 , __lowerCamelCase: Optional[Any] = 2.0 , __lowerCamelCase: Union[str, Any] = 3.1 , __lowerCamelCase: str = 8 , __lowerCamelCase: List[Any] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase: int = [32, 16, 24, 40, 80, 1_12, 1_92] , __lowerCamelCase: Tuple = [16, 24, 40, 80, 1_12, 1_92, 3_20] , __lowerCamelCase: str = [] , __lowerCamelCase: Union[str, Any] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase: Optional[Any] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase: Optional[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase: List[str] = 0.25 , __lowerCamelCase: Optional[Any] = "swish" , __lowerCamelCase: str = 25_60 , __lowerCamelCase: Optional[Any] = "mean" , __lowerCamelCase: str = 0.02 , __lowerCamelCase: Union[str, Any] = 0.0_01 , __lowerCamelCase: Dict = 0.99 , __lowerCamelCase: List[str] = 0.5 , __lowerCamelCase: List[str] = 0.2 , **__lowerCamelCase: Any , ) -> List[str]: super().__init__(**lowerCamelCase_ ) __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Tuple = image_size __UpperCAmelCase : Any = width_coefficient __UpperCAmelCase : str = depth_coefficient __UpperCAmelCase : int = depth_divisor __UpperCAmelCase : Tuple = kernel_sizes __UpperCAmelCase : List[Any] = in_channels __UpperCAmelCase : int = out_channels __UpperCAmelCase : Dict = depthwise_padding __UpperCAmelCase : str = strides __UpperCAmelCase : Dict = num_block_repeats __UpperCAmelCase : Optional[Any] = expand_ratios __UpperCAmelCase : List[Any] = squeeze_expansion_ratio __UpperCAmelCase : str = hidden_act __UpperCAmelCase : Dict = hidden_dim __UpperCAmelCase : Optional[int] = pooling_type __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Any = batch_norm_eps __UpperCAmelCase : Any = batch_norm_momentum __UpperCAmelCase : str = dropout_rate __UpperCAmelCase : str = drop_connect_rate __UpperCAmelCase : Optional[int] = sum(lowerCamelCase_ ) * 4 class _snake_case ( _lowercase ): lowerCamelCase__: Dict = version.parse("1.11" ) @property def _lowerCamelCase ( self: Dict ) -> Dict: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self: List[Any] ) -> List[str]: return 1e-5
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _snake_case : def __init__( self: Dict , __lowerCamelCase: Any , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Any=True , __lowerCamelCase: int=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Dict=True , __lowerCamelCase: Optional[Any]=99 , __lowerCamelCase: Union[str, Any]=64 , __lowerCamelCase: Dict=32 , __lowerCamelCase: Optional[int]=5 , __lowerCamelCase: Any=4 , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: Tuple=16 , __lowerCamelCase: int=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Union[str, Any]=4 , __lowerCamelCase: Any=None , ) -> Tuple: __UpperCAmelCase : Dict = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : Optional[Any] = is_training __UpperCAmelCase : Optional[Any] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : str = use_labels __UpperCAmelCase : Optional[int] = vocab_size __UpperCAmelCase : int = hidden_size __UpperCAmelCase : Any = embedding_size __UpperCAmelCase : str = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Any = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : str = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : List[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : Tuple = scope def _lowerCamelCase ( self: Tuple ) -> List[str]: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_input_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Dict = None if self.use_token_type_ids: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Any = None __UpperCAmelCase : str = None __UpperCAmelCase : Any = None if self.use_labels: __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Dict ) -> int: __UpperCAmelCase : str = MegatronBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : Dict = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCAmelCase : List[Any] = model(lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCAmelCase : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> List[str]: __UpperCAmelCase : Dict = MegatronBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : List[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase : str = MegatronBertForCausalLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : List[Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[str] ) -> Optional[Any]: __UpperCAmelCase : int = MegatronBertForNextSentencePrediction(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : str = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> int: __UpperCAmelCase : Optional[Any] = MegatronBertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : str = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , next_sentence_label=lowerCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[Any] = MegatronBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : List[Any] = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Tuple , __lowerCamelCase: str ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Any = MegatronBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Tuple , __lowerCamelCase: Optional[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = self.num_labels __UpperCAmelCase : Optional[Any] = MegatronBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : Union[str, Any] = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: List[Any] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = self.num_choices __UpperCAmelCase : Union[str, Any] = MegatronBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : int = model( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: __UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Optional[int] = config_and_inputs __UpperCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _snake_case ( A__ , A__ , unittest.TestCase ): lowerCamelCase__: List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCamelCase__: Dict = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__: Any = True # test_resize_embeddings = False lowerCamelCase__: List[Any] = False def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False ) -> Union[str, Any]: __UpperCAmelCase : Dict = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __UpperCAmelCase : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCamelCase__ ) __UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase__ ) return inputs_dict def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Union[str, Any] = MegatronBertModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> Any: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*lowerCamelCase__ ) def _lowerCamelCase ( self: Optional[Any] ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*lowerCamelCase__ ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*lowerCamelCase__ ) def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*lowerCamelCase__ ) def _lowerCamelCase ( self: Any ) -> Dict: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*lowerCamelCase__ ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*lowerCamelCase__ ) def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*lowerCamelCase__ ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*lowerCamelCase__ ) def _UpperCamelCase ( snake_case__ ) -> List[str]: return torch.tensor( lowercase_, dtype=torch.long, device=lowercase_, ) _snake_case = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow @unittest.skip("Model is not available." ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: __UpperCAmelCase : Dict = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: __UpperCAmelCase : List[Any] = os.path.join(os.environ["MYDIR"] , lowerCamelCase__ ) __UpperCAmelCase : List[str] = MegatronBertModel.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.half() __UpperCAmelCase : Dict = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] ) with torch.no_grad(): __UpperCAmelCase : Tuple = model(lowerCamelCase__ )[0] __UpperCAmelCase : int = torch.Size((1, 9, 10_24) ) self.assertEqual(output.shape , lowerCamelCase__ ) __UpperCAmelCase : Tuple = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3 ): for jj in range(3 ): __UpperCAmelCase : Optional[int] = output[0, ii, jj] __UpperCAmelCase : Union[str, Any] = expected[3 * ii + jj] __UpperCAmelCase : List[str] = "ii={} jj={} a={} b={}".format(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertTrue(math.isclose(lowerCamelCase__ , lowerCamelCase__ , rel_tol=lowerCamelCase__ , abs_tol=lowerCamelCase__ ) , msg=lowerCamelCase__ )
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _UpperCamelCase ( snake_case__ ) -> Any: config.addinivalue_line( "markers", "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers", "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers", "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers", "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers", "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers", "tool_tests: mark the tool tests that are run on their specific schedule" ) def _UpperCamelCase ( snake_case__ ) -> List[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A_ ) def _UpperCamelCase ( snake_case__ ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main __UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(A_, id=A_ ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __UpperCAmelCase : List[Any] = 0 # Doctest custom flag to ignore output. _snake_case = doctest.register_optionflag('''IGNORE_RESULT''') _snake_case = doctest.OutputChecker class _snake_case ( a_ ): def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: str ) -> Tuple: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase_ , lowercase_ , lowercase_ ) _snake_case = CustomOutputChecker _snake_case = HfDoctestModule _snake_case = HfDocTestParser
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case : def __init__( self: Optional[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int]=13 , __lowerCamelCase: int=30 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: List[str]=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Dict=10 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: Any=0.6 , __lowerCamelCase: Tuple=None , ) -> str: __UpperCAmelCase : List[str] = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : str = image_size __UpperCAmelCase : List[str] = patch_size __UpperCAmelCase : Dict = num_channels __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : int = use_labels __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Optional[int] = mask_ratio __UpperCAmelCase : List[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 __UpperCAmelCase : Tuple = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowerCamelCase ( self: Any ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Optional[int] ) -> Any: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowerCamelCase ( self: int , __lowerCamelCase: Dict , __lowerCamelCase: Dict , __lowerCamelCase: List[str] ) -> str: __UpperCAmelCase : Any = ViTMAEModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase : Union[str, Any] = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple ) -> int: __UpperCAmelCase : int = ViTMAEForPreTraining(__A ) model.to(__A ) model.eval() __UpperCAmelCase : Dict = model(__A ) __UpperCAmelCase : List[str] = (self.image_size // self.patch_size) ** 2 __UpperCAmelCase : List[str] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Any = ViTMAEForPreTraining(__A ) model.to(__A ) model.eval() __UpperCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Union[str, Any] = model(__A ) __UpperCAmelCase : Optional[int] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowerCamelCase ( self: Tuple ) -> List[str]: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowerCamelCase__: Optional[Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowerCamelCase__: List[Any] = False lowerCamelCase__: Any = False lowerCamelCase__: Dict = False lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Any = ViTMAEModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: pass def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(__A ) __UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[int] = [*signature.parameters.keys()] __UpperCAmelCase : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowerCamelCase ( self: Union[str, Any] ) -> Any: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> List[Any]: # make masks reproducible np.random.seed(2 ) __UpperCAmelCase : Union[str, Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCAmelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCAmelCase : Tuple = torch.from_numpy(__A ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCAmelCase : Optional[int] = pt_noise super().check_pt_tf_models(__A , __A , __A ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(__A ) model.to(__A ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(__A , __A ) ) __UpperCAmelCase : Optional[int] = outputs[0].cpu().numpy() __UpperCAmelCase : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__A ) __UpperCAmelCase : Dict = model_class.from_pretrained(__A ) model.to(__A ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__A , __A ) ) # Make sure we don't have nans __UpperCAmelCase : int = after_outputs[0].cpu().numpy() __UpperCAmelCase : Union[str, Any] = 0 __UpperCAmelCase : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__A , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def _lowerCamelCase ( self: Dict ) -> Optional[Any]: pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def _lowerCamelCase ( self: Optional[Any] ) -> List[Any]: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self: Optional[Any] ) -> int: pass @slow def _lowerCamelCase ( self: Tuple ) -> List[Any]: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = ViTMAEModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCAmelCase : Any = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__A ) __UpperCAmelCase : List[Any] = self.default_image_processor __UpperCAmelCase : str = prepare_img() __UpperCAmelCase : List[str] = image_processor(images=__A , return_tensors="pt" ).to(__A ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCAmelCase : Optional[int] = ViTMAEConfig() __UpperCAmelCase : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCAmelCase : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCAmelCase : Tuple = model(**__A , noise=torch.from_numpy(__A ).to(device=__A ) ) # verify the logits __UpperCAmelCase : Optional[int] = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCAmelCase : Dict = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__A ) , atol=1e-4 ) )
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
from __future__ import annotations _snake_case = list[tuple[int, int]] _snake_case = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _snake_case : def __init__( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Dict , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , ) -> int: __UpperCAmelCase : Optional[Any] = pos_x __UpperCAmelCase : Tuple = pos_y __UpperCAmelCase : Optional[int] = (pos_y, pos_x) __UpperCAmelCase : Tuple = goal_x __UpperCAmelCase : Tuple = goal_y __UpperCAmelCase : Tuple = g_cost __UpperCAmelCase : Any = parent __UpperCAmelCase : int = self.calculate_heuristic() def _lowerCamelCase ( self: Tuple ) -> float: __UpperCAmelCase : Any = abs(self.pos_x - self.goal_x ) __UpperCAmelCase : Optional[Any] = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self: Tuple , __lowerCamelCase: Optional[Any] ) -> bool: return self.f_cost < other.f_cost class _snake_case : def __init__( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: int ) -> Optional[int]: __UpperCAmelCase : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , _SCREAMING_SNAKE_CASE ) __UpperCAmelCase : int = [self.start] __UpperCAmelCase : list[Node] = [] __UpperCAmelCase : Tuple = False def _lowerCamelCase ( self: List[str] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __UpperCAmelCase : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __UpperCAmelCase : Any = True return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List[Any] = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __UpperCAmelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int ) -> list[Node]: __UpperCAmelCase : int = [] for action in delta: __UpperCAmelCase : Optional[int] = parent.pos_x + action[1] __UpperCAmelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] ) -> Path: __UpperCAmelCase : Dict = node __UpperCAmelCase : str = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __UpperCAmelCase : str = current_node.parent path.reverse() return path if __name__ == "__main__": _snake_case = (0, 0) _snake_case = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') _snake_case = GreedyBestFirst(init, goal) _snake_case = greedy_bf.search() if path: for pos_x, pos_y in path: _snake_case = 2 for elem in grid: print(elem)
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
