code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
_snake_case = re.compile('''[^A-Za-z_0-9]''')
# parameters used in DuplicationIndex
_snake_case = 10
_snake_case = 256
def _UpperCamelCase ( snake_case__ ) -> Optional[MinHash]:
if len(snake_case__ ) < MIN_NUM_TOKENS:
return None
__UpperCAmelCase : List[str] = MinHash(num_perm=snake_case__ )
for token in set(snake_case__ ):
min_hash.update(token.encode() )
return min_hash
def _UpperCamelCase ( snake_case__ ) -> Set[str]:
return {t for t in NON_ALPHA.split(snake_case__ ) if len(t.strip() ) > 0}
class _snake_case :
def __init__( self: List[Any] , *,
__lowerCamelCase: float = 0.85 , ) -> Any:
__UpperCAmelCase : Union[str, Any] = duplication_jaccard_threshold
__UpperCAmelCase : Dict = NUM_PERM
__UpperCAmelCase : List[Any] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
__UpperCAmelCase : Tuple = defaultdict(__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: Tuple , __lowerCamelCase: MinHash ) -> None:
__UpperCAmelCase : Any = self._index.query(__lowerCamelCase )
if code_key in self._index.keys:
print(f'''Duplicate key {code_key}''' )
return
self._index.insert(__lowerCamelCase , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(__lowerCamelCase )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(__lowerCamelCase )
def _lowerCamelCase ( self: int ) -> List[List[Dict]]:
__UpperCAmelCase : str = []
for base, duplicates in self._duplicate_clusters.items():
__UpperCAmelCase : int = [base] + list(__lowerCamelCase )
# reformat the cluster to be a list of dict
__UpperCAmelCase : Union[str, Any] = [{"base_index": el[0], "repo_name": el[1], "path": el[2]} for el in cluster]
duplicate_clusters.append(__lowerCamelCase )
return duplicate_clusters
def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> None:
__UpperCAmelCase : List[Any] = self.get_duplicate_clusters()
with open(__lowerCamelCase , "w" ) as f:
json.dump(__lowerCamelCase , __lowerCamelCase )
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase , __UpperCAmelCase : Tuple = element
__UpperCAmelCase : Union[str, Any] = get_min_hash([t for t in NON_ALPHA.split(data["content"] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def _UpperCamelCase ( snake_case__ ) -> Optional[int]:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash, ThreadedIterator(snake_case__, max_queue_size=1_0000 ), chunksize=100, ):
if data is not None:
yield data
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple:
__UpperCAmelCase : Any = DuplicationIndex(duplication_jaccard_threshold=snake_case__ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(snake_case__ ) ), max_queue_size=100 ) ):
di.add(snake_case__, snake_case__ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def _UpperCamelCase ( snake_case__, snake_case__ ) -> float:
__UpperCAmelCase : List[Any] = get_tokens(snake_case__ )
__UpperCAmelCase : List[Any] = get_tokens(snake_case__ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
_snake_case = None
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : Tuple = []
for elementa in cluster:
__UpperCAmelCase : List[Any] = _shared_dataset[elementa["base_index"]]["content"]
for elementa in extremes:
__UpperCAmelCase : Union[str, Any] = _shared_dataset[elementa["base_index"]]["content"]
if jaccard_similarity(snake_case__, snake_case__ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
__UpperCAmelCase : Any = 1
extremes.append(snake_case__ )
return extremes
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict:
global _shared_dataset
__UpperCAmelCase : Any = dataset
__UpperCAmelCase : str = []
__UpperCAmelCase : Dict = partial(_find_cluster_extremes_shared, jaccard_threshold=snake_case__ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
snake_case__, snake_case__, ), total=len(snake_case__ ), ):
extremes_list.append(snake_case__ )
return extremes_list
def _UpperCamelCase ( snake_case__, snake_case__ = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
__UpperCAmelCase : Any = make_duplicate_clusters(snake_case__, snake_case__ )
__UpperCAmelCase : Any = {x["base_index"] for cluster in duplicate_clusters for x in cluster}
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : int = find_extremes(snake_case__, snake_case__, snake_case__ )
for extremes in extremes_clusters:
for element in extremes:
__UpperCAmelCase : Union[str, Any] = element
__UpperCAmelCase : Tuple = duplicate_indices - set(extreme_dict.keys() )
__UpperCAmelCase : List[Any] = dataset.filter(lambda snake_case__, snake_case__ : idx not in remove_indices, with_indices=snake_case__ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
__UpperCAmelCase : Union[str, Any] = element["base_index"] in extreme_dict
if element["is_extreme"]:
__UpperCAmelCase : Union[str, Any] = extreme_dict[element["base_index"]]["copies"]
print(f'''Original dataset size: {len(snake_case__ )}''' )
print(f'''Number of duplicate clusters: {len(snake_case__ )}''' )
print(f'''Files in duplicate cluster: {len(snake_case__ )}''' )
print(f'''Unique files in duplicate cluster: {len(snake_case__ )}''' )
print(f'''Filtered dataset size: {len(snake_case__ )}''' )
return ds_filter, duplicate_clusters
| 342 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all BART models at https://huggingface.co/models?filter=bart
_snake_case = {
'''vocab_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/vocab.json''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/vocab.json''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json''',
},
'''merges_file''': {
'''facebook/bart-base''': '''https://huggingface.co/facebook/bart-base/resolve/main/merges.txt''',
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/merges.txt''',
'''facebook/bart-large-mnli''': '''https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt''',
'''facebook/bart-large-cnn''': '''https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt''',
'''facebook/bart-large-xsum''': '''https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt''',
'''yjernite/bart_eli5''': '''https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt''',
},
}
_snake_case = {
'''facebook/bart-base''': 1024,
'''facebook/bart-large''': 1024,
'''facebook/bart-large-mnli''': 1024,
'''facebook/bart-large-cnn''': 1024,
'''facebook/bart-large-xsum''': 1024,
'''yjernite/bart_eli5''': 1024,
}
@lru_cache()
def _UpperCamelCase ( ) -> Tuple:
__UpperCAmelCase : Optional[Any] = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : Any = bs[:]
__UpperCAmelCase : Tuple = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Union[str, Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
__UpperCAmelCase : Any = set()
__UpperCAmelCase : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[int] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = VOCAB_FILES_NAMES
lowerCamelCase__: Any = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: str = ["input_ids", "attention_mask"]
def __init__( self: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[int]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: Optional[int]="</s>" , __lowerCamelCase: Optional[Any]="</s>" , __lowerCamelCase: Optional[int]="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: int="<mask>" , __lowerCamelCase: List[Any]=False , **__lowerCamelCase: Tuple , ) -> Optional[int]:
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : int = json.load(__lowerCamelCase )
__UpperCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Optional[int] = errors # how to handle errors in decoding
__UpperCAmelCase : Tuple = bytes_to_unicode()
__UpperCAmelCase : str = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : Optional[int] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : Optional[int] = {}
__UpperCAmelCase : List[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
def _lowerCamelCase ( self: Dict ) -> Union[str, Any]:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: str , __lowerCamelCase: Any ) -> Dict:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : Any = tuple(__lowerCamelCase )
__UpperCAmelCase : List[Any] = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Optional[int] = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : str = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Dict = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : int = tuple(__lowerCamelCase )
__UpperCAmelCase : Tuple = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
__UpperCAmelCase : List[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : str = word
return word
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : int = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : Dict = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: Any , __lowerCamelCase: str ) -> Tuple:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[Any] ) -> Tuple:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = "".join(__lowerCamelCase )
__UpperCAmelCase : int = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Optional[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Any = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : Optional[Any] = [self.cls_token_id]
__UpperCAmelCase : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : Dict = [self.sep_token_id]
__UpperCAmelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Dict = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : int = " " + text
return (text, kwargs)
| 342 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 1 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
_snake_case = logging.getLogger()
def _UpperCamelCase ( ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("-f" )
__UpperCAmelCase : Tuple = parser.parse_args()
return args.f
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Tuple ) -> None:
__UpperCAmelCase : Dict = logging.StreamHandler(sys.stdout )
logger.addHandler(__lowerCamelCase )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> Optional[int]:
__UpperCAmelCase : Optional[Any] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , "run_glue_deebert.py" )
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
__UpperCAmelCase : Any = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(__lowerCamelCase , 0.6_66 )
@slow
@require_torch_non_multi_gpu
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : Optional[int] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split()
self.run_and_check(__lowerCamelCase )
__UpperCAmelCase : int = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(__lowerCamelCase )
__UpperCAmelCase : Any = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split()
self.run_and_check(__lowerCamelCase )
| 342 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''microsoft/swin-tiny-patch4-window7-224''': (
'''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json'''
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class _snake_case ( _lowercase , _lowercase ):
lowerCamelCase__: Any = "swin"
lowerCamelCase__: List[str] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self: Optional[Any] , __lowerCamelCase: str=2_24 , __lowerCamelCase: Optional[Any]=4 , __lowerCamelCase: Union[str, Any]=3 , __lowerCamelCase: Union[str, Any]=96 , __lowerCamelCase: Union[str, Any]=[2, 2, 6, 2] , __lowerCamelCase: Optional[Any]=[3, 6, 12, 24] , __lowerCamelCase: str=7 , __lowerCamelCase: Tuple=4.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: List[Any]="gelu" , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: str=0.02 , __lowerCamelCase: Any=1e-5 , __lowerCamelCase: List[Any]=32 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: Optional[Any] , ) -> Union[str, Any]:
super().__init__(**__lowerCamelCase )
__UpperCAmelCase : Any = image_size
__UpperCAmelCase : Optional[Any] = patch_size
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : Any = embed_dim
__UpperCAmelCase : str = depths
__UpperCAmelCase : Tuple = len(__lowerCamelCase )
__UpperCAmelCase : List[Any] = num_heads
__UpperCAmelCase : Optional[int] = window_size
__UpperCAmelCase : Optional[int] = mlp_ratio
__UpperCAmelCase : str = qkv_bias
__UpperCAmelCase : Any = hidden_dropout_prob
__UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob
__UpperCAmelCase : Dict = drop_path_rate
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Optional[int] = use_absolute_embeddings
__UpperCAmelCase : Dict = layer_norm_eps
__UpperCAmelCase : List[Any] = initializer_range
__UpperCAmelCase : str = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__UpperCAmelCase : Any = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) )
__UpperCAmelCase : List[str] = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(__lowerCamelCase ) + 1 )]
__UpperCAmelCase , __UpperCAmelCase : List[str] = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[Any] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _lowerCamelCase ( self: int ) -> float:
return 1e-4
| 342 | import math
_snake_case = 10
_snake_case = 7
_snake_case = BALLS_PER_COLOUR * NUM_COLOURS
def _UpperCamelCase ( snake_case__ = 20 ) -> str:
__UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ )
__UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 342 | 1 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def _UpperCamelCase ( snake_case__ = 8 ) -> str:
__UpperCAmelCase : Optional[Any] = ascii_letters + digits + punctuation
return "".join(secrets.choice(snake_case__ ) for _ in range(snake_case__ ) )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str:
# Password Generator = full boot with random_number, random_letters, and
# random_character FUNCTIONS
# Put your code here...
i -= len(snake_case__ )
__UpperCAmelCase : Any = i // 3
__UpperCAmelCase : Optional[Any] = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
__UpperCAmelCase : Union[str, Any] = (
chars_incl
+ random(snake_case__, quotient + remainder )
+ random(snake_case__, snake_case__ )
+ random(snake_case__, snake_case__ )
)
__UpperCAmelCase : Tuple = list(snake_case__ )
shuffle(snake_case__ )
return "".join(snake_case__ )
# random is a generalised function for letters, characters and numbers
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str:
return "".join(secrets.choice(snake_case__ ) for _ in range(snake_case__ ) )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int:
pass # Put your code here...
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]:
pass # Put your code here...
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int:
pass # Put your code here...
def _UpperCamelCase ( snake_case__, snake_case__ = 8 ) -> bool:
if len(snake_case__ ) < min_length:
# Your Password must be at least 8 characters long
return False
__UpperCAmelCase : Optional[Any] = any(char in ascii_uppercase for char in password )
__UpperCAmelCase : str = any(char in ascii_lowercase for char in password )
__UpperCAmelCase : str = any(char in digits for char in password )
__UpperCAmelCase : Optional[Any] = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : str = int(input("Please indicate the max length of your password: " ).strip() )
__UpperCAmelCase : Any = input(
"Please indicate the characters that must be in your password: " ).strip()
print("Password generated:", password_generator(snake_case__ ) )
print(
"Alternative Password generated:", alternative_password_generator(snake_case__, snake_case__ ), )
print("[If you are thinking of using this passsword, You better save it.]" )
if __name__ == "__main__":
main()
| 342 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = [0] * len(snake_case__ )
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : str = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__UpperCAmelCase : str = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
_snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
_snake_case = TypeVar('''T''')
class _snake_case ( Generic[T] ):
def __init__( self: List[str] , __lowerCamelCase: list[T] , __lowerCamelCase: Callable[[T, T], T] ) -> None:
__UpperCAmelCase : Any | T = None
__UpperCAmelCase : int = len(__lowerCamelCase )
__UpperCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr
__UpperCAmelCase : str = fnc
self.build()
def _lowerCamelCase ( self: Union[str, Any] ) -> None:
for p in range(self.N - 1 , 0 , -1 ):
__UpperCAmelCase : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _lowerCamelCase ( self: str , __lowerCamelCase: int , __lowerCamelCase: T ) -> None:
p += self.N
__UpperCAmelCase : List[str] = v
while p > 1:
__UpperCAmelCase : Optional[int] = p // 2
__UpperCAmelCase : List[str] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def _lowerCamelCase ( self: str , __lowerCamelCase: int , __lowerCamelCase: int ) -> T | None: # noqa: E741
__UpperCAmelCase , __UpperCAmelCase : List[Any] = l + self.N, r + self.N
__UpperCAmelCase : T | None = None
while l <= r:
if l % 2 == 1:
__UpperCAmelCase : Any = self.st[l] if res is None else self.fn(__lowerCamelCase , self.st[l] )
if r % 2 == 0:
__UpperCAmelCase : str = self.st[r] if res is None else self.fn(__lowerCamelCase , self.st[r] )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
_snake_case = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
_snake_case = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
_snake_case = SegmentTree(test_array, min)
_snake_case = SegmentTree(test_array, max)
_snake_case = SegmentTree(test_array, lambda a, b: a + b)
def _UpperCamelCase ( ) -> None:
for i in range(len(snake_case__ ) ):
for j in range(snake_case__, len(snake_case__ ) ):
__UpperCAmelCase : List[Any] = reduce(snake_case__, test_array[i : j + 1] )
__UpperCAmelCase : Optional[int] = reduce(snake_case__, test_array[i : j + 1] )
__UpperCAmelCase : Optional[int] = reduce(lambda snake_case__, snake_case__ : a + b, test_array[i : j + 1] )
assert min_range == min_segment_tree.query(snake_case__, snake_case__ )
assert max_range == max_segment_tree.query(snake_case__, snake_case__ )
assert sum_range == sum_segment_tree.query(snake_case__, snake_case__ )
test_all_segments()
for index, value in test_updates.items():
_snake_case = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 342 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def _UpperCamelCase ( snake_case__, snake_case__=7 ) -> Optional[Any]:
__UpperCAmelCase : Dict = None
if token is not None:
__UpperCAmelCase : Any = {"Accept": "application/vnd.github+json", "Authorization": f'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
__UpperCAmelCase : List[Any] = "636036"
__UpperCAmelCase : str = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
__UpperCAmelCase : Tuple = requests.get(snake_case__, headers=snake_case__ ).json()
return result["workflow_runs"]
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Any = get_daily_ci_runs(snake_case__ )
__UpperCAmelCase : Dict = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
__UpperCAmelCase : Optional[Any] = workflow_run["id"]
break
return workflow_run_id
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : Optional[int] = get_last_daily_ci_runs(snake_case__ )
if workflow_run_id is not None:
__UpperCAmelCase : List[Any] = get_artifacts_links(worflow_run_id=snake_case__, token=snake_case__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
__UpperCAmelCase : List[Any] = artifacts_links[artifact_name]
download_artifact(
artifact_name=snake_case__, artifact_url=snake_case__, output_dir=snake_case__, token=snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
get_last_daily_ci_artifacts(snake_case__, snake_case__, snake_case__ )
__UpperCAmelCase : Union[str, Any] = {}
for artifact_name in artifact_names:
__UpperCAmelCase : Dict = os.path.join(snake_case__, f'''{artifact_name}.zip''' )
if os.path.isfile(snake_case__ ):
__UpperCAmelCase : int = {}
with zipfile.ZipFile(snake_case__ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case__ ):
# read the file
with z.open(snake_case__ ) as f:
__UpperCAmelCase : Optional[Any] = f.read().decode("UTF-8" )
return results
| 342 | import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | 1 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _snake_case ( _lowercase ):
lowerCamelCase__: List[Any] = ["image_processor", "tokenizer"]
lowerCamelCase__: List[str] = "AutoImageProcessor"
lowerCamelCase__: List[Any] = "AutoTokenizer"
def __init__( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int ) -> Optional[Any]:
super().__init__(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.image_processor
def __call__( self: List[str] , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
__UpperCAmelCase : Optional[int] = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if images is not None:
__UpperCAmelCase : str = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if text is not None and images is not None:
__UpperCAmelCase : Tuple = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase )
def _lowerCamelCase ( self: Any , *__lowerCamelCase: str , **__lowerCamelCase: List[Any] ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: List[str] ) -> Optional[int]:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: str ) -> int:
return ["input_ids", "attention_mask", "pixel_values"]
| 342 | import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class _snake_case :
lowerCamelCase__: int
lowerCamelCase__: Node | None = None
lowerCamelCase__: Node | None = None
def _UpperCamelCase ( ) -> Node | None:
__UpperCAmelCase : Union[str, Any] = Node(1 )
__UpperCAmelCase : Dict = Node(2 )
__UpperCAmelCase : str = Node(3 )
__UpperCAmelCase : Optional[int] = Node(4 )
__UpperCAmelCase : str = Node(5 )
return tree
def _UpperCamelCase ( snake_case__ ) -> list[int]:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def _UpperCamelCase ( snake_case__ ) -> list[int]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def _UpperCamelCase ( snake_case__ ) -> list[int]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def _UpperCamelCase ( snake_case__ ) -> int:
return (max(height(root.left ), height(root.right ) ) + 1) if root else 0
def _UpperCamelCase ( snake_case__ ) -> Sequence[Node | None]:
__UpperCAmelCase : list[Any] = []
if root is None:
return output
__UpperCAmelCase : Optional[int] = deque([root] )
while process_queue:
__UpperCAmelCase : str = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Sequence[Node | None]:
__UpperCAmelCase : list[Any] = []
def populate_output(snake_case__, snake_case__ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left, level - 1 )
populate_output(root.right, level - 1 )
populate_output(snake_case__, snake_case__ )
return output
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Sequence[Node | None]:
__UpperCAmelCase : list[Any] = []
def populate_output(snake_case__, snake_case__ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right, level - 1 )
populate_output(root.left, level - 1 )
populate_output(snake_case__, snake_case__ )
return output
def _UpperCamelCase ( snake_case__ ) -> Sequence[Node | None] | list[Any]:
if root is None:
return []
__UpperCAmelCase : list[Sequence[Node | None]] = []
__UpperCAmelCase : Union[str, Any] = 0
__UpperCAmelCase : str = height(snake_case__ )
for h in range(1, height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case__, snake_case__ ) )
__UpperCAmelCase : Dict = 1
else:
output.append(get_nodes_from_right_to_left(snake_case__, snake_case__ ) )
__UpperCAmelCase : Optional[int] = 0
return output
def _UpperCamelCase ( ) -> None: # Main function for testing.
__UpperCAmelCase : Tuple = make_tree()
print(f'''In-order Traversal: {inorder(snake_case__ )}''' )
print(f'''Pre-order Traversal: {preorder(snake_case__ )}''' )
print(f'''Post-order Traversal: {postorder(snake_case__ )}''', "\n" )
print(f'''Height of Tree: {height(snake_case__ )}''', "\n" )
print("Complete Level Order Traversal: " )
print(level_order(snake_case__ ), "\n" )
print("Level-wise order Traversal: " )
for level in range(1, height(snake_case__ ) + 1 ):
print(f'''Level {level}:''', get_nodes_from_left_to_right(snake_case__, level=snake_case__ ) )
print("\nZigZag order Traversal: " )
print(zigzag(snake_case__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 342 | import argparse
import struct
import unittest
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None:
__UpperCAmelCase : Tuple = data
# Initialize hash values
__UpperCAmelCase : Any = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
__UpperCAmelCase : Dict = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
__UpperCAmelCase : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes:
__UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64))
__UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCamelCase ( self: Dict ) -> None:
# Convert into blocks of 64 bytes
__UpperCAmelCase : Dict = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCAmelCase : Union[str, Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCAmelCase : str = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCAmelCase : Union[str, Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
__UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 )
__UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
__UpperCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 )
__UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c)
__UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
__UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCAmelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
__UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int:
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> None:
import hashlib
__UpperCAmelCase : Dict = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() )
def _UpperCamelCase ( ) -> None:
import doctest
doctest.testmod()
__UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", )
parser.add_argument(
"-f", "--file", dest="input_file", help="Hash contents of a file" )
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, "rb" ) as f:
__UpperCAmelCase : List[str] = f.read()
else:
__UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 342 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | import numpy as np
import datasets
_snake_case = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_snake_case = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_snake_case = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]:
# convert to numpy arrays
__UpperCAmelCase : int = np.array(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__UpperCAmelCase : str = X - np.mean(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T )
try:
__UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
__UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 | 1 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = False ) -> list[float]:
if radian_mode:
return [magnitude * cos(snake_case__ ), magnitude * sin(snake_case__ )]
return [magnitude * cos(radians(snake_case__ ) ), magnitude * sin(radians(snake_case__ ) )]
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = 10**-1 ) -> bool:
__UpperCAmelCase : NDArray[floataa] = cross(snake_case__, snake_case__ )
__UpperCAmelCase : float = sum(snake_case__ )
return abs(snake_case__ ) < eps
if __name__ == "__main__":
# Test to check if it works
_snake_case = array(
[
polar_force(7_1_8.4, 180 - 30),
polar_force(8_7_9.5_4, 45),
polar_force(100, -90),
]
)
_snake_case = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
_snake_case = array(
[
polar_force(30 * 9.8_1, 15),
polar_force(215, 180 - 45),
polar_force(264, 90 - 30),
]
)
_snake_case = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
_snake_case = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]])
_snake_case = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 342 | import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
_snake_case = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( _lowercase ):
def __init__( self: Dict , *__lowerCamelCase: int , __lowerCamelCase: List[str]=None , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=None , **__lowerCamelCase: Dict ) -> List[Any]:
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
__UpperCAmelCase : Any = eval_examples
__UpperCAmelCase : Optional[Any] = post_process_function
__UpperCAmelCase : int = quant_trainer_args
__UpperCAmelCase : Tuple = 1_28 # default number of calibration samples
def _lowerCamelCase ( self: str , __lowerCamelCase: Union[str, Any]=None ) -> List[str]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
__UpperCAmelCase : Dict = calib_dataset if calib_dataset is not None else self.calib_dataset
__UpperCAmelCase : Optional[int] = self._remove_unused_columns(__lowerCamelCase , description="Calibration" )
return DataLoader(
__lowerCamelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__lowerCamelCase , )
def _lowerCamelCase ( self: int , __lowerCamelCase: int=None ) -> Optional[Any]:
__UpperCAmelCase : str = self.train_dataset if calib_dataset is None else calib_dataset
__UpperCAmelCase : Dict = self.get_calib_dataloader(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.model
quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args , calib=__lowerCamelCase )
model.eval()
quant_trainer.enable_calibration(__lowerCamelCase )
logger.info("***** Running calibration *****" )
logger.info(f''' Num examples = {self.calib_num}''' )
logger.info(f''' Batch size = {calib_dataloader.batch_size}''' )
for step, inputs in enumerate(__lowerCamelCase ):
# Prediction step
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.prediction_step(__lowerCamelCase , __lowerCamelCase , prediction_loss_only=__lowerCamelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__lowerCamelCase , self.quant_trainer_args )
__UpperCAmelCase : str = model
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str]=None , __lowerCamelCase: List[str]=None , __lowerCamelCase: Any=None , __lowerCamelCase: str = "eval" ) -> Union[str, Any]:
__UpperCAmelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
__UpperCAmelCase : List[Any] = self.get_eval_dataloader(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCAmelCase : Optional[Any] = self.compute_metrics
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCAmelCase : List[str] = eval_loop(
__lowerCamelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , )
finally:
__UpperCAmelCase : Any = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
__UpperCAmelCase : int = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions )
__UpperCAmelCase : str = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
__UpperCAmelCase : Any = metrics.pop(__lowerCamelCase )
self.log(__lowerCamelCase )
else:
__UpperCAmelCase : Dict = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__UpperCAmelCase : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase )
return metrics
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: Any=None , __lowerCamelCase: str = "test" ) -> str:
__UpperCAmelCase : List[str] = self.get_test_dataloader(__lowerCamelCase )
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCAmelCase : Optional[int] = self.compute_metrics
__UpperCAmelCase : str = None
__UpperCAmelCase : Dict = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
__UpperCAmelCase : List[str] = eval_loop(
__lowerCamelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , )
finally:
__UpperCAmelCase : Any = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
__UpperCAmelCase : Optional[int] = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , "predict" )
__UpperCAmelCase : Optional[Any] = self.compute_metrics(__lowerCamelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
__UpperCAmelCase : Optional[Any] = metrics.pop(__lowerCamelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int="./" ) -> int:
__UpperCAmelCase : List[str] = self.eval_dataset
__UpperCAmelCase : List[Any] = self.get_eval_dataloader(__lowerCamelCase )
__UpperCAmelCase : Tuple = next(iter(__lowerCamelCase ) )
# saving device - to make it consistent
__UpperCAmelCase : List[str] = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
__UpperCAmelCase : Dict = tuple(v.to(__lowerCamelCase ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
__UpperCAmelCase : int = True
__UpperCAmelCase : Optional[int] = self.model.to(__lowerCamelCase )
model.eval()
model.float()
__UpperCAmelCase : Tuple = model.module if hasattr(__lowerCamelCase , "module" ) else model
quant_trainer.configure_model(__lowerCamelCase , self.quant_trainer_args )
__UpperCAmelCase : Optional[int] = os.path.join(__lowerCamelCase , "model.onnx" )
logger.info(f'''exporting model to {output_model_file}''' )
__UpperCAmelCase : str = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , export_params=__lowerCamelCase , opset_version=13 , do_constant_folding=__lowerCamelCase , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=__lowerCamelCase , )
logger.info("onnx export finished" )
| 342 | import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_snake_case = [
# tf -> hf
('''/''', '''.'''),
('''layer_''', '''layers.'''),
('''kernel''', '''weight'''),
('''beta''', '''bias'''),
('''gamma''', '''weight'''),
('''pegasus''', '''model'''),
]
_snake_case = [
('''.output.dense''', '''.fc2'''),
('''intermediate.LayerNorm''', '''final_layer_norm'''),
('''intermediate.dense''', '''fc1'''),
]
_snake_case = (
INIT_COMMON
+ [
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.out_proj'''),
('''attention.self''', '''self_attn'''),
('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''),
('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''),
('''attention.encdec''', '''encoder_attn'''),
('''key''', '''k_proj'''),
('''value''', '''v_proj'''),
('''query''', '''q_proj'''),
('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = (
INIT_COMMON
+ [
('''embeddings.word_embeddings''', '''shared.weight'''),
('''embeddings.position_embeddings''', '''embed_positions.weight'''),
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.output'''),
('''attention.self''', '''self_attn.self'''),
('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = [
'''encdec/key/bias''',
'''encdec/query/bias''',
'''encdec/value/bias''',
'''self/key/bias''',
'''self/query/bias''',
'''self/value/bias''',
'''encdec_output/dense/bias''',
'''attention/output/dense/bias''',
]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any:
for tf_name, hf_name in patterns:
__UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ )
return k
def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration:
__UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ )
__UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ )
__UpperCAmelCase : Optional[Any] = torch_model.state_dict()
__UpperCAmelCase : Optional[int] = {}
# separating decoder weights
__UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
__UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : List[str] = DECODER_PATTERNS
__UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict:
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : Optional[int] = v.T
__UpperCAmelCase : str = torch.from_numpy(snake_case__ )
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS
__UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : List[Any] = v.T
__UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
__UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"]
__UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" )
__UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ )
__UpperCAmelCase : str = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], f'''no matches found for the following tf keys {extra}'''
return torch_model
def _UpperCamelCase ( snake_case__ ) -> Dict:
__UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ )
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : str = ["global_step"]
for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ):
__UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
__UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = array
return tf_weights
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict:
__UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ )
__UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ )
torch_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_snake_case = parser.parse_args()
_snake_case = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 342 | 1 |
class _snake_case :
def __init__( self: Dict ) -> Any:
__UpperCAmelCase : List[Any] = {}
def _lowerCamelCase ( self: int ) -> None:
print(self.vertex )
for i in self.vertex:
print(__lowerCamelCase , " -> " , " -> ".join([str(__lowerCamelCase ) for j in self.vertex[i]] ) )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> None:
# check if vertex is already present,
if from_vertex in self.vertex:
self.vertex[from_vertex].append(__lowerCamelCase )
else:
# else make a new vertex
__UpperCAmelCase : str = [to_vertex]
def _lowerCamelCase ( self: List[str] ) -> None:
# visited array for storing already visited nodes
__UpperCAmelCase : List[str] = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: int , __lowerCamelCase: list ) -> None:
# mark start vertex as visited
__UpperCAmelCase : List[Any] = True
print(__lowerCamelCase , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
_snake_case = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('''DFS:''')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 342 | import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = ["image_processor", "tokenizer"]
lowerCamelCase__: Optional[Any] = "BlipImageProcessor"
lowerCamelCase__: Optional[int] = "AutoTokenizer"
def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
__UpperCAmelCase : Dict = qformer_tokenizer
def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__UpperCAmelCase : str = BatchFeature()
if text is not None:
__UpperCAmelCase : Any = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
__UpperCAmelCase : Dict = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" )
__UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _lowerCamelCase ( self: List[str] ) -> Tuple:
__UpperCAmelCase : str = self.tokenizer.model_input_names
__UpperCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
__UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
__UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 342 | 1 |
import numpy as np
import qiskit
def _UpperCamelCase ( snake_case__ = 8, snake_case__ = None ) -> str:
__UpperCAmelCase : List[Any] = np.random.default_rng(seed=snake_case__ )
# Roughly 25% of the qubits will contribute to the key.
# So we take more than we need.
__UpperCAmelCase : Tuple = 6 * key_len
# Measurement basis for Alice's qubits.
__UpperCAmelCase : Dict = rng.integers(2, size=snake_case__ )
# The set of states Alice will prepare.
__UpperCAmelCase : Union[str, Any] = rng.integers(2, size=snake_case__ )
# Measurement basis for Bob's qubits.
__UpperCAmelCase : int = rng.integers(2, size=snake_case__ )
# Quantum Circuit to simulate BB84
__UpperCAmelCase : Any = qiskit.QuantumCircuit(snake_case__, name="BB84" )
# Alice prepares her qubits according to rules above.
for index, _ in enumerate(snake_case__ ):
if alice_state[index] == 1:
bbaa_circ.x(snake_case__ )
if alice_basis[index] == 1:
bbaa_circ.h(snake_case__ )
bbaa_circ.barrier()
# Bob measures the received qubits according to rules above.
for index, _ in enumerate(snake_case__ ):
if bob_basis[index] == 1:
bbaa_circ.h(snake_case__ )
bbaa_circ.barrier()
bbaa_circ.measure_all()
# Simulate the quantum circuit.
__UpperCAmelCase : Tuple = qiskit.Aer.get_backend("aer_simulator" )
# We only need to run one shot because the key is unique.
# Multiple shots will produce the same key.
__UpperCAmelCase : List[Any] = qiskit.execute(snake_case__, snake_case__, shots=1, seed_simulator=snake_case__ )
# Returns the result of measurement.
__UpperCAmelCase : Dict = job.result().get_counts(snake_case__ ).most_frequent()
# Extracting the generated key from the simulation results.
# Only keep measurement results where Alice and Bob chose the same basis.
__UpperCAmelCase : List[str] = "".join(
[
result_bit
for alice_basis_bit, bob_basis_bit, result_bit in zip(
snake_case__, snake_case__, snake_case__ )
if alice_basis_bit == bob_basis_bit
] )
# Get final key. Pad with 0 if too short, otherwise truncate.
__UpperCAmelCase : Tuple = gen_key[:key_len] if len(snake_case__ ) >= key_len else gen_key.ljust(snake_case__, "0" )
return key
if __name__ == "__main__":
print(F'The generated key is : {bbaa(8, seed=0)}')
from doctest import testmod
testmod()
| 342 | import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | 1 |
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def _UpperCamelCase ( snake_case__ ) -> List[str]:
__UpperCAmelCase : Any = {}
__UpperCAmelCase : Optional[int] = tokenizer(example["content"], truncation=snake_case__ )["input_ids"]
__UpperCAmelCase : int = len(example["content"] ) / len(output["input_ids"] )
return output
_snake_case = HfArgumentParser(PretokenizationArguments)
_snake_case = parser.parse_args()
if args.num_workers is None:
_snake_case = multiprocessing.cpu_count()
_snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir)
_snake_case = time.time()
_snake_case = load_dataset(args.dataset_name, split='''train''')
print(F'Dataset loaded in {time.time()-t_start:.2f}s')
_snake_case = time.time()
_snake_case = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(F'Dataset tokenized in {time.time()-t_start:.2f}s')
_snake_case = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
| 342 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 1 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[Any] = "poolformer"
def __init__( self: List[Any] , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: List[Any]=16 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: List[str]=4.0 , __lowerCamelCase: Union[str, Any]=[2, 2, 6, 2] , __lowerCamelCase: List[Any]=[64, 1_28, 3_20, 5_12] , __lowerCamelCase: Tuple=[7, 3, 3, 3] , __lowerCamelCase: Dict=[4, 2, 2, 2] , __lowerCamelCase: Any=[2, 1, 1, 1] , __lowerCamelCase: List[Any]=4 , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=1e-5 , __lowerCamelCase: Optional[Any]=0.02 , **__lowerCamelCase: Any , ) -> Optional[Any]:
__UpperCAmelCase : Dict = num_channels
__UpperCAmelCase : str = patch_size
__UpperCAmelCase : int = stride
__UpperCAmelCase : Dict = padding
__UpperCAmelCase : List[Any] = pool_size
__UpperCAmelCase : str = hidden_sizes
__UpperCAmelCase : Optional[int] = mlp_ratio
__UpperCAmelCase : Optional[Any] = depths
__UpperCAmelCase : Any = patch_sizes
__UpperCAmelCase : int = strides
__UpperCAmelCase : List[str] = num_encoder_blocks
__UpperCAmelCase : Optional[int] = drop_path_rate
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : Dict = use_layer_scale
__UpperCAmelCase : Tuple = layer_scale_init_value
__UpperCAmelCase : Optional[int] = initializer_range
super().__init__(**__lowerCamelCase )
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = version.parse("1.11" )
@property
def _lowerCamelCase ( self: int ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _lowerCamelCase ( self: Dict ) -> float:
return 2e-3
| 342 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | 1 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: str = "geglu" , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: str = "layer_norm" , __lowerCamelCase: bool = False , ) -> List[Any]:
super().__init__()
__UpperCAmelCase : List[Any] = only_cross_attention
__UpperCAmelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
__UpperCAmelCase : List[str] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
__UpperCAmelCase : Dict = AdaLayerNorm(__lowerCamelCase , __lowerCamelCase )
elif self.use_ada_layer_norm_zero:
__UpperCAmelCase : Optional[Any] = AdaLayerNormZero(__lowerCamelCase , __lowerCamelCase )
else:
__UpperCAmelCase : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
__UpperCAmelCase : List[Any] = Attention(
query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCamelCase , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
__UpperCAmelCase : Union[str, Any] = (
AdaLayerNorm(__lowerCamelCase , __lowerCamelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
)
__UpperCAmelCase : Tuple = Attention(
query_dim=__lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , upcast_attention=__lowerCamelCase , ) # is self-attn if encoder_hidden_states is none
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Tuple = None
# 3. Feed-forward
__UpperCAmelCase : Dict = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
__UpperCAmelCase : List[Any] = FeedForward(__lowerCamelCase , dropout=__lowerCamelCase , activation_fn=__lowerCamelCase , final_dropout=__lowerCamelCase )
# let chunk size default to None
__UpperCAmelCase : Any = None
__UpperCAmelCase : str = 0
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: int ) -> Optional[Any]:
# Sets chunk feed-forward
__UpperCAmelCase : Dict = chunk_size
__UpperCAmelCase : List[Any] = dim
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.LongTensor] = None , __lowerCamelCase: Dict[str, Any] = None , __lowerCamelCase: Optional[torch.LongTensor] = None , ) -> Dict:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
__UpperCAmelCase : Dict = self.norma(__lowerCamelCase , __lowerCamelCase )
elif self.use_ada_layer_norm_zero:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.norma(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hidden_dtype=hidden_states.dtype )
else:
__UpperCAmelCase : Optional[Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {}
__UpperCAmelCase : List[str] = self.attna(
__lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCamelCase , **__lowerCamelCase , )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : List[Any] = gate_msa.unsqueeze(1 ) * attn_output
__UpperCAmelCase : Union[str, Any] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
__UpperCAmelCase : int = (
self.norma(__lowerCamelCase , __lowerCamelCase ) if self.use_ada_layer_norm else self.norma(__lowerCamelCase )
)
__UpperCAmelCase : Optional[int] = self.attna(
__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = attn_output + hidden_states
# 3. Feed-forward
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : str = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
__UpperCAmelCase : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
__UpperCAmelCase : str = torch.cat(
[self.ff(__lowerCamelCase ) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
__UpperCAmelCase : Dict = self.ff(__lowerCamelCase )
if self.use_ada_layer_norm_zero:
__UpperCAmelCase : str = gate_mlp.unsqueeze(1 ) * ff_output
__UpperCAmelCase : Any = ff_output + hidden_states
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 4 , __lowerCamelCase: float = 0.0 , __lowerCamelCase: str = "geglu" , __lowerCamelCase: bool = False , ) -> int:
super().__init__()
__UpperCAmelCase : str = int(dim * mult )
__UpperCAmelCase : Dict = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
__UpperCAmelCase : Optional[Any] = GELU(__lowerCamelCase , __lowerCamelCase )
if activation_fn == "gelu-approximate":
__UpperCAmelCase : Optional[int] = GELU(__lowerCamelCase , __lowerCamelCase , approximate="tanh" )
elif activation_fn == "geglu":
__UpperCAmelCase : Dict = GEGLU(__lowerCamelCase , __lowerCamelCase )
elif activation_fn == "geglu-approximate":
__UpperCAmelCase : int = ApproximateGELU(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = nn.ModuleList([] )
# project in
self.net.append(__lowerCamelCase )
# project dropout
self.net.append(nn.Dropout(__lowerCamelCase ) )
# project out
self.net.append(nn.Linear(__lowerCamelCase , __lowerCamelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__lowerCamelCase ) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> Tuple:
for module in self.net:
__UpperCAmelCase : str = module(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: str = "none" ) -> Tuple:
super().__init__()
__UpperCAmelCase : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = approximate
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[Any] ) -> Tuple:
if gate.device.type != "mps":
return F.gelu(__lowerCamelCase , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: int ) -> str:
__UpperCAmelCase : int = self.proj(__lowerCamelCase )
__UpperCAmelCase : int = self.gelu(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> List[Any]:
super().__init__()
__UpperCAmelCase : Union[str, Any] = nn.Linear(__lowerCamelCase , dim_out * 2 )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> List[Any]:
if gate.device.type != "mps":
return F.gelu(__lowerCamelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> int:
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.proj(__lowerCamelCase ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__lowerCamelCase )
class _snake_case ( nn.Module ):
def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> List[Any]:
super().__init__()
__UpperCAmelCase : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: str , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Optional[int] = self.proj(__lowerCamelCase )
return x * torch.sigmoid(1.7_02 * x )
class _snake_case ( nn.Module ):
def __init__( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Any:
super().__init__()
__UpperCAmelCase : List[str] = nn.Embedding(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.SiLU()
__UpperCAmelCase : Tuple = nn.Linear(__lowerCamelCase , embedding_dim * 2 )
__UpperCAmelCase : Optional[Any] = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[Any] ) -> int:
__UpperCAmelCase : Any = self.linear(self.silu(self.emb(__lowerCamelCase ) ) )
__UpperCAmelCase , __UpperCAmelCase : Any = torch.chunk(__lowerCamelCase , 2 )
__UpperCAmelCase : Dict = self.norm(__lowerCamelCase ) * (1 + scale) + shift
return x
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] ) -> Dict:
super().__init__()
__UpperCAmelCase : List[str] = CombinedTimestepLabelEmbeddings(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = nn.SiLU()
__UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , 6 * embedding_dim , bias=__lowerCamelCase )
__UpperCAmelCase : int = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase , eps=1e-6 )
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int=None ) -> Any:
__UpperCAmelCase : Optional[Any] = self.linear(self.silu(self.emb(__lowerCamelCase , __lowerCamelCase , hidden_dtype=__lowerCamelCase ) ) )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = emb.chunk(6 , dim=1 )
__UpperCAmelCase : Optional[int] = self.norm(__lowerCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class _snake_case ( nn.Module ):
def __init__( self: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[str] = None , __lowerCamelCase: float = 1e-5 ) -> int:
super().__init__()
__UpperCAmelCase : Tuple = num_groups
__UpperCAmelCase : Dict = eps
if act_fn is None:
__UpperCAmelCase : List[str] = None
else:
__UpperCAmelCase : Optional[Any] = get_activation(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.Linear(__lowerCamelCase , out_dim * 2 )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] ) -> List[Any]:
if self.act:
__UpperCAmelCase : Any = self.act(__lowerCamelCase )
__UpperCAmelCase : Dict = self.linear(__lowerCamelCase )
__UpperCAmelCase : Dict = emb[:, :, None, None]
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = emb.chunk(2 , dim=1 )
__UpperCAmelCase : Union[str, Any] = F.group_norm(__lowerCamelCase , self.num_groups , eps=self.eps )
__UpperCAmelCase : Optional[Any] = x * (1 + scale) + shift
return x
| 342 | from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
_snake_case = logging.get_logger(__name__)
class _snake_case ( _lowercase ):
def __init__( self: Optional[int] , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> None:
warnings.warn(
"The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use DeformableDetrImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
| 342 | import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | 1 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = (UnCLIPScheduler,)
def _lowerCamelCase ( self: Union[str, Any] , **__lowerCamelCase: Dict ) -> int:
__UpperCAmelCase : str = {
"num_train_timesteps": 10_00,
"variance_type": "fixed_small_log",
"clip_sample": True,
"clip_sample_range": 1.0,
"prediction_type": "epsilon",
}
config.update(**__lowerCamelCase )
return config
def _lowerCamelCase ( self: int ) -> int:
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _lowerCamelCase ( self: Tuple ) -> List[str]:
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> str:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> int:
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> Tuple:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> int:
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> int:
__UpperCAmelCase : List[str] = self.scheduler_classes[0]
__UpperCAmelCase : str = self.get_scheduler_config(variance_type="fixed_small_log" )
__UpperCAmelCase : Any = scheduler_class(**__lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_54_96_25 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9_99_49_87 ) ) < 1e-5
def _lowerCamelCase ( self: Optional[Any] ) -> str:
__UpperCAmelCase : int = self.scheduler_classes[0]
__UpperCAmelCase : Optional[Any] = self.get_scheduler_config(variance_type="learned_range" )
__UpperCAmelCase : Tuple = scheduler_class(**__lowerCamelCase )
__UpperCAmelCase : List[Any] = 0.5
assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1_71_27_90 < 1e-5
assert scheduler._get_variance(4_87 , predicted_variance=__lowerCamelCase ) - -5.7_99_80_52 < 1e-5
assert scheduler._get_variance(9_99 , predicted_variance=__lowerCamelCase ) - -0.0_01_00_11 < 1e-5
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : Optional[int] = self.scheduler_classes[0]
__UpperCAmelCase : List[Any] = self.get_scheduler_config()
__UpperCAmelCase : Union[str, Any] = scheduler_class(**__lowerCamelCase )
__UpperCAmelCase : str = scheduler.timesteps
__UpperCAmelCase : Any = self.dummy_model()
__UpperCAmelCase : Dict = self.dummy_sample_deter
__UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
__UpperCAmelCase : str = model(__lowerCamelCase , __lowerCamelCase )
# 2. predict previous mean of sample x_t-1
__UpperCAmelCase : List[Any] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample
__UpperCAmelCase : List[str] = pred_prev_sample
__UpperCAmelCase : List[str] = torch.sum(torch.abs(__lowerCamelCase ) )
__UpperCAmelCase : Optional[Any] = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1e-2
assert abs(result_mean.item() - 0.3_28_47_43 ) < 1e-3
def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase : int = self.scheduler_classes[0]
__UpperCAmelCase : Tuple = self.get_scheduler_config()
__UpperCAmelCase : Optional[int] = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(25 )
__UpperCAmelCase : Union[str, Any] = scheduler.timesteps
__UpperCAmelCase : Union[str, Any] = self.dummy_model()
__UpperCAmelCase : str = self.dummy_sample_deter
__UpperCAmelCase : List[Any] = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
__UpperCAmelCase : List[str] = model(__lowerCamelCase , __lowerCamelCase )
if i + 1 == timesteps.shape[0]:
__UpperCAmelCase : Union[str, Any] = None
else:
__UpperCAmelCase : List[str] = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__UpperCAmelCase : List[str] = scheduler.step(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample
__UpperCAmelCase : Optional[int] = pred_prev_sample
__UpperCAmelCase : Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) )
__UpperCAmelCase : Dict = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1e-2
assert abs(result_mean.item() - 0.3_36_20_38 ) < 1e-3
def _lowerCamelCase ( self: Optional[int] ) -> int:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]:
pass
| 342 | from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | 1 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
_snake_case = False
class _snake_case ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = "A painting of a squirrel eating a burger "
__UpperCAmelCase : Optional[int] = torch.manual_seed(0 )
__UpperCAmelCase : Union[str, Any] = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Any = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = generator.manual_seed(0 )
__UpperCAmelCase : Dict = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : List[str] = VersatileDiffusionTextToImagePipeline.from_pretrained(
"shi-labs/versatile-diffusion" , torch_dtype=torch.floataa )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
__UpperCAmelCase : Tuple = "A painting of a squirrel eating a burger "
__UpperCAmelCase : str = torch.manual_seed(0 )
__UpperCAmelCase : str = pipe(
prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images
__UpperCAmelCase : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
__UpperCAmelCase : Tuple = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 342 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 1 |
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
_snake_case = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class _snake_case ( _lowercase ):
lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Whether to use SortishSampler or not."} )
lowerCamelCase__: bool = field(
default=_lowercase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowerCamelCase__: Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
)
} , )
lowerCamelCase__: Optional[int] = field(
default=_lowercase , metadata={
"help": (
"The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
)
} , )
lowerCamelCase__: Optional[Union[str, Path, GenerationConfig]] = field(
default=_lowercase , metadata={
"help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."
} , )
def _lowerCamelCase ( self: int ) -> Dict:
__UpperCAmelCase : str = super().to_dict()
for k, v in d.items():
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : Tuple = v.to_dict()
return d
| 342 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 1 |
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Any:
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
__UpperCAmelCase : List[Any] = TapasConfig.from_json_file(snake_case__ )
# set absolute/relative position embeddings parameter
__UpperCAmelCase : Optional[int] = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
__UpperCAmelCase : str = TapasForQuestionAnswering(config=snake_case__ )
elif task == "WTQ":
# run_task_main.py hparams
__UpperCAmelCase : Union[str, Any] = 4
__UpperCAmelCase : Any = True
# hparam_utils.py hparams
__UpperCAmelCase : int = 0.66_4694
__UpperCAmelCase : List[str] = 0.20_7951
__UpperCAmelCase : Tuple = 0.12_1194
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : str = False
__UpperCAmelCase : int = 0.035_2513
__UpperCAmelCase : Any = TapasForQuestionAnswering(config=snake_case__ )
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
__UpperCAmelCase : List[Any] = 4
__UpperCAmelCase : Union[str, Any] = False
# hparam_utils.py hparams
__UpperCAmelCase : Tuple = 36.4519
__UpperCAmelCase : List[str] = 0.90_3421
__UpperCAmelCase : Dict = 222.088
__UpperCAmelCase : Dict = True
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : List[Any] = 0.76_3141
__UpperCAmelCase : Optional[int] = TapasForQuestionAnswering(config=snake_case__ )
elif task == "TABFACT":
__UpperCAmelCase : Optional[int] = TapasForSequenceClassification(config=snake_case__ )
elif task == "MLM":
__UpperCAmelCase : Tuple = TapasForMaskedLM(config=snake_case__ )
elif task == "INTERMEDIATE_PRETRAINING":
__UpperCAmelCase : List[str] = TapasModel(config=snake_case__ )
else:
raise ValueError(f'''Task {task} not supported.''' )
print(f'''Building PyTorch model from configuration: {config}''' )
# Load weights from tf checkpoint
load_tf_weights_in_tapas(snake_case__, snake_case__, snake_case__ )
# Save pytorch-model (weights and configuration)
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(snake_case__ )
# Save tokenizer files
print(f'''Save tokenizer files to {pytorch_dump_path}''' )
__UpperCAmelCase : Any = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512 )
tokenizer.save_pretrained(snake_case__ )
print("Used relative position embeddings:", model.config.reset_position_index_per_cell )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.'''
)
parser.add_argument(
'''--reset_position_index_per_cell''',
default=False,
action='''store_true''',
help='''Whether to use relative position embeddings or not. Defaults to True.''',
)
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--tapas_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained TAPAS model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 342 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = ["image_processor", "tokenizer"]
lowerCamelCase__: Optional[Any] = "BlipImageProcessor"
lowerCamelCase__: Optional[int] = "AutoTokenizer"
def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
__UpperCAmelCase : Dict = qformer_tokenizer
def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__UpperCAmelCase : str = BatchFeature()
if text is not None:
__UpperCAmelCase : Any = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
__UpperCAmelCase : Dict = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" )
__UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _lowerCamelCase ( self: List[str] ) -> Tuple:
__UpperCAmelCase : str = self.tokenizer.model_input_names
__UpperCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
__UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
__UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 342 | import math
_snake_case = 10
_snake_case = 7
_snake_case = BALLS_PER_COLOUR * NUM_COLOURS
def _UpperCamelCase ( snake_case__ = 20 ) -> str:
__UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ )
__UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 342 | 1 |
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = [0] * len(snake_case__ )
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : str = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__UpperCAmelCase : str = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
_snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
_snake_case = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
_snake_case = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class _snake_case :
def __init__( self: List[str] ) -> List[str]:
__UpperCAmelCase : List[str] = WATERMARK_BITS
__UpperCAmelCase : Optional[Any] = WatermarkEncoder()
self.encoder.set_watermark("bits" , self.watermark )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: torch.FloatTensor ) -> Optional[Any]:
# can't encode images that are smaller than 256
if images.shape[-1] < 2_56:
return images
__UpperCAmelCase : Dict = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__UpperCAmelCase : Dict = [self.encoder.encode(__lowerCamelCase , "dwtDct" ) for image in images]
__UpperCAmelCase : Dict = torch.from_numpy(np.array(__lowerCamelCase ) ).permute(0 , 3 , 1 , 2 )
__UpperCAmelCase : Dict = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 )
return images
| 342 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import unittest
from transformers import GPTSwaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''')
@require_sentencepiece
@require_tokenizers
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: int = GPTSwaTokenizer
lowerCamelCase__: int = False
lowerCamelCase__: str = True
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]:
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCAmelCase : int = GPTSwaTokenizer(__lowerCamelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = "This is a test"
__UpperCAmelCase : Any = "This is a test"
return input_text, output_text
def _lowerCamelCase ( self: Dict ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = "<s>"
__UpperCAmelCase : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(__lowerCamelCase ) , 20_00 )
def _lowerCamelCase ( self: List[str] ) -> str:
self.assertEqual(self.get_tokenizer().vocab_size , 20_00 )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]:
__UpperCAmelCase : Optional[Any] = GPTSwaTokenizer(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4_65, 2_87, 2_65, 6_31, 8_42] )
__UpperCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." )
# fmt: off
self.assertListEqual(
__lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , )
# fmt: on
__UpperCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60] , )
__UpperCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
# fmt: off
self.assertListEqual(
__lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] )
# fmt: on
def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = GPTSwaTokenizer(__lowerCamelCase )