from __future__ import annotations from collections import namedtuple def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]: __UpperCAmelCase : Optional[int] = namedtuple("result", "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage", power / current ) elif current == 0: return result("current", power / voltage ) elif power == 0: return result("power", float(round(abs(voltage * current ), 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class _snake_case ( lowerCamelCase__ ): lowerCamelCase__: str = """rwkv""" lowerCamelCase__: str = {"""max_position_embeddings""": """context_length"""} def __init__( self: Union[str, Any] , __lowerCamelCase: Tuple=5_02_77 , __lowerCamelCase: int=10_24 , __lowerCamelCase: Dict=40_96 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Dict=1e-5 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: List[str]=6 , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Dict=True , **__lowerCamelCase: Optional[int] , ) -> List[str]: __UpperCAmelCase : int = vocab_size __UpperCAmelCase : List[str] = context_length __UpperCAmelCase : Any = hidden_size __UpperCAmelCase : Tuple = num_hidden_layers __UpperCAmelCase : str = attention_hidden_size if attention_hidden_size is not None else hidden_size __UpperCAmelCase : List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size __UpperCAmelCase : Optional[int] = layer_norm_epsilon __UpperCAmelCase : int = rescale_every __UpperCAmelCase : Any = use_cache __UpperCAmelCase : List[str] = bos_token_id __UpperCAmelCase : Any = eos_token_id super().__init__( tie_word_embeddings=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" _snake_case = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
def _UpperCamelCase ( snake_case__, snake_case__ = False ) -> str: if not isinstance(snake_case__, snake_case__ ): __UpperCAmelCase : str = f'''Expected string as input, found {type(snake_case__ )}''' raise ValueError(snake_case__ ) if not isinstance(snake_case__, snake_case__ ): __UpperCAmelCase : List[str] = f'''Expected boolean as use_pascal parameter, found {type(snake_case__ )}''' raise ValueError(snake_case__ ) __UpperCAmelCase : Union[str, Any] = input_str.split("_" ) __UpperCAmelCase : Dict = 0 if use_pascal else 1 __UpperCAmelCase : List[str] = words[start_index:] __UpperCAmelCase : int = [word[0].upper() + word[1:] for word in words_to_capitalize] __UpperCAmelCase : int = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _snake_case ( __lowerCAmelCase ): lowerCamelCase__: List[str] = '''sew-d''' def __init__( self: List[Any] , __lowerCamelCase: List[str]=32 , __lowerCamelCase: List[str]=7_68 , __lowerCamelCase: int=12 , __lowerCamelCase: List[str]=12 , __lowerCamelCase: List[Any]=30_72 , __lowerCamelCase: Any=2 , __lowerCamelCase: int=5_12 , __lowerCamelCase: int=2_56 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=True , __lowerCamelCase: Optional[int]=("p2c", "c2p") , __lowerCamelCase: Optional[Any]="layer_norm" , __lowerCamelCase: Dict="gelu_python" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: List[str]=0.02 , __lowerCamelCase: str=1e-7 , __lowerCamelCase: List[Any]=1e-5 , __lowerCamelCase: Any="group" , __lowerCamelCase: str="gelu" , __lowerCamelCase: int=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , __lowerCamelCase: List[str]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase: Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Any=1_28 , __lowerCamelCase: Tuple=16 , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[int]=0.05 , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Optional[Any]=10 , __lowerCamelCase: str=0 , __lowerCamelCase: Optional[int]="mean" , __lowerCamelCase: str=False , __lowerCamelCase: Optional[int]=False , __lowerCamelCase: List[str]=2_56 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Any=2 , **__lowerCamelCase: Optional[Any] , ) -> List[Any]: super().__init__(**lowerCAmelCase_ , pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Optional[int] = feat_extract_norm __UpperCAmelCase : Tuple = feat_extract_activation __UpperCAmelCase : str = list(lowerCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = list(lowerCAmelCase_ ) __UpperCAmelCase : List[Any] = list(lowerCAmelCase_ ) __UpperCAmelCase : Dict = conv_bias __UpperCAmelCase : Tuple = num_conv_pos_embeddings __UpperCAmelCase : Dict = num_conv_pos_embedding_groups __UpperCAmelCase : Optional[Any] = len(self.conv_dim ) __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : int = intermediate_size __UpperCAmelCase : List[str] = squeeze_factor __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Optional[Any] = position_buckets __UpperCAmelCase : Union[str, Any] = share_att_key __UpperCAmelCase : int = relative_attention __UpperCAmelCase : Union[str, Any] = norm_rel_ebd __UpperCAmelCase : Dict = list(lowerCAmelCase_ ) __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Union[str, Any] = hidden_dropout __UpperCAmelCase : List[str] = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : int = feat_proj_dropout __UpperCAmelCase : List[str] = final_dropout __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Tuple = feature_layer_norm_eps __UpperCAmelCase : str = initializer_range __UpperCAmelCase : List[str] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCAmelCase : List[Any] = apply_spec_augment __UpperCAmelCase : Optional[Any] = mask_time_prob __UpperCAmelCase : Union[str, Any] = mask_time_length __UpperCAmelCase : Union[str, Any] = mask_time_min_masks __UpperCAmelCase : str = mask_feature_prob __UpperCAmelCase : Dict = mask_feature_length __UpperCAmelCase : Tuple = mask_feature_min_masks # ctc loss __UpperCAmelCase : List[str] = ctc_loss_reduction __UpperCAmelCase : str = ctc_zero_infinity # sequence classification __UpperCAmelCase : Tuple = use_weighted_layer_sum __UpperCAmelCase : List[Any] = classifier_proj_size @property def _lowerCamelCase ( self: str ) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1 )
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import collections import os import re from pathlib import Path _snake_case = 'src/transformers' # Matches is_xxx_available() _snake_case = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} _snake_case = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _snake_case = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available _snake_case = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") _snake_case = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _snake_case = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", _snake_case = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], _snake_case = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo _snake_case = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: _snake_case = re.compile(r'''^\s*try:''') # Catches a line with else: _snake_case = re.compile(r'''^\s*else:''') def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: if _re_test_backend.search(lowerCAmelCase__ ) is None: return None __UpperCAmelCase : Any = [b[0] for b in _re_backend.findall(lowerCAmelCase__ )] backends.sort() return "_and_".join(lowerCAmelCase__ ) def _UpperCamelCase ( snake_case__ ) -> Any: with open(lowerCAmelCase__, "r", encoding="utf-8", newline="\n" ) as f: __UpperCAmelCase : Optional[int] = f.readlines() __UpperCAmelCase : int = 0 while line_index < len(lowerCAmelCase__ ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowerCAmelCase__ ): return None # First grab the objects without a specific backend in _import_structure __UpperCAmelCase : Optional[int] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __UpperCAmelCase : List[Any] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowerCAmelCase__ ): __UpperCAmelCase : Optional[int] = _re_one_line_import_struct.search(lowerCAmelCase__ ).groups()[0] __UpperCAmelCase : Union[str, Any] = re.findall(r"\[([^\]]+)\]", lowerCAmelCase__ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __UpperCAmelCase : int = _re_import_struct_key_value.search(lowerCAmelCase__ ) if single_line_import_search is not None: __UpperCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __UpperCAmelCase : Any = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __UpperCAmelCase : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Tuple = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : Dict = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __UpperCAmelCase : int = lines[line_index] if _re_import_struct_add_one.search(lowerCAmelCase__ ) is not None: objects.append(_re_import_struct_add_one.search(lowerCAmelCase__ ).groups()[0] ) elif _re_import_struct_add_many.search(lowerCAmelCase__ ) is not None: __UpperCAmelCase : Optional[Any] = _re_import_struct_add_many.search(lowerCAmelCase__ ).groups()[0].split(", " ) __UpperCAmelCase : int = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_between_brackets.search(lowerCAmelCase__ ) is not None: __UpperCAmelCase : Optional[Any] = _re_between_brackets.search(lowerCAmelCase__ ).groups()[0].split(", " ) __UpperCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(lowerCAmelCase__ ) > 0] objects.extend(lowerCAmelCase__ ) elif _re_quote_object.search(lowerCAmelCase__ ) is not None: objects.append(_re_quote_object.search(lowerCAmelCase__ ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __UpperCAmelCase : List[Any] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __UpperCAmelCase : Optional[Any] = [] while ( line_index < len(lowerCAmelCase__ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __UpperCAmelCase : int = lines[line_index] __UpperCAmelCase : Any = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __UpperCAmelCase : str = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowerCAmelCase__ ): # If the line is an if is_backend_available, we grab all objects associated. __UpperCAmelCase : Tuple = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __UpperCAmelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __UpperCAmelCase : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __UpperCAmelCase : int = lines[line_index] __UpperCAmelCase : Tuple = _re_import.search(lowerCAmelCase__ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __UpperCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: def find_duplicates(snake_case__ ): return [k for k, v in collections.Counter(lowerCAmelCase__ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __UpperCAmelCase : str = [] for key in import_dict_objects.keys(): __UpperCAmelCase : Any = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __UpperCAmelCase : Optional[Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __UpperCAmelCase : Union[str, Any] = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __UpperCAmelCase : List[Any] = os.path.join(lowerCAmelCase__, "__init__.py" ) __UpperCAmelCase : Any = parse_init(lowerCAmelCase__ ) if objects is not None: __UpperCAmelCase : Union[str, Any] = analyze_results(*lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : int = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("\n".join(lowerCAmelCase__ ) ) if len(lowerCAmelCase__ ) > 0: raise ValueError("\n\n".join(lowerCAmelCase__ ) ) def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Union[str, Any] = [] for path, directories, files in os.walk(lowerCAmelCase__ ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(lowerCAmelCase__ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowerCAmelCase__ ) / folder).glob("*.py" ) ) ) == 0: continue __UpperCAmelCase : Any = str((Path(lowerCAmelCase__ ) / folder).relative_to(lowerCAmelCase__ ) ) __UpperCAmelCase : Union[str, Any] = short_path.replace(os.path.sep, "." ) submodules.append(lowerCAmelCase__ ) for fname in files: if fname == "__init__.py": continue __UpperCAmelCase : Optional[Any] = str((Path(lowerCAmelCase__ ) / fname).relative_to(lowerCAmelCase__ ) ) __UpperCAmelCase : Dict = short_path.replace(".py", "" ).replace(os.path.sep, "." ) if len(submodule.split("." ) ) == 1: submodules.append(lowerCAmelCase__ ) return submodules _snake_case = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def _UpperCamelCase ( ) -> List[str]: from transformers.utils import direct_transformers_import __UpperCAmelCase : Union[str, Any] = direct_transformers_import(lowerCAmelCase__ ) __UpperCAmelCase : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowerCAmelCase__, "__init__.py" ), "r" ) as f: __UpperCAmelCase : Optional[Any] = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]", lowerCAmelCase__ ) ) ) __UpperCAmelCase : List[str] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowerCAmelCase__ ) > 0: __UpperCAmelCase : str = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f'''{list_of_modules}\n''' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _snake_case = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _snake_case ( __SCREAMING_SNAKE_CASE ): def __init__( self: Optional[Any] , *__lowerCamelCase: Any , **__lowerCamelCase: str ) -> Optional[int]: super().__init__(*UpperCamelCase__ , **UpperCamelCase__ ) self.check_model_type(UpperCamelCase__ ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any]=None , __lowerCamelCase: int=None , __lowerCamelCase: Optional[Any]=None , **__lowerCamelCase: int ) -> Dict: __UpperCAmelCase : Any = {}, {} if padding is not None: __UpperCAmelCase : str = padding if truncation is not None: __UpperCAmelCase : Optional[int] = truncation if top_k is not None: __UpperCAmelCase : Any = top_k return preprocess_params, {}, postprocess_params def __call__( self: Union[str, Any] , __lowerCamelCase: Union["Image.Image", str] , __lowerCamelCase: str = None , **__lowerCamelCase: Dict ) -> Tuple: if isinstance(UpperCamelCase__ , (Image.Image, str) ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ): __UpperCAmelCase : Any = {'''image''': image, '''question''': question} else: __UpperCAmelCase : Tuple = image __UpperCAmelCase : Union[str, Any] = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) return results def _lowerCamelCase ( self: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: List[Any]=False ) -> List[str]: __UpperCAmelCase : Optional[int] = load_image(inputs["image"] ) __UpperCAmelCase : Tuple = self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=UpperCamelCase__ , truncation=UpperCamelCase__ ) __UpperCAmelCase : Tuple = self.image_processor(images=UpperCamelCase__ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase__ ) return model_inputs def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] ) -> Tuple: __UpperCAmelCase : Any = self.model(**UpperCamelCase__ ) return model_outputs def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int]=5 ) -> Any: if top_k > self.model.config.num_labels: __UpperCAmelCase : List[str] = self.model.config.num_labels if self.framework == "pt": __UpperCAmelCase : Optional[Any] = model_outputs.logits.sigmoid()[0] __UpperCAmelCase : Union[str, Any] = probs.topk(UpperCamelCase__ ) else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) __UpperCAmelCase : List[Any] = scores.tolist() __UpperCAmelCase : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Any=30 , __lowerCamelCase: Any=2 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Tuple=True , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Any=32 , __lowerCamelCase: int=5 , __lowerCamelCase: Dict=4 , __lowerCamelCase: List[Any]=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: str=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: int=10 , __lowerCamelCase: str=0.02 , ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Any = image_size __UpperCAmelCase : str = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Any = is_training __UpperCAmelCase : int = use_labels __UpperCAmelCase : str = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Optional[int] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : List[Any] = (image_size // patch_size) ** 2 __UpperCAmelCase : Any = num_patches + 1 def _lowerCamelCase ( self: List[str] ) -> Optional[int]: __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Any = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, pixel_values def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = FlaxViTModel(config=__lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __UpperCAmelCase : Tuple = (self.image_size, self.image_size) __UpperCAmelCase : Optional[Any] = (self.patch_size, self.patch_size) __UpperCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] ) -> Dict: __UpperCAmelCase : Union[str, Any] = self.type_sequence_label_size __UpperCAmelCase : List[Any] = FlaxViTForImageClassification(config=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : int = FlaxViTForImageClassification(__lowerCamelCase ) __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : str = model(__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( __UpperCAmelCase ) : Dict = config_and_inputs __UpperCAmelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class _snake_case ( _a , unittest.TestCase ): lowerCamelCase__: Any = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def _lowerCamelCase ( self: List[Any] ) -> None: __UpperCAmelCase : int = FlaxViTModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: str ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : str = [*signature.parameters.keys()] __UpperCAmelCase : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> Optional[Any]: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCAmelCase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : str = model_class(__lowerCamelCase ) @jax.jit def model_jitted(__lowerCamelCase: List[Any] , **__lowerCamelCase: int ): return model(pixel_values=__lowerCamelCase , **__lowerCamelCase ) with self.subTest("JIT Enabled" ): __UpperCAmelCase : Optional[int] = model_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __UpperCAmelCase : Optional[Any] = model_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Any = model_class_name.from_pretrained("google/vit-base-patch16-224" ) __UpperCAmelCase : Union[str, Any] = model(np.ones((1, 3, 2_24, 2_24) ) ) self.assertIsNotNone(__lowerCamelCase )