__UpperCAmelCase : str = ["This is a test", "I was born in 92000, and this is falsé."]
__UpperCAmelCase : Optional[int] = [
[4_65, 2_87, 2_65, 6_31, 8_42],
[2_62, 2_72, 15_25, 2_86, 2_71, 2_68, 60, 9_16, 6_33, 6_33, 6_33, 2_59, 2_66, 3_01, 2_87, 3_84, 3_67, 2_63, 1_98, 1_72, 2_60],
]
# Test that encode_fast returns the same as tokenize + convert_tokens_to_ids
for text, expected_ids in zip(__lowerCamelCase , __lowerCamelCase ):
self.assertListEqual(tokenizer.encode_fast(__lowerCamelCase ) , __lowerCamelCase )
# Test that decode_fast returns the input text
for text, token_ids in zip(__lowerCamelCase , __lowerCamelCase ):
self.assertEqual(tokenizer.decode_fast(__lowerCamelCase ) , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
__UpperCAmelCase : str = [
"<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')",
"Hey there, how are you doing this fine day?",
"This is a text with a trailing spaces followed by a dot .",
"Häj sväjs lillebrör! =)",
"Det är inget fel på Mr. Cool",
]
# fmt: off
__UpperCAmelCase : List[Any] = {"input_ids": [[6_34_23, 5, 68_11, 1_49_54, 2_82, 8_16, 38_21, 6_34_66, 6_34_25, 6_34_62, 18, 6_39_78, 6_78, 3_01, 13_20, 6_34_23, 6_34_55, 6_34_58, 18, 6_39_82, 42_46, 39_40, 19_01, 4_77_89, 55_47, 1_89_94], [1_96_30, 11_00, 6_34_46, 13_42, 6_33, 5_44, 44_88, 5_93, 51_02, 24_16, 6_34_95, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [16_52, 4_28, 2_68, 19_36, 5_15, 2_68, 5_85_93, 2_24_13, 91_06, 5_46, 2_68, 3_32_13, 6_39_79, 6_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_51_30, 6_34_50, 9_24, 6_34_49, 22_49, 40_62, 15_58, 3_18, 6_35_04, 2_14_98, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_09, 3_77, 28_27, 25_59, 3_32, 65_75, 6_34_43, 2_68_01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__lowerCamelCase , )
| 342 | import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | 1 |
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
_snake_case = open # noqa: we just need to have a builtin inside this module to test it properly
| 342 | import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 | 1 |
from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | import argparse
import struct
import unittest
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None:
__UpperCAmelCase : Tuple = data
# Initialize hash values
__UpperCAmelCase : Any = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
__UpperCAmelCase : Dict = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
__UpperCAmelCase : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes:
__UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64))
__UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCamelCase ( self: Dict ) -> None:
# Convert into blocks of 64 bytes
__UpperCAmelCase : Dict = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCAmelCase : Union[str, Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCAmelCase : str = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCAmelCase : Union[str, Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
__UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 )
__UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
__UpperCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 )
__UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c)
__UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
__UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCAmelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
__UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int:
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> None:
import hashlib
__UpperCAmelCase : Dict = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() )
def _UpperCamelCase ( ) -> None:
import doctest
doctest.testmod()
__UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", )
parser.add_argument(
"-f", "--file", dest="input_file", help="Hash contents of a file" )
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, "rb" ) as f:
__UpperCAmelCase : List[str] = f.read()
else:
__UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
_snake_case = {
'''google/tapas-base-finetuned-sqa''': (
'''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wtq''': (
'''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-wikisql-supervised''': (
'''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'''
),
'''google/tapas-base-finetuned-tabfact''': (
'''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'''
),
}
class _snake_case ( _lowercase ):
lowerCamelCase__: List[Any] = "tapas"
def __init__( self: Optional[int] , __lowerCamelCase: int=3_05_22 , __lowerCamelCase: str=7_68 , __lowerCamelCase: Union[str, Any]=12 , __lowerCamelCase: Tuple=12 , __lowerCamelCase: int=30_72 , __lowerCamelCase: str="gelu" , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=10_24 , __lowerCamelCase: Optional[Any]=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: str=1e-12 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Optional[int]=10.0 , __lowerCamelCase: Union[str, Any]=0 , __lowerCamelCase: Optional[int]=1.0 , __lowerCamelCase: List[str]=None , __lowerCamelCase: List[str]=1.0 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=1.0 , __lowerCamelCase: Tuple=1.0 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: List[Any]=False , __lowerCamelCase: List[Any]="ratio" , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: List[str]=None , __lowerCamelCase: Optional[int]=64 , __lowerCamelCase: List[Any]=32 , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: int=False , __lowerCamelCase: List[Any]=False , __lowerCamelCase: List[Any]=True , __lowerCamelCase: str=False , __lowerCamelCase: List[str]=None , __lowerCamelCase: str=None , **__lowerCamelCase: Optional[Any] , ) -> int:
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : str = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : Any = hidden_act
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_dropout_prob
__UpperCAmelCase : List[str] = attention_probs_dropout_prob
__UpperCAmelCase : Optional[int] = max_position_embeddings
__UpperCAmelCase : List[Any] = type_vocab_sizes
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Dict = layer_norm_eps
# Fine-tuning task hyperparameters
__UpperCAmelCase : int = positive_label_weight
__UpperCAmelCase : Optional[Any] = num_aggregation_labels
__UpperCAmelCase : int = aggregation_loss_weight
__UpperCAmelCase : Any = use_answer_as_supervision
__UpperCAmelCase : str = answer_loss_importance
__UpperCAmelCase : Union[str, Any] = use_normalized_answer_loss
__UpperCAmelCase : str = huber_loss_delta
__UpperCAmelCase : Optional[int] = temperature
__UpperCAmelCase : Dict = aggregation_temperature
__UpperCAmelCase : Union[str, Any] = use_gumbel_for_cells
__UpperCAmelCase : Optional[Any] = use_gumbel_for_aggregation
__UpperCAmelCase : str = average_approximation_function
__UpperCAmelCase : Any = cell_selection_preference
__UpperCAmelCase : Any = answer_loss_cutoff
__UpperCAmelCase : Optional[int] = max_num_rows
__UpperCAmelCase : List[Any] = max_num_columns
__UpperCAmelCase : Dict = average_logits_per_cell
__UpperCAmelCase : List[str] = select_one_column
__UpperCAmelCase : Any = allow_empty_column_selection
__UpperCAmelCase : Tuple = init_cell_selection_weights_to_zero
__UpperCAmelCase : List[Any] = reset_position_index_per_cell
__UpperCAmelCase : Optional[int] = disable_per_token_loss
# Aggregation hyperparameters
__UpperCAmelCase : Optional[Any] = aggregation_labels
__UpperCAmelCase : str = no_aggregation_label_index
if isinstance(self.aggregation_labels , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = {int(__lowerCamelCase ): v for k, v in aggregation_labels.items()}
| 342 | import numpy as np
import datasets
_snake_case = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_snake_case = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_snake_case = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]:
# convert to numpy arrays
__UpperCAmelCase : int = np.array(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__UpperCAmelCase : str = X - np.mean(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T )
try:
__UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
__UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 | 1 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple[int, int]:
def constraint_to_multiple_of(snake_case__, snake_case__, snake_case__=0, snake_case__=None ):
__UpperCAmelCase : Tuple = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
__UpperCAmelCase : Tuple = math.floor(val / multiple ) * multiple
if x < min_val:
__UpperCAmelCase : List[str] = math.ceil(val / multiple ) * multiple
return x
__UpperCAmelCase : Tuple = (output_size, output_size) if isinstance(snake_case__, snake_case__ ) else output_size
__UpperCAmelCase , __UpperCAmelCase : int = get_image_size(snake_case__ )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = output_size
# determine new height and width
__UpperCAmelCase : int = output_height / input_height
__UpperCAmelCase : Union[str, Any] = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
__UpperCAmelCase : int = scale_width
else:
# fit height
__UpperCAmelCase : Optional[int] = scale_height
__UpperCAmelCase : Dict = constraint_to_multiple_of(scale_height * input_height, multiple=snake_case__ )
__UpperCAmelCase : Union[str, Any] = constraint_to_multiple_of(scale_width * input_width, multiple=snake_case__ )
return (new_height, new_width)
class _snake_case ( _lowercase ):
lowerCamelCase__: int = ["pixel_values"]
def __init__( self: Tuple , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase: bool = False , __lowerCamelCase: int = 1 , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 2_55 , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , **__lowerCamelCase: List[Any] , ) -> None:
super().__init__(**__lowerCamelCase )
__UpperCAmelCase : Tuple = size if size is not None else {"height": 3_84, "width": 3_84}
__UpperCAmelCase : Optional[Any] = get_size_dict(__lowerCamelCase )
__UpperCAmelCase : List[Any] = do_resize
__UpperCAmelCase : Dict = size
__UpperCAmelCase : Dict = keep_aspect_ratio
__UpperCAmelCase : Dict = ensure_multiple_of
__UpperCAmelCase : str = resample
__UpperCAmelCase : Any = do_rescale
__UpperCAmelCase : Optional[Any] = rescale_factor
__UpperCAmelCase : Optional[Any] = do_normalize
__UpperCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _lowerCamelCase ( self: Dict , __lowerCamelCase: np.ndarray , __lowerCamelCase: Dict[str, int] , __lowerCamelCase: bool = False , __lowerCamelCase: int = 1 , __lowerCamelCase: PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: str , ) -> np.ndarray:
__UpperCAmelCase : Any = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' )
__UpperCAmelCase : Optional[Any] = get_resize_output_image_size(
__lowerCamelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=__lowerCamelCase , multiple=__lowerCamelCase , )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[int, float] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: str , ) -> Any:
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: np.ndarray , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Union[float, List[float]] , __lowerCamelCase: Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase: Optional[Any] , ) -> np.ndarray:
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: ImageInput , __lowerCamelCase: bool = None , __lowerCamelCase: int = None , __lowerCamelCase: bool = None , __lowerCamelCase: int = None , __lowerCamelCase: PILImageResampling = None , __lowerCamelCase: bool = None , __lowerCamelCase: float = None , __lowerCamelCase: bool = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[float, List[float]]] = None , __lowerCamelCase: Optional[Union[str, TensorType]] = None , __lowerCamelCase: ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase: Optional[int] , ) -> PIL.Image.Image:
__UpperCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase : Optional[Any] = size if size is not None else self.size
__UpperCAmelCase : Optional[Any] = get_size_dict(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
__UpperCAmelCase : Dict = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
__UpperCAmelCase : Optional[int] = resample if resample is not None else self.resample
__UpperCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase : List[Any] = image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase : Any = image_std if image_std is not None else self.image_std
__UpperCAmelCase : Any = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
__UpperCAmelCase : Union[str, Any] = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
__UpperCAmelCase : List[Any] = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
if do_rescale:
__UpperCAmelCase : Optional[int] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images]
if do_normalize:
__UpperCAmelCase : Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images]
__UpperCAmelCase : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
__UpperCAmelCase : List[str] = {"pixel_values": images}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Tuple] = None ) -> Optional[Any]:
__UpperCAmelCase : List[str] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(__lowerCamelCase ):
__UpperCAmelCase : List[str] = target_sizes.numpy()
__UpperCAmelCase : Tuple = []
for idx in range(len(__lowerCamelCase ) ):
__UpperCAmelCase : List[str] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__lowerCamelCase )
else:
__UpperCAmelCase : Dict = logits.argmax(dim=1 )
__UpperCAmelCase : List[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 342 | import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
from PIL import Image
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Image:
def brightness(snake_case__ ) -> float:
return 128 + level + (c - 128)
if not -255.0 <= level <= 255.0:
raise ValueError("level must be between -255.0 (black) and 255.0 (white)" )
return img.point(snake_case__ )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change brightness to 100
_snake_case = change_brightness(img, 100)
brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
| 342 | import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_snake_case = [
# tf -> hf
('''/''', '''.'''),
('''layer_''', '''layers.'''),
('''kernel''', '''weight'''),
('''beta''', '''bias'''),
('''gamma''', '''weight'''),
('''pegasus''', '''model'''),
]
_snake_case = [
('''.output.dense''', '''.fc2'''),
('''intermediate.LayerNorm''', '''final_layer_norm'''),
('''intermediate.dense''', '''fc1'''),
]
_snake_case = (
INIT_COMMON
+ [
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.out_proj'''),
('''attention.self''', '''self_attn'''),
('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''),
('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''),
('''attention.encdec''', '''encoder_attn'''),
('''key''', '''k_proj'''),
('''value''', '''v_proj'''),
('''query''', '''q_proj'''),
('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = (
INIT_COMMON
+ [
('''embeddings.word_embeddings''', '''shared.weight'''),
('''embeddings.position_embeddings''', '''embed_positions.weight'''),
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.output'''),
('''attention.self''', '''self_attn.self'''),
('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = [
'''encdec/key/bias''',
'''encdec/query/bias''',
'''encdec/value/bias''',
'''self/key/bias''',
'''self/query/bias''',
'''self/value/bias''',
'''encdec_output/dense/bias''',
'''attention/output/dense/bias''',
]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any:
for tf_name, hf_name in patterns:
__UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ )
return k
def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration:
__UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ )
__UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ )
__UpperCAmelCase : Optional[Any] = torch_model.state_dict()
__UpperCAmelCase : Optional[int] = {}
# separating decoder weights
__UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
__UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : List[str] = DECODER_PATTERNS
__UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict:
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : Optional[int] = v.T
__UpperCAmelCase : str = torch.from_numpy(snake_case__ )
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS
__UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : List[Any] = v.T
__UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
__UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"]
__UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" )
__UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ )
__UpperCAmelCase : str = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], f'''no matches found for the following tf keys {extra}'''
return torch_model
def _UpperCamelCase ( snake_case__ ) -> Dict:
__UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ )
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : str = ["global_step"]
for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ):
__UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
__UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = array
return tf_weights
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict:
__UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ )
__UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ )
torch_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_snake_case = parser.parse_args()
_snake_case = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 342 | 1 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
_snake_case = datasets.utils.logging.get_logger(__name__)
_snake_case = ['''names''', '''prefix''']
_snake_case = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols''']
_snake_case = ['''encoding_errors''', '''on_bad_lines''']
_snake_case = ['''date_format''']
@dataclass
class _snake_case ( datasets.BuilderConfig ):
lowerCamelCase__: str = ","
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: Optional[Union[int, List[int], str]] = "infer"
lowerCamelCase__: Optional[List[str]] = None
lowerCamelCase__: Optional[List[str]] = None
lowerCamelCase__: Optional[Union[int, str, List[int], List[str]]] = None
lowerCamelCase__: Optional[Union[List[int], List[str]]] = None
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: bool = True
lowerCamelCase__: Optional[Literal["c", "python", "pyarrow"]] = None
lowerCamelCase__: Dict[Union[int, str], Callable[[Any], Any]] = None
lowerCamelCase__: Optional[list] = None
lowerCamelCase__: Optional[list] = None
lowerCamelCase__: bool = False
lowerCamelCase__: Optional[Union[int, List[int]]] = None
lowerCamelCase__: Optional[int] = None
lowerCamelCase__: Optional[Union[str, List[str]]] = None
lowerCamelCase__: bool = True
lowerCamelCase__: bool = True
lowerCamelCase__: bool = False
lowerCamelCase__: bool = True
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: str = "."
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: str = '"'
lowerCamelCase__: int = 0
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: bool = True
lowerCamelCase__: bool = True
lowerCamelCase__: int = 0
lowerCamelCase__: bool = True
lowerCamelCase__: bool = False
lowerCamelCase__: Optional[str] = None
lowerCamelCase__: int = 1_00_00
lowerCamelCase__: Optional[datasets.Features] = None
lowerCamelCase__: Optional[str] = "strict"
lowerCamelCase__: Literal["error", "warn", "skip"] = "error"
lowerCamelCase__: Optional[str] = None
def _lowerCamelCase ( self: List[str] ) -> str:
if self.delimiter is not None:
__UpperCAmelCase : Any = self.delimiter
if self.column_names is not None:
__UpperCAmelCase : int = self.column_names
@property
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = {
"sep": self.sep,
"header": self.header,
"names": self.names,
"index_col": self.index_col,
"usecols": self.usecols,
"prefix": self.prefix,
"mangle_dupe_cols": self.mangle_dupe_cols,
"engine": self.engine,
"converters": self.converters,
"true_values": self.true_values,
"false_values": self.false_values,
"skipinitialspace": self.skipinitialspace,
"skiprows": self.skiprows,
"nrows": self.nrows,
"na_values": self.na_values,
"keep_default_na": self.keep_default_na,
"na_filter": self.na_filter,
"verbose": self.verbose,
"skip_blank_lines": self.skip_blank_lines,
"thousands": self.thousands,
"decimal": self.decimal,
"lineterminator": self.lineterminator,
"quotechar": self.quotechar,
"quoting": self.quoting,
"escapechar": self.escapechar,
"comment": self.comment,
"encoding": self.encoding,
"dialect": self.dialect,
"error_bad_lines": self.error_bad_lines,
"warn_bad_lines": self.warn_bad_lines,
"skipfooter": self.skipfooter,
"doublequote": self.doublequote,
"memory_map": self.memory_map,
"float_precision": self.float_precision,
"chunksize": self.chunksize,
"encoding_errors": self.encoding_errors,
"on_bad_lines": self.on_bad_lines,
"date_format": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , __lowerCamelCase ):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class _snake_case ( datasets.ArrowBasedBuilder ):
lowerCamelCase__: Optional[int] = CsvConfig
def _lowerCamelCase ( self: Any ) -> Union[str, Any]:
return datasets.DatasetInfo(features=self.config.features )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> List[str]:
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
__UpperCAmelCase : List[str] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__lowerCamelCase , (str, list, tuple) ):
__UpperCAmelCase : int = data_files
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : Union[str, Any] = [files]
__UpperCAmelCase : int = [dl_manager.iter_files(__lowerCamelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
__UpperCAmelCase : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : str = [files]
__UpperCAmelCase : List[Any] = [dl_manager.iter_files(__lowerCamelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=__lowerCamelCase , gen_kwargs={"files": files} ) )
return splits
def _lowerCamelCase ( self: Dict , __lowerCamelCase: pa.Table ) -> pa.Table:
if self.config.features is not None:
__UpperCAmelCase : List[Any] = self.config.features.arrow_schema
if all(not require_storage_cast(__lowerCamelCase ) for feature in self.config.features.values() ):
# cheaper cast
__UpperCAmelCase : Union[str, Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=__lowerCamelCase )
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
__UpperCAmelCase : Optional[int] = table_cast(__lowerCamelCase , __lowerCamelCase )
return pa_table
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
__UpperCAmelCase : int = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(__lowerCamelCase ) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() )
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCamelCase ) ):
__UpperCAmelCase : str = pd.read_csv(__lowerCamelCase , iterator=__lowerCamelCase , dtype=__lowerCamelCase , **self.config.pd_read_csv_kwargs )
try:
for batch_idx, df in enumerate(__lowerCamelCase ):
__UpperCAmelCase : str = pa.Table.from_pandas(__lowerCamelCase )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(__lowerCamelCase )
except ValueError as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(__lowerCamelCase )}: {e}''' )
raise
| 342 | import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = ["image_processor", "tokenizer"]
lowerCamelCase__: Optional[Any] = "BlipImageProcessor"
lowerCamelCase__: Optional[int] = "AutoTokenizer"
def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
__UpperCAmelCase : Dict = qformer_tokenizer
def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__UpperCAmelCase : str = BatchFeature()
if text is not None:
__UpperCAmelCase : Any = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
__UpperCAmelCase : Dict = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" )
__UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _lowerCamelCase ( self: List[str] ) -> Tuple:
__UpperCAmelCase : str = self.tokenizer.model_input_names
__UpperCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
__UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
__UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 342 | 1 |
from math import factorial
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> float:
if successes > trials:
raise ValueError("successes must be lower or equal to trials" )
if trials < 0 or successes < 0:
raise ValueError("the function is defined for non-negative integers" )
if not isinstance(snake_case__, snake_case__ ) or not isinstance(snake_case__, snake_case__ ):
raise ValueError("the function is defined for non-negative integers" )
if not 0 < prob < 1:
raise ValueError("prob has to be in range of 1 - 0" )
__UpperCAmelCase : List[Any] = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__UpperCAmelCase : Dict = float(factorial(snake_case__ ) )
coefficient /= factorial(snake_case__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('''Probability of 2 successes out of 4 trails''')
print('''with probability of 0.75 is:''', end=''' ''')
print(binomial_distribution(2, 4, 0.7_5))
| 342 | import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
'''merges_file''': '''merges.txt''',
}
_snake_case = {
'''vocab_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json'''
),
},
'''tokenizer_config_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json'''
),
},
'''merges_file''': {
'''facebook/s2t-wav2vec2-large-en-de''': (
'''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt'''
),
},
}
_snake_case = '''</w>'''
_snake_case = '''@@ '''
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
__UpperCAmelCase : Any = set()
__UpperCAmelCase : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Optional[int] = char
return pairs
# Speech2Text2 has no max input length
_snake_case = {'''facebook/s2t-wav2vec2-large-en-de''': 1024}
class _snake_case ( _lowercase ):
lowerCamelCase__: int = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: Dict="<unk>" , __lowerCamelCase: List[str]=False , __lowerCamelCase: Union[str, Any]=None , **__lowerCamelCase: int , ) -> Dict:
super().__init__(
unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Optional[Any] = do_lower_case
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[str] = json.load(__lowerCamelCase )
__UpperCAmelCase : int = {v: k for k, v in self.encoder.items()}
if merges_file is None:
logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' )
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : List[str] = None
else:
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : Optional[Any] = merges_handle.read().split("\n" )[:-1]
__UpperCAmelCase : List[str] = [tuple(merge.split()[:2] ) for merge in merges]
__UpperCAmelCase : Union[str, Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : Optional[Any] = {}
@property
def _lowerCamelCase ( self: int ) -> int:
return len(self.decoder )
def _lowerCamelCase ( self: Any ) -> Dict:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: int ) -> Tuple:
__UpperCAmelCase : List[Any] = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,)
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : List[str] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : int = []
__UpperCAmelCase : Union[str, Any] = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Tuple = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : Any = tuple(__lowerCamelCase )
__UpperCAmelCase : List[Any] = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : str = get_pairs(__lowerCamelCase )
__UpperCAmelCase : List[Any] = " ".join(__lowerCamelCase )
if word == "\n " + BPE_TOKEN_MERGES:
__UpperCAmelCase : str = "\n" + BPE_TOKEN_MERGES
if word.endswith(__lowerCamelCase ):
__UpperCAmelCase : Dict = word.replace(__lowerCamelCase , "" )
__UpperCAmelCase : Dict = word.replace(" " , __lowerCamelCase )
__UpperCAmelCase : Dict = word
return word
def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Dict:
if self.bpe_ranks is None:
raise ValueError(
"This tokenizer was instantiated without a `merges.txt` file, so"
" that it can only be used for decoding, not for encoding."
"Make sure to provide `merges.txt` file at instantiation to enable "
"encoding." )
if self.do_lower_case:
__UpperCAmelCase : str = text.lower()
__UpperCAmelCase : List[Any] = text.split()
__UpperCAmelCase : Tuple = []
for token in text:
if token:
split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(" " ) ) )
return split_tokens
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: str ) -> int:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int ) -> str:
__UpperCAmelCase : Any = self.decoder.get(__lowerCamelCase , self.unk_token )
return result
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] ) -> str:
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
# make sure @@ tokens are concatenated
__UpperCAmelCase : Union[str, Any] = "".join(string.split(__lowerCamelCase ) )
return string
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[int] = 0
if self.bpe_ranks is None:
return (vocab_file,)
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Union[str, Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return (vocab_file, merges_file)
| 342 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_snake_case = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''MaskFormerFeatureExtractor''']
_snake_case = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
_snake_case = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 342 | import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | 1 |
import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | 1 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class _snake_case :
def __init__( self: Optional[int] , __lowerCamelCase: Collection[float] | None = None ) -> None:
if components is None:
__UpperCAmelCase : Tuple = []
__UpperCAmelCase : Dict = list(__lowerCamelCase )
def __len__( self: Optional[int] ) -> int:
return len(self.__components )
def __str__( self: Optional[Any] ) -> str:
return "(" + ",".join(map(__lowerCamelCase , self.__components ) ) + ")"
def __add__( self: str , __lowerCamelCase: Vector ) -> Vector:
__UpperCAmelCase : List[Any] = len(self )
if size == len(__lowerCamelCase ):
__UpperCAmelCase : Tuple = [self.__components[i] + other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )]
return Vector(__lowerCamelCase )
else:
raise Exception("must have the same size" )
def __sub__( self: List[str] , __lowerCamelCase: Vector ) -> Vector:
__UpperCAmelCase : Union[str, Any] = len(self )
if size == len(__lowerCamelCase ):
__UpperCAmelCase : int = [self.__components[i] - other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )]
return Vector(__lowerCamelCase )
else: # error case
raise Exception("must have the same size" )
@overload
def __mul__( self: Any , __lowerCamelCase: float ) -> Vector:
...
@overload
def __mul__( self: Dict , __lowerCamelCase: Vector ) -> float:
...
def __mul__( self: Tuple , __lowerCamelCase: float | Vector ) -> float | Vector:
if isinstance(__lowerCamelCase , (float, int) ):
__UpperCAmelCase : int = [c * other for c in self.__components]
return Vector(__lowerCamelCase )
elif isinstance(__lowerCamelCase , __lowerCamelCase ) and len(self ) == len(__lowerCamelCase ):
__UpperCAmelCase : Union[str, Any] = len(self )
__UpperCAmelCase : List[str] = [self.__components[i] * other.component(__lowerCamelCase ) for i in range(__lowerCamelCase )]
return sum(__lowerCamelCase )
else: # error case
raise Exception("invalid operand!" )
def _lowerCamelCase ( self: Optional[int] ) -> Vector:
return Vector(self.__components )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int ) -> float:
if isinstance(__lowerCamelCase , __lowerCamelCase ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("index out of range" )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: float ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__UpperCAmelCase : List[str] = value
def _lowerCamelCase ( self: int ) -> float:
if len(self.__components ) == 0:
raise Exception("Vector is empty" )
__UpperCAmelCase : int = [c**2 for c in self.__components]
return math.sqrt(sum(__lowerCamelCase ) )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Vector , __lowerCamelCase: bool = False ) -> float:
__UpperCAmelCase : Optional[int] = self * other
__UpperCAmelCase : Optional[int] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def _UpperCamelCase ( snake_case__ ) -> Vector:
assert isinstance(snake_case__, snake_case__ )
return Vector([0] * dimension )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Vector:
assert isinstance(snake_case__, snake_case__ ) and (isinstance(snake_case__, snake_case__ ))
__UpperCAmelCase : Union[str, Any] = [0] * dimension
__UpperCAmelCase : Any = 1
return Vector(snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Vector:
assert (
isinstance(snake_case__, snake_case__ )
and isinstance(snake_case__, snake_case__ )
and (isinstance(snake_case__, (int, float) ))
)
return x * scalar + y
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Vector:
random.seed(snake_case__ )
__UpperCAmelCase : int = [random.randint(snake_case__, snake_case__ ) for _ in range(snake_case__ )]
return Vector(snake_case__ )
class _snake_case :
def __init__( self: int , __lowerCamelCase: list[list[float]] , __lowerCamelCase: int , __lowerCamelCase: int ) -> None:
__UpperCAmelCase : List[str] = matrix
__UpperCAmelCase : Any = w
__UpperCAmelCase : Any = h
def __str__( self: List[str] ) -> str:
__UpperCAmelCase : Optional[int] = ""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self: str , __lowerCamelCase: Matrix ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__UpperCAmelCase : Tuple = []
for i in range(self.__height ):
__UpperCAmelCase : List[Any] = [
self.__matrix[i][j] + other.component(__lowerCamelCase , __lowerCamelCase )
for j in range(self.__width )
]
matrix.append(__lowerCamelCase )
return Matrix(__lowerCamelCase , self.__width , self.__height )
else:
raise Exception("matrix must have the same dimension!" )
def __sub__( self: Optional[int] , __lowerCamelCase: Matrix ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__UpperCAmelCase : Optional[Any] = []
for i in range(self.__height ):
__UpperCAmelCase : Any = [
self.__matrix[i][j] - other.component(__lowerCamelCase , __lowerCamelCase )
for j in range(self.__width )
]
matrix.append(__lowerCamelCase )
return Matrix(__lowerCamelCase , self.__width , self.__height )
else:
raise Exception("matrices must have the same dimension!" )
@overload
def __mul__( self: Dict , __lowerCamelCase: float ) -> Matrix:
...
@overload
def __mul__( self: Optional[Any] , __lowerCamelCase: Vector ) -> Vector:
...
def __mul__( self: Optional[Any] , __lowerCamelCase: float | Vector ) -> Vector | Matrix:
if isinstance(__lowerCamelCase , __lowerCamelCase ): # matrix-vector
if len(__lowerCamelCase ) == self.__width:
__UpperCAmelCase : List[Any] = zero_vector(self.__height )
for i in range(self.__height ):
__UpperCAmelCase : Optional[Any] = [
self.__matrix[i][j] * other.component(__lowerCamelCase )
for j in range(self.__width )
]
ans.change_component(__lowerCamelCase , sum(__lowerCamelCase ) )
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!" )
elif isinstance(__lowerCamelCase , (int, float) ): # matrix-scalar
__UpperCAmelCase : List[Any] = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(__lowerCamelCase , self.__width , self.__height )
return None
def _lowerCamelCase ( self: List[str] ) -> int:
return self.__height
def _lowerCamelCase ( self: Dict ) -> int:
return self.__width
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: int ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds" )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: float ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__UpperCAmelCase : str = value
else:
raise Exception("change_component: indices out of bounds" )
def _lowerCamelCase ( self: Any , __lowerCamelCase: int , __lowerCamelCase: int ) -> float:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
__UpperCAmelCase : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(__lowerCamelCase ) ):
__UpperCAmelCase : str = minor[i][:y] + minor[i][y + 1 :]
return Matrix(__lowerCamelCase , self.__width - 1 , self.__height - 1 ).determinant()
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: int ) -> float:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(__lowerCamelCase , __lowerCamelCase )
else:
raise Exception("Indices out of bounds" )
def _lowerCamelCase ( self: Optional[int] ) -> float:
if self.__height != self.__width:
raise Exception("Matrix is not square" )
if self.__height < 1:
raise Exception("Matrix has no element" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__UpperCAmelCase : Any = [
self.__matrix[0][y] * self.cofactor(0 , __lowerCamelCase ) for y in range(self.__width )
]
return sum(__lowerCamelCase )
def _UpperCamelCase ( snake_case__ ) -> Matrix:
__UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(snake_case__ )]
return Matrix(snake_case__, snake_case__, snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Matrix:
random.seed(snake_case__ )
__UpperCAmelCase : list[list[float]] = [
[random.randint(snake_case__, snake_case__ ) for _ in range(snake_case__ )] for _ in range(snake_case__ )
]
return Matrix(snake_case__, snake_case__, snake_case__ )
| 342 | from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
_snake_case = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Tuple = "facebook/nllb-200-distilled-600M"
lowerCamelCase__: List[Any] = (
"This is a tool that translates text from a language to another. It takes three inputs: `text`, which should "
"be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, "
"which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in "
"plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."