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Any=2 , __lowerCamelCase: Dict=3 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: List[str]=[32, 64, 1_28] , __lowerCamelCase: str=[1, 2, 1] , __lowerCamelCase: Optional[Any]=[2, 2, 4] , __lowerCamelCase: Tuple=2 , __lowerCamelCase: List[Any]=2.0 , __lowerCamelCase: Tuple=True , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.0 , __lowerCamelCase: str=0.1 , __lowerCamelCase: str="gelu" , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Tuple=True , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: Optional[Any]=1e-5 , __lowerCamelCase: str=True , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: int=True , __lowerCamelCase: List[str]=10 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=["stage1", "stage2"] , __lowerCamelCase: Union[str, Any]=[1, 2] , ) -> Union[str, Any]: __UpperCAmelCase : str = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Tuple = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : Dict = embed_dim __UpperCAmelCase : int = hidden_sizes __UpperCAmelCase : Union[str, Any] = depths __UpperCAmelCase : List[Any] = num_heads __UpperCAmelCase : Optional[Any] = window_size __UpperCAmelCase : Optional[int] = mlp_ratio __UpperCAmelCase : Union[str, Any] = qkv_bias __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Any = drop_path_rate __UpperCAmelCase : int = hidden_act __UpperCAmelCase : int = use_absolute_embeddings __UpperCAmelCase : List[str] = patch_norm __UpperCAmelCase : Any = layer_norm_eps __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Optional[int] = scope __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = type_sequence_label_size __UpperCAmelCase : Tuple = encoder_stride __UpperCAmelCase : Tuple = out_features __UpperCAmelCase : List[Any] = out_indices def _lowerCamelCase ( self: Tuple ) -> str: __UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: int ) -> Dict: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : str = FocalNetModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase__ ) __UpperCAmelCase : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[Any] = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[Any] = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : Tuple = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Any , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ) -> int: __UpperCAmelCase : Optional[int] = FocalNetForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : int = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase : Union[str, Any] = 1 __UpperCAmelCase : str = FocalNetForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] ) -> Any: __UpperCAmelCase : Dict = self.type_sequence_label_size __UpperCAmelCase : Optional[Any] = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase : List[Any] = 1 __UpperCAmelCase : Optional[Any] = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __UpperCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase : Dict = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : Dict = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( __a , __a , unittest.TestCase ): lowerCamelCase__: Any = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": FocalNetModel, "image-classification": FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: Union[str, Any] = False lowerCamelCase__: int = False lowerCamelCase__: str = False lowerCamelCase__: Dict = False def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : Tuple = FocalNetModelTester(self ) __UpperCAmelCase : Dict = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 , has_text_modality=UpperCamelCase__ ) def _lowerCamelCase ( self: Tuple ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: str ) -> int: return def _lowerCamelCase ( self: Any ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def _lowerCamelCase ( self: Dict ) -> Optional[Any]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def _lowerCamelCase ( self: Dict ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : str = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowerCamelCase ( self: str ) -> Tuple: __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Union[str, Any] = model_class(UpperCamelCase__ ) __UpperCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] ) -> Dict: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCAmelCase : List[Any] = outputs.hidden_states __UpperCAmelCase : List[str] = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # FocalNet has a different seq_length __UpperCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __UpperCAmelCase : str = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = reshaped_hidden_states[0].shape __UpperCAmelCase : Any = ( reshaped_hidden_states[0].view(UpperCamelCase__ , UpperCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self: Dict ) -> int: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Tuple = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[int] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[str] = 3 __UpperCAmelCase : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase : Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase : Any = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase : List[Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __UpperCAmelCase : Union[str, Any] = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) @slow def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : int = FocalNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _lowerCamelCase ( self: int ) -> Any: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: __UpperCAmelCase : Dict = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: str ) -> Dict: return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> str: __UpperCAmelCase : Any = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCamelCase__ ) __UpperCAmelCase : int = self.default_image_processor __UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) __UpperCAmelCase : List[str] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Optional[int] = model(**UpperCamelCase__ ) # verify the logits __UpperCAmelCase : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) __UpperCAmelCase : Any = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class _snake_case ( __a , unittest.TestCase ): lowerCamelCase__: List[str] = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase__: Optional[Any] = FocalNetConfig lowerCamelCase__: Tuple = False def _lowerCamelCase ( self: Optional[int] ) -> Dict: __UpperCAmelCase : List[Any] = FocalNetModelTester(self )
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _snake_case = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('''dataclasses''') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('''importlib_metadata''') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def _UpperCamelCase ( snake_case__, snake_case__=None ) -> List[Any]: require_version(deps[pkg], snake_case_ )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = 10**-10 ) -> Dict: __UpperCAmelCase : List[str] = a while True: __UpperCAmelCase : Union[str, Any] = Decimal(a__ ) - ( Decimal(eval(a__ ) ) / Decimal(eval(str(diff(a__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(a__ ) ) < precision: # noqa: S307 return float(a__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
371
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: __UpperCAmelCase : int = [144, 192, 240] __UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: __UpperCAmelCase : Optional[Any] = [96, 120, 144] __UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: __UpperCAmelCase : str = [64, 80, 96] __UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320] __UpperCAmelCase : Tuple = 0.05 __UpperCAmelCase : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : str = 512 __UpperCAmelCase : Any = 16 __UpperCAmelCase : str = 21 __UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json" else: __UpperCAmelCase : Optional[Any] = 1000 __UpperCAmelCase : int = "imagenet-1k-id2label.json" __UpperCAmelCase : Dict = "huggingface/label-files" __UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : int = idalabel __UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple: for i in range(1, 6 ): if f'''layer_{i}.''' in name: __UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' ) if "conv_1." in name: __UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." ) if ".block." in name: __UpperCAmelCase : Optional[int] = name.replace(".block.", "." ) if "exp_1x1" in name: __UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" ) if "red_1x1" in name: __UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" ) if ".local_rep.conv_3x3." in name: __UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." ) if ".local_rep.conv_1x1." in name: __UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." ) if ".norm." in name: __UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." ) if ".conv." in name: __UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." ) if ".conv_proj." in name: __UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." ) for i in range(0, 2 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' ) for i in range(2, 6 ): for j in range(0, 4 ): if f'''.{i}.{j}.''' in name: __UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' ) if "expand_1x1" in name: __UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: __UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: __UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" ) for i in range(2, 5 ): if f'''.global_rep.{i}.weight''' in name: __UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" ) if f'''.global_rep.{i}.bias''' in name: __UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" ) if ".global_rep." in name: __UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." ) if ".pre_norm_mha.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: __UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: __UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." ) if ".pre_norm_ffn.1." in name: __UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: __UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." ) if ".transformer." in name: __UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." ) if ".aspp_layer." in name: __UpperCAmelCase : Any = name.replace(".aspp_layer.", "." ) if ".aspp_pool." in name: __UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." ) if "seg_head." in name: __UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: __UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." ) if "classifier.fc." in name: __UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." ) elif (not base_model) and ("segmentation_head." not in name): __UpperCAmelCase : List[str] = "mobilevit." + name return name def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]: if base_model: __UpperCAmelCase : Optional[int] = "" else: __UpperCAmelCase : Tuple = "mobilevit." for key in orig_state_dict.copy().keys(): __UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ ) if key[:8] == "encoder.": __UpperCAmelCase : str = key[8:] if "qkv" in key: __UpperCAmelCase : Tuple = key.split("." ) __UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1 __UpperCAmelCase : Optional[Any] = int(key_split[3] ) __UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' ) __UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size __UpperCAmelCase : Optional[Any] = ( f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.''' ) if "weight" in key: __UpperCAmelCase : Any = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : List[Any] = val[-dim:, :] else: __UpperCAmelCase : List[str] = val[:dim] __UpperCAmelCase : Optional[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : str = val return orig_state_dict def _UpperCamelCase ( ) -> Any: __UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" __UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]: __UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ ) # load original state_dict __UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): __UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval() else: __UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval() __UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor __UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 ) __UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" ) __UpperCAmelCase : Dict = model(**snake_case__ ) __UpperCAmelCase : Tuple = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": __UpperCAmelCase : int = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": __UpperCAmelCase : Any = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": __UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": __UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": __UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' ) assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: __UpperCAmelCase : List[str] = { "mobilevit_s": "mobilevit-small", "mobilevit_xs": "mobilevit-x-small", "mobilevit_xxs": "mobilevit-xx-small", "deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small", "deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small", "deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small", } print("Pushing to the hub..." ) __UpperCAmelCase : int = model_mapping[mobilevit_name] image_processor.push_to_hub(snake_case__, organization="apple" ) model.push_to_hub(snake_case__, organization="apple" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
342
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _UpperCamelCase ( snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = k_size // 2 __UpperCAmelCase : Any = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __UpperCAmelCase : Optional[Any] = 1 / (2 * pi * sigma) * exp(-(square(__a ) + square(__a )) / (2 * square(__a )) ) return g def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = image.shape[0], image.shape[1] # dst image height and width __UpperCAmelCase : int = height - k_size + 1 __UpperCAmelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __UpperCAmelCase : Optional[Any] = zeros((dst_height * dst_width, k_size * k_size) ) __UpperCAmelCase : Tuple = 0 for i, j in product(range(__a ), range(__a ) ): __UpperCAmelCase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) __UpperCAmelCase : str = window row += 1 # turn the kernel into shape(k*k, 1) __UpperCAmelCase : List[Any] = gen_gaussian_kernel(__a, __a ) __UpperCAmelCase : str = ravel(__a ) # reshape and get the dst image __UpperCAmelCase : Optional[int] = dot(__a, __a ).reshape(__a, __a ).astype(__a ) return dst if __name__ == "__main__": # read original image _snake_case = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _snake_case = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _snake_case = gaussian_filter(gray, 3, sigma=1) _snake_case = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
350
import math _snake_case = 10 _snake_case = 7 _snake_case = BALLS_PER_COLOUR * NUM_COLOURS def _UpperCamelCase ( snake_case__ = 20 ) -> str: __UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ ) __UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ ) __UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
342
0
import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) _snake_case = logging.getLogger() def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple: __UpperCAmelCase : int = """\n""".join(A__ ) Path(A__ ).open("w" ).writelines(A__ ) _snake_case = "patrickvonplaten/t5-tiny-random" _snake_case = "sshleifer/bart-tiny-random" _snake_case = "sshleifer/tiny-mbart" _snake_case = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class _snake_case ( _SCREAMING_SNAKE_CASE ): def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str ) -> Any: __UpperCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __UpperCAmelCase : str = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __UpperCAmelCase : List[str] = [""" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."""] _dump_articles(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" ) __UpperCAmelCase : Union[str, Any] = """translation_en_to_de""" if model == T5_TINY else """summarization""" __UpperCAmelCase : Any = f'''\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '''.split() with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ): run_generate() assert Path(__lowerCamelCase ).exists() # os.remove(Path(output_file_name)) def _lowerCamelCase ( self: Optional[int] ) -> List[str]: self.run_eval_tester(__lowerCamelCase ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def _lowerCamelCase ( self: str , __lowerCamelCase: str ) -> Optional[int]: self.run_eval_tester(__lowerCamelCase ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Tuple ) -> Optional[Any]: __UpperCAmelCase : Tuple = Path(self.get_auto_remove_tmp_dir() ) / """utest_input.source""" __UpperCAmelCase : List[Any] = input_file_name.parent / """utest_output.txt""" assert not output_file_name.exists() __UpperCAmelCase : Union[str, Any] = { """en""": ["""Machine learning is great, isn't it?""", """I like to eat bananas""", """Tomorrow is another great day!"""], """de""": [ """Maschinelles Lernen ist großartig, oder?""", """Ich esse gerne Bananen""", """Morgen ist wieder ein toller Tag!""", ], } __UpperCAmelCase : Dict = Path(self.get_auto_remove_tmp_dir() ) __UpperCAmelCase : Any = str(tmp_dir / "scores.json" ) __UpperCAmelCase : List[Any] = str(tmp_dir / "val.target" ) _dump_articles(__lowerCamelCase , text["en"] ) _dump_articles(__lowerCamelCase , text["de"] ) __UpperCAmelCase : str = """translation_en_to_de""" if model == T5_TINY else """summarization""" __UpperCAmelCase : int = f'''\n run_eval_search.py\n {model}\n {str(__lowerCamelCase )}\n {str(__lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '''.split() testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] ) with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ): with CaptureStdout() as cs: run_search() __UpperCAmelCase : Optional[int] = [""" num_beams | length_penalty""", model, """Best score args"""] __UpperCAmelCase : Tuple = ["""Info"""] if "translation" in task: expected_strings.append("bleu" ) else: expected_strings.extend(__lowerCamelCase ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(__lowerCamelCase ).exists() os.remove(Path(__lowerCamelCase ) )
351
def _UpperCamelCase ( snake_case__ ) -> int: __UpperCAmelCase : int = [0] * len(snake_case__ ) __UpperCAmelCase : Union[str, Any] = [] __UpperCAmelCase : str = [1] * len(snake_case__ ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: __UpperCAmelCase : List[str] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __UpperCAmelCase : str = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(snake_case__ ) print(max(snake_case__ ) ) # Adjacency list of Graph _snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import numpy as np _snake_case = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class _snake_case : def __init__( self: Dict ) -> List[str]: __UpperCAmelCase : Tuple = np.array(snake_case_ ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> Optional[Any]: __UpperCAmelCase : Any = np.where(letter == self.SQUARE ) __UpperCAmelCase : Optional[int] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int ) -> Tuple: __UpperCAmelCase : int = self.SQUARE[indexa - 1, indexa - 1] return letter def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str ) -> Optional[Any]: __UpperCAmelCase : Tuple = message.lower() __UpperCAmelCase : Tuple = message.replace(" " , "" ) __UpperCAmelCase : Dict = message.replace("j" , "i" ) __UpperCAmelCase : str = np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): __UpperCAmelCase : str = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : Dict = numbers[0] __UpperCAmelCase : Union[str, Any] = numbers[1] __UpperCAmelCase : Dict = first_step.reshape(2 * len(snake_case_ ) ) __UpperCAmelCase : List[str] = '''''' for numbers_index in range(len(snake_case_ ) ): __UpperCAmelCase : Dict = int(second_step[numbers_index * 2] ) __UpperCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) __UpperCAmelCase : Optional[int] = self.numbers_to_letter(snake_case_ , snake_case_ ) __UpperCAmelCase : Any = encoded_message + letter return encoded_message def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = message.lower() message.replace(" " , "" ) __UpperCAmelCase : Union[str, Any] = np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): __UpperCAmelCase : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) __UpperCAmelCase : int = numbers[0] __UpperCAmelCase : Union[str, Any] = numbers[1] __UpperCAmelCase : Dict = first_step.reshape((2, len(snake_case_ )) ) __UpperCAmelCase : Optional[Any] = '''''' for numbers_index in range(len(snake_case_ ) ): __UpperCAmelCase : Union[str, Any] = int(second_step[0, numbers_index] ) __UpperCAmelCase : str = int(second_step[1, numbers_index] ) __UpperCAmelCase : Dict = self.numbers_to_letter(snake_case_ , snake_case_ ) __UpperCAmelCase : Optional[int] = decoded_message + letter return decoded_message
352
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class _snake_case ( _lowercase ): lowerCamelCase__: Optional[Any] = "philschmid/bart-large-cnn-samsum" lowerCamelCase__: Optional[int] = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) lowerCamelCase__: Tuple = "summarizer" lowerCamelCase__: int = AutoTokenizer lowerCamelCase__: Dict = AutoModelForSeqaSeqLM lowerCamelCase__: Tuple = ["text"] lowerCamelCase__: int = ["text"] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Tuple ) -> Dict: return self.pre_processor(__lowerCamelCase , return_tensors="pt" , truncation=__lowerCamelCase ) def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[Any] ) -> Optional[int]: return self.model.generate(**__lowerCamelCase )[0] def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Union[str, Any] ) -> Tuple: return self.pre_processor.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
353
from __future__ import annotations from math import pi def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
342
0
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Any , __lowerCamelCase: List[Any]=13 , __lowerCamelCase: Dict=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: Dict=99 , __lowerCamelCase: Optional[Any]=32 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: int=4 , __lowerCamelCase: List[Any]=37 , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: List[str]=5_12 , __lowerCamelCase: str=16 , __lowerCamelCase: str=2 , __lowerCamelCase: List[str]=0.02 , __lowerCamelCase: List[str]=4 , ) -> Optional[Any]: __UpperCAmelCase : Dict = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : Dict = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Optional[Any] = use_attention_mask __UpperCAmelCase : Optional[int] = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Any = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : Any = type_sequence_label_size __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[Any] = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> str: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[Any] = None if self.use_attention_mask: __UpperCAmelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : str = None if self.use_token_type_ids: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : str = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = config_and_inputs __UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCamelCase ( self: str ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : str = True __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _snake_case ( lowercase_ , unittest.TestCase ): lowerCamelCase__: List[Any] = True lowerCamelCase__: List[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = FlaxRobertaModelTester(self ) @slow def _lowerCamelCase ( self: int ) -> Dict: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("roberta-base" , from_pt=a__ ) __UpperCAmelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a__ )
354
import flax.linen as nn import jax import jax.numpy as jnp class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]: __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape __UpperCAmelCase : Dict = jax.image.resize( __lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) __UpperCAmelCase : Dict = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]: # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __UpperCAmelCase : Any = self.conv(__lowerCamelCase ) return hidden_states class _snake_case ( nn.Module ): lowerCamelCase__: int lowerCamelCase__: int = None lowerCamelCase__: float = 0.0 lowerCamelCase__: bool = None lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: str ) -> List[str]: __UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels __UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : List[str] = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) __UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob ) __UpperCAmelCase : Tuple = nn.Conv( __lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __UpperCAmelCase : List[Any] = None if use_nin_shortcut: __UpperCAmelCase : Dict = nn.Conv( __lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]: __UpperCAmelCase : Dict = hidden_states __UpperCAmelCase : int = self.norma(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase ) __UpperCAmelCase : Tuple = self.conva(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) ) __UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 ) __UpperCAmelCase : List[str] = hidden_states + temb __UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase ) __UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase ) __UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : List[str] = self.conva(__lowerCamelCase ) if self.conv_shortcut is not None: __UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase ) return hidden_states + residual
342
0
_snake_case = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
355
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _snake_case = pytest.mark.integration @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: Union[str, Any] ) -> str: __UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() __UpperCAmelCase : int = dset.map( lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase ) __UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) __UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self: List[str] ) -> int: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: Optional[int] ) -> Dict: import faiss __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: from elasticsearch import Elasticsearch __UpperCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : int = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) __UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} __UpperCAmelCase : Any = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class _snake_case ( _lowercase ): def _lowerCamelCase ( self: List[str] ) -> Optional[int]: import faiss __UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : List[str] = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] __UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase ) self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] ) __UpperCAmelCase : Dict = [scores[0] for scores in total_scores] __UpperCAmelCase : int = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase ) def _lowerCamelCase ( self: Any ) -> List[str]: import faiss __UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowerCamelCase ): __UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self: List[str] ) -> Dict: import faiss __UpperCAmelCase : str = faiss.IndexFlat(5 ) __UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self: Union[str, Any] ) -> int: import faiss __UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file: index.save(tmp_file.name ) __UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) __UpperCAmelCase : Tuple = 1 __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( snake_case__ ) -> Optional[Any]: import faiss __UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) __UpperCAmelCase : Optional[Any] = "index.faiss" __UpperCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options ) __UpperCAmelCase : str = np.zeros(5, dtype=np.floataa ) __UpperCAmelCase : Any = 1 __UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _snake_case ( _lowercase ): def _lowerCamelCase ( self: str ) -> Union[str, Any]: from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: __UpperCAmelCase : Optional[Any] = Elasticsearch() __UpperCAmelCase : Dict = {"acknowledged": True} __UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query __UpperCAmelCase : Dict = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __UpperCAmelCase : int = "foo" __UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __UpperCAmelCase : int = ["foo", "bar", "foobar"] __UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase ) __UpperCAmelCase : Tuple = [scores[0] for scores in total_scores] __UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase ) # batched queries with timeout __UpperCAmelCase : str = ["foo", "bar", "foobar"] __UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 ) __UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores] __UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowerCamelCase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowerCamelCase )
342
0
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _snake_case : def __init__( self: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple=99 , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: int=7 , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple=True , __lowerCamelCase: Optional[int]=False , __lowerCamelCase: List[str]=True , __lowerCamelCase: Tuple=2 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Tuple=4 , __lowerCamelCase: Any=4 , __lowerCamelCase: Any=30 , __lowerCamelCase: str=0 , __lowerCamelCase: List[str]=1 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Optional[Any]=None , ) -> Dict: __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : int = decoder_seq_length # For common tests __UpperCAmelCase : str = self.decoder_seq_length __UpperCAmelCase : List[str] = is_training __UpperCAmelCase : Optional[Any] = use_attention_mask __UpperCAmelCase : int = use_labels __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Union[str, Any] = d_model __UpperCAmelCase : int = d_model __UpperCAmelCase : Optional[Any] = decoder_layers __UpperCAmelCase : Optional[int] = decoder_layers __UpperCAmelCase : str = decoder_ffn_dim __UpperCAmelCase : str = decoder_attention_heads __UpperCAmelCase : List[str] = decoder_attention_heads __UpperCAmelCase : int = eos_token_id __UpperCAmelCase : int = bos_token_id __UpperCAmelCase : Optional[Any] = pad_token_id __UpperCAmelCase : Tuple = decoder_start_token_id __UpperCAmelCase : Any = use_cache __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Any = None __UpperCAmelCase : Union[str, Any] = decoder_seq_length __UpperCAmelCase : Union[str, Any] = 2 __UpperCAmelCase : List[str] = 1 def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCAmelCase : Tuple = None if self.use_attention_mask: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __UpperCAmelCase : Optional[Any] = None if self.use_labels: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCAmelCase : Tuple = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , ) -> List[Any]: __UpperCAmelCase : List[Any] = True __UpperCAmelCase : Optional[int] = TrOCRDecoder(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() __UpperCAmelCase : Tuple = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __UpperCAmelCase : Dict = model(__lowerCamelCase , use_cache=__lowerCamelCase ) __UpperCAmelCase : List[str] = model(__lowerCamelCase ) __UpperCAmelCase : List[Any] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) __UpperCAmelCase : str = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Optional[int] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : str = model(__lowerCamelCase )['''last_hidden_state'''] __UpperCAmelCase : str = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Tuple = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __UpperCAmelCase : Optional[int] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) def _lowerCamelCase ( self: Optional[int] ) -> str: __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase : str = config_and_inputs __UpperCAmelCase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class _snake_case ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowerCamelCase__: Union[str, Any] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase__: List[Any] = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase__: Union[str, Any] = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase__: List[str] = True lowerCamelCase__: Any = False def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = TrOCRStandaloneDecoderModelTester(self , is_training=__lowerCamelCase ) __UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> List[str]: pass def _lowerCamelCase ( self: Any ) -> List[str]: pass def _lowerCamelCase ( self: Dict ) -> str: pass def _lowerCamelCase ( self: Tuple ) -> List[str]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__lowerCamelCase ) def _lowerCamelCase ( self: List[str] ) -> Any: return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def _lowerCamelCase ( self: Optional[int] ) -> int: pass
356
import argparse import struct import unittest class _snake_case : def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None: __UpperCAmelCase : Tuple = data # Initialize hash values __UpperCAmelCase : Any = [ 0x6_A_0_9_E_6_6_7, 0xB_B_6_7_A_E_8_5, 0x3_C_6_E_F_3_7_2, 0xA_5_4_F_F_5_3_A, 0x5_1_0_E_5_2_7_F, 0x9_B_0_5_6_8_8_C, 0x1_F_8_3_D_9_A_B, 0x5_B_E_0_C_D_1_9, ] # Initialize round constants __UpperCAmelCase : Dict = [ 0x4_2_8_A_2_F_9_8, 0x7_1_3_7_4_4_9_1, 0xB_5_C_0_F_B_C_F, 0xE_9_B_5_D_B_A_5, 0x3_9_5_6_C_2_5_B, 0x5_9_F_1_1_1_F_1, 0x9_2_3_F_8_2_A_4, 0xA_B_1_C_5_E_D_5, 0xD_8_0_7_A_A_9_8, 0x1_2_8_3_5_B_0_1, 0x2_4_3_1_8_5_B_E, 0x5_5_0_C_7_D_C_3, 0x7_2_B_E_5_D_7_4, 0x8_0_D_E_B_1_F_E, 0x9_B_D_C_0_6_A_7, 0xC_1_9_B_F_1_7_4, 0xE_4_9_B_6_9_C_1, 0xE_F_B_E_4_7_8_6, 0x0_F_C_1_9_D_C_6, 0x2_4_0_C_A_1_C_C, 0x2_D_E_9_2_C_6_F, 0x4_A_7_4_8_4_A_A, 0x5_C_B_0_A_9_D_C, 0x7_6_F_9_8_8_D_A, 0x9_8_3_E_5_1_5_2, 0xA_8_3_1_C_6_6_D, 0xB_0_0_3_2_7_C_8, 0xB_F_5_9_7_F_C_7, 0xC_6_E_0_0_B_F_3, 0xD_5_A_7_9_1_4_7, 0x0_6_C_A_6_3_5_1, 0x1_4_2_9_2_9_6_7, 0x2_7_B_7_0_A_8_5, 0x2_E_1_B_2_1_3_8, 0x4_D_2_C_6_D_F_C, 0x5_3_3_8_0_D_1_3, 0x6_5_0_A_7_3_5_4, 0x7_6_6_A_0_A_B_B, 0x8_1_C_2_C_9_2_E, 0x9_2_7_2_2_C_8_5, 0xA_2_B_F_E_8_A_1, 0xA_8_1_A_6_6_4_B, 0xC_2_4_B_8_B_7_0, 0xC_7_6_C_5_1_A_3, 0xD_1_9_2_E_8_1_9, 0xD_6_9_9_0_6_2_4, 0xF_4_0_E_3_5_8_5, 0x1_0_6_A_A_0_7_0, 0x1_9_A_4_C_1_1_6, 0x1_E_3_7_6_C_0_8, 0x2_7_4_8_7_7_4_C, 0x3_4_B_0_B_C_B_5, 0x3_9_1_C_0_C_B_3, 0x4_E_D_8_A_A_4_A, 0x5_B_9_C_C_A_4_F, 0x6_8_2_E_6_F_F_3, 0x7_4_8_F_8_2_E_E, 0x7_8_A_5_6_3_6_F, 0x8_4_C_8_7_8_1_4, 0x8_C_C_7_0_2_0_8, 0x9_0_B_E_F_F_F_A, 0xA_4_5_0_6_C_E_B, 0xB_E_F_9_A_3_F_7, 0xC_6_7_1_7_8_F_2, ] __UpperCAmelCase : List[Any] = self.preprocessing(self.data ) self.final_hash() @staticmethod def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes: __UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) __UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def _lowerCamelCase ( self: Dict ) -> None: # Convert into blocks of 64 bytes __UpperCAmelCase : Dict = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __UpperCAmelCase : Union[str, Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __UpperCAmelCase : str = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __UpperCAmelCase : Union[str, Any] = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_0_0_0_0_0_0_0_0 # Compression __UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) __UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g) __UpperCAmelCase : int = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) __UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c) __UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0 __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = ( g, f, e, ((d + tempa) % 0x1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0), ) __UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h] # Modify final values __UpperCAmelCase : List[str] = [ ((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes ) ] __UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[Any] ) -> None: import hashlib __UpperCAmelCase : Dict = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def _UpperCamelCase ( ) -> None: import doctest doctest.testmod() __UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) __UpperCAmelCase : List[Any] = parser.parse_args() __UpperCAmelCase : Optional[int] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: __UpperCAmelCase : List[str] = f.read() else: __UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" ) print(SHAaaa(snake_case__ ).hash ) if __name__ == "__main__": main()