)
lowerCamelCase__: Any = "translator"
lowerCamelCase__: List[Any] = AutoTokenizer
lowerCamelCase__: Dict = AutoModelForSeqaSeqLM
lowerCamelCase__: Optional[Any] = LANGUAGE_CODES
lowerCamelCase__: List[str] = ["text", "text", "text"]
lowerCamelCase__: Dict = ["text"]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: List[str] ) -> str:
if src_lang not in self.lang_to_code:
raise ValueError(f'''{src_lang} is not a supported language.''' )
if tgt_lang not in self.lang_to_code:
raise ValueError(f'''{tgt_lang} is not a supported language.''' )
__UpperCAmelCase : Union[str, Any] = self.lang_to_code[src_lang]
__UpperCAmelCase : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
__lowerCamelCase , return_tensors="pt" , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> str:
return self.model.generate(**__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: str ) -> Optional[int]:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=__lowerCamelCase )
| 342 | import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
from datetime import datetime
import matplotlib.pyplot as plt
import torch
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
for param in module.parameters():
__UpperCAmelCase : Union[str, Any] = False
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
__UpperCAmelCase : int = "mps"
if device == "mps":
print(
"WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch"
" errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues"
" with generations." )
return device
def _UpperCamelCase ( snake_case__ ) -> List[str]:
__UpperCAmelCase : Optional[Any] = plt.imshow(snake_case__ )
fig.axes.get_xaxis().set_visible(snake_case__ )
fig.axes.get_yaxis().set_visible(snake_case__ )
plt.show()
def _UpperCamelCase ( ) -> Optional[int]:
__UpperCAmelCase : int = datetime.now()
__UpperCAmelCase : Optional[int] = current_time.strftime("%H:%M:%S" )
return timestamp
| 342 | import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | 1 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
_snake_case = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
_snake_case = {
'''abeja/gpt-neox-japanese-2.7b''': 2048,
}
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]:
with open(snake_case__, "r", encoding="utf-8" ) as f:
__UpperCAmelCase : Tuple = json.loads(f.read() )
__UpperCAmelCase : Any = collections.OrderedDict()
__UpperCAmelCase : List[str] = collections.OrderedDict()
__UpperCAmelCase : Tuple = collections.OrderedDict()
with open(snake_case__, "r", encoding="utf-8" ) as f:
__UpperCAmelCase : List[Any] = f.readlines()
__UpperCAmelCase : str = [[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(snake_case__ ):
__UpperCAmelCase : str = b
__UpperCAmelCase : int = idx
for wd in b:
__UpperCAmelCase : Any = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class _snake_case ( _lowercase ):
lowerCamelCase__: List[Any] = VOCAB_FILES_NAMES
lowerCamelCase__: List[str] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int="<|endoftext|>" , __lowerCamelCase: Dict="<|endoftext|>" , __lowerCamelCase: Any="<|startoftext|>" , __lowerCamelCase: Tuple="<|endoftext|>" , __lowerCamelCase: Tuple=False , **__lowerCamelCase: int , ) -> int:
super().__init__(
unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , do_clean_text=__lowerCamelCase , **__lowerCamelCase , )
if not os.path.isfile(__lowerCamelCase ):
raise ValueError(
f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'''
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(__lowerCamelCase ):
raise ValueError(
f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'''
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
__UpperCAmelCase : Tuple = do_clean_text
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = load_vocab_and_emoji(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def _lowerCamelCase ( self: Dict ) -> str:
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab )
def _lowerCamelCase ( self: Any ) -> str:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Optional[Any] ) -> Any:
return self.subword_tokenizer.tokenize(__lowerCamelCase , clean=self.do_clean_text )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Dict ) -> Dict:
return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Any ) -> List[str]:
return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[str] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = "".join(__lowerCamelCase ).strip()
return out_string
def _lowerCamelCase ( self: str , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Union[str, Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : int = input_ids[-self.model_max_length :]
return input_ids
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
__UpperCAmelCase : Union[str, Any] = 0
if os.path.isdir(__lowerCamelCase ):
__UpperCAmelCase : List[str] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Optional[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
__UpperCAmelCase : Tuple = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
)
__UpperCAmelCase : Any = (
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
)
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
__UpperCAmelCase : Optional[int] = token_index
writer.write(",".join(__lowerCamelCase ) + "\n" )
index += 1
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , __lowerCamelCase )
return vocab_file, emoji_file
class _snake_case ( _lowercase ):
def __init__( self: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Dict ) -> Optional[int]:
__UpperCAmelCase : Union[str, Any] = vocab # same as swe
__UpperCAmelCase : Dict = ids_to_tokens # same as bpe
__UpperCAmelCase : List[str] = emoji
__UpperCAmelCase : Optional[int] = np.max([len(__lowerCamelCase ) for w in self.vocab.keys()] )
__UpperCAmelCase : Tuple = re.compile(R"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
__UpperCAmelCase : List[Any] = re.compile(R"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
__UpperCAmelCase : List[Any] = re.compile(R"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
__UpperCAmelCase : int = re.compile(
R"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
__UpperCAmelCase : Union[str, Any] = re.compile(
R"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
__UpperCAmelCase : List[str] = re.compile(
R"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
__UpperCAmelCase : List[str] = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
__UpperCAmelCase : List[str] = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
__UpperCAmelCase : Optional[int] = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self: Dict ) -> int:
return len(self.ids_to_tokens )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any ) -> Any:
__UpperCAmelCase : str = self.content_repattera.sub("<URL>" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = self.content_repattera.sub("<EMAIL>" , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = self.content_repattera.sub("<TEL>" , __lowerCamelCase )
__UpperCAmelCase : Any = self.content_repattera.sub("<DATE>" , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = self.content_repattera.sub("<DATE>" , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.content_repattera.sub("<PRICE>" , __lowerCamelCase )
__UpperCAmelCase : str = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
__UpperCAmelCase : Union[str, Any] = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=False ) -> Dict:
__UpperCAmelCase : List[Any] = text.replace(" " , "<SP>" )
__UpperCAmelCase : str = text.replace(" " , "<SP>" )
__UpperCAmelCase : Tuple = text.replace("\r\n" , "<BR>" )
__UpperCAmelCase : Optional[Any] = text.replace("\n" , "<BR>" )
__UpperCAmelCase : List[str] = text.replace("\r" , "<BR>" )
__UpperCAmelCase : List[str] = text.replace("\t" , "<TAB>" )
__UpperCAmelCase : List[Any] = text.replace("—" , "ー" )
__UpperCAmelCase : Dict = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
__UpperCAmelCase : Optional[int] = text.replace(__lowerCamelCase , __lowerCamelCase )
if clean:
__UpperCAmelCase : Any = self.clean_text(__lowerCamelCase )
def check_simbol(__lowerCamelCase: Union[str, Any] ):
__UpperCAmelCase : Any = x.encode()
if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 2:
__UpperCAmelCase : int = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xC_2_A_1 and c <= 0xC_2_B_F)
or (c >= 0xC_7_8_0 and c <= 0xC_7_8_3)
or (c >= 0xC_A_B_9 and c <= 0xC_B_B_F)
or (c >= 0xC_C_8_0 and c <= 0xC_D_A_2)
):
return True
return False
def checkuae(__lowerCamelCase: Any ):
__UpperCAmelCase : List[Any] = x.encode()
if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 3:
__UpperCAmelCase : List[Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xE_2_8_0_8_0 and c <= 0xE_2_B_0_7_F:
return True
return False
__UpperCAmelCase : int = 0
__UpperCAmelCase : Tuple = []
while pos < len(__lowerCamelCase ):
__UpperCAmelCase : Union[str, Any] = min(len(__lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3
__UpperCAmelCase : str = [] # (token_id, token, pos)
for e in range(__lowerCamelCase , __lowerCamelCase , -1 ):
__UpperCAmelCase : List[Any] = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__lowerCamelCase ) > 2:
__UpperCAmelCase : int = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__lowerCamelCase ) > 0:
# the smallest token_id is adopted
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = sorted(__lowerCamelCase , key=lambda __lowerCamelCase : x[0] )[0]
result.append(__lowerCamelCase )
__UpperCAmelCase : str = e
else:
__UpperCAmelCase : List[str] = pos + 1
__UpperCAmelCase : List[str] = text[pos:end]
if check_simbol(__lowerCamelCase ):
result.append("<KIGOU>" )
elif checkuae(__lowerCamelCase ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
__UpperCAmelCase : Union[str, Any] = end
return result
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: int="\n" ) -> Any:
__UpperCAmelCase : List[str] = []
__UpperCAmelCase : Dict = []
__UpperCAmelCase : Tuple = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__lowerCamelCase ) > 0:
words.append(bytearray(__lowerCamelCase ).decode("utf-8" , errors="replace" ) )
__UpperCAmelCase : int = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(__lowerCamelCase )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
words.append(bytearray(__lowerCamelCase ).decode("utf-8" , errors="replace" ) )
__UpperCAmelCase : Any = "".join(__lowerCamelCase )
return text
| 342 | from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''post_extract_proj''': '''feature_projection.projection''',
'''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''',
'''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''',
'''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''',
'''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''',
'''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''',
'''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''',
'''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''',
'''fc2''': '''encoder.layers.*.feed_forward.output_dense''',
'''final_layer_norm''': '''encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''encoder.layer_norm''',
'''adapter_layer''': '''encoder.layers.*.adapter_layer''',
'''w2v_model.layer_norm''': '''feature_projection.layer_norm''',
'''quantizer.weight_proj''': '''quantizer.weight_proj''',
'''quantizer.vars''': '''quantizer.codevectors''',
'''project_q''': '''project_q''',
'''final_proj''': '''project_hid''',
'''w2v_encoder.proj''': '''lm_head''',
'''mask_emb''': '''masked_spec_embed''',
'''pooling_layer.linear''': '''projector''',
'''pooling_layer.projection''': '''classifier''',
}
_snake_case = [
'''lm_head''',
'''quantizer.weight_proj''',
'''quantizer.codevectors''',
'''project_q''',
'''project_hid''',
'''projector''',
'''classifier''',
]
def _UpperCamelCase ( snake_case__ ) -> Dict:
__UpperCAmelCase : Any = {}
with open(snake_case__, "r" ) as file:
for line_number, line in enumerate(snake_case__ ):
__UpperCAmelCase : Any = line.strip()
if line:
__UpperCAmelCase : List[Any] = line.split()
__UpperCAmelCase : int = line_number
__UpperCAmelCase : Optional[int] = words[0]
__UpperCAmelCase : Tuple = value
return result
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple:
for attribute in key.split("." ):
__UpperCAmelCase : Optional[Any] = getattr(snake_case__, snake_case__ )
__UpperCAmelCase : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__UpperCAmelCase : Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]]
__UpperCAmelCase : Dict = "param"
if weight_type is not None and weight_type != "param":
__UpperCAmelCase : Any = getattr(snake_case__, snake_case__ ).shape
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase : int = hf_pointer
for attribute in hf_param_name.split("." ):
__UpperCAmelCase : Dict = getattr(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = shape_pointer.shape
# let's reduce dimension
__UpperCAmelCase : Any = value[0]
else:
__UpperCAmelCase : Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
f''' {value.shape} for {full_name}''' )
if weight_type == "weight":
__UpperCAmelCase : Any = value
elif weight_type == "weight_g":
__UpperCAmelCase : List[str] = value
elif weight_type == "weight_v":
__UpperCAmelCase : List[Any] = value
elif weight_type == "bias":
__UpperCAmelCase : Union[str, Any] = value
elif weight_type == "param":
for attribute in hf_param_name.split("." ):
__UpperCAmelCase : Optional[Any] = getattr(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = value
else:
__UpperCAmelCase : str = value
logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> str:
__UpperCAmelCase : Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(snake_case__ ):
__UpperCAmelCase : Union[str, Any] = PARAM_MAPPING[full_name.split("." )[-1]]
__UpperCAmelCase : Any = "param"
if weight_type is not None and weight_type != "param":
__UpperCAmelCase : Optional[int] = ".".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__UpperCAmelCase : Dict = ".".join([key, hf_param_name] )
else:
__UpperCAmelCase : List[Any] = key
__UpperCAmelCase : List[str] = value if "lm_head" in full_key else value[0]
_snake_case = {
'''W_a''': '''linear_1.weight''',
'''W_b''': '''linear_2.weight''',
'''b_a''': '''linear_1.bias''',
'''b_b''': '''linear_2.bias''',
'''ln_W''': '''norm.weight''',
'''ln_b''': '''norm.bias''',
}
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None, snake_case__=None ) -> int:
__UpperCAmelCase : Tuple = False
for key, mapped_key in MAPPING.items():
__UpperCAmelCase : Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
__UpperCAmelCase : Optional[Any] = True
if "*" in mapped_key:
__UpperCAmelCase : List[str] = name.split(snake_case__ )[0].split("." )[-2]
__UpperCAmelCase : Optional[Any] = mapped_key.replace("*", snake_case__ )
if "weight_g" in name:
__UpperCAmelCase : Optional[int] = "weight_g"
elif "weight_v" in name:
__UpperCAmelCase : Union[str, Any] = "weight_v"
elif "bias" in name:
__UpperCAmelCase : Optional[int] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__UpperCAmelCase : List[str] = "weight"
else:
__UpperCAmelCase : Optional[Any] = None
if hf_dict is not None:
rename_dict(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ )
else:
set_recursively(snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ )
return is_used
return is_used
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : int = []
__UpperCAmelCase : Tuple = fairseq_model.state_dict()
__UpperCAmelCase : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__UpperCAmelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
snake_case__, snake_case__, snake_case__, snake_case__, hf_model.config.feat_extract_norm == "group", )
__UpperCAmelCase : Tuple = True
else:
__UpperCAmelCase : Dict = load_wavaveca_layer(snake_case__, snake_case__, snake_case__ )
if not is_used:
unused_weights.append(snake_case__ )
logger.warning(f'''Unused weights: {unused_weights}''' )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : Optional[int] = full_name.split("conv_layers." )[-1]
__UpperCAmelCase : str = name.split("." )
__UpperCAmelCase : Dict = int(items[0] )
__UpperCAmelCase : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' )
__UpperCAmelCase : Union[str, Any] = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' )
__UpperCAmelCase : int = value
logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' )
__UpperCAmelCase : Tuple = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'''{full_name} has size {value.shape}, but'''
f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' )
__UpperCAmelCase : Tuple = value
logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' )
else:
unused_weights.append(snake_case__ )
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None, snake_case__=None, snake_case__=True, snake_case__=False ) -> List[Any]:
if config_path is not None:
__UpperCAmelCase : Optional[int] = WavaVecaConfig.from_pretrained(snake_case__ )
else:
__UpperCAmelCase : Optional[Any] = WavaVecaConfig()
if is_seq_class:
__UpperCAmelCase : List[Any] = read_txt_into_dict(snake_case__ )
__UpperCAmelCase : Optional[Any] = idalabel
__UpperCAmelCase : List[Any] = WavaVecaForSequenceClassification(snake_case__ )
__UpperCAmelCase : Dict = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, )
feature_extractor.save_pretrained(snake_case__ )
elif is_finetuned:
if dict_path:
__UpperCAmelCase : List[str] = Dictionary.load(snake_case__ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__UpperCAmelCase : int = target_dict.pad_index
__UpperCAmelCase : Union[str, Any] = target_dict.bos_index
__UpperCAmelCase : Optional[int] = target_dict.eos_index
__UpperCAmelCase : List[str] = len(target_dict.symbols )
__UpperCAmelCase : List[Any] = os.path.join(snake_case__, "vocab.json" )
if not os.path.isdir(snake_case__ ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(snake_case__ ) )
return
os.makedirs(snake_case__, exist_ok=snake_case__ )
__UpperCAmelCase : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__UpperCAmelCase : str = 0
__UpperCAmelCase : Union[str, Any] = 1
with open(snake_case__, "w", encoding="utf-8" ) as vocab_handle:
json.dump(snake_case__, snake_case__ )
__UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer(
snake_case__, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=snake_case__, )
__UpperCAmelCase : List[Any] = True if config.feat_extract_norm == "layer" else False
__UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=1_6000, padding_value=0, do_normalize=snake_case__, return_attention_mask=snake_case__, )
__UpperCAmelCase : Optional[int] = WavaVecaProcessor(feature_extractor=snake_case__, tokenizer=snake_case__ )
processor.save_pretrained(snake_case__ )
__UpperCAmelCase : Optional[int] = WavaVecaForCTC(snake_case__ )
else:
__UpperCAmelCase : Dict = WavaVecaForPreTraining(snake_case__ )
if is_finetuned or is_seq_class:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
__UpperCAmelCase : Any = argparse.Namespace(task="audio_pretraining" )
__UpperCAmelCase : str = fairseq.tasks.setup_task(snake_case__ )
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=snake_case__ )
__UpperCAmelCase : int = model[0].eval()
recursively_load_weights(snake_case__, snake_case__, not is_finetuned )
hf_wavavec.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
parser.add_argument(
'''--is_seq_class''',
action='''store_true''',
help='''Whether the model to convert is a fine-tuned sequence classification model or not''',
)
_snake_case = parser.parse_args()
_snake_case = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 342 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 1 |
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Union[str, Any] ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: Any ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> int:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[Any] = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Union[str, Any] ) -> Dict:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: str , **__lowerCamelCase: Any ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: str , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Dict = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: int ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[Any] ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: List[Any] , **__lowerCamelCase: List[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Dict , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[int] , **__lowerCamelCase: Tuple ) -> Optional[int]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: str , *__lowerCamelCase: Dict , **__lowerCamelCase: List[Any] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: Optional[Any] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Tuple ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Any = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: List[Any] , **__lowerCamelCase: Dict ) -> int:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: List[Any] , **__lowerCamelCase: int ) -> Tuple:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Optional[int] , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: List[str] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Union[str, Any] = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: Dict , **__lowerCamelCase: Optional[int] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[int] = ["sentencepiece"]
def __init__( self: str , *__lowerCamelCase: str , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: str = ["sentencepiece"]
def __init__( self: Any , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[str] ) -> Any:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Tuple = ["sentencepiece"]
def __init__( self: Tuple , *__lowerCamelCase: Optional[Any] , **__lowerCamelCase: Tuple ) -> List[str]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Tuple , **__lowerCamelCase: str ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[str] = ["sentencepiece"]
def __init__( self: Union[str, Any] , *__lowerCamelCase: int , **__lowerCamelCase: Dict ) -> str:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: Optional[int] = ["sentencepiece"]
def __init__( self: List[Any] , *__lowerCamelCase: Tuple , **__lowerCamelCase: Optional[Any] ) -> List[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: int = ["sentencepiece"]
def __init__( self: List[str] , *__lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> Optional[Any]:
requires_backends(self , ["sentencepiece"] )
class _snake_case ( metaclass=_lowercase ):
lowerCamelCase__: List[Any] = ["sentencepiece"]
def __init__( self: int , *__lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[int] ) -> Any:
requires_backends(self , ["sentencepiece"] )
| 342 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "ctrl"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: Optional[Any] = {
"max_position_embeddings": "n_positions",
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self: Tuple , __lowerCamelCase: str=24_65_34 , __lowerCamelCase: Union[str, Any]=2_56 , __lowerCamelCase: str=12_80 , __lowerCamelCase: int=81_92 , __lowerCamelCase: str=48 , __lowerCamelCase: List[str]=16 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Dict=1e-6 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: List[str]=True , **__lowerCamelCase: List[str] , ) -> Dict:
__UpperCAmelCase : Tuple = vocab_size
__UpperCAmelCase : int = n_positions
__UpperCAmelCase : Optional[int] = n_embd
__UpperCAmelCase : int = n_layer
__UpperCAmelCase : Tuple = n_head
__UpperCAmelCase : Optional[Any] = dff
__UpperCAmelCase : List[Any] = resid_pdrop
__UpperCAmelCase : Dict = embd_pdrop
__UpperCAmelCase : Any = layer_norm_epsilon
__UpperCAmelCase : Optional[int] = initializer_range
__UpperCAmelCase : Dict = use_cache
super().__init__(**__lowerCamelCase )
| 342 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 1 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _snake_case :
def __init__( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=13 , __lowerCamelCase: Optional[int]=10 , __lowerCamelCase: int=3 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: str=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: List[str]=37 , __lowerCamelCase: int="gelu" , __lowerCamelCase: List[Any]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: str=10 , __lowerCamelCase: Tuple=0.02 , __lowerCamelCase: Any="divided_space_time" , __lowerCamelCase: int=None , ) -> Optional[Any]:
__UpperCAmelCase : Any = parent
__UpperCAmelCase : Union[str, Any] = batch_size
__UpperCAmelCase : str = image_size
__UpperCAmelCase : List[Any] = num_channels
__UpperCAmelCase : str = patch_size
__UpperCAmelCase : List[Any] = num_frames
__UpperCAmelCase : List[str] = is_training
__UpperCAmelCase : List[str] = use_labels
__UpperCAmelCase : List[Any] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : Any = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : int = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Tuple = attention_probs_dropout_prob
__UpperCAmelCase : Dict = attention_type
__UpperCAmelCase : Dict = initializer_range
__UpperCAmelCase : Union[str, Any] = scope
__UpperCAmelCase : Any = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__UpperCAmelCase : Optional[int] = (image_size // patch_size) ** 2
__UpperCAmelCase : str = (num_frames) * self.num_patches_per_frame + 1
def _lowerCamelCase ( self: int ) -> Dict:
__UpperCAmelCase : Any = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : str = None
if self.use_labels:
__UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : List[str] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__UpperCAmelCase : Any = self.num_labels
return config
def _lowerCamelCase ( self: int , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Dict:
__UpperCAmelCase : int = TimesformerModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict ) -> Any:
__UpperCAmelCase : str = TimesformerForVideoClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Tuple = model(__lowerCamelCase )
# verify the logits shape
__UpperCAmelCase : Optional[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = config_and_inputs
__UpperCAmelCase : Any = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowerCamelCase__: Dict = (
{"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Optional[int] = False
lowerCamelCase__: Optional[Any] = False
lowerCamelCase__: List[str] = False
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = TimesformerModelTester(self )
__UpperCAmelCase : List[str] = ConfigTester(
self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int=False ) -> Tuple:
__UpperCAmelCase : List[Any] = copy.deepcopy(__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
__UpperCAmelCase : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def _lowerCamelCase ( self: List[str] ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason="TimeSformer does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCAmelCase : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) )
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
__UpperCAmelCase : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : int = [*signature.parameters.keys()]
__UpperCAmelCase : List[str] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> int:
__UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = TimesformerModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> Any:
if not self.has_attentions:
pass
else:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : Dict = True
for model_class in self.all_model_classes:
__UpperCAmelCase : List[Any] = self.model_tester.seq_length
__UpperCAmelCase : Union[str, Any] = self.model_tester.num_frames
__UpperCAmelCase : List[Any] = True
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[str] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : int = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__UpperCAmelCase : int = True
__UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : Tuple = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__UpperCAmelCase : List[Any] = len(__lowerCamelCase )
# Check attention is always last and order is fine
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + 1 , len(__lowerCamelCase ) )
__UpperCAmelCase : Optional[int] = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def _lowerCamelCase ( self: Optional[Any] ) -> Any:
def check_hidden_states_output(__lowerCamelCase: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str ):
__UpperCAmelCase : Optional[int] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : List[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : Union[str, Any] = outputs.hidden_states
__UpperCAmelCase : Optional[Any] = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
__UpperCAmelCase : int = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : int = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Dict = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : str = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" )
__UpperCAmelCase : Dict = np.load(snake_case__ )
return list(snake_case__ )
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : int = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to(
__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_video()
__UpperCAmelCase : Any = image_processor(video[:8] , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : Dict = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : int = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : Dict = torch.tensor([-0.30_16, -0.77_13, -0.42_05] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | import math
_snake_case = 10
_snake_case = 7
_snake_case = BALLS_PER_COLOUR * NUM_COLOURS
def _UpperCamelCase ( snake_case__ = 20 ) -> str:
__UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ )
__UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 342 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case ( _lowercase ):
lowerCamelCase__: Union[str, Any] = "new-model"
if is_tf_available():
class _snake_case ( _lowercase ):
lowerCamelCase__: List[str] = NewModelConfig
@require_tf
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> str:
__UpperCAmelCase : int = "bert-base-cased"
__UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : int = "bert-base-cased"
__UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> Optional[Any]:
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: Optional[int] ) -> List[Any]:
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[Any]:
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__UpperCAmelCase : str = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _lowerCamelCase ( self: List[str] ) -> List[Any]:
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
__UpperCAmelCase : Dict = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
@require_tensorflow_probability
def _lowerCamelCase ( self: str ) -> str:
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
__UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(
__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Any = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 1_44_10 )
def _lowerCamelCase ( self: Optional[Any] ) -> Any:
__UpperCAmelCase : int = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(model.num_parameters() , 1_44_10 )
self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 1_44_10 )
def _lowerCamelCase ( self: Any ) -> str:
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
__UpperCAmelCase : int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = copy.deepcopy(model.config )
__UpperCAmelCase : str = ["FunnelBaseModel"]
__UpperCAmelCase : List[str] = TFAutoModel.from_config(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : List[Any] = TFAutoModel.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Tuple ) -> Dict:
try:
AutoConfig.register("new-model" , __lowerCamelCase )
__UpperCAmelCase : List[Any] = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(__lowerCamelCase ):
auto_class.register(__lowerCamelCase , __lowerCamelCase )
auto_class.register(__lowerCamelCase , __lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase ):
auto_class.register(__lowerCamelCase , __lowerCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
__UpperCAmelCase : int = BertModelTester(self ).get_config()
__UpperCAmelCase : Tuple = NewModelConfig(**tiny_config.to_dict() )
__UpperCAmelCase : Optional[int] = auto_class.from_config(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Any = auto_class.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def _lowerCamelCase ( self: Any ) -> List[Any]:
with self.assertRaisesRegex(
__lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ):
__UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("bert-base" )
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
with self.assertRaisesRegex(
__lowerCamelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
__UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" )
def _lowerCamelCase ( self: List[Any] ) -> Any:
with self.assertRaisesRegex(
__lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ):
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def _lowerCamelCase ( self: List[str] ) -> List[Any]:
with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ):
__UpperCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
# Make sure we have cached the model.
__UpperCAmelCase : int = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
__UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
__UpperCAmelCase : str = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
with RequestCounter() as counter:
__UpperCAmelCase : Tuple = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 342 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = [0] * len(snake_case__ )
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : str = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__UpperCAmelCase : str = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
_snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: Any=0.01 , __lowerCamelCase: str=10_00 ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = p_stop
__UpperCAmelCase : List[Any] = max_length
def __iter__( self: Dict ) -> Optional[Any]:
__UpperCAmelCase : str = 0
__UpperCAmelCase : Tuple = False
while not stop and count < self.max_length:
yield count
count += 1
__UpperCAmelCase : Dict = random.random() < self.p_stop
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: str , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: Dict=False , __lowerCamelCase: List[Any]=True ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = [
BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
for i in range(2 )
]
__UpperCAmelCase : List[Any] = [list(__lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(__lowerCamelCase ) for shard in batch_sampler_shards] , [len(__lowerCamelCase ) for e in expected] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: int ) -> int:
# Check the shards when the dataset is a round multiple of total batch size.
__UpperCAmelCase : Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__UpperCAmelCase : List[Any] = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : int = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__UpperCAmelCase : str = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Dict = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__UpperCAmelCase : Dict = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
# Check the shards when the dataset is very small.
__UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Tuple = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] ) -> List[Any]:
# Check the shards when the dataset is a round multiple of batch size.
__UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
__UpperCAmelCase : str = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : int = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
__UpperCAmelCase : int = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Any = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
__UpperCAmelCase : Dict = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : int = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
__UpperCAmelCase : str = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Any = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase )
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
# Check the shards when the dataset is a round multiple of total batch size.
__UpperCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[Any] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : int = BatchSampler(range(24 ) , batch_size=3 , drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
__UpperCAmelCase : Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : str = BatchSampler(range(21 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[str] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
__UpperCAmelCase : List[Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Any = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Any = BatchSampler(range(22 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
__UpperCAmelCase : Any = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Tuple = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
__UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Dict = [[[0, 1]], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=3 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , even_batches=__lowerCamelCase )