342
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _snake_case = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _snake_case = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _snake_case = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
import numpy as np import datasets _snake_case = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' _snake_case = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' _snake_case = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]: # convert to numpy arrays __UpperCAmelCase : int = np.array(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction __UpperCAmelCase : str = X - np.mean(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: __UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: __UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
342
0
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _snake_case = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _snake_case ( datasets.BuilderConfig ): lowerCamelCase__: List[str] = None def _UpperCamelCase ( snake_case__, snake_case__, ) -> str: import pyspark def generate_fn(): __UpperCAmelCase : int = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: __UpperCAmelCase : List[Any] = df_with_partition_id.select("*" ).where(f'''part_id = {partition_id}''' ).drop("part_id" ) __UpperCAmelCase : Optional[int] = partition_df.collect() __UpperCAmelCase : Any = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class _snake_case ( _BaseExamplesIterable ): def __init__( self: List[Any] , __lowerCamelCase: "pyspark.sql.DataFrame" , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : List[str] = df __UpperCAmelCase : Optional[int] = partition_order or range(self.df.rdd.getNumPartitions() ) __UpperCAmelCase : List[str] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self: str ) -> Tuple: yield from self.generate_examples_fn() def _lowerCamelCase ( self: Tuple , __lowerCamelCase: np.random.Generator ) -> int: __UpperCAmelCase : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__snake_case ) return SparkExamplesIterable(self.df , partition_order=__snake_case ) def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: int ) -> int: __UpperCAmelCase : str = self.split_shard_indices_by_worker(__snake_case , __snake_case ) return SparkExamplesIterable(self.df , partition_order=__snake_case ) @property def _lowerCamelCase ( self: int ) -> Optional[int]: return len(self.partition_order ) class _snake_case ( datasets.DatasetBuilder ): lowerCamelCase__: Union[str, Any] = SparkConfig def __init__( self: Tuple , __lowerCamelCase: "pyspark.sql.DataFrame" , __lowerCamelCase: str = None , __lowerCamelCase: str = None , **__lowerCamelCase: Tuple , ) -> Optional[int]: import pyspark __UpperCAmelCase : Tuple = pyspark.sql.SparkSession.builder.getOrCreate() __UpperCAmelCase : Union[str, Any] = df __UpperCAmelCase : Optional[int] = working_dir super().__init__( cache_dir=__snake_case , config_name=str(self.df.semanticHash() ) , **__snake_case , ) def _lowerCamelCase ( self: Dict ) -> str: # Returns the path of the created file. def create_cache_and_write_probe(__lowerCamelCase: Tuple ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__snake_case ) __UpperCAmelCase : Dict = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__snake_case , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __UpperCAmelCase : List[Any] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__snake_case ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: datasets.download.download_manager.DownloadManager ) -> Any: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[str] ) -> Optional[Any]: import pyspark def get_arrow_batch_size(__lowerCamelCase: List[str] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) __UpperCAmelCase : List[Any] = self.df.count() __UpperCAmelCase : Any = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __UpperCAmelCase : str = ( self.df.limit(__snake_case ) .repartition(1 ) .mapInArrow(__snake_case , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __UpperCAmelCase : Tuple = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __UpperCAmelCase : Optional[int] = min(__snake_case , int(approx_total_size / max_shard_size ) ) __UpperCAmelCase : Dict = self.df.repartition(__snake_case ) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: int , ) -> Dict: import pyspark __UpperCAmelCase : Optional[Any] = ParquetWriter if file_format == 'parquet' else ArrowWriter __UpperCAmelCase : Any = os.path.join(self._working_dir , os.path.basename(__snake_case ) ) if self._working_dir else fpath __UpperCAmelCase : Union[str, Any] = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __UpperCAmelCase : Optional[Any] = self.config.features __UpperCAmelCase : Optional[Any] = self._writer_batch_size __UpperCAmelCase : List[str] = self._fs.storage_options def write_arrow(__lowerCamelCase: str ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __UpperCAmelCase : Any = pyspark.TaskContext().taskAttemptId() __UpperCAmelCase : int = next(__snake_case , __snake_case ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) __UpperCAmelCase : Tuple = 0 __UpperCAmelCase : Optional[Any] = writer_class( features=__snake_case , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__snake_case , storage_options=__snake_case , embed_local_files=__snake_case , ) __UpperCAmelCase : int = pa.Table.from_batches([first_batch] ) writer.write_table(__snake_case ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __UpperCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 __UpperCAmelCase : Dict = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , writer_batch_size=__snake_case , storage_options=__snake_case , embed_local_files=__snake_case , ) __UpperCAmelCase : Dict = pa.Table.from_batches([batch] ) writer.write_table(__snake_case ) if writer._num_bytes > 0: __UpperCAmelCase : str = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__snake_case ) ): __UpperCAmelCase : List[str] = os.path.join(os.path.dirname(__snake_case ) , os.path.basename(__snake_case ) ) shutil.move(__snake_case , __snake_case ) __UpperCAmelCase : Dict = ( self.df.mapInArrow(__snake_case , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def _lowerCamelCase ( self: Dict , __lowerCamelCase: "datasets.SplitGenerator" , __lowerCamelCase: str = "arrow" , __lowerCamelCase: Optional[Union[str, int]] = None , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: self._validate_cache_dir() __UpperCAmelCase : Optional[int] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__snake_case ) __UpperCAmelCase : Union[str, Any] = not is_remote_filesystem(self._fs ) __UpperCAmelCase : List[Any] = os.path.join if is_local else posixpath.join __UpperCAmelCase : Any = '-TTTTT-SSSSS-of-NNNNN' __UpperCAmelCase : List[str] = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __UpperCAmelCase : int = path_join(self._output_dir , __snake_case ) __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : int = 0 __UpperCAmelCase : Any = 0 __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Any = [] for task_id, content in self._prepare_split_single(__snake_case , __snake_case , __snake_case ): ( __UpperCAmelCase ) : Any = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__snake_case ) __UpperCAmelCase : Union[str, Any] = total_num_examples __UpperCAmelCase : Dict = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __UpperCAmelCase : str = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __UpperCAmelCase : List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , ): rename( __snake_case , fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace("TTTTT-SSSSS" , f'''{global_shard_id:05d}''' ).replace("NNNNN" , f'''{total_shards:05d}''' ) , ) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : str = 0 for i in range(len(__snake_case ) ): __UpperCAmelCase : Optional[int] = task_id_and_num_shards[i] for shard_id in range(__snake_case ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__snake_case , len(__snake_case ) ).map(lambda __lowerCamelCase : _rename_shard(*__snake_case ) ).collect() else: # don't use any pattern __UpperCAmelCase : Any = 0 __UpperCAmelCase : Any = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f'''{shard_id:05d}''' ).replace("TTTTT" , f'''{task_id:05d}''' ) , fpath.replace(__snake_case , "" ) , ) def _lowerCamelCase ( self: str , __lowerCamelCase: "datasets.SplitGenerator" , ) -> Dict: return SparkExamplesIterable(self.df )
358
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : Optional[int] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[str] = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Optional[int] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : Dict = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : Union[str, Any] = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : str = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : str = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : str = num_choices def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def _lowerCamelCase ( self: str ) -> Any: __UpperCAmelCase : List[str] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs __UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self: List[Any] ) -> Dict: __UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self: Tuple ) -> Optional[Any]: for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def _lowerCamelCase ( self: int ) -> List[Any]: __UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) __UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __UpperCAmelCase : str = (1, 11, 7_68) self.assertEqual(output.shape , __lowerCamelCase ) __UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
342
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _snake_case = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _snake_case = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: List[str] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any = 1 , __lowerCamelCase: Dict = 4 , ) -> Optional[int]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A__ , hypotheses=A__ , min_len=A__ , max_len=A__ ) }
359
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _snake_case = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _snake_case = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _snake_case = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _snake_case = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any: for tf_name, hf_name in patterns: __UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ ) return k def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration: __UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ ) __UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ ) __UpperCAmelCase : Optional[Any] = torch_model.state_dict() __UpperCAmelCase : Optional[int] = {} # separating decoder weights __UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} __UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : List[str] = DECODER_PATTERNS __UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : Optional[int] = v.T __UpperCAmelCase : str = torch.from_numpy(snake_case__ ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ): __UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE] if any(snake_case__ ): continue __UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS __UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): __UpperCAmelCase : List[Any] = v.T __UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' __UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"] __UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" ) __UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ ) __UpperCAmelCase : str = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def _UpperCamelCase ( snake_case__ ) -> Dict: __UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ ) __UpperCAmelCase : List[str] = {} __UpperCAmelCase : str = ["global_step"] for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ): __UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ ) __UpperCAmelCase : Tuple = array return tf_weights def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict: __UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ ) __UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ ) torch_model.save_pretrained(snake_case__ ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _snake_case = parser.parse_args() _snake_case = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
342
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _snake_case : def __init__( self: List[str] , __lowerCamelCase: int , ) -> Tuple: __UpperCAmelCase : Optional[int] = parent __UpperCAmelCase : Any = 13 __UpperCAmelCase : List[Any] = 7 __UpperCAmelCase : Tuple = 30 __UpperCAmelCase : Union[str, Any] = self.seq_length + self.mem_len __UpperCAmelCase : List[Any] = 15 __UpperCAmelCase : Union[str, Any] = True __UpperCAmelCase : str = True __UpperCAmelCase : List[Any] = 99 __UpperCAmelCase : Any = [10, 50, 80] __UpperCAmelCase : Union[str, Any] = 32 __UpperCAmelCase : List[str] = 32 __UpperCAmelCase : int = 4 __UpperCAmelCase : List[Any] = 8 __UpperCAmelCase : Union[str, Any] = 1_28 __UpperCAmelCase : str = 2 __UpperCAmelCase : str = 2 __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Dict = 1 __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = 3 __UpperCAmelCase : Optional[Any] = self.vocab_size - 1 __UpperCAmelCase : Union[str, Any] = 0.01 def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : str = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowerCamelCase ( self: str ) -> List[Any]: random.seed(self.seed ) tf.random.set_seed(self.seed ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int ) -> Any: __UpperCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model(a__ ).to_tuple() __UpperCAmelCase : Union[str, Any] = {"input_ids": input_ids_a, "mems": mems_a} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Dict ) -> int: __UpperCAmelCase : Optional[Any] = TFTransfoXLLMHeadModel(a__ ) __UpperCAmelCase , __UpperCAmelCase : List[Any] = model(a__ ).to_tuple() __UpperCAmelCase : Optional[int] = {"input_ids": input_ids_a, "labels": lm_labels} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model(a__ ).to_tuple() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() __UpperCAmelCase : Union[str, Any] = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = TFTransfoXLForSequenceClassification(a__ ) __UpperCAmelCase : Optional[Any] = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: List[str] ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ((__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase) , (__UpperCAmelCase)) : Optional[int] = config_and_inputs __UpperCAmelCase : Optional[int] = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _snake_case ( __a , __a , unittest.TestCase ): lowerCamelCase__: Optional[int] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowerCamelCase__: Optional[Any] = () if is_tf_available() else () lowerCamelCase__: Any = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowerCamelCase__: List[str] = False lowerCamelCase__: str = False lowerCamelCase__: str = False lowerCamelCase__: List[Any] = False def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int ) -> int: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowerCamelCase ( self: int ) -> Optional[Any]: __UpperCAmelCase : Union[str, Any] = TFTransfoXLModelTester(self ) __UpperCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]: self.config_tester.run_common_tests() def _lowerCamelCase ( self: int ) -> str: self.model_tester.set_seed() __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def _lowerCamelCase ( self: Optional[int] ) -> Tuple: self.model_tester.set_seed() __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def _lowerCamelCase ( self: Any ) -> int: __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def _lowerCamelCase ( self: Optional[int] ) -> int: __UpperCAmelCase , __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __UpperCAmelCase : Union[str, Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __UpperCAmelCase : Union[str, Any] = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) __UpperCAmelCase : List[str] = model.get_bias() assert name is None else: __UpperCAmelCase : int = model.get_output_embeddings() assert x is None __UpperCAmelCase : List[Any] = model.get_bias() assert name is None def _lowerCamelCase ( self: Dict ) -> str: # TODO JP: Make TransfoXL XLA compliant pass @slow def _lowerCamelCase ( self: List[Any] ) -> str: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="This model doesn\'t play well with fit() due to not returning a single loss." ) def _lowerCamelCase ( self: Any ) -> List[str]: pass @require_tf class _snake_case ( unittest.TestCase ): @unittest.skip("Skip test until #12651 is resolved." ) @slow def _lowerCamelCase ( self: int ) -> Tuple: __UpperCAmelCase : Dict = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __UpperCAmelCase : Union[str, Any] = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __UpperCAmelCase : Dict = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __UpperCAmelCase : Union[str, Any] = model.generate(a__ , max_length=2_00 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
360
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class _snake_case ( _lowercase ): lowerCamelCase__: Any = ["image_processor", "tokenizer"] lowerCamelCase__: Optional[Any] = "BlipImageProcessor" lowerCamelCase__: Optional[int] = "AutoTokenizer" def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict: super().__init__(__lowerCamelCase , __lowerCamelCase ) # add QFormer tokenizer __UpperCAmelCase : Dict = qformer_tokenizer def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature: if images is None and text is None: raise ValueError("You have to specify at least images or text." ) __UpperCAmelCase : str = BatchFeature() if text is not None: __UpperCAmelCase : Any = self.tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) encoding.update(__lowerCamelCase ) __UpperCAmelCase : Dict = self.qformer_tokenizer( text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" ) __UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" ) if images is not None: __UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase ) encoding.update(__lowerCamelCase ) return encoding def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]: return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple: return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self: List[str] ) -> Tuple: __UpperCAmelCase : str = self.tokenizer.model_input_names __UpperCAmelCase : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str: if os.path.isfile(__lowerCamelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) __UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" ) self.qformer_tokenizer.save_pretrained(__lowerCamelCase ) return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase ) @classmethod def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" ) __UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase ) args.append(__lowerCamelCase ) return cls(*__lowerCamelCase )
342
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( lowerCamelCase__ , unittest.TestCase ): lowerCamelCase__: Any = AlbertTokenizer lowerCamelCase__: Dict = AlbertTokenizerFast lowerCamelCase__: Optional[int] = True lowerCamelCase__: Dict = True lowerCamelCase__: Union[str, Any] = True def _lowerCamelCase ( self: Tuple ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Union[str, Any] = AlbertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Tuple = '''this is a test''' __UpperCAmelCase : Optional[int] = '''this is a test''' return input_text, output_text def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase : Optional[Any] = '''<pad>''' __UpperCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__A ) , 3_00_00 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def _lowerCamelCase ( self: Dict ) -> List[str]: if not self.test_rust_tokenizer: return __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : int = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : int = tokenizer.tokenize(__A ) __UpperCAmelCase : Dict = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __UpperCAmelCase : List[str] = tokenizer.encode(__A , add_special_tokens=__A ) __UpperCAmelCase : List[str] = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) __UpperCAmelCase : str = self.get_rust_tokenizer() __UpperCAmelCase : List[Any] = tokenizer.encode(__A ) __UpperCAmelCase : Dict = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def _lowerCamelCase ( self: Tuple ) -> Tuple: __UpperCAmelCase : Dict = AlbertTokenizer(__A , keep_accents=__A ) __UpperCAmelCase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [48, 25, 21, 12_89] ) __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _lowerCamelCase ( self: int ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = AlbertTokenizer(__A ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode("sequence builders" ) __UpperCAmelCase : Tuple = tokenizer.encode("multi-sequence build" ) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__A ) __UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowerCamelCase ( self: Dict ) -> Any: # fmt: off __UpperCAmelCase : List[Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( snake_case__, snake_case__ ) -> str: __UpperCAmelCase : Optional[int] = XCLIPTextConfig() # derive patch size from model name __UpperCAmelCase : int = model_name.find("patch" ) __UpperCAmelCase : Tuple = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) __UpperCAmelCase : Union[str, Any] = XCLIPVisionConfig(patch_size=__snake_case, num_frames=__snake_case ) if "large" in model_name: __UpperCAmelCase : List[Any] = 768 __UpperCAmelCase : Dict = 3072 __UpperCAmelCase : Dict = 12 __UpperCAmelCase : str = 1024 __UpperCAmelCase : List[Any] = 4096 __UpperCAmelCase : Union[str, Any] = 16 __UpperCAmelCase : Any = 24 __UpperCAmelCase : Dict = 768 __UpperCAmelCase : List[str] = 3072 if model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : int = 336 __UpperCAmelCase : str = XCLIPConfig.from_text_vision_configs(__snake_case, __snake_case ) if "large" in model_name: __UpperCAmelCase : str = 768 return config def _UpperCamelCase ( snake_case__ ) -> List[Any]: if name == "token_embedding.weight": __UpperCAmelCase : Tuple = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": __UpperCAmelCase : List[Any] = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: __UpperCAmelCase : Union[str, Any] = name.replace("ln_1", "layer_norm1" ) if "ln_2" in name: __UpperCAmelCase : Any = name.replace("ln_2", "layer_norm2" ) if "c_fc" in name: __UpperCAmelCase : List[str] = name.replace("c_fc", "fc1" ) if "c_proj" in name: __UpperCAmelCase : str = name.replace("c_proj", "fc2" ) if name.startswith("transformer.resblocks" ): __UpperCAmelCase : str = name.replace("transformer.resblocks", "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: __UpperCAmelCase : List[str] = name.replace("attn.out_proj", "self_attn.out_proj" ) if "ln_final" in name: __UpperCAmelCase : Tuple = name.replace("ln_final", "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": __UpperCAmelCase : Dict = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": __UpperCAmelCase : Optional[Any] = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): __UpperCAmelCase : Any = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers" ) if "visual.conv1" in name: __UpperCAmelCase : Tuple = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: __UpperCAmelCase : Union[str, Any] = name.replace("visual.ln_pre", "vision_model.pre_layernorm" ) if "visual.ln_post" in name: __UpperCAmelCase : Dict = name.replace("visual.ln_post", "vision_model.post_layernorm" ) if "visual.proj" in name: __UpperCAmelCase : Tuple = name.replace("visual.proj", "visual_projection.weight" ) if "text_projection" in name: __UpperCAmelCase : List[str] = name.replace("text_projection", "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: __UpperCAmelCase : Optional[int] = name.replace("prompts_visual_proj", "prompts_visual_projection" ) if "prompts_visual_ln" in name: __UpperCAmelCase : Dict = name.replace("prompts_visual_ln", "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": __UpperCAmelCase : Union[str, Any] = name.replace("positional", "position" ) if name.startswith("mit.resblocks" ): __UpperCAmelCase : List[str] = name.replace("mit.resblocks", "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): __UpperCAmelCase : List[Any] = name.replace("prompts_generator.norm", "prompts_generator.layernorm" ) return name def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]: for key in orig_state_dict.copy().keys(): __UpperCAmelCase : List[str] = orig_state_dict.pop(__snake_case ) if "attn.in_proj" in key: __UpperCAmelCase : Optional[int] = key.split("." ) if key.startswith("visual" ): __UpperCAmelCase : Union[str, Any] = key_split[3] __UpperCAmelCase : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __UpperCAmelCase : int = val[ :dim, : ] __UpperCAmelCase : List[str] = val[ dim : dim * 2, : ] __UpperCAmelCase : Dict = val[ -dim:, : ] else: __UpperCAmelCase : str = val[ :dim ] __UpperCAmelCase : int = val[ dim : dim * 2 ] __UpperCAmelCase : Optional[int] = val[ -dim: ] else: if "weight" in key: __UpperCAmelCase : Optional[Any] = val[ :dim, : ] __UpperCAmelCase : Optional[Any] = val[ dim : dim * 2, : ] __UpperCAmelCase : int = val[ -dim:, : ] else: __UpperCAmelCase : Union[str, Any] = val[:dim] __UpperCAmelCase : str = val[ dim : dim * 2 ] __UpperCAmelCase : Dict = val[-dim:] elif key.startswith("mit" ): __UpperCAmelCase : int = key_split[2] __UpperCAmelCase : Optional[Any] = config.vision_config.mit_hidden_size if "weight" in key: __UpperCAmelCase : Union[str, Any] = val[:dim, :] __UpperCAmelCase : Any = val[dim : dim * 2, :] __UpperCAmelCase : Any = val[-dim:, :] else: __UpperCAmelCase : List[Any] = val[:dim] __UpperCAmelCase : List[Any] = val[dim : dim * 2] __UpperCAmelCase : List[Any] = val[-dim:] else: __UpperCAmelCase : Any = key_split[2] __UpperCAmelCase : Any = config.text_config.hidden_size if "weight" in key: __UpperCAmelCase : int = val[:dim, :] __UpperCAmelCase : int = val[ dim : dim * 2, : ] __UpperCAmelCase : Tuple = val[-dim:, :] else: __UpperCAmelCase : str = val[:dim] __UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] __UpperCAmelCase : Optional[int] = val[-dim:] else: __UpperCAmelCase : Optional[int] = rename_key(__snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __UpperCAmelCase : Dict = val.T __UpperCAmelCase : Tuple = val return orig_state_dict def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]: if num_frames == 8: __UpperCAmelCase : Any = "eating_spaghetti_8_frames.npy" elif num_frames == 16: __UpperCAmelCase : List[str] = "eating_spaghetti.npy" elif num_frames == 32: __UpperCAmelCase : Union[str, Any] = "eating_spaghetti_32_frames.npy" __UpperCAmelCase : str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=__snake_case, repo_type="dataset", ) __UpperCAmelCase : str = np.load(__snake_case ) return list(__snake_case ) def _UpperCamelCase ( snake_case__, snake_case__=None, snake_case__=False ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } __UpperCAmelCase : Dict = model_to_url[model_name] __UpperCAmelCase : Tuple = 8 if "16-frames" in model_name: __UpperCAmelCase : Optional[Any] = 16 elif "shot" in model_name: __UpperCAmelCase : Union[str, Any] = 32 __UpperCAmelCase : Any = get_xclip_config(__snake_case, __snake_case ) __UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case ) model.eval() if "drive" in checkpoint_url: __UpperCAmelCase : Dict = "pytorch_model.bin" gdown.cached_download(__snake_case, __snake_case, quiet=__snake_case ) __UpperCAmelCase : str = torch.load(__snake_case, map_location="cpu" )["model"] else: __UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(__snake_case )["model"] __UpperCAmelCase : str = convert_state_dict(__snake_case, __snake_case ) __UpperCAmelCase : Optional[int] = XCLIPModel(__snake_case ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = model.load_state_dict(__snake_case, strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __UpperCAmelCase : Optional[Any] = 336 if model_name == "xclip-large-patch14-16-frames" else 224 __UpperCAmelCase : List[str] = VideoMAEImageProcessor(size=__snake_case ) __UpperCAmelCase : str = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) __UpperCAmelCase : Tuple = XCLIPProcessor(image_processor=__snake_case, tokenizer=__snake_case ) __UpperCAmelCase : List[Any] = prepare_video(__snake_case ) __UpperCAmelCase : Tuple = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=__snake_case, return_tensors="pt", padding=__snake_case ) print("Shape of pixel values:", inputs.pixel_values.shape ) with torch.no_grad(): __UpperCAmelCase : str = model(**__snake_case ) # Verify outputs __UpperCAmelCase : Any = outputs.logits_per_video __UpperCAmelCase : Union[str, Any] = logits_per_video.softmax(dim=1 ) print("Probs:", __snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __UpperCAmelCase : Tuple = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __UpperCAmelCase : List[str] = torch.tensor([[7.0_9_9_9e-0_4, 9.9_8_8_3e-0_1, 4.5_5_8_0e-0_4]] ) elif model_name == "xclip-base-patch16": __UpperCAmelCase : str = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __UpperCAmelCase : Optional[int] = torch.tensor([[7.6_9_3_7e-0_4, 9.9_7_2_8e-0_1, 1.9_4_7_3e-0_3]] ) elif model_name == "xclip-large-patch14": __UpperCAmelCase : Optional[int] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __UpperCAmelCase : Tuple = torch.tensor([[3.3_8_7_7e-0_4, 9.9_9_3_7e-0_1, 2.8_8_8_8e-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __UpperCAmelCase : Dict = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __UpperCAmelCase : Tuple = torch.tensor([[3.8_5_5_4e-0_4, 9.9_9_2_9e-0_1, 3.2_7_5_4e-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __UpperCAmelCase : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __UpperCAmelCase : Any = torch.tensor([[7.1_8_9_0e-0_6, 9.9_9_9_4e-0_1, 5.6_5_5_9e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __UpperCAmelCase : Optional[Any] = torch.tensor([[1.0_3_2_0e-0_5, 9.9_9_9_3e-0_1, 6.2_4_3_5e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __UpperCAmelCase : Union[str, Any] = torch.tensor([[4.1_3_7_7e-0_6, 9.9_9_9_0e-0_1, 9.8_3_8_6e-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __UpperCAmelCase : Tuple = torch.tensor([[4.1_3_4_7e-0_5, 9.9_9_6_2e-0_1, 3.3_4_1_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __UpperCAmelCase : Dict = torch.tensor([[8.5_8_5_7e-0_5, 9.9_9_2_8e-0_1, 6.3_2_9_1e-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __UpperCAmelCase : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __UpperCAmelCase : Dict = torch.tensor([[9.8_2_1_9e-0_4, 9.9_5_9_3e-0_1, 3.0_8_6_3e-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __UpperCAmelCase : List[str] = torch.tensor([[3.5_0_8_2e-0_4, 9.9_7_8_5e-0_1, 1.7_9_6_6e-0_3]] ) else: raise ValueError(f'''Model name {model_name} not supported''' ) assert torch.allclose(__snake_case, __snake_case, atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(__snake_case, organization="nielsr" ) processor.push_to_hub(__snake_case, organization="nielsr" ) slow_tokenizer.push_to_hub(__snake_case, organization="nielsr" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
362
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( _lowercase , unittest.TestCase ): lowerCamelCase__: List[Any] = CanineTokenizer lowerCamelCase__: Optional[int] = False def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: super().setUp() __UpperCAmelCase : Tuple = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]: return CanineTokenizer.from_pretrained("google/canine-s" ) def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer: __UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase ) __UpperCAmelCase : Optional[int] = 10_24 return tokenizer @require_torch def _lowerCamelCase ( self: List[str] ) -> int: __UpperCAmelCase : Union[str, Any] = self.canine_tokenizer __UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0] # fmt: on __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , __lowerCamelCase ) self.assertIn("attention_mask" , __lowerCamelCase ) self.assertIn("token_type_ids" , __lowerCamelCase ) @require_torch def _lowerCamelCase ( self: Any ) -> List[str]: __UpperCAmelCase : Optional[Any] = self.canine_tokenizer __UpperCAmelCase : int = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase : List[Any] = tokenizer( text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _lowerCamelCase ( self: List[Any] ) -> Tuple: # safety check on max_len default value so we are sure the test works __UpperCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : int = tempfile.mkdtemp() __UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) shutil.rmtree(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase : List[Any] = tempfile.mkdtemp() __UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase : str = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase : Tuple = chr(0xE_0_0_7 ) additional_special_tokens.append(__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) tokenizer.save_pretrained(__lowerCamelCase ) __UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Optional[int]: __UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : int = 0xE_0_0_5 __UpperCAmelCase : Tuple = chr(__lowerCamelCase ) tokenizer.add_special_tokens({"cls_token": special_token} ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) __UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , input_encoded + special_token_id ) __UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertTrue(special_token not in decoded ) def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]: __UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 ) __UpperCAmelCase : List[str] = chr(0xE_0_0_6 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(len(__lowerCamelCase ) , 1 ) self.assertEqual(token_a[0] , __lowerCamelCase ) self.assertEqual(token_a[0] , __lowerCamelCase ) @require_tokenizers def _lowerCamelCase ( self: str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase : Union[str, Any] = 0xE_0_0_6 __UpperCAmelCase : int = chr(__lowerCamelCase ) __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(__lowerCamelCase ) tokenizer.from_pretrained(__lowerCamelCase ) def _lowerCamelCase ( self: Dict ) -> List[str]: __UpperCAmelCase : str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Tuple = json.load(__lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase ) # a special token for Canine can be defined as follows: __UpperCAmelCase : Any = 0xE_0_0_6 __UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase ) __UpperCAmelCase : Dict = [new_token_a] __UpperCAmelCase : int = [new_token_a] with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__lowerCamelCase , __lowerCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase : List[Any] = 0xE_0_0_7 __UpperCAmelCase : List[Any] = chr(__lowerCamelCase ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )] __UpperCAmelCase : Dict = tokenizer_class.from_pretrained( __lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 ) self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : int = "hello world" if self.space_between_special_tokens: __UpperCAmelCase : Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase : Union[str, Any] = input __UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(__lowerCamelCase , [output, output.lower()] ) def _lowerCamelCase ( self: Dict ) -> Any: __UpperCAmelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase : List[str] = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase : List[str] = "a" __UpperCAmelCase : Any = ord(__lowerCamelCase ) for attr in attributes_list: setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] ) __UpperCAmelCase : Tuple = 0xE_0_0_6 __UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase ) setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _lowerCamelCase ( self: str ) -> Union[str, Any]: pass def _lowerCamelCase ( self: Any ) -> Any: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple: pass def _lowerCamelCase ( self: Optional[int] ) -> Any: pass def _lowerCamelCase ( self: List[str] ) -> str: pass def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]: pass def _lowerCamelCase ( self: Optional[Any] ) -> Tuple: pass def _lowerCamelCase ( self: str ) -> Tuple: pass