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
# Check the shards when the dataset is a round multiple of batch size.
__UpperCAmelCase : Any = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = BatchSampler(range(24 ) , batch_size=4 , drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
__UpperCAmelCase : str = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Dict = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
__UpperCAmelCase : Dict = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : List[str] = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
__UpperCAmelCase : Any = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : str = [[[0, 1]], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
__UpperCAmelCase : List[Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : str = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase , __lowerCamelCase , split_batches=__lowerCamelCase , even_batches=__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> Optional[int]:
__UpperCAmelCase : int = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
__UpperCAmelCase : Union[str, Any] = [BatchSamplerShard(__lowerCamelCase , 2 , __lowerCamelCase , even_batches=__lowerCamelCase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: List[Any]=False , __lowerCamelCase: List[Any]=2 , __lowerCamelCase: Optional[int]=False ) -> int:
random.seed(__lowerCamelCase )
__UpperCAmelCase : Tuple = list(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = [
IterableDatasetShard(
__lowerCamelCase , batch_size=__lowerCamelCase , drop_last=__lowerCamelCase , num_processes=__lowerCamelCase , process_index=__lowerCamelCase , split_batches=__lowerCamelCase , )
for i in range(__lowerCamelCase )
]
__UpperCAmelCase : List[Any] = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(__lowerCamelCase )
iterable_dataset_lists.append(list(__lowerCamelCase ) )
__UpperCAmelCase : Optional[Any] = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
__UpperCAmelCase : Tuple = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(len(__lowerCamelCase ) % shard_batch_size == 0 )
__UpperCAmelCase : List[Any] = []
for idx in range(0 , len(__lowerCamelCase ) , __lowerCamelCase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(__lowerCamelCase ) < len(__lowerCamelCase ):
reference += reference
self.assertListEqual(__lowerCamelCase , reference[: len(__lowerCamelCase )] )
def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = 42
__UpperCAmelCase : int = RandomIterableDataset()
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
# Edge case with a very small dataset
__UpperCAmelCase : Optional[int] = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase , __lowerCamelCase , batch_size=4 , drop_last=__lowerCamelCase , split_batches=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : List[str] = BatchSampler(range(16 ) , batch_size=4 , drop_last=__lowerCamelCase )
__UpperCAmelCase : str = SkipBatchSampler(__lowerCamelCase , 2 )
self.assertListEqual(list(__lowerCamelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCamelCase ( self: int ) -> int:
__UpperCAmelCase : int = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCamelCase ( self: Dict ) -> str:
__UpperCAmelCase : Union[str, Any] = DataLoader(list(range(16 ) ) , batch_size=4 )
__UpperCAmelCase : Any = skip_first_batches(__lowerCamelCase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def _lowerCamelCase ( self: List[Any] ) -> Any:
__UpperCAmelCase : str = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def _lowerCamelCase ( self: int ) -> List[str]:
Accelerator()
__UpperCAmelCase : List[str] = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 342 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class _snake_case ( _lowercase , _lowercase ):
@register_to_config
def __init__( self: int , __lowerCamelCase: int = 1_28 , __lowerCamelCase: int = 2_56 , __lowerCamelCase: float = 20_00.0 , __lowerCamelCase: int = 7_68 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 12 , __lowerCamelCase: int = 64 , __lowerCamelCase: int = 20_48 , __lowerCamelCase: float = 0.1 , ) -> int:
super().__init__()
__UpperCAmelCase : Optional[int] = nn.Sequential(
nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , )
__UpperCAmelCase : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
__UpperCAmelCase : str = nn.Dropout(p=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.ModuleList()
for lyr_num in range(__lowerCamelCase ):
# FiLM conditional T5 decoder
__UpperCAmelCase : Union[str, Any] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
self.decoders.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = TaLayerNorm(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = nn.Dropout(p=__lowerCamelCase )
__UpperCAmelCase : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : str = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict ) -> Optional[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__UpperCAmelCase : Any = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
__UpperCAmelCase : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__UpperCAmelCase : List[str] = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__UpperCAmelCase : Any = torch.broadcast_to(
torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
__UpperCAmelCase : Union[str, Any] = self.position_encoding(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.continuous_inputs_projection(__lowerCamelCase )
inputs += position_encodings
__UpperCAmelCase : Optional[Any] = self.dropout(__lowerCamelCase )
# decoder: No padding present.
__UpperCAmelCase : Tuple = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
__UpperCAmelCase : int = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__UpperCAmelCase : List[Any] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
__UpperCAmelCase : Dict = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
__UpperCAmelCase : List[str] = lyr(
__lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0]
__UpperCAmelCase : List[str] = self.decoder_norm(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.post_dropout(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.spec_out(__lowerCamelCase )
return spec_out
class _snake_case ( nn.Module ):
def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: str=1e-6 ) -> int:
super().__init__()
__UpperCAmelCase : Optional[int] = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] , __lowerCamelCase: int=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: Union[str, Any]=None , __lowerCamelCase: List[Any]=None , ) -> int:
__UpperCAmelCase : int = self.layer[0](
__lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , )
if encoder_hidden_states is not None:
__UpperCAmelCase : Union[str, Any] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to(
encoder_hidden_states.dtype )
__UpperCAmelCase : Tuple = self.layer[1](
__lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , )
# Apply Film Conditional Feed Forward layer
__UpperCAmelCase : List[str] = self.layer[-1](__lowerCamelCase , __lowerCamelCase )
return (hidden_states,)
class _snake_case ( nn.Module ):
def __init__( self: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any ) -> Optional[Any]:
super().__init__()
__UpperCAmelCase : Tuple = TaLayerNorm(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = nn.Dropout(__lowerCamelCase )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: str=None , __lowerCamelCase: Any=None , ) -> Dict:
# pre_self_attention_layer_norm
__UpperCAmelCase : Any = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
__UpperCAmelCase : str = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase )
# Self-attention block
__UpperCAmelCase : List[Any] = self.attention(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: Dict , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Dict ) -> Union[str, Any]:
super().__init__()
__UpperCAmelCase : Dict = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase )
__UpperCAmelCase : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
__UpperCAmelCase : int = nn.Dropout(__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Union[str, Any]=None , ) -> Optional[int]:
__UpperCAmelCase : int = self.layer_norm(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.attention(
__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , )
__UpperCAmelCase : int = hidden_states + self.dropout(__lowerCamelCase )
return layer_output
class _snake_case ( nn.Module ):
def __init__( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any] ) -> Union[str, Any]:
super().__init__()
__UpperCAmelCase : Union[str, Any] = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase )
__UpperCAmelCase : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase )
__UpperCAmelCase : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase )
__UpperCAmelCase : List[Any] = nn.Dropout(__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any=None ) -> Any:
__UpperCAmelCase : Tuple = self.layer_norm(__lowerCamelCase )
if conditioning_emb is not None:
__UpperCAmelCase : Any = self.film(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Tuple = self.DenseReluDense(__lowerCamelCase )
__UpperCAmelCase : Dict = hidden_states + self.dropout(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: Any ) -> Dict:
super().__init__()
__UpperCAmelCase : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
__UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = nn.Dropout(__lowerCamelCase )
__UpperCAmelCase : str = NewGELUActivation()
def _lowerCamelCase ( self: Any , __lowerCamelCase: Union[str, Any] ) -> int:
__UpperCAmelCase : Optional[int] = self.act(self.wi_a(__lowerCamelCase ) )
__UpperCAmelCase : Any = self.wi_a(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = hidden_gelu * hidden_linear
__UpperCAmelCase : Any = self.dropout(__lowerCamelCase )
__UpperCAmelCase : Any = self.wo(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any]=1e-6 ) -> Optional[int]:
super().__init__()
__UpperCAmelCase : Tuple = nn.Parameter(torch.ones(__lowerCamelCase ) )
__UpperCAmelCase : Optional[Any] = eps
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[Any] ) -> List[str]:
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
__UpperCAmelCase : int = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__UpperCAmelCase : Optional[int] = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class _snake_case ( nn.Module ):
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: torch.Tensor ) -> torch.Tensor:
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(__lowerCamelCase , 3.0 )) ))
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Any ) -> Optional[int]:
super().__init__()
__UpperCAmelCase : Optional[int] = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Tuple ) -> Dict:
__UpperCAmelCase : int = self.scale_bias(__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = torch.chunk(__lowerCamelCase , 2 , -1 )
__UpperCAmelCase : List[str] = x * (1 + scale) + shift
return x
| 342 | from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
_snake_case = get_logger(__name__)
_snake_case = r'''
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
'''
class _snake_case :
@add_start_docstrings(__lowerCamelCase )
def __call__( self: Union[str, Any] , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class _snake_case :
@add_start_docstrings(__lowerCamelCase )
def __call__( self: Optional[Any] , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray ) -> jnp.ndarray:
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class _snake_case ( _lowercase ):
@add_start_docstrings(__lowerCamelCase )
def __call__( self: Dict , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int , **__lowerCamelCase: List[Any] ) -> jnp.ndarray:
for processor in self:
__UpperCAmelCase : str = inspect.signature(processor.__call__ ).parameters
if len(__lowerCamelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
f'''{processor.__class__} are passed to the logits processor.''' )
__UpperCAmelCase : int = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
else:
__UpperCAmelCase : Union[str, Any] = processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return scores
class _snake_case ( _lowercase ):
def __init__( self: int , __lowerCamelCase: float ) -> Tuple:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not (temperature > 0):
raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' )
__UpperCAmelCase : Any = temperature
def __call__( self: List[str] , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase : List[str] = scores / self.temperature
return scores
class _snake_case ( _lowercase ):
def __init__( self: str , __lowerCamelCase: float , __lowerCamelCase: float = -float("Inf" ) , __lowerCamelCase: int = 1 ) -> List[str]:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or (min_tokens_to_keep < 1):
raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
__UpperCAmelCase : Optional[Any] = top_p
__UpperCAmelCase : str = filter_value
__UpperCAmelCase : List[Any] = min_tokens_to_keep
def __call__( self: Dict , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = lax.top_k(__lowerCamelCase , scores.shape[-1] )
__UpperCAmelCase : Any = jnp.full_like(__lowerCamelCase , self.filter_value )
__UpperCAmelCase : Any = jax.nn.softmax(__lowerCamelCase , axis=-1 ).cumsum(axis=-1 )
__UpperCAmelCase : List[str] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
__UpperCAmelCase : List[Any] = jnp.roll(__lowerCamelCase , 1 )
score_mask |= score_mask.at[:, 0].set(__lowerCamelCase )
# min tokens to keep
__UpperCAmelCase : int = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase )
__UpperCAmelCase : int = jnp.where(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax.lax.sort_key_val(__lowerCamelCase , __lowerCamelCase )[-1]
return next_scores
class _snake_case ( _lowercase ):
def __init__( self: str , __lowerCamelCase: int , __lowerCamelCase: float = -float("Inf" ) , __lowerCamelCase: int = 1 ) -> Optional[int]:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or top_k <= 0:
raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
__UpperCAmelCase : List[str] = max(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[Any] = filter_value
def __call__( self: int , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = scores.shape
__UpperCAmelCase : Dict = jnp.full(batch_size * vocab_size , self.filter_value )
__UpperCAmelCase : Tuple = min(self.top_k , scores.shape[-1] ) # Safety check
__UpperCAmelCase , __UpperCAmelCase : Dict = lax.top_k(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = jnp.broadcast_to((jnp.arange(__lowerCamelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
__UpperCAmelCase : Union[str, Any] = topk_scores.flatten()
__UpperCAmelCase : Dict = topk_indices.flatten() + shift
__UpperCAmelCase : List[Any] = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase )
__UpperCAmelCase : Any = next_scores_flat.reshape(__lowerCamelCase , __lowerCamelCase )
return next_scores
class _snake_case ( _lowercase ):
def __init__( self: Any , __lowerCamelCase: int ) -> Tuple:
__UpperCAmelCase : Optional[int] = bos_token_id
def __call__( self: Dict , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase : str = jnp.full(scores.shape , -float("inf" ) )
__UpperCAmelCase : str = 1 - jnp.bool_(cur_len - 1 )
__UpperCAmelCase : Dict = jnp.where(__lowerCamelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __lowerCamelCase )
return scores
class _snake_case ( _lowercase ):
def __init__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> Optional[int]:
__UpperCAmelCase : List[str] = max_length
__UpperCAmelCase : Union[str, Any] = eos_token_id
def __call__( self: Optional[Any] , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase : Tuple = jnp.full(scores.shape , -float("inf" ) )
__UpperCAmelCase : Any = 1 - jnp.bool_(cur_len - self.max_length + 1 )
__UpperCAmelCase : str = jnp.where(__lowerCamelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __lowerCamelCase )
return scores
class _snake_case ( _lowercase ):
def __init__( self: Tuple , __lowerCamelCase: int , __lowerCamelCase: int ) -> str:
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or min_length < 0:
raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or eos_token_id < 0:
raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
__UpperCAmelCase : List[str] = min_length
__UpperCAmelCase : int = eos_token_id
def __call__( self: Any , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
# create boolean flag to decide if min length penalty should be applied
__UpperCAmelCase : List[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
__UpperCAmelCase : Union[str, Any] = jnp.where(__lowerCamelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , __lowerCamelCase )
return scores
class _snake_case ( _lowercase ):
def __init__( self: Union[str, Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = list(__lowerCamelCase )
__UpperCAmelCase : Any = begin_index
def __call__( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : List[Any] = 1 - jnp.bool_(cur_len - self.begin_index )
__UpperCAmelCase : Union[str, Any] = jnp.where(__lowerCamelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , __lowerCamelCase )
return scores
class _snake_case ( _lowercase ):
def __init__( self: List[str] , __lowerCamelCase: list ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = list(__lowerCamelCase )
def __call__( self: Union[str, Any] , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
__UpperCAmelCase : Optional[Any] = scores.at[..., self.suppress_tokens].set(-float("inf" ) )
return scores
class _snake_case ( _lowercase ):
def __init__( self: Tuple , __lowerCamelCase: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Tuple = dict(__lowerCamelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
__UpperCAmelCase : Tuple = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
__UpperCAmelCase : List[Any] = force_token_array.at[index].set(__lowerCamelCase )
__UpperCAmelCase : Tuple = jnp.intaa(__lowerCamelCase )
def __call__( self: int , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: jnp.ndarray , __lowerCamelCase: int ) -> jnp.ndarray:
def _force_token(__lowerCamelCase: Optional[int] ):
__UpperCAmelCase : Optional[Any] = scores.shape[0]
__UpperCAmelCase : List[str] = self.force_token_array[generation_idx]
__UpperCAmelCase : List[Any] = jnp.ones_like(__lowerCamelCase , dtype=scores.dtype ) * -float("inf" )
__UpperCAmelCase : List[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
__UpperCAmelCase : Tuple = lax.dynamic_update_slice(__lowerCamelCase , __lowerCamelCase , (0, current_token) )
return new_scores
__UpperCAmelCase : str = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(__lowerCamelCase ) , lambda: scores , ) , )
return scores
class _snake_case ( _lowercase ):
def __init__( self: Dict , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Union[str, Any] ) -> str:
__UpperCAmelCase : str = generate_config.eos_token_id
__UpperCAmelCase : Any = generate_config.no_timestamps_token_id
__UpperCAmelCase : List[str] = generate_config.no_timestamps_token_id + 1
__UpperCAmelCase : Tuple = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(__lowerCamelCase , "max_initial_timestamp_index" ):
__UpperCAmelCase : Any = generate_config.max_initial_timestamp_index
else:
__UpperCAmelCase : Any = model_config.vocab_size
if self.max_initial_timestamp_index is None:
__UpperCAmelCase : int = model_config.vocab_size
def __call__( self: Optional[int] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] ) -> str:
# suppress <|notimestamps|> which is handled by without_timestamps
__UpperCAmelCase : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) )
def handle_pairs(__lowerCamelCase: Tuple , __lowerCamelCase: List[str] ):
__UpperCAmelCase : Tuple = jnp.where((cur_len - self.begin_index) >= 1 , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = jnp.where((cur_len - self.begin_index) < 2 , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Any = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , __lowerCamelCase , __lowerCamelCase , )
return jnp.where(
__lowerCamelCase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , __lowerCamelCase , )
__UpperCAmelCase : Dict = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = jnp.where(cur_len == self.begin_index , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : str = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __lowerCamelCase , )
__UpperCAmelCase : str = self.timestamp_begin + self.max_initial_timestamp_index
__UpperCAmelCase : List[str] = jnp.where(
__lowerCamelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , __lowerCamelCase , )
# if sum of probability over timestamps is above any other token, sample timestamp
__UpperCAmelCase : Dict = jax.nn.log_softmax(__lowerCamelCase , axis=-1 )
def handle_cumulative_probs(__lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple ):
__UpperCAmelCase : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
__UpperCAmelCase : int = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , __lowerCamelCase , )
__UpperCAmelCase : Optional[int] = jax.vmap(__lowerCamelCase )(__lowerCamelCase , __lowerCamelCase )
return scores
| 342 | import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''microsoft/trocr-base-handwritten''': (
'''https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'''
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "trocr"
lowerCamelCase__: List[str] = ["past_key_values"]
lowerCamelCase__: Any = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self: Tuple , __lowerCamelCase: List[str]=5_02_65 , __lowerCamelCase: List[str]=10_24 , __lowerCamelCase: List[str]=12 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: Optional[Any]=40_96 , __lowerCamelCase: Any="gelu" , __lowerCamelCase: Optional[int]=5_12 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: int=0.0 , __lowerCamelCase: List[str]=True , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[Any]=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=1 , __lowerCamelCase: Tuple=0 , __lowerCamelCase: Any=2 , **__lowerCamelCase: Dict , ) -> Any:
__UpperCAmelCase : int = vocab_size
__UpperCAmelCase : int = d_model
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : Union[str, Any] = decoder_attention_heads
__UpperCAmelCase : Optional[Any] = decoder_ffn_dim
__UpperCAmelCase : Optional[int] = activation_function
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : str = dropout
__UpperCAmelCase : List[Any] = attention_dropout
__UpperCAmelCase : Union[str, Any] = activation_dropout
__UpperCAmelCase : List[str] = init_std
__UpperCAmelCase : Optional[Any] = decoder_layerdrop
__UpperCAmelCase : List[Any] = use_cache
__UpperCAmelCase : Union[str, Any] = scale_embedding
__UpperCAmelCase : str = use_learned_position_embeddings
__UpperCAmelCase : Tuple = layernorm_embedding
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
| 342 | import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 | 1 |
def _UpperCamelCase ( snake_case__ ) -> int:
if not isinstance(snake_case__, snake_case__ ):
raise ValueError("Input must be an integer" )
if input_num <= 0:
raise ValueError("Input must be positive" )
return sum(
divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | import argparse
import struct
import unittest
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None:
__UpperCAmelCase : Tuple = data
# Initialize hash values
__UpperCAmelCase : Any = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
__UpperCAmelCase : Dict = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
__UpperCAmelCase : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes:
__UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64))
__UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCamelCase ( self: Dict ) -> None:
# Convert into blocks of 64 bytes
__UpperCAmelCase : Dict = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCAmelCase : Union[str, Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCAmelCase : str = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCAmelCase : Union[str, Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
__UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 )
__UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
__UpperCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 )
__UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c)
__UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
__UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCAmelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
__UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int:
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> None:
import hashlib
__UpperCAmelCase : Dict = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() )
def _UpperCamelCase ( ) -> None:
import doctest
doctest.testmod()
__UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", )
parser.add_argument(
"-f", "--file", dest="input_file", help="Hash contents of a file" )
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, "rb" ) as f:
__UpperCAmelCase : List[str] = f.read()
else:
__UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 342 | 1 |
import os
from pickle import UnpicklingError
from typing import Dict, Tuple
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict, unflatten_dict
import transformers
from .utils import logging
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> List[str]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
if not is_sharded:
__UpperCAmelCase : Tuple = os.path.abspath(snake_case__ )
logger.info(f'''Loading PyTorch weights from {pt_path}''' )
__UpperCAmelCase : Tuple = torch.load(snake_case__, map_location="cpu" )
logger.info(f'''PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.''' )
__UpperCAmelCase : int = convert_pytorch_state_dict_to_flax(snake_case__, snake_case__ )
else:
# model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files
__UpperCAmelCase : List[Any] = convert_pytorch_sharded_state_dict_to_flax(snake_case__, snake_case__ )
return flax_state_dict
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, ) -> (Tuple[str], np.ndarray):
def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool:
return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0
# layer norm
__UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",)
if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer mean
__UpperCAmelCase : int = pt_tuple_key[:-1] + ("mean",)
if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# batch norm layer var
__UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("var",)
if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# embedding
__UpperCAmelCase : int = pt_tuple_key[:-1] + ("embedding",)
if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ):
return renamed_pt_tuple_key, pt_tensor
# conv layer
__UpperCAmelCase : Any = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ):
__UpperCAmelCase : Any = pt_tensor.transpose(2, 3, 1, 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
__UpperCAmelCase : Any = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ):
__UpperCAmelCase : Optional[int] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
__UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
__UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
__UpperCAmelCase : Tuple = None
if pt_tuple_key[-3::2] == ("parametrizations", "original0"):
__UpperCAmelCase : Union[str, Any] = pt_tuple_key[-2] + "_g"
elif pt_tuple_key[-3::2] == ("parametrizations", "original1"):
__UpperCAmelCase : int = pt_tuple_key[-2] + "_v"
if name is not None:
__UpperCAmelCase : int = pt_tuple_key[:-3] + (name,)
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]:
# convert pytorch tensor to numpy
__UpperCAmelCase : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()}
__UpperCAmelCase : Union[str, Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers
if "params" in flax_model.params:
__UpperCAmelCase : Optional[Any] = flax_model.params["params"]
else:
__UpperCAmelCase : Optional[int] = flax_model.params
__UpperCAmelCase : List[str] = flatten_dict(snake_case__ )
# add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
__UpperCAmelCase : Any = flatten_dict(flax_model.params["batch_stats"] )
random_flax_state_dict.update(snake_case__ )
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : Union[str, Any] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
__UpperCAmelCase : Tuple = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__UpperCAmelCase : Dict = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
__UpperCAmelCase : str = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
__UpperCAmelCase : Tuple = pt_tuple_key[1:]
# Correctly rename weight parameters
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = rename_key_and_reshape_tensor(
snake_case__, snake_case__, snake_case__, snake_case__ )
# add model prefix if necessary
__UpperCAmelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
__UpperCAmelCase : Tuple = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1] or "var" in flax_key[-1]:
__UpperCAmelCase : Union[str, Any] = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__, snake_case__ )
continue
# also add unexpected weight so that warning is thrown
__UpperCAmelCase : str = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
__UpperCAmelCase : Union[str, Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Tuple:
import torch
# Load the index
__UpperCAmelCase : Union[str, Any] = {}
for shard_file in shard_filenames:
# load using msgpack utils
__UpperCAmelCase : str = torch.load(snake_case__ )
__UpperCAmelCase : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()}
__UpperCAmelCase : Optional[Any] = flax_model.base_model_prefix
# use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict
if "batch_stats" in flax_model.params:
__UpperCAmelCase : Optional[Any] = flax_model.params["params"]
__UpperCAmelCase : Tuple = flatten_dict(snake_case__ )
random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) )
else:
__UpperCAmelCase : int = flax_model.params
__UpperCAmelCase : Optional[int] = flatten_dict(snake_case__ )
__UpperCAmelCase : Union[str, Any] = (model_prefix not in flax_model_params) and (
model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()}
)
__UpperCAmelCase : str = (model_prefix in flax_model_params) and (
model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()}
)
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__UpperCAmelCase : Any = tuple(pt_key.split("." ) )
# remove base model prefix if necessary
__UpperCAmelCase : List[str] = pt_tuple_key[0] == model_prefix
if load_model_with_head_into_base_model and has_base_model_prefix:
__UpperCAmelCase : int = pt_tuple_key[1:]
# Correctly rename weight parameters
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = rename_key_and_reshape_tensor(
snake_case__, snake_case__, snake_case__, snake_case__ )
# add model prefix if necessary
__UpperCAmelCase : Optional[int] = (model_prefix,) + flax_key in random_flax_state_dict
if load_base_model_into_model_with_head and require_base_model_prefix:
__UpperCAmelCase : str = (model_prefix,) + flax_key
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# add batch stats if the model contains batchnorm layers
if "batch_stats" in flax_model.params:
if "mean" in flax_key[-1]:
__UpperCAmelCase : Dict = jnp.asarray(snake_case__ )
continue
if "var" in flax_key[-1]:
__UpperCAmelCase : int = jnp.asarray(snake_case__ )
continue
# remove num_batches_tracked key
if "num_batches_tracked" in flax_key[-1]:
flax_state_dict.pop(snake_case__, snake_case__ )
continue
# also add unexpected weight so that warning is thrown
__UpperCAmelCase : str = jnp.asarray(snake_case__ )
else:
# also add unexpected weight so that warning is thrown
__UpperCAmelCase : List[Any] = jnp.asarray(snake_case__ )
return unflatten_dict(snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Dict:
__UpperCAmelCase : Union[str, Any] = os.path.abspath(snake_case__ )
logger.info(f'''Loading Flax weights from {flax_checkpoint_path}''' )
# import correct flax class
__UpperCAmelCase : str = getattr(snake_case__, "Flax" + model.__class__.__name__ )
# load flax weight dict
with open(snake_case__, "rb" ) as state_f:
try:
__UpperCAmelCase : Optional[int] = from_bytes(snake_case__, state_f.read() )
except UnpicklingError:
raise EnvironmentError(f'''Unable to convert {flax_checkpoint_path} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(snake_case__, snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Optional[int]:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
# check if we have bf16 weights
__UpperCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa, snake_case__ ) ).values()
if any(snake_case__ ):
# convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model." )
__UpperCAmelCase : str = jax.tree_util.tree_map(
lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params, snake_case__ )
__UpperCAmelCase : Union[str, Any] = flatten_dict(snake_case__ )
__UpperCAmelCase : int = pt_model.state_dict()
__UpperCAmelCase : str = (pt_model.base_model_prefix in flax_state) and (
pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()}
)
__UpperCAmelCase : Tuple = (pt_model.base_model_prefix not in flax_state) and (
pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()}
)
# keep track of unexpected & missing keys
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : List[Any] = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
__UpperCAmelCase : str = flax_key_tuple[0] == pt_model.base_model_prefix
__UpperCAmelCase : List[str] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict
# adapt flax_key to prepare for loading from/to base model only
if load_model_with_head_into_base_model and has_base_model_prefix:
__UpperCAmelCase : Union[str, Any] = flax_key_tuple[1:]
elif load_base_model_into_model_with_head and require_base_model_prefix:
__UpperCAmelCase : int = (pt_model.base_model_prefix,) + flax_key_tuple
# rename flax weights to PyTorch format
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict:
# conv layer
__UpperCAmelCase : Any = flax_key_tuple[:-1] + ("weight",)
__UpperCAmelCase : Optional[Any] = jnp.transpose(snake_case__, (3, 2, 0, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict:
# linear layer
__UpperCAmelCase : str = flax_key_tuple[:-1] + ("weight",)
__UpperCAmelCase : Dict = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__UpperCAmelCase : str = flax_key_tuple[:-1] + ("weight",)
# adding batch stats from flax batch norm to pt
elif "mean" in flax_key_tuple[-1]:
__UpperCAmelCase : Any = flax_key_tuple[:-1] + ("running_mean",)
elif "var" in flax_key_tuple[-1]:
__UpperCAmelCase : Any = flax_key_tuple[:-1] + ("running_var",)
if "batch_stats" in flax_state:
__UpperCAmelCase : List[str] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header
else:
__UpperCAmelCase : str = ".".join(snake_case__ )
# We also need to look at `pt_model_dict` and see if there are keys requiring further transformation.
__UpperCAmelCase : str = {}
# New `weight_norm` from https://github.com/huggingface/transformers/pull/24030
for key in pt_model_dict:
__UpperCAmelCase : str = key.split("." )
__UpperCAmelCase : Tuple = None
if key_components[-3::2] == ["parametrizations", "original0"]:
__UpperCAmelCase : List[str] = key_components[-2] + "_g"
elif key_components[-3::2] == ["parametrizations", "original1"]:
__UpperCAmelCase : Optional[Any] = key_components[-2] + "_v"
if name is not None:
__UpperCAmelCase : Optional[Any] = key_components[:-3] + [name]
__UpperCAmelCase : Union[str, Any] = ".".join(snake_case__ )
__UpperCAmelCase : Any = key
if flax_key in special_pt_names:
__UpperCAmelCase : Optional[int] = special_pt_names[flax_key]
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
__UpperCAmelCase : Optional[Any] = np.asarray(snake_case__ ) if not isinstance(snake_case__, np.ndarray ) else flax_tensor
__UpperCAmelCase : Tuple = torch.from_numpy(snake_case__ )
# remove from missing keys
missing_keys.remove(snake_case__ )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(snake_case__ )
pt_model.load_state_dict(snake_case__ )
# re-transform missing_keys to list
__UpperCAmelCase : List[Any] = list(snake_case__ )
if len(snake_case__ ) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)." )
else:
logger.warning(f'''All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n''' )
if len(snake_case__ ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
" use it for predictions and inference." )
else:
logger.warning(
f'''All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n'''
"If your task is similar to the task the model of the checkpoint was trained on, "
f'''you can already use {pt_model.__class__.__name__} for predictions without further training.''' )
return pt_model
| 342 | import numpy as np
import datasets
_snake_case = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_snake_case = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_snake_case = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]:
# convert to numpy arrays
__UpperCAmelCase : int = np.array(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__UpperCAmelCase : str = X - np.mean(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T )
try:
__UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
__UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 | 1 |
from math import isqrt
def _UpperCamelCase ( snake_case__ ) -> bool:
return all(number % divisor != 0 for divisor in range(2, isqrt(snake_case__ ) + 1 ) )
def _UpperCamelCase ( snake_case__ = 10**6 ) -> int:
__UpperCAmelCase : List[str] = 0
__UpperCAmelCase : Any = 1
__UpperCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(snake_case__ )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'{solution() = }')
| 342 | import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: TransformeraDModel , __lowerCamelCase: AutoencoderKL , __lowerCamelCase: KarrasDiffusionSchedulers , __lowerCamelCase: Optional[Dict[int, str]] = None , ) -> Dict:
super().__init__()
self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase )
# create a imagenet -> id dictionary for easier use
__UpperCAmelCase : List[str] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split("," ):
__UpperCAmelCase : Any = int(__lowerCamelCase )
__UpperCAmelCase : List[str] = dict(sorted(self.labels.items() ) )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Union[str, List[str]] ) -> List[int]:
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : int = list(__lowerCamelCase )
for l in label:
if l not in self.labels:
raise ValueError(
f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self: Optional[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: float = 4.0 , __lowerCamelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase: int = 50 , __lowerCamelCase: Optional[str] = "pil" , __lowerCamelCase: bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
__UpperCAmelCase : List[str] = len(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.transformer.config.sample_size
__UpperCAmelCase : str = self.transformer.config.in_channels
__UpperCAmelCase : List[str] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , )
__UpperCAmelCase : Any = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
__UpperCAmelCase : Union[str, Any] = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 )
__UpperCAmelCase : Dict = torch.tensor([10_00] * batch_size , device=self.device )
__UpperCAmelCase : Tuple = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(__lowerCamelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
__UpperCAmelCase : Optional[Any] = latent_model_input[: len(__lowerCamelCase ) // 2]
__UpperCAmelCase : List[str] = torch.cat([half, half] , dim=0 )
__UpperCAmelCase : List[str] = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = t
if not torch.is_tensor(__lowerCamelCase ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
__UpperCAmelCase : List[Any] = latent_model_input.device.type == "mps"
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[str] = torch.floataa if is_mps else torch.floataa
else:
__UpperCAmelCase : int = torch.intaa if is_mps else torch.intaa
__UpperCAmelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
__UpperCAmelCase : Tuple = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
__UpperCAmelCase : Any = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
__UpperCAmelCase : Any = self.transformer(
__lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample
# perform guidance
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
__UpperCAmelCase , __UpperCAmelCase : Tuple = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 )
__UpperCAmelCase : str = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
__UpperCAmelCase : int = torch.cat([half_eps, half_eps] , dim=0 )
__UpperCAmelCase : int = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 )
else:
__UpperCAmelCase : Union[str, Any] = noise_pred
# compute previous image: x_t -> x_t-1
__UpperCAmelCase : List[Any] = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
if guidance_scale > 1:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = latent_model_input.chunk(2 , dim=0 )
else:
__UpperCAmelCase : Optional[int] = latent_model_input
__UpperCAmelCase : Dict = 1 / self.vae.config.scaling_factor * latents
__UpperCAmelCase : List[str] = self.vae.decode(__lowerCamelCase ).sample
__UpperCAmelCase : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__UpperCAmelCase : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
__UpperCAmelCase : List[str] = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=__lowerCamelCase )
| 342 | import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_snake_case = [
# tf -> hf
('''/''', '''.'''),
('''layer_''', '''layers.'''),
('''kernel''', '''weight'''),
('''beta''', '''bias'''),
('''gamma''', '''weight'''),
('''pegasus''', '''model'''),
]
_snake_case = [
('''.output.dense''', '''.fc2'''),
('''intermediate.LayerNorm''', '''final_layer_norm'''),
('''intermediate.dense''', '''fc1'''),
]
_snake_case = (
INIT_COMMON
+ [
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.out_proj'''),
('''attention.self''', '''self_attn'''),
('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''),
('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''),
('''attention.encdec''', '''encoder_attn'''),
('''key''', '''k_proj'''),
('''value''', '''v_proj'''),
('''query''', '''q_proj'''),
('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = (
INIT_COMMON
+ [
('''embeddings.word_embeddings''', '''shared.weight'''),
('''embeddings.position_embeddings''', '''embed_positions.weight'''),
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.output'''),
('''attention.self''', '''self_attn.self'''),
('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = [
'''encdec/key/bias''',
'''encdec/query/bias''',
'''encdec/value/bias''',
'''self/key/bias''',
'''self/query/bias''',
'''self/value/bias''',
'''encdec_output/dense/bias''',
'''attention/output/dense/bias''',
]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any:
for tf_name, hf_name in patterns:
__UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ )
return k
def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration:
__UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ )
__UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ )
__UpperCAmelCase : Optional[Any] = torch_model.state_dict()
__UpperCAmelCase : Optional[int] = {}
# separating decoder weights
__UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
__UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : List[str] = DECODER_PATTERNS
__UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict:
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : Optional[int] = v.T
__UpperCAmelCase : str = torch.from_numpy(snake_case__ )
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS
__UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : List[Any] = v.T
__UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
__UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"]
__UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" )
__UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ )
__UpperCAmelCase : str = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], f'''no matches found for the following tf keys {extra}'''
return torch_model
def _UpperCamelCase ( snake_case__ ) -> Dict:
__UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ )
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : str = ["global_step"]
for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ):
__UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
__UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = array
return tf_weights
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict:
__UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ )
__UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ )
torch_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_snake_case = parser.parse_args()
_snake_case = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 342 | 1 |
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: Optional[int] = CodeGenTokenizer
lowerCamelCase__: int = CodeGenTokenizerFast
lowerCamelCase__: List[Any] = True
lowerCamelCase__: str = {"add_prefix_space": True}
lowerCamelCase__: List[Any] = False
def _lowerCamelCase ( self: List[str] ) -> Tuple:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__UpperCAmelCase : Tuple = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
__UpperCAmelCase : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : str = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
__UpperCAmelCase : Tuple = {"unk_token": "<unk>"}
__UpperCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowerCamelCase ) )
def _lowerCamelCase ( self: List[Any] , **__lowerCamelCase: Union[str, Any] ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def _lowerCamelCase ( self: List[Any] , **__lowerCamelCase: Dict ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[int] ) -> Dict:
__UpperCAmelCase : Tuple = "lower newer"
__UpperCAmelCase : str = "lower newer"
return input_text, output_text
def _lowerCamelCase ( self: Optional[Any] ) -> Union[str, Any]:
__UpperCAmelCase : int = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__UpperCAmelCase : List[str] = "lower newer"
__UpperCAmelCase : List[str] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
__UpperCAmelCase : Dict = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : int = tokens + [tokenizer.unk_token]
__UpperCAmelCase : str = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def _lowerCamelCase ( self: Tuple ) -> int:
if not self.test_rust_tokenizer:
return
__UpperCAmelCase : Any = self.get_tokenizer()
__UpperCAmelCase : str = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
__UpperCAmelCase : Dict = "lower newer"
# Testing tokenization
__UpperCAmelCase : Any = tokenizer.tokenize(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
__UpperCAmelCase : str = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids without special tokens
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase , add_prefix_space=__lowerCamelCase )
__UpperCAmelCase : Optional[int] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing conversion to ids with special tokens
__UpperCAmelCase : Dict = self.get_rust_tokenizer(add_prefix_space=__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.encode(__lowerCamelCase , add_prefix_space=__lowerCamelCase )
__UpperCAmelCase : Any = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
# Testing the unknown token
__UpperCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token]
__UpperCAmelCase : Dict = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] , *__lowerCamelCase: List[Any] , **__lowerCamelCase: int ) -> List[Any]:
# It's very difficult to mix/test pretokenization with byte-level
# And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string)
pass
def _lowerCamelCase ( self: int , __lowerCamelCase: Any=15 ) -> List[Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
# Simple input
__UpperCAmelCase : Dict = "This is a simple input"
__UpperCAmelCase : Any = ["This is a simple input 1", "This is a simple input 2"]
__UpperCAmelCase : Tuple = ("This is a simple input", "This is a pair")
__UpperCAmelCase : List[Any] = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Simple input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(__lowerCamelCase , tokenizer_r.encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" )
# Pair input
self.assertRaises(
__lowerCamelCase , tokenizer_r.batch_encode_plus , __lowerCamelCase , max_length=__lowerCamelCase , padding="max_length" , )
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : List[str] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
__UpperCAmelCase : Tuple = "This is a simple input"
__UpperCAmelCase : Optional[int] = ["This is a simple input looooooooong", "This is a simple input"]
__UpperCAmelCase : List[str] = ("This is a simple input", "This is a pair")
__UpperCAmelCase : int = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
__UpperCAmelCase : str = tokenizer.pad_token_id
__UpperCAmelCase : Any = tokenizer(__lowerCamelCase , padding="max_length" , max_length=30 , return_tensors="np" )
__UpperCAmelCase : Optional[Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
__UpperCAmelCase : List[str] = tokenizer(*__lowerCamelCase , padding="max_length" , max_length=60 , return_tensors="np" )
__UpperCAmelCase : Optional[Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , truncate=__lowerCamelCase , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Dict = "$$$"
__UpperCAmelCase : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCamelCase , add_bos_token=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = "This is a simple input"
__UpperCAmelCase : Optional[int] = ["This is a simple input 1", "This is a simple input 2"]
__UpperCAmelCase : Any = tokenizer.bos_token_id
__UpperCAmelCase : Any = tokenizer(__lowerCamelCase )
__UpperCAmelCase : int = tokenizer(__lowerCamelCase )
self.assertEqual(out_s.input_ids[0] , __lowerCamelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__UpperCAmelCase : Union[str, Any] = tokenizer.decode(out_s.input_ids )
__UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , __lowerCamelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def _lowerCamelCase ( self: Dict ) -> Optional[Any]:
__UpperCAmelCase : Dict = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" )
__UpperCAmelCase : List[str] = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"
__UpperCAmelCase : str = "\nif len_a > len_b: result = a\nelse: result = b"
__UpperCAmelCase : Tuple = tokenizer.encode(__lowerCamelCase )
__UpperCAmelCase : int = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"]
__UpperCAmelCase : Optional[Any] = tokenizer.decode(__lowerCamelCase , truncate_before_pattern=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> int:
pass
| 342 | import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = ["image_processor", "tokenizer"]
lowerCamelCase__: Optional[Any] = "BlipImageProcessor"
lowerCamelCase__: Optional[int] = "AutoTokenizer"
def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
__UpperCAmelCase : Dict = qformer_tokenizer
def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__UpperCAmelCase : str = BatchFeature()
if text is not None:
__UpperCAmelCase : Any = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
__UpperCAmelCase : Dict = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" )
__UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _lowerCamelCase ( self: List[str] ) -> Tuple:
__UpperCAmelCase : str = self.tokenizer.model_input_names
__UpperCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
__UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
__UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 342 | 1 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('''>=''', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
_snake_case = get_logger(__name__)
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Optional[Any]:
os.makedirs(snake_case__, exist_ok=snake_case__ )
with FSDP.state_dict_type(
snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
__UpperCAmelCase : str = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__UpperCAmelCase : str = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
__UpperCAmelCase : List[str] = os.path.join(snake_case__, snake_case__ )
if accelerator.process_index == 0:
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(snake_case__, snake_case__ )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__UpperCAmelCase : Union[str, Any] = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
__UpperCAmelCase : Tuple = os.path.join(snake_case__, snake_case__ )
logger.info(f'''Saving model to {output_model_file}''' )
torch.save(snake_case__, snake_case__ )
logger.info(f'''Model saved to {output_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__UpperCAmelCase : Tuple = os.path.join(snake_case__, f'''{MODEL_NAME}_{model_index}''' )
os.makedirs(snake_case__, exist_ok=snake_case__ )
logger.info(f'''Saving model to {ckpt_dir}''' )
__UpperCAmelCase : Dict = {"model": state_dict}
dist_cp.save_state_dict(
state_dict=snake_case__, storage_writer=dist_cp.FileSystemWriter(snake_case__ ), planner=DefaultSavePlanner(), )
logger.info(f'''Model saved to {ckpt_dir}''' )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> str:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(snake_case__ ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
"initializing FSDP object" )
return
__UpperCAmelCase : int = f'''{MODEL_NAME}.bin''' if model_index == 0 else f'''{MODEL_NAME}_{model_index}.bin'''
__UpperCAmelCase : str = os.path.join(snake_case__, snake_case__ )
logger.info(f'''Loading model from {input_model_file}''' )
__UpperCAmelCase : int = torch.load(snake_case__ )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
__UpperCAmelCase : Tuple = (
f'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else f'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
__UpperCAmelCase : List[str] = os.path.join(snake_case__, snake_case__ )
logger.info(f'''Loading model from {input_model_file}''' )
__UpperCAmelCase : Dict = torch.load(snake_case__ )
logger.info(f'''Model loaded from {input_model_file}''' )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
__UpperCAmelCase : str = (
os.path.join(snake_case__, f'''{MODEL_NAME}_{model_index}''' )
if f'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading model from {ckpt_dir}''' )
__UpperCAmelCase : Optional[Any] = {"model": model.state_dict()}
dist_cp.load_state_dict(
state_dict=snake_case__, storage_reader=dist_cp.FileSystemReader(snake_case__ ), planner=DefaultLoadPlanner(), )
__UpperCAmelCase : str = state_dict["model"]
logger.info(f'''Model loaded from {ckpt_dir}''' )
model.load_state_dict(snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Any:
os.makedirs(snake_case__, exist_ok=snake_case__ )
with FSDP.state_dict_type(
snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
__UpperCAmelCase : int = FSDP.optim_state_dict(snake_case__, snake_case__ )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
__UpperCAmelCase : str = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
__UpperCAmelCase : Optional[Any] = os.path.join(snake_case__, snake_case__ )
logger.info(f'''Saving Optimizer state to {output_optimizer_file}''' )
torch.save(snake_case__, snake_case__ )
logger.info(f'''Optimizer state saved in {output_optimizer_file}''' )
else:
__UpperCAmelCase : List[Any] = os.path.join(snake_case__, f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
os.makedirs(snake_case__, exist_ok=snake_case__ )
logger.info(f'''Saving Optimizer state to {ckpt_dir}''' )
dist_cp.save_state_dict(
state_dict={"optimizer": optim_state}, storage_writer=dist_cp.FileSystemWriter(snake_case__ ), planner=DefaultSavePlanner(), )
logger.info(f'''Optimizer state saved in {ckpt_dir}''' )
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__, snake_case__=0 ) -> Union[str, Any]:
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
snake_case__, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
__UpperCAmelCase : Optional[int] = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
__UpperCAmelCase : Union[str, Any] = (
f'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else f'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
__UpperCAmelCase : int = os.path.join(snake_case__, snake_case__ )
logger.info(f'''Loading Optimizer state from {input_optimizer_file}''' )
__UpperCAmelCase : Dict = torch.load(snake_case__ )
logger.info(f'''Optimizer state loaded from {input_optimizer_file}''' )
else:
__UpperCAmelCase : int = (
os.path.join(snake_case__, f'''{OPTIMIZER_NAME}_{optimizer_index}''' )
if f'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(f'''Loading Optimizer from {ckpt_dir}''' )
__UpperCAmelCase : Any = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict(), optimizer_key="optimizer", storage_reader=dist_cp.FileSystemReader(snake_case__ ), )
__UpperCAmelCase : Tuple = optim_state["optimizer"]
logger.info(f'''Optimizer loaded from {ckpt_dir}''' )
__UpperCAmelCase : Optional[Any] = FSDP.optim_state_dict_to_load(snake_case__, snake_case__, snake_case__ )
optimizer.load_state_dict(snake_case__ )
| 342 | import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | 1 |
def _UpperCamelCase ( snake_case__ ) -> list[int]:
if num <= 0:
raise ValueError("Input must be a positive integer" )
__UpperCAmelCase : List[Any] = [True] * (num + 1)
__UpperCAmelCase : List[str] = 2
while p * p <= num:
if primes[p]:
for i in range(p * p, num + 1, snake_case__ ):
__UpperCAmelCase : Optional[int] = False
p += 1
return [prime for prime in range(2, num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_snake_case = int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 342 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 1 |
import random
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ = False ) -> dict:
__UpperCAmelCase : dict = {i: [] for i in range(snake_case__ )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(snake_case__ )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(snake_case__ ):
for j in range(i + 1, snake_case__ ):
if random.random() < probability:
graph[i].append(snake_case__ )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(snake_case__ )
return graph
def _UpperCamelCase ( snake_case__ ) -> dict:
return {
i: [j for j in range(snake_case__ ) if i != j] for i in range(snake_case__ )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | 1 |
from __future__ import annotations
import math
def _UpperCamelCase ( snake_case__ ) -> list[int]:
if num <= 0:
__UpperCAmelCase : List[Any] = f'''{num}: Invalid input, please enter a positive integer.'''
raise ValueError(snake_case__ )
__UpperCAmelCase : List[str] = [True] * (num + 1)
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : Optional[int] = 2
__UpperCAmelCase : Optional[int] = int(math.sqrt(snake_case__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(snake_case__ )
# Set multiples of start be False
for i in range(start * start, num + 1, snake_case__ ):
if sieve[i] is True:
__UpperCAmelCase : Any = False
start += 1
for j in range(end + 1, num + 1 ):
if sieve[j] is True:
prime.append(snake_case__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('''Enter a positive integer: ''').strip())))
| 342 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | 1 |
import re
def _UpperCamelCase ( snake_case__ ) -> bool:
__UpperCAmelCase : Union[str, Any] = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" )
if match := re.search(snake_case__, snake_case__ ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('''+918827897895'''))
| 342 | from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
from dataclasses import dataclass, field
from typing import Tuple
from ..utils import cached_property, is_tf_available, logging, requires_backends
from .benchmark_args_utils import BenchmarkArguments
if is_tf_available():
import tensorflow as tf
_snake_case = logging.get_logger(__name__)
@dataclass
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = [
"no_inference",
"no_cuda",
"no_tpu",
"no_speed",
"no_memory",
"no_env_print",
"no_multi_process",
]
def __init__( self: Dict , **__lowerCamelCase: Union[str, Any] ) -> int:
for deprecated_arg in self.deprecated_args:
if deprecated_arg in kwargs:
__UpperCAmelCase : Optional[Any] = deprecated_arg[3:]
__UpperCAmelCase : Any = not kwargs.pop(__lowerCamelCase )
logger.warning(
f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or'''
f''' {positive_arg}={kwargs[positive_arg]}''' )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("tpu_name" , self.tpu_name )
__UpperCAmelCase : List[str] = kwargs.pop("device_idx" , self.device_idx )
__UpperCAmelCase : str = kwargs.pop("eager_mode" , self.eager_mode )
__UpperCAmelCase : List[Any] = kwargs.pop("use_xla" , self.use_xla )
super().__init__(**__lowerCamelCase )
lowerCamelCase__: str = field(
default=_lowercase , metadata={"help": "Name of TPU"} , )
lowerCamelCase__: int = field(
default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , )
lowerCamelCase__: bool = field(default=_lowercase , metadata={"help": "Benchmark models in eager model."} )
lowerCamelCase__: bool = field(
default=_lowercase , metadata={
"help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`."
} , )
@cached_property
def _lowerCamelCase ( self: List[str] ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ["tf"] )
__UpperCAmelCase : List[Any] = None
if self.tpu:
try:
if self.tpu_name:
__UpperCAmelCase : Union[str, Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name )
else:
__UpperCAmelCase : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver()
except ValueError:
__UpperCAmelCase : int = None
return tpu
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]:
requires_backends(self , ["tf"] )
if self.is_tpu:
tf.config.experimental_connect_to_cluster(self._setup_tpu )
tf.tpu.experimental.initialize_tpu_system(self._setup_tpu )
__UpperCAmelCase : Dict = tf.distribute.TPUStrategy(self._setup_tpu )
else:
# currently no multi gpu is allowed
if self.is_gpu:
# TODO: Currently only single GPU is supported
tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" )
__UpperCAmelCase : int = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' )
else:
tf.config.set_visible_devices([] , "GPU" ) # disable GPU
__UpperCAmelCase : str = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' )
return strategy
@property
def _lowerCamelCase ( self: Tuple ) -> bool:
requires_backends(self , ["tf"] )
return self._setup_tpu is not None
@property
def _lowerCamelCase ( self: Union[str, Any] ) -> "tf.distribute.Strategy":
requires_backends(self , ["tf"] )
return self._setup_strategy
@property
def _lowerCamelCase ( self: Optional[Any] ) -> str:
requires_backends(self , ["tf"] )
return tf.config.list_physical_devices("GPU" )
@property
def _lowerCamelCase ( self: List[str] ) -> int:
requires_backends(self , ["tf"] )
if self.cuda:
return len(self.gpu_list )
return 0
@property
def _lowerCamelCase ( self: Union[str, Any] ) -> bool:
return self.n_gpu > 0
| 342 | import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | 1 |
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : List[Any] = [1]
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = 0, 0, 0
__UpperCAmelCase : Tuple = ugly_nums[ia] * 2
__UpperCAmelCase : Dict = ugly_nums[ia] * 3
__UpperCAmelCase : Optional[int] = ugly_nums[ia] * 5
for _ in range(1, snake_case__ ):
__UpperCAmelCase : List[Any] = min(snake_case__, snake_case__, snake_case__ )
ugly_nums.append(snake_case__ )
if next_num == next_a:
ia += 1
__UpperCAmelCase : List[Any] = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
__UpperCAmelCase : List[Any] = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
__UpperCAmelCase : Optional[int] = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(F'{ugly_numbers(200) = }')
| 342 | from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | 1 |
from __future__ import annotations
import math
_snake_case = '''2020.9.26'''
_snake_case = '''xcodz-dot, cclaus, dhruvmanila'''
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> tuple[float, float]:
if not all(isinstance(snake_case__, (float, int) ) for val in locals().values() ):
__UpperCAmelCase : List[str] = f'''Input values must either be float or int: {list(locals().values() )}'''
raise TypeError(snake_case__ )
__UpperCAmelCase : Any = ((x * distance) / (z + distance)) * scale
__UpperCAmelCase : Optional[int] = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__, snake_case__ ) -> tuple[float, float, float]:
if not isinstance(snake_case__, snake_case__ ):
raise TypeError("Axis must be a str" )
__UpperCAmelCase : Dict = locals()
del input_variables["axis"]
if not all(isinstance(snake_case__, (float, int) ) for val in input_variables.values() ):
__UpperCAmelCase : List[Any] = (
"Input values except axis must either be float or int: "
f'''{list(input_variables.values() )}'''
)
raise TypeError(snake_case__ )
__UpperCAmelCase : List[Any] = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
__UpperCAmelCase : Tuple = x * math.cos(snake_case__ ) - y * math.sin(snake_case__ )
__UpperCAmelCase : int = y * math.cos(snake_case__ ) + x * math.sin(snake_case__ )
__UpperCAmelCase : Tuple = z
elif axis == "x":
__UpperCAmelCase : Optional[Any] = y * math.cos(snake_case__ ) - z * math.sin(snake_case__ )
__UpperCAmelCase : Dict = z * math.cos(snake_case__ ) + y * math.sin(snake_case__ )
__UpperCAmelCase : int = x
elif axis == "y":
__UpperCAmelCase : Optional[int] = x * math.cos(snake_case__ ) - z * math.sin(snake_case__ )
__UpperCAmelCase : Union[str, Any] = z * math.cos(snake_case__ ) + x * math.sin(snake_case__ )
__UpperCAmelCase : Tuple = y
else:
raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" )
return new_x, new_y, new_z
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F'{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }')
print(F'{rotate(1.0, 2.0, 3.0, "y", 9_0.0) = }')
| 342 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_snake_case = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias'))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias')
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
F'decoder.layers.{i}.encoder_attn.out_proj.weight',
)
)
rename_keys.append(
(
F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
F'decoder.layers.{i}.encoder_attn.out_proj.bias',
)
)
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias'))
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight')
)
rename_keys.append(
(F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias')
)
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight'))
rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias'))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''),
('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
]
)
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int:
__UpperCAmelCase : List[str] = state_dict.pop(snake_case__ )
__UpperCAmelCase : Optional[Any] = val
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : Any = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
__UpperCAmelCase : int = key.replace("backbone.0.body", "backbone.conv_encoder.model" )
__UpperCAmelCase : Optional[int] = value
else:
__UpperCAmelCase : Dict = value
return new_state_dict
def _UpperCamelCase ( snake_case__ ) -> Optional[int]:
__UpperCAmelCase : int = ""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
__UpperCAmelCase : Optional[int] = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : str = in_proj_weight[:256, :]
__UpperCAmelCase : Dict = in_proj_bias[:256]
__UpperCAmelCase : Union[str, Any] = in_proj_weight[256:512, :]
__UpperCAmelCase : Optional[Any] = in_proj_bias[256:512]
__UpperCAmelCase : int = in_proj_weight[-256:, :]
__UpperCAmelCase : Tuple = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
__UpperCAmelCase : Optional[int] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' )
__UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
__UpperCAmelCase : str = in_proj_weight[:256, :]
__UpperCAmelCase : Union[str, Any] = in_proj_bias[:256]
__UpperCAmelCase : str = in_proj_weight[256:512, :]
__UpperCAmelCase : Tuple = in_proj_bias[256:512]
__UpperCAmelCase : Dict = in_proj_weight[-256:, :]
__UpperCAmelCase : Union[str, Any] = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
__UpperCAmelCase : Dict = state_dict.pop(
f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' )
__UpperCAmelCase : int = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
__UpperCAmelCase : int = in_proj_weight_cross_attn[:256, :]
__UpperCAmelCase : Tuple = in_proj_bias_cross_attn[:256]
__UpperCAmelCase : Optional[Any] = in_proj_weight_cross_attn[256:512, :]
__UpperCAmelCase : str = in_proj_bias_cross_attn[256:512]
__UpperCAmelCase : List[str] = in_proj_weight_cross_attn[-256:, :]
__UpperCAmelCase : str = in_proj_bias_cross_attn[-256:]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = image.size
__UpperCAmelCase : Optional[Any] = max(snake_case__, snake_case__ )
__UpperCAmelCase : Optional[Any] = 800 if "detection" in checkpoint_url else 1000
__UpperCAmelCase : List[str] = target_max_size / current_max_size
__UpperCAmelCase : List[Any] = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Tuple = F.to_tensor(snake_case__ )
__UpperCAmelCase : Dict = F.normalize(snake_case__, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[Any]:
logger.info("Converting model..." )
# load original state dict
__UpperCAmelCase : List[Any] = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )
# rename keys
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
__UpperCAmelCase : str = rename_backbone_keys(snake_case__ )
# query, key and value matrices need special treatment
read_in_q_k_v(snake_case__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__UpperCAmelCase : List[Any] = "model."