342
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> str: __UpperCAmelCase : str = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __UpperCAmelCase : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) __UpperCAmelCase : int = model.state_dict() def to_tf_var_name(snake_case__ ): for patt, repl in iter(UpperCAmelCase__ ): __UpperCAmelCase : List[Any] = name.replace(UpperCAmelCase__, UpperCAmelCase__ ) return f'''bert/{name}''' def create_tf_var(snake_case__, snake_case__, snake_case__ ): __UpperCAmelCase : str = tf.dtypes.as_dtype(tensor.dtype ) __UpperCAmelCase : Optional[int] = tf.get_variable(dtype=UpperCAmelCase__, shape=tensor.shape, name=UpperCAmelCase__, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __UpperCAmelCase : Dict = to_tf_var_name(UpperCAmelCase__ ) __UpperCAmelCase : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __UpperCAmelCase : str = torch_tensor.T __UpperCAmelCase : Dict = create_tf_var(tensor=UpperCAmelCase__, name=UpperCAmelCase__, session=UpperCAmelCase__ ) tf.keras.backend.set_value(UpperCAmelCase__, UpperCAmelCase__ ) __UpperCAmelCase : int = session.run(UpperCAmelCase__ ) print(f'''Successfully created {tf_name}: {np.allclose(UpperCAmelCase__, UpperCAmelCase__ )}''' ) __UpperCAmelCase : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase__, os.path.join(UpperCAmelCase__, model_name.replace("-", "_" ) + ".ckpt" ) ) def _UpperCamelCase ( snake_case__=None ) -> Union[str, Any]: __UpperCAmelCase : str = argparse.ArgumentParser() parser.add_argument("--model_name", type=UpperCAmelCase__, required=UpperCAmelCase__, help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir", type=UpperCAmelCase__, default=UpperCAmelCase__, required=UpperCAmelCase__, help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path", type=UpperCAmelCase__, required=UpperCAmelCase__, help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir", type=UpperCAmelCase__, required=UpperCAmelCase__, help="Directory in which to save tensorflow model" ) __UpperCAmelCase : int = parser.parse_args(UpperCAmelCase__ ) __UpperCAmelCase : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase__, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
363
import logging import os from .state import PartialState class _snake_case ( logging.LoggerAdapter ): @staticmethod def _lowerCamelCase ( __lowerCamelCase: Any ) -> int: __UpperCAmelCase : str = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( "You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." ) __UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase ) if self.isEnabledFor(__lowerCamelCase ): if self._should_log(__lowerCamelCase ): __UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) elif in_order: __UpperCAmelCase : Optional[int] = PartialState() for i in range(state.num_processes ): if i == state.process_index: __UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase ) self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) state.wait_for_everyone() def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]: if log_level is None: __UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ ) __UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(snake_case__, {} )
342
0
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging _snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class _snake_case ( snake_case__ ): def __init__( self: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , ) -> Optional[int]: super().__init__() self.register_modules( vae=_A , text_encoder=_A , tokenizer=_A , unet=_A , scheduler=_A , safety_checker=_A , feature_extractor=_A , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Dict = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __UpperCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_A ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: self.enable_attention_slicing(_A ) @torch.no_grad() def __call__( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple = 5_12 , __lowerCamelCase: Optional[Any] = 5_12 , __lowerCamelCase: int = 50 , __lowerCamelCase: int = 7.5 , __lowerCamelCase: List[str] = None , __lowerCamelCase: List[Any] = 1 , __lowerCamelCase: List[str] = 0.0 , __lowerCamelCase: str = None , __lowerCamelCase: Dict = None , __lowerCamelCase: int = "pil" , __lowerCamelCase: Optional[Any] = True , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Dict = 1 , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Union[str, Any] , ) -> Tuple: if isinstance(_A , _A ): __UpperCAmelCase : Optional[int] = 1 elif isinstance(_A , _A ): __UpperCAmelCase : str = len(_A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_A )}.''' ) # get prompt text embeddings __UpperCAmelCase : str = self.tokenizer( _A , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __UpperCAmelCase : List[str] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCAmelCase : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) __UpperCAmelCase : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: __UpperCAmelCase : Dict = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = text_embeddings.shape __UpperCAmelCase : Dict = text_embeddings.repeat(1 , _A , 1 ) __UpperCAmelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , _A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __UpperCAmelCase : Optional[int] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __UpperCAmelCase : List[str] = 42 if negative_prompt is None: __UpperCAmelCase : List[Any] = [""] elif type(_A ) is not type(_A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_A )} !=''' f''' {type(_A )}.''' ) elif isinstance(_A , _A ): __UpperCAmelCase : Any = [negative_prompt] elif batch_size != len(_A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: __UpperCAmelCase : str = negative_prompt __UpperCAmelCase : int = text_input_ids.shape[-1] __UpperCAmelCase : Tuple = self.tokenizer( _A , padding="max_length" , max_length=_A , truncation=_A , return_tensors="pt" , ) __UpperCAmelCase : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCAmelCase : Optional[int] = uncond_embeddings.shape[1] __UpperCAmelCase : Optional[int] = uncond_embeddings.repeat(_A , _A , 1 ) __UpperCAmelCase : Dict = uncond_embeddings.view(batch_size * num_images_per_prompt , _A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCAmelCase : Optional[int] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __UpperCAmelCase : List[str] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __UpperCAmelCase : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) __UpperCAmelCase : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __UpperCAmelCase : List[Any] = torch.randn( _A , generator=_A , device="cpu" , dtype=_A ).to(self.device ) __UpperCAmelCase : int = torch.randn(_A , generator=_A , device="cpu" , dtype=_A ).to( self.device ) else: __UpperCAmelCase : List[str] = torch.randn( _A , generator=_A , device=self.device , dtype=_A ) __UpperCAmelCase : Tuple = torch.randn(_A , generator=_A , device=self.device , dtype=_A ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) __UpperCAmelCase : Any = latents_reference.to(self.device ) __UpperCAmelCase : Optional[int] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images __UpperCAmelCase : Dict = (latents_shape[3] - latents_shape_reference[3]) // 2 __UpperCAmelCase : Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2 __UpperCAmelCase : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx __UpperCAmelCase : Union[str, Any] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy __UpperCAmelCase : List[str] = 0 if dx < 0 else dx __UpperCAmelCase : List[str] = 0 if dy < 0 else dy __UpperCAmelCase : List[str] = max(-dx , 0 ) __UpperCAmelCase : int = max(-dy , 0 ) # import pdb # pdb.set_trace() __UpperCAmelCase : Optional[int] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __UpperCAmelCase : int = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __UpperCAmelCase : Tuple = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __UpperCAmelCase : Dict = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __UpperCAmelCase : List[str] = {} if accepts_eta: __UpperCAmelCase : Union[str, Any] = eta for i, t in enumerate(self.progress_bar(_A ) ): # expand the latents if we are doing classifier free guidance __UpperCAmelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __UpperCAmelCase : Optional[int] = self.scheduler.scale_model_input(_A , _A ) # predict the noise residual __UpperCAmelCase : Optional[int] = self.unet(_A , _A , encoder_hidden_states=_A ).sample # perform guidance if do_classifier_free_guidance: __UpperCAmelCase , __UpperCAmelCase : str = noise_pred.chunk(2 ) __UpperCAmelCase : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __UpperCAmelCase : Any = self.scheduler.step(_A , _A , _A , **_A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A , _A ) __UpperCAmelCase : List[str] = 1 / 0.1_82_15 * latents __UpperCAmelCase : str = self.vae.decode(_A ).sample __UpperCAmelCase : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __UpperCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: __UpperCAmelCase : Tuple = self.feature_extractor(self.numpy_to_pil(_A ) , return_tensors="pt" ).to( self.device ) __UpperCAmelCase , __UpperCAmelCase : List[str] = self.safety_checker( images=_A , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: __UpperCAmelCase : Any = None if output_type == "pil": __UpperCAmelCase : Tuple = self.numpy_to_pil(_A ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_A , nsfw_content_detected=_A )
364
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _snake_case ( _lowercase ): def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str: super().__init__( __lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , ) __UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths} __UpperCAmelCase : int = Text( cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , ) def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]: # Build iterable dataset if self.streaming: __UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCAmelCase : Any = None __UpperCAmelCase : Any = None __UpperCAmelCase : Dict = None __UpperCAmelCase : str = None self.builder.download_and_prepare( download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , ) __UpperCAmelCase : Dict = self.builder.as_dataset( split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory ) return dataset
342
0
def _UpperCamelCase ( snake_case__ ) -> list[list[float]]: __UpperCAmelCase : list[list[float]] = [] for data in source_data: for i, el in enumerate(snake_case__ ): if len(snake_case__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(snake_case__ ) ) return data_lists def _UpperCamelCase ( snake_case__, snake_case__ ) -> list[list[float]]: __UpperCAmelCase : list[list[float]] = [] for dlist, weight in zip(snake_case__, snake_case__ ): __UpperCAmelCase : Optional[int] = min(snake_case__ ) __UpperCAmelCase : Optional[int] = max(snake_case__ ) __UpperCAmelCase : list[float] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __UpperCAmelCase : Tuple = f'''Invalid weight of {weight:f} provided''' raise ValueError(snake_case__ ) score_lists.append(snake_case__ ) return score_lists def _UpperCamelCase ( snake_case__ ) -> list[float]: __UpperCAmelCase : list[float] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(snake_case__ ): __UpperCAmelCase : List[Any] = final_scores[j] + ele return final_scores def _UpperCamelCase ( snake_case__, snake_case__ ) -> list[list[float]]: __UpperCAmelCase : Optional[Any] = get_data(snake_case__ ) __UpperCAmelCase : Tuple = calculate_each_score(snake_case__, snake_case__ ) __UpperCAmelCase : Dict = generate_final_scores(snake_case__ ) # append scores to source data for i, ele in enumerate(snake_case__ ): source_data[i].append(snake_case__ ) return source_data
365
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
342
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _snake_case = "." if __name__ == "__main__": _snake_case = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') _snake_case = [] _snake_case = [] with open(doctest_file_path) as fp: for line in fp: _snake_case = line.strip() _snake_case = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _snake_case = "\n".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
366
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]: __UpperCAmelCase : Union[str, Any] = parent __UpperCAmelCase : List[str] = batch_size __UpperCAmelCase : Optional[int] = image_size __UpperCAmelCase : List[str] = num_channels __UpperCAmelCase : Union[str, Any] = num_stages __UpperCAmelCase : List[str] = hidden_sizes __UpperCAmelCase : Any = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : List[str] = out_features __UpperCAmelCase : Tuple = out_indices __UpperCAmelCase : List[Any] = scope def _lowerCamelCase ( self: List[Any] ) -> Optional[int]: __UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : List[str] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self: Tuple ) -> List[Any]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]: __UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple: __UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __UpperCAmelCase : Any = model(__lowerCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self: int ) -> List[str]: __UpperCAmelCase : int = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs __UpperCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict def _lowerCamelCase ( self: List[Any] ) -> List[Any]: __UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs __UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _snake_case ( _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase__: Dict = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__: str = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__: Tuple = False lowerCamelCase__: int = False lowerCamelCase__: Dict = False lowerCamelCase__: int = False lowerCamelCase__: Any = False def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]: __UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self ) __UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self: List[Any] ) -> int: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _lowerCamelCase ( self: Any ) -> Any: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _lowerCamelCase ( self: str ) -> Optional[Any]: pass def _lowerCamelCase ( self: List[Any] ) -> int: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : Optional[Any] = True if model_class.__name__ in [ *get_values(__lowerCamelCase ), *get_values(__lowerCamelCase ), ]: continue __UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() __UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: Optional[int] ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels() __UpperCAmelCase : List[str] = False __UpperCAmelCase : int = True if ( model_class.__name__ in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )] or not model_class.supports_gradient_checkpointing ): continue __UpperCAmelCase : int = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() __UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) __UpperCAmelCase : Any = model(**__lowerCamelCase ).loss loss.backward() def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(__lowerCamelCase ) __UpperCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : List[Any] = [*signature.parameters.keys()] __UpperCAmelCase : int = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowerCamelCase ( self: str ) -> List[Any]: __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowerCamelCase ( self: Union[str, Any] ) -> Dict: def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ): __UpperCAmelCase : Any = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) __UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Any = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def _lowerCamelCase ( self: Dict ) -> List[Any]: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) -> List[Any]: __UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self: Optional[int] ) -> Dict: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase ) __UpperCAmelCase : List[str] = self.default_image_processor __UpperCAmelCase : Optional[Any] = prepare_img() __UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : str = model(**__lowerCamelCase ) # verify the logits __UpperCAmelCase : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