for key in state_dict.copy().keys():
if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ):
__UpperCAmelCase : List[Any] = state_dict.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
# create HuggingFace model and load state dict
__UpperCAmelCase : Union[str, Any] = TableTransformerConfig(
backbone="resnet18", mask_loss_coefficient=1, dice_loss_coefficient=1, ce_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.4, class_cost=1, bbox_cost=5, giou_cost=2, )
if "detection" in checkpoint_url:
__UpperCAmelCase : List[Any] = 15
__UpperCAmelCase : Optional[int] = 2
__UpperCAmelCase : Optional[int] = {0: "table", 1: "table rotated"}
__UpperCAmelCase : Any = idalabel
__UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()}
else:
__UpperCAmelCase : Union[str, Any] = 125
__UpperCAmelCase : Optional[Any] = 6
__UpperCAmelCase : List[str] = {
0: "table",
1: "table column",
2: "table row",
3: "table column header",
4: "table projected row header",
5: "table spanning cell",
}
__UpperCAmelCase : str = idalabel
__UpperCAmelCase : List[Any] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Any = DetrImageProcessor(
format="coco_detection", max_size=800 if "detection" in checkpoint_url else 1000 )
__UpperCAmelCase : Any = TableTransformerForObjectDetection(snake_case__ )
model.load_state_dict(snake_case__ )
model.eval()
# verify our conversion
__UpperCAmelCase : Optional[int] = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png"
__UpperCAmelCase : Tuple = hf_hub_download(repo_id="nielsr/example-pdf", repo_type="dataset", filename=snake_case__ )
__UpperCAmelCase : Any = Image.open(snake_case__ ).convert("RGB" )
__UpperCAmelCase : Optional[int] = normalize(resize(snake_case__, snake_case__ ) ).unsqueeze(0 )
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if "detection" in checkpoint_url:
__UpperCAmelCase : Optional[Any] = (1, 15, 3)
__UpperCAmelCase : Any = torch.tensor(
[[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] )
__UpperCAmelCase : str = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] )
else:
__UpperCAmelCase : Tuple = (1, 125, 7)
__UpperCAmelCase : Any = torch.tensor(
[[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] )
__UpperCAmelCase : List[Any] = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3], snake_case__, atol=1e-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
model.save_pretrained(snake_case__ )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
# Push model to HF hub
logger.info("Pushing model to the hub..." )
__UpperCAmelCase : Tuple = (
"microsoft/table-transformer-detection"
if "detection" in checkpoint_url
else "microsoft/table-transformer-structure-recognition"
)
model.push_to_hub(snake_case__ )
image_processor.push_to_hub(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_url''',
default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
type=str,
choices=[
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''',
'''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''',
],
help='''URL of the Table Transformer checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = '''▁'''
_snake_case = {'''vocab_file''': '''sentencepiece.bpe.model'''}
_snake_case = {
'''vocab_file''': {
'''facebook/nllb-200-distilled-600M''': (
'''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model'''
),
}
}
_snake_case = {
'''facebook/nllb-200-distilled-600M''': 1024,
}
# fmt: off
_snake_case = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn''']
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[Any] = VOCAB_FILES_NAMES
lowerCamelCase__: Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Tuple = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
lowerCamelCase__: List[int] = []
lowerCamelCase__: List[int] = []
def __init__( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict="<s>" , __lowerCamelCase: Optional[int]="</s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: Any="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Optional[Any]="<pad>" , __lowerCamelCase: int="<mask>" , __lowerCamelCase: str=None , __lowerCamelCase: Dict=None , __lowerCamelCase: str=None , __lowerCamelCase: Optional[Dict[str, Any]] = None , __lowerCamelCase: Tuple=None , __lowerCamelCase: List[str]=False , **__lowerCamelCase: List[Any] , ) -> Any:
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
__UpperCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
__UpperCAmelCase : Optional[int] = legacy_behaviour
super().__init__(
bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , tokenizer_file=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__lowerCamelCase ) )
__UpperCAmelCase : Optional[int] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__UpperCAmelCase : int = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__UpperCAmelCase : Dict = 1
__UpperCAmelCase : Union[str, Any] = len(self.sp_model )
__UpperCAmelCase : Optional[int] = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowerCamelCase )
}
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()}
__UpperCAmelCase : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__UpperCAmelCase : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__UpperCAmelCase : str = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__UpperCAmelCase : int = src_lang if src_lang is not None else "eng_Latn"
__UpperCAmelCase : List[Any] = self.lang_code_to_id[self._src_lang]
__UpperCAmelCase : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self: List[str] ) -> str:
__UpperCAmelCase : Optional[int] = self.__dict__.copy()
__UpperCAmelCase : Dict = None
__UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self: Any , __lowerCamelCase: int ) -> Optional[Any]:
__UpperCAmelCase : List[Any] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : Any = {}
__UpperCAmelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Dict:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _lowerCamelCase ( self: Optional[int] ) -> str:
return self._src_lang
@src_lang.setter
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: str ) -> None:
__UpperCAmelCase : str = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = [1] * len(self.prefix_tokens )
__UpperCAmelCase : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones
return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : str = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] , __lowerCamelCase: Optional[str] , **__lowerCamelCase: Dict ) -> Dict:
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
__UpperCAmelCase : Any = src_lang
__UpperCAmelCase : Optional[Any] = self(__lowerCamelCase , add_special_tokens=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = self.convert_tokens_to_ids(__lowerCamelCase )
__UpperCAmelCase : int = tgt_lang_id
return inputs
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
__UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> List[str]:
return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Tuple ) -> List[str]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__UpperCAmelCase : List[Any] = self.sp_model.PieceToId(__lowerCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> Tuple:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple ) -> str:
__UpperCAmelCase : Union[str, Any] = "".join(__lowerCamelCase ).replace(__lowerCamelCase , " " ).strip()
return out_string
def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : int = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
__UpperCAmelCase : Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (out_vocab_file,)
def _lowerCamelCase ( self: str , __lowerCamelCase: List[str] , __lowerCamelCase: str = "eng_Latn" , __lowerCamelCase: Optional[List[str]] = None , __lowerCamelCase: str = "fra_Latn" , **__lowerCamelCase: Optional[Any] , ) -> BatchEncoding:
__UpperCAmelCase : Tuple = src_lang
__UpperCAmelCase : Tuple = tgt_lang
return super().prepare_seqaseq_batch(__lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple ) -> Any:
return self.set_src_lang_special_tokens(self.src_lang )
def _lowerCamelCase ( self: Optional[Any] ) -> Any:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] ) -> None:
__UpperCAmelCase : Union[str, Any] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
else:
__UpperCAmelCase : Union[str, Any] = [self.cur_lang_code]
__UpperCAmelCase : Optional[Any] = [self.eos_token_id]
def _lowerCamelCase ( self: str , __lowerCamelCase: str ) -> None:
__UpperCAmelCase : Optional[int] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__UpperCAmelCase : str = []
__UpperCAmelCase : Any = [self.eos_token_id, self.cur_lang_code]
else:
__UpperCAmelCase : str = [self.cur_lang_code]
__UpperCAmelCase : Any = [self.eos_token_id]
| 342 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 1 |
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : str = SwinConfig()
__UpperCAmelCase : Optional[Any] = swin_name.split("_" )
__UpperCAmelCase : List[str] = name_split[1]
__UpperCAmelCase : List[Any] = int(name_split[4] )
__UpperCAmelCase : List[str] = int(name_split[3][-1] )
if model_size == "tiny":
__UpperCAmelCase : Optional[Any] = 96
__UpperCAmelCase : Optional[Any] = (2, 2, 6, 2)
__UpperCAmelCase : Tuple = (3, 6, 12, 24)
elif model_size == "small":
__UpperCAmelCase : Any = 96
__UpperCAmelCase : List[str] = (2, 2, 18, 2)
__UpperCAmelCase : List[str] = (3, 6, 12, 24)
elif model_size == "base":
__UpperCAmelCase : Any = 128
__UpperCAmelCase : Tuple = (2, 2, 18, 2)
__UpperCAmelCase : Tuple = (4, 8, 16, 32)
else:
__UpperCAmelCase : Optional[int] = 192
__UpperCAmelCase : List[str] = (2, 2, 18, 2)
__UpperCAmelCase : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
__UpperCAmelCase : Optional[int] = 2_1841
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : Optional[int] = "huggingface/label-files"
__UpperCAmelCase : Tuple = "imagenet-1k-id2label.json"
__UpperCAmelCase : List[Any] = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : List[str] = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : Tuple = img_size
__UpperCAmelCase : str = num_classes
__UpperCAmelCase : int = embed_dim
__UpperCAmelCase : List[Any] = depths
__UpperCAmelCase : int = num_heads
__UpperCAmelCase : List[str] = window_size
return config
def _UpperCamelCase ( snake_case__ ) -> Any:
if "patch_embed.proj" in name:
__UpperCAmelCase : List[str] = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" )
if "patch_embed.norm" in name:
__UpperCAmelCase : List[str] = name.replace("patch_embed.norm", "embeddings.norm" )
if "layers" in name:
__UpperCAmelCase : Optional[Any] = "encoder." + name
if "attn.proj" in name:
__UpperCAmelCase : Union[str, Any] = name.replace("attn.proj", "attention.output.dense" )
if "attn" in name:
__UpperCAmelCase : Any = name.replace("attn", "attention.self" )
if "norm1" in name:
__UpperCAmelCase : Tuple = name.replace("norm1", "layernorm_before" )
if "norm2" in name:
__UpperCAmelCase : List[str] = name.replace("norm2", "layernorm_after" )
if "mlp.fc1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("mlp.fc1", "intermediate.dense" )
if "mlp.fc2" in name:
__UpperCAmelCase : List[Any] = name.replace("mlp.fc2", "output.dense" )
if name == "norm.weight":
__UpperCAmelCase : Any = "layernorm.weight"
if name == "norm.bias":
__UpperCAmelCase : Optional[int] = "layernorm.bias"
if "head" in name:
__UpperCAmelCase : str = name.replace("head", "classifier" )
else:
__UpperCAmelCase : int = "swin." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__ ) -> str:
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Dict = orig_state_dict.pop(snake_case__ )
if "mask" in key:
continue
elif "qkv" in key:
__UpperCAmelCase : Any = key.split("." )
__UpperCAmelCase : Union[str, Any] = int(key_split[1] )
__UpperCAmelCase : Optional[int] = int(key_split[3] )
__UpperCAmelCase : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__UpperCAmelCase : Dict = val[:dim, :]
__UpperCAmelCase : Tuple = val[
dim : dim * 2, :
]
__UpperCAmelCase : Any = val[-dim:, :]
else:
__UpperCAmelCase : Optional[int] = val[
:dim
]
__UpperCAmelCase : Any = val[
dim : dim * 2
]
__UpperCAmelCase : Union[str, Any] = val[
-dim:
]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : Tuple = timm.create_model(snake_case__, pretrained=snake_case__ )
timm_model.eval()
__UpperCAmelCase : Union[str, Any] = get_swin_config(snake_case__ )
__UpperCAmelCase : Optional[Any] = SwinForImageClassification(snake_case__ )
model.eval()
__UpperCAmelCase : List[Any] = convert_state_dict(timm_model.state_dict(), snake_case__ )
model.load_state_dict(snake_case__ )
__UpperCAmelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : Any = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_", "-" ) ) )
__UpperCAmelCase : int = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
__UpperCAmelCase : Tuple = image_processor(images=snake_case__, return_tensors="pt" )
__UpperCAmelCase : int = timm_model(inputs["pixel_values"] )
__UpperCAmelCase : Any = model(**snake_case__ ).logits
assert torch.allclose(snake_case__, snake_case__, atol=1e-3 )
print(f'''Saving model {swin_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--swin_name''',
default='''swin_tiny_patch4_window7_224''',
type=str,
help='''Name of the Swin timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
_snake_case = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 342 | import math
_snake_case = 10
_snake_case = 7
_snake_case = BALLS_PER_COLOUR * NUM_COLOURS
def _UpperCamelCase ( snake_case__ = 20 ) -> str:
__UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ )
__UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 342 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_snake_case = logging.get_logger(__name__)
# General docstring
_snake_case = '''MobileNetV1Config'''
# Base docstring
_snake_case = '''google/mobilenet_v1_1.0_224'''
_snake_case = [1, 1024, 7, 7]
# Image classification docstring
_snake_case = '''google/mobilenet_v1_1.0_224'''
_snake_case = '''tabby, tabby cat'''
_snake_case = [
'''google/mobilenet_v1_1.0_224''',
'''google/mobilenet_v1_0.75_192''',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=None ) -> Tuple:
__UpperCAmelCase : Dict = {}
if isinstance(snake_case__, snake_case__ ):
__UpperCAmelCase : Optional[int] = model.mobilenet_va
else:
__UpperCAmelCase : str = model
__UpperCAmelCase : Optional[Any] = "MobilenetV1/Conv2d_0/"
__UpperCAmelCase : Any = backbone.conv_stem.convolution.weight
__UpperCAmelCase : List[Any] = backbone.conv_stem.normalization.bias
__UpperCAmelCase : List[Any] = backbone.conv_stem.normalization.weight
__UpperCAmelCase : int = backbone.conv_stem.normalization.running_mean
__UpperCAmelCase : Dict = backbone.conv_stem.normalization.running_var
for i in range(13 ):
__UpperCAmelCase : Any = i + 1
__UpperCAmelCase : int = i * 2
__UpperCAmelCase : Dict = backbone.layer[pt_index]
__UpperCAmelCase : List[str] = f'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
__UpperCAmelCase : List[Any] = pointer.convolution.weight
__UpperCAmelCase : str = pointer.normalization.bias
__UpperCAmelCase : Dict = pointer.normalization.weight
__UpperCAmelCase : Any = pointer.normalization.running_mean
__UpperCAmelCase : Tuple = pointer.normalization.running_var
__UpperCAmelCase : Optional[Any] = backbone.layer[pt_index + 1]
__UpperCAmelCase : str = f'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
__UpperCAmelCase : Optional[int] = pointer.convolution.weight
__UpperCAmelCase : Tuple = pointer.normalization.bias
__UpperCAmelCase : Any = pointer.normalization.weight
__UpperCAmelCase : Optional[Any] = pointer.normalization.running_mean
__UpperCAmelCase : Any = pointer.normalization.running_var
if isinstance(snake_case__, snake_case__ ):
__UpperCAmelCase : List[str] = "MobilenetV1/Logits/Conv2d_1c_1x1/"
__UpperCAmelCase : str = model.classifier.weight
__UpperCAmelCase : Tuple = model.classifier.bias
return tf_to_pt_map
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[Any]:
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions." )
raise
# Load weights from TF model
__UpperCAmelCase : str = tf.train.list_variables(snake_case__ )
__UpperCAmelCase : Tuple = {}
for name, shape in init_vars:
logger.info(f'''Loading TF weight {name} with shape {shape}''' )
__UpperCAmelCase : int = tf.train.load_variable(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = array
# Build TF to PyTorch weights loading map
__UpperCAmelCase : Union[str, Any] = _build_tf_to_pytorch_map(snake_case__, snake_case__, snake_case__ )
for name, pointer in tf_to_pt_map.items():
logger.info(f'''Importing {name}''' )
if name not in tf_weights:
logger.info(f'''{name} not in tf pre-trained weights, skipping''' )
continue
__UpperCAmelCase : List[Any] = tf_weights[name]
if "depthwise_weights" in name:
logger.info("Transposing depthwise" )
__UpperCAmelCase : Optional[Any] = np.transpose(snake_case__, (2, 3, 0, 1) )
elif "weights" in name:
logger.info("Transposing" )
if len(pointer.shape ) == 2: # copying into linear layer
__UpperCAmelCase : int = array.squeeze().transpose()
else:
__UpperCAmelCase : Optional[Any] = np.transpose(snake_case__, (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(f'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' )
logger.info(f'''Initialize PyTorch weight {name} {array.shape}''' )
__UpperCAmelCase : Optional[Any] = torch.from_numpy(snake_case__ )
tf_weights.pop(snake_case__, snake_case__ )
tf_weights.pop(name + "/RMSProp", snake_case__ )
tf_weights.pop(name + "/RMSProp_1", snake_case__ )
tf_weights.pop(name + "/ExponentialMovingAverage", snake_case__ )
logger.info(f'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}''' )
return model
def _UpperCamelCase ( snake_case__, snake_case__ ) -> torch.Tensor:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = features.shape[-2:]
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = conv_layer.stride
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = conv_layer.kernel_size
if in_height % stride_height == 0:
__UpperCAmelCase : Optional[Any] = max(kernel_height - stride_height, 0 )
else:
__UpperCAmelCase : Optional[int] = max(kernel_height - (in_height % stride_height), 0 )
if in_width % stride_width == 0:
__UpperCAmelCase : Tuple = max(kernel_width - stride_width, 0 )
else:
__UpperCAmelCase : Optional[Any] = max(kernel_width - (in_width % stride_width), 0 )
__UpperCAmelCase : List[str] = pad_along_width // 2
__UpperCAmelCase : List[str] = pad_along_width - pad_left
__UpperCAmelCase : int = pad_along_height // 2
__UpperCAmelCase : List[str] = pad_along_height - pad_top
__UpperCAmelCase : int = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(snake_case__, snake_case__, "constant", 0.0 )
class _snake_case ( nn.Module ):
def __init__( self: Dict , __lowerCamelCase: MobileNetVaConfig , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] = 1 , __lowerCamelCase: Optional[int] = 1 , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[bool] = True , __lowerCamelCase: Optional[bool or str] = True , ) -> None:
super().__init__()
__UpperCAmelCase : Optional[int] = config
if in_channels % groups != 0:
raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' )
if out_channels % groups != 0:
raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' )
__UpperCAmelCase : str = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
__UpperCAmelCase : str = nn.Convad(
in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode="zeros" , )
if use_normalization:
__UpperCAmelCase : str = nn.BatchNormad(
num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , )
else:
__UpperCAmelCase : Any = None
if use_activation:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : Tuple = ACTaFN[use_activation]
elif isinstance(config.hidden_act , __lowerCamelCase ):
__UpperCAmelCase : int = ACTaFN[config.hidden_act]
else:
__UpperCAmelCase : Union[str, Any] = config.hidden_act
else:
__UpperCAmelCase : List[Any] = None
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: torch.Tensor ) -> torch.Tensor:
if self.config.tf_padding:
__UpperCAmelCase : Tuple = apply_tf_padding(__lowerCamelCase , self.convolution )
__UpperCAmelCase : Any = self.convolution(__lowerCamelCase )
if self.normalization is not None:
__UpperCAmelCase : Any = self.normalization(__lowerCamelCase )
if self.activation is not None:
__UpperCAmelCase : List[Any] = self.activation(__lowerCamelCase )
return features
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = MobileNetVaConfig
lowerCamelCase__: List[str] = load_tf_weights_in_mobilenet_va
lowerCamelCase__: List[Any] = "mobilenet_v1"
lowerCamelCase__: Dict = "pixel_values"
lowerCamelCase__: int = False
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[nn.Linear, nn.Convad] ) -> None:
if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_snake_case = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
_snake_case = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileNetV1ImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _lowercase , )
class _snake_case ( _lowercase ):
def __init__( self: Optional[int] , __lowerCamelCase: MobileNetVaConfig , __lowerCamelCase: bool = True ) -> Union[str, Any]:
super().__init__(__lowerCamelCase )
__UpperCAmelCase : int = config
__UpperCAmelCase : Optional[Any] = 32
__UpperCAmelCase : List[str] = max(int(depth * config.depth_multiplier ) , config.min_depth )
__UpperCAmelCase : Dict = MobileNetVaConvLayer(
__lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , )
__UpperCAmelCase : Optional[int] = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__UpperCAmelCase : str = nn.ModuleList()
for i in range(13 ):
__UpperCAmelCase : List[str] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__UpperCAmelCase : Optional[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
__lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
__lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , ) )
__UpperCAmelCase : Optional[int] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any ) -> int:
raise NotImplementedError
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
__UpperCAmelCase : Union[str, Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__UpperCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values" )
__UpperCAmelCase : Optional[int] = self.conv_stem(__lowerCamelCase )
__UpperCAmelCase : Tuple = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
__UpperCAmelCase : List[str] = layer_module(__lowerCamelCase )
if output_hidden_states:
__UpperCAmelCase : Any = all_hidden_states + (hidden_states,)
__UpperCAmelCase : Any = hidden_states
if self.pooler is not None:
__UpperCAmelCase : Union[str, Any] = torch.flatten(self.pooler(__lowerCamelCase ) , start_dim=1 )
else:
__UpperCAmelCase : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , )
@add_start_docstrings(
"\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowercase , )
class _snake_case ( _lowercase ):
def __init__( self: int , __lowerCamelCase: MobileNetVaConfig ) -> None:
super().__init__(__lowerCamelCase )
__UpperCAmelCase : str = config.num_labels
__UpperCAmelCase : Any = MobileNetVaModel(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__UpperCAmelCase : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase )
__UpperCAmelCase : List[str] = nn.Linear(__lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[torch.Tensor] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
__UpperCAmelCase : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCAmelCase : Dict = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase )
__UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1]
__UpperCAmelCase : Optional[Any] = self.classifier(self.dropout(__lowerCamelCase ) )
__UpperCAmelCase : int = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__UpperCAmelCase : Tuple = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__UpperCAmelCase : str = "single_label_classification"
else:
__UpperCAmelCase : Optional[Any] = "multi_label_classification"
if self.config.problem_type == "regression":
__UpperCAmelCase : Optional[int] = MSELoss()
if self.num_labels == 1:
__UpperCAmelCase : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__UpperCAmelCase : Optional[Any] = loss_fct(__lowerCamelCase , __lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
__UpperCAmelCase : str = CrossEntropyLoss()
__UpperCAmelCase : Any = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__UpperCAmelCase : List[str] = BCEWithLogitsLoss()
__UpperCAmelCase : List[str] = loss_fct(__lowerCamelCase , __lowerCamelCase )
if not return_dict:
__UpperCAmelCase : Tuple = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
| 342 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = [0] * len(snake_case__ )
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : str = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__UpperCAmelCase : str = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
_snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
from string import ascii_lowercase, ascii_uppercase
def _UpperCamelCase ( snake_case__ ) -> str:
if not sentence:
return ""
__UpperCAmelCase : Optional[Any] = dict(zip(snake_case__, snake_case__ ) )
return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 342 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]:
# Initialise PyTorch model
__UpperCAmelCase : Tuple = AlbertConfig.from_json_file(snake_case__ )
print(f'''Building PyTorch model from configuration: {config}''' )
__UpperCAmelCase : Optional[Any] = AlbertForPreTraining(snake_case__ )
# Load weights from tf checkpoint
load_tf_weights_in_albert(snake_case__, snake_case__, snake_case__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(), snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 342 | from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
from __future__ import annotations
from random import choice
def _UpperCamelCase ( snake_case__ ) -> int:
return choice(snake_case__ )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int:
__UpperCAmelCase : List[Any] = random_pivot(snake_case__ )
# partition based on pivot
# linear time
__UpperCAmelCase : str = [e for e in lst if e < pivot]
__UpperCAmelCase : int = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(snake_case__ ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(snake_case__ ) < k - 1:
return kth_number(snake_case__, k - len(snake_case__ ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(snake_case__, snake_case__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | 1 |
def _UpperCamelCase ( snake_case__ ) -> bool:
if not isinstance(snake_case__, snake_case__ ):
__UpperCAmelCase : Union[str, Any] = f'''Input value of [number={number}] must be an integer'''
raise TypeError(snake_case__ )
if number < 0:
return False
__UpperCAmelCase : Any = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 | 1 |
import os
def _UpperCamelCase ( ) -> Any:
with open(os.path.dirname(snake_case__ ) + "/p022_names.txt" ) as file:
__UpperCAmelCase : Optional[Any] = str(file.readlines()[0] )
__UpperCAmelCase : Optional[int] = names.replace("\"", "" ).split("," )
names.sort()
__UpperCAmelCase : Optional[Any] = 0
__UpperCAmelCase : Optional[int] = 0
for i, name in enumerate(snake_case__ ):
for letter in name:
name_score += ord(snake_case__ ) - 64
total_score += (i + 1) * name_score
__UpperCAmelCase : Union[str, Any] = 0
return total_score
if __name__ == "__main__":
print(solution())
| 342 | import argparse
import struct
import unittest
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None:
__UpperCAmelCase : Tuple = data
# Initialize hash values
__UpperCAmelCase : Any = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
__UpperCAmelCase : Dict = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
__UpperCAmelCase : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes:
__UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64))
__UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCamelCase ( self: Dict ) -> None:
# Convert into blocks of 64 bytes
__UpperCAmelCase : Dict = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCAmelCase : Union[str, Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCAmelCase : str = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCAmelCase : Union[str, Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
__UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 )
__UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
__UpperCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 )
__UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c)
__UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
__UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCAmelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
__UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int:
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> None:
import hashlib
__UpperCAmelCase : Dict = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() )
def _UpperCamelCase ( ) -> None:
import doctest
doctest.testmod()
__UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", )
parser.add_argument(
"-f", "--file", dest="input_file", help="Hash contents of a file" )
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, "rb" ) as f:
__UpperCAmelCase : List[str] = f.read()
else:
__UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 342 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/data2vec-vision-base-ft''': (
'''https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json'''
),
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Union[str, Any] = "data2vec-vision"
def __init__( self: List[str] , __lowerCamelCase: str=7_68 , __lowerCamelCase: Optional[Any]=12 , __lowerCamelCase: Optional[Any]=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: int="gelu" , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: str=0.0 , __lowerCamelCase: List[str]=0.02 , __lowerCamelCase: Optional[Any]=1e-12 , __lowerCamelCase: Any=2_24 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: Optional[Any]=3 , __lowerCamelCase: int=False , __lowerCamelCase: Any=False , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: List[str]=False , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=True , __lowerCamelCase: str=[3, 5, 7, 11] , __lowerCamelCase: Optional[int]=[1, 2, 3, 6] , __lowerCamelCase: List[str]=True , __lowerCamelCase: List[Any]=0.4 , __lowerCamelCase: Dict=2_56 , __lowerCamelCase: Any=1 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: Dict=2_55 , **__lowerCamelCase: List[Any] , ) -> str:
super().__init__(**__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Tuple = num_hidden_layers
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : int = layer_norm_eps
__UpperCAmelCase : Dict = image_size
__UpperCAmelCase : Any = patch_size
__UpperCAmelCase : Optional[int] = num_channels
__UpperCAmelCase : List[str] = use_mask_token
__UpperCAmelCase : Tuple = use_absolute_position_embeddings
__UpperCAmelCase : Optional[int] = use_relative_position_bias
__UpperCAmelCase : str = use_shared_relative_position_bias
__UpperCAmelCase : Tuple = layer_scale_init_value
__UpperCAmelCase : str = drop_path_rate
__UpperCAmelCase : Optional[Any] = use_mean_pooling
# decode head attributes (semantic segmentation)
__UpperCAmelCase : Optional[Any] = out_indices
__UpperCAmelCase : List[Any] = pool_scales
# auxiliary head attributes (semantic segmentation)
__UpperCAmelCase : Tuple = use_auxiliary_head
__UpperCAmelCase : List[str] = auxiliary_loss_weight
__UpperCAmelCase : Optional[int] = auxiliary_channels
__UpperCAmelCase : List[str] = auxiliary_num_convs
__UpperCAmelCase : Tuple = auxiliary_concat_input
__UpperCAmelCase : List[str] = semantic_loss_ignore_index
class _snake_case ( _lowercase ):
lowerCamelCase__: List[Any] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[int] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _lowerCamelCase ( self: Dict ) -> float:
return 1e-4
| 342 | import numpy as np
import datasets
_snake_case = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_snake_case = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_snake_case = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]:
# convert to numpy arrays
__UpperCAmelCase : int = np.array(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__UpperCAmelCase : str = X - np.mean(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T )
try:
__UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
__UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 | 1 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_snake_case = logging.get_logger(__name__)
# General docstring
_snake_case = '''PoolFormerConfig'''
# Base docstring
_snake_case = '''sail/poolformer_s12'''
_snake_case = [1, 512, 7, 7]
# Image classification docstring
_snake_case = '''sail/poolformer_s12'''
_snake_case = '''tabby, tabby cat'''
_snake_case = [
'''sail/poolformer_s12''',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def _UpperCamelCase ( snake_case__, snake_case__ = 0.0, snake_case__ = False ) -> Any:
if drop_prob == 0.0 or not training:
return input
__UpperCAmelCase : List[str] = 1 - drop_prob
__UpperCAmelCase : int = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
__UpperCAmelCase : Dict = keep_prob + torch.rand(snake_case__, dtype=input.dtype, device=input.device )
random_tensor.floor_() # binarize
__UpperCAmelCase : Dict = input.div(snake_case__ ) * random_tensor
return output
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: Optional[float] = None ) -> None:
super().__init__()
__UpperCAmelCase : List[Any] = drop_prob
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: torch.Tensor ) -> torch.Tensor:
return drop_path(__lowerCamelCase , self.drop_prob , self.training )
def _lowerCamelCase ( self: List[Any] ) -> str:
return "p={}".format(self.drop_prob )
class _snake_case ( nn.Module ):
def __init__( self: Optional[Any] , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any]=None ) -> Any:
super().__init__()
__UpperCAmelCase : Optional[int] = patch_size if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (patch_size, patch_size)
__UpperCAmelCase : List[str] = stride if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (stride, stride)
__UpperCAmelCase : Union[str, Any] = padding if isinstance(__lowerCamelCase , collections.abc.Iterable ) else (padding, padding)
__UpperCAmelCase : Any = nn.Convad(__lowerCamelCase , __lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase )
__UpperCAmelCase : Dict = norm_layer(__lowerCamelCase ) if norm_layer else nn.Identity()
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[Any] = self.projection(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.norm(__lowerCamelCase )
return embeddings
class _snake_case ( nn.GroupNorm ):
def __init__( self: Dict , __lowerCamelCase: Any , **__lowerCamelCase: Optional[Any] ) -> Union[str, Any]:
super().__init__(1 , __lowerCamelCase , **__lowerCamelCase )
class _snake_case ( nn.Module ):
def __init__( self: List[Any] , __lowerCamelCase: Dict ) -> List[Any]:
super().__init__()
__UpperCAmelCase : List[str] = nn.AvgPoolad(__lowerCamelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[str] ) -> Dict:
return self.pool(__lowerCamelCase ) - hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Dict , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple ) -> Dict:
super().__init__()
__UpperCAmelCase : Dict = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 )
__UpperCAmelCase : Any = nn.Convad(__lowerCamelCase , __lowerCamelCase , 1 )
__UpperCAmelCase : List[str] = PoolFormerDropPath(__lowerCamelCase )
if isinstance(config.hidden_act , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = ACTaFN[config.hidden_act]
else:
__UpperCAmelCase : Optional[int] = config.hidden_act
def _lowerCamelCase ( self: Any , __lowerCamelCase: Optional[int] ) -> Tuple:
__UpperCAmelCase : Optional[int] = self.conva(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.act_fn(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.drop(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
__UpperCAmelCase : Any = self.drop(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
def __init__( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: str ) -> Dict:
super().__init__()
__UpperCAmelCase : Optional[Any] = PoolFormerPooling(__lowerCamelCase )
__UpperCAmelCase : Any = PoolFormerOutput(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Tuple = PoolFormerGroupNorm(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = PoolFormerGroupNorm(__lowerCamelCase )
# Useful for training neural nets
__UpperCAmelCase : Tuple = PoolFormerDropPath(__lowerCamelCase ) if drop_path > 0.0 else nn.Identity()
__UpperCAmelCase : List[str] = config.use_layer_scale
if config.use_layer_scale:
__UpperCAmelCase : Optional[int] = nn.Parameter(
config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase )
__UpperCAmelCase : Dict = nn.Parameter(
config.layer_scale_init_value * torch.ones((__lowerCamelCase) ) , requires_grad=__lowerCamelCase )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> str:
if self.use_layer_scale:
__UpperCAmelCase : List[Any] = self.pooling(self.before_norm(__lowerCamelCase ) )
__UpperCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
__UpperCAmelCase : Tuple = hidden_states + self.drop_path(__lowerCamelCase )
__UpperCAmelCase : Tuple = ()
__UpperCAmelCase : Any = self.output(self.after_norm(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
__UpperCAmelCase : Optional[Any] = hidden_states + self.drop_path(__lowerCamelCase )
__UpperCAmelCase : List[str] = (output,) + outputs
return outputs
else:
__UpperCAmelCase : Tuple = self.drop_path(self.pooling(self.before_norm(__lowerCamelCase ) ) )
# First residual connection
__UpperCAmelCase : Optional[Any] = pooling_output + hidden_states
__UpperCAmelCase : Any = ()
# Second residual connection inside the PoolFormerOutput block
__UpperCAmelCase : Any = self.drop_path(self.output(self.after_norm(__lowerCamelCase ) ) )
__UpperCAmelCase : Any = hidden_states + layer_output
__UpperCAmelCase : Dict = (output,) + outputs
return outputs
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: Any ) -> Optional[int]:
super().__init__()
__UpperCAmelCase : Tuple = config
# stochastic depth decay rule
__UpperCAmelCase : Optional[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
__UpperCAmelCase : Dict = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
__UpperCAmelCase : Dict = nn.ModuleList(__lowerCamelCase )
# Transformer blocks
__UpperCAmelCase : Tuple = []
__UpperCAmelCase : Tuple = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
__UpperCAmelCase : int = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__lowerCamelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__lowerCamelCase ) )
__UpperCAmelCase : Tuple = nn.ModuleList(__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: Dict , __lowerCamelCase: List[str]=False , __lowerCamelCase: int=True ) -> Optional[int]:
__UpperCAmelCase : Dict = () if output_hidden_states else None
__UpperCAmelCase : List[Any] = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
__UpperCAmelCase , __UpperCAmelCase : Dict = layers
# Get patch embeddings from hidden_states
__UpperCAmelCase : List[str] = embedding_layer(__lowerCamelCase )
# Send the embeddings through the blocks
for _, blk in enumerate(__lowerCamelCase ):
__UpperCAmelCase : Union[str, Any] = blk(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = layer_outputs[0]
if output_hidden_states:
__UpperCAmelCase : int = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase , hidden_states=__lowerCamelCase )
class _snake_case ( _lowercase ):
lowerCamelCase__: str = PoolFormerConfig
lowerCamelCase__: List[Any] = "poolformer"
lowerCamelCase__: Optional[Any] = "pixel_values"
lowerCamelCase__: int = True
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] ) -> Union[str, Any]:
if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__lowerCamelCase , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int]=False ) -> Optional[Any]:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : str = value
_snake_case = r'''
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
_snake_case = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`PoolFormerImageProcessor.__call__`] for details.