342
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowerCamelCase__: Tuple = StableDiffusionSAGPipeline lowerCamelCase__: Tuple = TEXT_TO_IMAGE_PARAMS lowerCamelCase__: Tuple = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase__: List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__: Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase__: List[str] = False def _lowerCamelCase ( self: str ) -> Dict: torch.manual_seed(0 ) __UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __UpperCAmelCase : List[str] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=__lowercase , set_alpha_to_one=__lowercase , ) torch.manual_seed(0 ) __UpperCAmelCase : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __UpperCAmelCase : Tuple = CLIPTextModel(__lowercase ) __UpperCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __UpperCAmelCase : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=0 ) -> Union[str, Any]: if str(__lowercase ).startswith("mps" ): __UpperCAmelCase : Union[str, Any] = torch.manual_seed(__lowercase ) else: __UpperCAmelCase : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __UpperCAmelCase : Any = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self: str ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self: List[Any] ) -> Tuple: __UpperCAmelCase : str = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) __UpperCAmelCase : Tuple = sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Optional[Any] = '''.''' __UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) __UpperCAmelCase : List[str] = sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) __UpperCAmelCase : List[Any] = output.images __UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Any = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: __UpperCAmelCase : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __UpperCAmelCase : List[str] = sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Dict = '''.''' __UpperCAmelCase : List[Any] = torch.manual_seed(0 ) __UpperCAmelCase : Union[str, Any] = sag_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" ) __UpperCAmelCase : List[str] = output.images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __UpperCAmelCase : Optional[int] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def _lowerCamelCase ( self: str ) -> Dict: __UpperCAmelCase : Dict = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) __UpperCAmelCase : Optional[Any] = sag_pipe.to(__lowercase ) sag_pipe.set_progress_bar_config(disable=__lowercase ) __UpperCAmelCase : Union[str, Any] = '''.''' __UpperCAmelCase : int = torch.manual_seed(0 ) __UpperCAmelCase : Any = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=__lowercase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="np" , ) __UpperCAmelCase : Optional[int] = output.images assert image.shape == (1, 5_12, 7_68, 3)
367
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: str = "detr" lowerCamelCase__: Dict = ["past_key_values"] lowerCamelCase__: str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[Any] = backbone_config.get("model_type" ) __UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None __UpperCAmelCase : Any = use_timm_backbone __UpperCAmelCase : Optional[Any] = backbone_config __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : List[Any] = num_queries __UpperCAmelCase : Optional[int] = d_model __UpperCAmelCase : Optional[Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[Any] = encoder_attention_heads __UpperCAmelCase : int = decoder_ffn_dim __UpperCAmelCase : Tuple = decoder_layers __UpperCAmelCase : int = decoder_attention_heads __UpperCAmelCase : List[Any] = dropout __UpperCAmelCase : Dict = attention_dropout __UpperCAmelCase : Optional[Any] = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Any = init_std __UpperCAmelCase : str = init_xavier_std __UpperCAmelCase : int = encoder_layerdrop __UpperCAmelCase : Tuple = decoder_layerdrop __UpperCAmelCase : List[Any] = encoder_layers __UpperCAmelCase : Optional[Any] = auxiliary_loss __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : str = use_pretrained_backbone __UpperCAmelCase : Dict = dilation # Hungarian matcher __UpperCAmelCase : Optional[int] = class_cost __UpperCAmelCase : Optional[Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Any = mask_loss_coefficient __UpperCAmelCase : Any = dice_loss_coefficient __UpperCAmelCase : Any = bbox_loss_coefficient __UpperCAmelCase : Optional[int] = giou_loss_coefficient __UpperCAmelCase : Optional[Any] = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: Dict ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: str ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: str ) -> Dict[str, any]: __UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : int = self.backbone_config.to_dict() __UpperCAmelCase : List[str] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: Optional[int] = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: List[str] ) -> int: return 12
342
0
from __future__ import annotations import math def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> int: if depth < 0: raise ValueError("Depth cannot be less than 0" ) if not scores: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, snake_case_, snake_case_, snake_case_ ), minimax(depth + 1, node_index * 2 + 1, snake_case_, snake_case_, snake_case_ ), ) if is_max else min( minimax(depth + 1, node_index * 2, snake_case_, snake_case_, snake_case_ ), minimax(depth + 1, node_index * 2 + 1, snake_case_, snake_case_, snake_case_ ), ) ) def _UpperCamelCase ( ) -> None: __UpperCAmelCase : int = [90, 23, 6, 33, 21, 65, 123, 3_4423] __UpperCAmelCase : Any = math.log(len(snake_case_ ), 2 ) print(f'''Optimal value : {minimax(0, 0, snake_case_, snake_case_, snake_case_ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str: __UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T __UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T return jnp.matmul(snake_case__, norm_emb_a.T ) class _snake_case ( nn.Module ): lowerCamelCase__: CLIPConfig lowerCamelCase__: jnp.dtype = jnp.floataa def _lowerCamelCase ( self: Any ) -> Tuple: __UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) __UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype ) __UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) __UpperCAmelCase : int = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) __UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) __UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict: __UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1] __UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds ) __UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs __UpperCAmelCase : List[str] = 0.0 __UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase ) # Use a lower threshold if an image has any special care concept __UpperCAmelCase : List[Any] = is_special_care * 0.01 __UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment __UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 ) __UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _snake_case ( _lowercase ): lowerCamelCase__: int = CLIPConfig lowerCamelCase__: Tuple = "clip_input" lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int: if input_shape is None: __UpperCAmelCase : Dict = (1, 2_24, 2_24, 3) __UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase ) super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init ) def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict: # init input tensor __UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng} __UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"] return random_params def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]: __UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
342
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class _snake_case ( _UpperCamelCase ): lowerCamelCase__: int = 'M-CLIP' def __init__( self: Dict , __lowerCamelCase: int=10_24 , __lowerCamelCase: List[str]=7_68 , **__lowerCamelCase: List[str] ) -> str: __UpperCAmelCase : Optional[Any] = transformerDimSize __UpperCAmelCase : str = imageDimSize super().__init__(**_UpperCAmelCase ) class _snake_case ( _UpperCamelCase ): lowerCamelCase__: Tuple = MCLIPConfig def __init__( self: List[Any] , __lowerCamelCase: str , *__lowerCamelCase: Tuple , **__lowerCamelCase: List[str] ) -> Any: super().__init__(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) __UpperCAmelCase : Tuple = XLMRobertaModel(_UpperCAmelCase ) __UpperCAmelCase : str = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: Any ) -> Optional[Any]: __UpperCAmelCase : List[Any] = self.transformer(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(_UpperCAmelCase ), embs
369
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Union[str, Any] = 384 if "tiny" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3] __UpperCAmelCase : List[Any] = [96, 192, 384, 768] if "small" in model_name: __UpperCAmelCase : Tuple = [3, 3, 27, 3] __UpperCAmelCase : Any = [96, 192, 384, 768] if "base" in model_name: __UpperCAmelCase : str = [3, 3, 27, 3] __UpperCAmelCase : str = [128, 256, 512, 1024] __UpperCAmelCase : str = 512 if "large" in model_name: __UpperCAmelCase : Dict = [3, 3, 27, 3] __UpperCAmelCase : int = [192, 384, 768, 1536] __UpperCAmelCase : Dict = 768 if "xlarge" in model_name: __UpperCAmelCase : List[Any] = [3, 3, 27, 3] __UpperCAmelCase : Tuple = [256, 512, 1024, 2048] __UpperCAmelCase : int = 1024 # set label information __UpperCAmelCase : List[Any] = 150 __UpperCAmelCase : str = "huggingface/label-files" __UpperCAmelCase : List[Any] = "ade20k-id2label.json" __UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) ) __UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = ConvNextConfig( depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] ) __UpperCAmelCase : int = UperNetConfig( backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, ) return config def _UpperCamelCase ( snake_case__ ) -> Tuple: __UpperCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any: __UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ ) __UpperCAmelCase : Optional[int] = val def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]: __UpperCAmelCase : Dict = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } __UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name] __UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"] __UpperCAmelCase : Dict = get_upernet_config(snake_case__ ) __UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCAmelCase : str = state_dict.pop(snake_case__ ) if "bn" in key: __UpperCAmelCase : int = key.replace("bn", "batch_norm" ) __UpperCAmelCase : Union[str, Any] = val # rename keys __UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__, snake_case__, snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image __UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" __UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" ) __UpperCAmelCase : str = SegformerImageProcessor() __UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case__ ) if model_name == "upernet-convnext-tiny": __UpperCAmelCase : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCAmelCase : Optional[Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCAmelCase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCAmelCase : Tuple = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCAmelCase : Union[str, Any] = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:", outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-convnext-tiny''', type=str, choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']], help='''Name of the ConvNext UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) _snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
342
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _snake_case = threading.Lock() _snake_case = None _snake_case = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _snake_case = logging.WARNING _snake_case = True def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : List[str] = os.getenv("TRANSFORMERS_VERBOSITY", __SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def _UpperCamelCase ( ) -> str: return __name__.split("." )[0] def _UpperCamelCase ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def _UpperCamelCase ( ) -> None: global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return __UpperCAmelCase : str = logging.StreamHandler() # Set sys.stderr as stream. __UpperCAmelCase : Any = sys.stderr.flush # Apply our default configuration to the library root logger. __UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) __UpperCAmelCase : List[Any] = False def _UpperCamelCase ( ) -> None: global _default_handler with _lock: if not _default_handler: return __UpperCAmelCase : Dict = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) __UpperCAmelCase : str = None def _UpperCamelCase ( ) -> int: return log_levels def _UpperCamelCase ( snake_case__ = None ) -> logging.Logger: if name is None: __UpperCAmelCase : Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> int: _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _UpperCamelCase ( snake_case__ ) -> None: _configure_library_root_logger() _get_library_root_logger().setLevel(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> Any: return set_verbosity(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> Dict: return set_verbosity(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> str: return set_verbosity(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> Union[str, Any]: return set_verbosity(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def _UpperCamelCase ( ) -> None: _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def _UpperCamelCase ( snake_case__ ) -> None: _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( snake_case__ ) -> None: _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> None: _configure_library_root_logger() __UpperCAmelCase : Optional[Any] = False def _UpperCamelCase ( ) -> None: _configure_library_root_logger() __UpperCAmelCase : Union[str, Any] = True def _UpperCamelCase ( ) -> None: __UpperCAmelCase : Any = _get_library_root_logger().handlers for handler in handlers: __UpperCAmelCase : str = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( ) -> None: __UpperCAmelCase : List[str] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self, *snake_case__, **snake_case__ ) -> Any: __UpperCAmelCase : Any = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS", __SCREAMING_SNAKE_CASE ) if no_advisory_warnings: return self.warning(*__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE ) _snake_case = warning_advice @functools.lru_cache(__SCREAMING_SNAKE_CASE ) def _UpperCamelCase ( self, *snake_case__, **snake_case__ ) -> List[str]: self.warning(*__SCREAMING_SNAKE_CASE, **__SCREAMING_SNAKE_CASE ) _snake_case = warning_once class _snake_case : def __init__( self: Optional[int] , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ) -> Union[str, Any]: # pylint: disable=unused-argument __UpperCAmelCase : Dict = args[0] if args else None def __iter__( self: Optional[Any] ) -> int: return iter(self._iterator ) def __getattr__( self: Tuple , __lowerCamelCase: Tuple ) -> int: def empty_fn(*__lowerCamelCase: str , **__lowerCamelCase: List[Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self: Dict ) -> List[str]: return self def __exit__( self: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Dict ) -> str: return class _snake_case : def __call__( self: List[str] , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Union[str, Any] ) -> str: if _tqdm_active: return tqdm_lib.tqdm(*UpperCamelCase__ , **UpperCamelCase__ ) else: return EmptyTqdm(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCamelCase ( self: Any , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: List[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCamelCase ( self: Tuple ) -> List[Any]: if _tqdm_active: return tqdm_lib.tqdm.get_lock() _snake_case = _tqdm_cls() def _UpperCamelCase ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def _UpperCamelCase ( ) -> Dict: global _tqdm_active __UpperCAmelCase : Union[str, Any] = True hf_hub_utils.enable_progress_bars() def _UpperCamelCase ( ) -> int: global _tqdm_active __UpperCAmelCase : str = False hf_hub_utils.disable_progress_bars()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class _snake_case ( _lowercase ): lowerCamelCase__: Dict = "roc_bert" def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]: __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Dict = max_position_embeddings __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[str] = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = initializer_range __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Optional[int] = use_cache __UpperCAmelCase : Optional[Any] = enable_pronunciation __UpperCAmelCase : Any = enable_shape __UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim __UpperCAmelCase : Optional[Any] = pronunciation_vocab_size __UpperCAmelCase : Optional[Any] = shape_embed_dim __UpperCAmelCase : List[Any] = shape_vocab_size __UpperCAmelCase : int = concat_input __UpperCAmelCase : int = position_embedding_type __UpperCAmelCase : Optional[int] = classifier_dropout super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
342
0