'''
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , _lowercase , )
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: Dict ) -> int:
super().__init__(__lowerCamelCase )
__UpperCAmelCase : Tuple = config
__UpperCAmelCase : Optional[int] = PoolFormerEncoder(__lowerCamelCase )
# Initialize weights and apply final processing
self.post_init()
def _lowerCamelCase ( self: str ) -> Any:
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
__UpperCAmelCase : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__UpperCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values" )
__UpperCAmelCase : str = self.encoder(
__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , )
__UpperCAmelCase : Optional[Any] = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__lowerCamelCase , hidden_states=encoder_outputs.hidden_states , )
class _snake_case ( nn.Module ):
def __init__( self: str , __lowerCamelCase: Dict ) -> List[Any]:
super().__init__()
__UpperCAmelCase : List[str] = nn.Linear(config.hidden_size , config.hidden_size )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Optional[Any] ) -> Optional[Any]:
__UpperCAmelCase : str = self.dense(__lowerCamelCase )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , _lowercase , )
class _snake_case ( _lowercase ):
def __init__( self: Dict , __lowerCamelCase: Tuple ) -> Any:
super().__init__(__lowerCamelCase )
__UpperCAmelCase : int = config.num_labels
__UpperCAmelCase : Any = PoolFormerModel(__lowerCamelCase )
# Final norm
__UpperCAmelCase : Optional[int] = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
__UpperCAmelCase : int = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Optional[torch.FloatTensor] = None , __lowerCamelCase: Optional[torch.LongTensor] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
__UpperCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
__UpperCAmelCase : List[Any] = self.poolformer(
__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase , )
__UpperCAmelCase : Optional[Any] = outputs[0]
__UpperCAmelCase : Dict = self.classifier(self.norm(__lowerCamelCase ).mean([-2, -1] ) )
__UpperCAmelCase : Tuple = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__UpperCAmelCase : Optional[int] = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__UpperCAmelCase : str = "single_label_classification"
else:
__UpperCAmelCase : Union[str, Any] = "multi_label_classification"
if self.config.problem_type == "regression":
__UpperCAmelCase : str = MSELoss()
if self.num_labels == 1:
__UpperCAmelCase : str = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__UpperCAmelCase : List[Any] = loss_fct(__lowerCamelCase , __lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
__UpperCAmelCase : Optional[Any] = CrossEntropyLoss()
__UpperCAmelCase : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__UpperCAmelCase : int = BCEWithLogitsLoss()
__UpperCAmelCase : Tuple = loss_fct(__lowerCamelCase , __lowerCamelCase )
if not return_dict:
__UpperCAmelCase : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states )
| 342 | import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
_snake_case = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
_snake_case = '''main'''
# Default branch name
_snake_case = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'''
# One particular commit (not the top of `main`)
_snake_case = '''aaaaaaa'''
# This commit does not exist, so we should 404.
_snake_case = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684'''
# Sha-1 of config.json on the top of `main`, for checking purposes
_snake_case = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'''
@contextlib.contextmanager
def _UpperCamelCase ( ) -> Union[str, Any]:
print("Welcome!" )
yield
print("Bye!" )
@contextlib.contextmanager
def _UpperCamelCase ( ) -> List[str]:
print("Bonjour!" )
yield
print("Au revoir!" )
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
# If the spec is missing, importlib would not be able to import the module dynamically.
assert transformers.__spec__ is not None
assert importlib.util.find_spec("transformers" ) is not None
class _snake_case ( unittest.TestCase ):
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: List[str] ) -> Tuple:
with ContextManagers([] ):
print("Transformers are awesome!" )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" )
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] ) -> Optional[Any]:
with ContextManagers([context_en()] ):
print("Transformers are awesome!" )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" )
@unittest.mock.patch("sys.stdout" , new_callable=io.StringIO )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
with ContextManagers([context_fr(), context_en()] ):
print("Transformers are awesome!" )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" )
@require_torch
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] )
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] )
self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] )
class _snake_case ( _lowercase ):
pass
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] )
@require_tf
def _lowerCamelCase ( self: List[Any] ) -> Union[str, Any]:
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] )
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels", "next_sentence_label"] )
self.assertEqual(find_labels(__lowerCamelCase ) , ["start_positions", "end_positions"] )
class _snake_case ( _lowercase ):
pass
self.assertEqual(find_labels(__lowerCamelCase ) , ["labels"] )
@require_flax
def _lowerCamelCase ( self: Dict ) -> int:
# Flax models don't have labels
self.assertEqual(find_labels(__lowerCamelCase ) , [] )
self.assertEqual(find_labels(__lowerCamelCase ) , [] )
self.assertEqual(find_labels(__lowerCamelCase ) , [] )
class _snake_case ( _lowercase ):
pass
self.assertEqual(find_labels(__lowerCamelCase ) , [] )
| 342 | import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_snake_case = [
# tf -> hf
('''/''', '''.'''),
('''layer_''', '''layers.'''),
('''kernel''', '''weight'''),
('''beta''', '''bias'''),
('''gamma''', '''weight'''),
('''pegasus''', '''model'''),
]
_snake_case = [
('''.output.dense''', '''.fc2'''),
('''intermediate.LayerNorm''', '''final_layer_norm'''),
('''intermediate.dense''', '''fc1'''),
]
_snake_case = (
INIT_COMMON
+ [
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.out_proj'''),
('''attention.self''', '''self_attn'''),
('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''),
('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''),
('''attention.encdec''', '''encoder_attn'''),
('''key''', '''k_proj'''),
('''value''', '''v_proj'''),
('''query''', '''q_proj'''),
('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = (
INIT_COMMON
+ [
('''embeddings.word_embeddings''', '''shared.weight'''),
('''embeddings.position_embeddings''', '''embed_positions.weight'''),
('''attention.self.LayerNorm''', '''self_attn_layer_norm'''),
('''attention.output.dense''', '''self_attn.output'''),
('''attention.self''', '''self_attn.self'''),
('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''),
]
+ END_COMMON
)
_snake_case = [
'''encdec/key/bias''',
'''encdec/query/bias''',
'''encdec/value/bias''',
'''self/key/bias''',
'''self/query/bias''',
'''self/value/bias''',
'''encdec_output/dense/bias''',
'''attention/output/dense/bias''',
]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> Any:
for tf_name, hf_name in patterns:
__UpperCAmelCase : Optional[int] = k.replace(snake_case__, snake_case__ )
return k
def _UpperCamelCase ( snake_case__, snake_case__ ) -> BigBirdPegasusForConditionalGeneration:
__UpperCAmelCase : Dict = BigBirdPegasusConfig(**snake_case__ )
__UpperCAmelCase : Dict = BigBirdPegasusForConditionalGeneration(snake_case__ )
__UpperCAmelCase : Optional[Any] = torch_model.state_dict()
__UpperCAmelCase : Optional[int] = {}
# separating decoder weights
__UpperCAmelCase : List[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )}
__UpperCAmelCase : str = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )}
for k, v in tqdm(decoder_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : Optional[int] = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : List[str] = DECODER_PATTERNS
__UpperCAmelCase : str = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict:
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : Optional[int] = v.T
__UpperCAmelCase : str = torch.from_numpy(snake_case__ )
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
for k, v in tqdm(remaining_weights.items(), "tf -> hf conversion" ):
__UpperCAmelCase : int = [k.endswith(snake_case__ ) for ending in KEYS_TO_IGNORE]
if any(snake_case__ ):
continue
__UpperCAmelCase : Optional[Any] = REMAINING_PATTERNS
__UpperCAmelCase : Optional[int] = rename_state_dict_key(snake_case__, snake_case__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' )
if any(True if i in k else False for i in ["dense", "query", "key", "value"] ):
__UpperCAmelCase : List[Any] = v.T
__UpperCAmelCase : List[str] = torch.from_numpy(snake_case__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'''
__UpperCAmelCase : List[Any] = mapping["model.embed_positions.weight"]
__UpperCAmelCase : Optional[Any] = mapping.pop("model.embed_positions.weight" )
__UpperCAmelCase , __UpperCAmelCase : Any = torch_model.load_state_dict(snake_case__, strict=snake_case__ )
__UpperCAmelCase : str = [
k
for k in missing
if k
not in [
"final_logits_bias",
"model.encoder.embed_tokens.weight",
"model.decoder.embed_tokens.weight",
"lm_head.weight",
]
]
assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}'''
assert extra == [], f'''no matches found for the following tf keys {extra}'''
return torch_model
def _UpperCamelCase ( snake_case__ ) -> Dict:
__UpperCAmelCase : Tuple = tf.train.list_variables(snake_case__ )
__UpperCAmelCase : List[str] = {}
__UpperCAmelCase : str = ["global_step"]
for name, shape in tqdm(snake_case__, desc="converting tf checkpoint to dict" ):
__UpperCAmelCase : Tuple = any(pat in name for pat in ignore_name )
if skip_key:
continue
__UpperCAmelCase : Optional[Any] = tf.train.load_variable(snake_case__, snake_case__ )
__UpperCAmelCase : Tuple = array
return tf_weights
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Dict:
__UpperCAmelCase : str = get_tf_weights_as_numpy(snake_case__ )
__UpperCAmelCase : List[Any] = convert_bigbird_pegasus(snake_case__, snake_case__ )
torch_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''')
parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''')
_snake_case = parser.parse_args()
_snake_case = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 342 | 1 |
import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class _snake_case ( _lowercase ):
lowerCamelCase__: Any = ["image_processor", "tokenizer"]
lowerCamelCase__: Optional[Any] = "BlipImageProcessor"
lowerCamelCase__: Optional[int] = "AutoTokenizer"
def __init__( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(__lowerCamelCase , __lowerCamelCase )
# add QFormer tokenizer
__UpperCAmelCase : Dict = qformer_tokenizer
def __call__( self: Any , __lowerCamelCase: ImageInput = None , __lowerCamelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCamelCase: bool = True , __lowerCamelCase: Union[bool, str, PaddingStrategy] = False , __lowerCamelCase: Union[bool, str, TruncationStrategy] = None , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: Optional[int] = None , __lowerCamelCase: Optional[bool] = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[str, TensorType]] = None , **__lowerCamelCase: Dict , ) -> BatchFeature:
if images is None and text is None:
raise ValueError("You have to specify at least images or text." )
__UpperCAmelCase : str = BatchFeature()
if text is not None:
__UpperCAmelCase : Any = self.tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
encoding.update(__lowerCamelCase )
__UpperCAmelCase : Dict = self.qformer_tokenizer(
text=__lowerCamelCase , add_special_tokens=__lowerCamelCase , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=__lowerCamelCase , stride=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , return_overflowing_tokens=__lowerCamelCase , return_special_tokens_mask=__lowerCamelCase , return_offsets_mapping=__lowerCamelCase , return_token_type_ids=__lowerCamelCase , return_length=__lowerCamelCase , verbose=__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : int = qformer_text_encoding.pop("input_ids" )
__UpperCAmelCase : Optional[int] = qformer_text_encoding.pop("attention_mask" )
if images is not None:
__UpperCAmelCase : Union[str, Any] = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase )
encoding.update(__lowerCamelCase )
return encoding
def _lowerCamelCase ( self: Any , *__lowerCamelCase: Any , **__lowerCamelCase: Any ) -> Optional[Any]:
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , *__lowerCamelCase: Any , **__lowerCamelCase: Dict ) -> Tuple:
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _lowerCamelCase ( self: List[str] ) -> Tuple:
__UpperCAmelCase : str = self.tokenizer.model_input_names
__UpperCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , **__lowerCamelCase: Optional[Any] ) -> str:
if os.path.isfile(__lowerCamelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
__UpperCAmelCase : List[str] = os.path.join(__lowerCamelCase , "qformer_tokenizer" )
self.qformer_tokenizer.save_pretrained(__lowerCamelCase )
return super().save_pretrained(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _lowerCamelCase ( cls: Tuple , __lowerCamelCase: Tuple , **__lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , subfolder="qformer_tokenizer" )
__UpperCAmelCase : List[Any] = cls._get_arguments_from_pretrained(__lowerCamelCase , **__lowerCamelCase )
args.append(__lowerCamelCase )
return cls(*__lowerCamelCase )
| 342 | 1 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class _snake_case :
def __init__( self: str , __lowerCamelCase: list[tuple[float, float]] ) -> Optional[int]:
__UpperCAmelCase : int = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
__UpperCAmelCase : Dict = len(__lowerCamelCase ) - 1
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: float ) -> list[float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__UpperCAmelCase : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , __lowerCamelCase ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(__lowerCamelCase ) , 5 ) == 1
return output_values
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: float ) -> tuple[float, float]:
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__UpperCAmelCase : Optional[int] = self.basis_function(__lowerCamelCase )
__UpperCAmelCase : Tuple = 0.0
__UpperCAmelCase : Dict = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: float = 0.01 ) -> Optional[Any]:
from matplotlib import pyplot as plt # type: ignore
__UpperCAmelCase : list[float] = [] # x coordinates of points to plot
__UpperCAmelCase : list[float] = [] # y coordinates of points to plot
__UpperCAmelCase : int = 0.0
while t <= 1:
__UpperCAmelCase : Optional[Any] = self.bezier_curve_function(__lowerCamelCase )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
__UpperCAmelCase : str = [i[0] for i in self.list_of_points]
__UpperCAmelCase : str = [i[1] for i in self.list_of_points]
plt.plot(
__lowerCamelCase , __lowerCamelCase , color="blue" , label="Curve of Degree " + str(self.degree ) , )
plt.scatter(__lowerCamelCase , __lowerCamelCase , color="red" , label="Control Points" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 342 | import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
_snake_case = {
'''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''},
'''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''},
'''tokenizer_config_file''': {
'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'''
},
}
_snake_case = {'''facebook/blenderbot-3B''': 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _UpperCamelCase ( ) -> Dict:
__UpperCAmelCase : Tuple = (
list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) )
)
__UpperCAmelCase : str = bs[:]
__UpperCAmelCase : Any = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case__ )
cs.append(2**8 + n )
n += 1
__UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs]
return dict(zip(snake_case__, snake_case__ ) )
def _UpperCamelCase ( snake_case__ ) -> Any:
__UpperCAmelCase : List[Any] = set()
__UpperCAmelCase : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__UpperCAmelCase : Union[str, Any] = char
return pairs
class _snake_case ( _lowercase ):
lowerCamelCase__: str = VOCAB_FILES_NAMES
lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: Dict = ["input_ids", "attention_mask"]
def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]:
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
__UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
__UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
__UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
__UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
__UpperCAmelCase : List[Any] = json.load(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()}
__UpperCAmelCase : Dict = errors # how to handle errors in decoding
__UpperCAmelCase : Optional[int] = bytes_to_unicode()
__UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
__UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1]
__UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges]
__UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
__UpperCAmelCase : List[Any] = {}
__UpperCAmelCase : Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _lowerCamelCase ( self: Dict ) -> Any:
return len(self.encoder )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]:
if token in self.cache:
return self.cache[token]
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : Dict = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
__UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram
__UpperCAmelCase : Optional[int] = []
__UpperCAmelCase : str = 0
while i < len(__lowerCamelCase ):
try:
__UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__UpperCAmelCase : Union[str, Any] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__UpperCAmelCase : List[Any] = tuple(__lowerCamelCase )
__UpperCAmelCase : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
__UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = word
return word
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict:
__UpperCAmelCase : Any = []
for token in re.findall(self.pat , __lowerCamelCase ):
__UpperCAmelCase : int = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict:
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]:
return self.decoder.get(__lowerCamelCase )
def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : Dict = "".join(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(__lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : Any = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Dict = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
__UpperCAmelCase : Optional[Any] = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
__UpperCAmelCase : Optional[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]:
__UpperCAmelCase : int = [self.sep_token_id]
__UpperCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
__UpperCAmelCase : Optional[Any] = " " + text
return (text, kwargs)
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]:
return token_ids_a + [self.eos_token_id]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]:
__UpperCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
__UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :]
logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' )
return input_ids
| 342 | 1 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def _UpperCamelCase ( snake_case__, snake_case__=0.999, snake_case__="cosine", ) -> List[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(snake_case__ ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(snake_case__ ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__UpperCAmelCase : Union[str, Any] = []
for i in range(snake_case__ ):
__UpperCAmelCase : Union[str, Any] = i / num_diffusion_timesteps
__UpperCAmelCase : Optional[Any] = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ), snake_case__ ) )
return torch.tensor(snake_case__, dtype=torch.floataa )
class _snake_case ( _lowercase , _lowercase ):
lowerCamelCase__: Dict = [e.name for e in KarrasDiffusionSchedulers]
lowerCamelCase__: Optional[int] = 2
@register_to_config
def __init__( self: Optional[Any] , __lowerCamelCase: int = 10_00 , __lowerCamelCase: float = 0.0_00_85 , __lowerCamelCase: float = 0.0_12 , __lowerCamelCase: str = "linear" , __lowerCamelCase: Optional[Union[np.ndarray, List[float]]] = None , __lowerCamelCase: str = "epsilon" , __lowerCamelCase: str = "linspace" , __lowerCamelCase: int = 0 , ) -> int:
if trained_betas is not None:
__UpperCAmelCase : Any = torch.tensor(__lowerCamelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__UpperCAmelCase : Optional[Any] = torch.linspace(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__UpperCAmelCase : Optional[Any] = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , __lowerCamelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__UpperCAmelCase : Optional[int] = betas_for_alpha_bar(__lowerCamelCase )
else:
raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' )
__UpperCAmelCase : Union[str, Any] = 1.0 - self.betas
__UpperCAmelCase : Optional[int] = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any]=None ) -> int:
if schedule_timesteps is None:
__UpperCAmelCase : List[str] = self.timesteps
__UpperCAmelCase : List[Any] = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__UpperCAmelCase : Union[str, Any] = 1 if len(__lowerCamelCase ) > 1 else 0
else:
__UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep
__UpperCAmelCase : Dict = self._index_counter[timestep_int]
return indices[pos].item()
@property
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def _lowerCamelCase ( self: Dict , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: Union[float, torch.FloatTensor] , ) -> torch.FloatTensor:
__UpperCAmelCase : Optional[int] = self.index_for_timestep(__lowerCamelCase )
if self.state_in_first_order:
__UpperCAmelCase : List[Any] = self.sigmas[step_index]
else:
__UpperCAmelCase : Optional[int] = self.sigmas_interpol[step_index]
__UpperCAmelCase : Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5)
return sample
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: Union[str, torch.device] = None , __lowerCamelCase: Optional[int] = None , ) -> Optional[int]:
__UpperCAmelCase : List[str] = num_inference_steps
__UpperCAmelCase : Dict = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__UpperCAmelCase : Any = np.linspace(0 , num_train_timesteps - 1 , __lowerCamelCase , dtype=__lowerCamelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__UpperCAmelCase : List[Any] = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__UpperCAmelCase : List[str] = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(__lowerCamelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__UpperCAmelCase : Union[str, Any] = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__UpperCAmelCase : Dict = (np.arange(__lowerCamelCase , 0 , -step_ratio )).round().copy().astype(__lowerCamelCase )
timesteps -= 1
else:
raise ValueError(
f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
__UpperCAmelCase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__UpperCAmelCase : Tuple = torch.from_numpy(np.log(__lowerCamelCase ) ).to(__lowerCamelCase )
__UpperCAmelCase : Any = np.interp(__lowerCamelCase , np.arange(0 , len(__lowerCamelCase ) ) , __lowerCamelCase )
__UpperCAmelCase : str = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__UpperCAmelCase : Optional[Any] = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase )
# interpolate sigmas
__UpperCAmelCase : Any = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
__UpperCAmelCase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
__UpperCAmelCase : Optional[Any] = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(__lowerCamelCase ).startswith("mps" ):
# mps does not support float64
__UpperCAmelCase : Dict = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase , dtype=torch.floataa )
else:
__UpperCAmelCase : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase )
# interpolate timesteps
__UpperCAmelCase : List[str] = self.sigma_to_t(__lowerCamelCase ).to(__lowerCamelCase , dtype=timesteps.dtype )
__UpperCAmelCase : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
__UpperCAmelCase : int = torch.cat([timesteps[:1], interleaved_timesteps] )
__UpperCAmelCase : List[str] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__UpperCAmelCase : List[Any] = defaultdict(__lowerCamelCase )
def _lowerCamelCase ( self: Optional[int] , __lowerCamelCase: List[Any] ) -> List[str]:
# get log sigma
__UpperCAmelCase : List[str] = sigma.log()
# get distribution
__UpperCAmelCase : Union[str, Any] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
__UpperCAmelCase : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
__UpperCAmelCase : int = low_idx + 1
__UpperCAmelCase : str = self.log_sigmas[low_idx]
__UpperCAmelCase : List[Any] = self.log_sigmas[high_idx]
# interpolate sigmas
__UpperCAmelCase : str = (low - log_sigma) / (low - high)
__UpperCAmelCase : Optional[Any] = w.clamp(0 , 1 )
# transform interpolation to time range
__UpperCAmelCase : Any = (1 - w) * low_idx + w * high_idx
__UpperCAmelCase : str = t.view(sigma.shape )
return t
@property
def _lowerCamelCase ( self: str ) -> int:
return self.sample is None
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase: Union[float, torch.FloatTensor] , __lowerCamelCase: Union[torch.FloatTensor, np.ndarray] , __lowerCamelCase: bool = True , ) -> Union[SchedulerOutput, Tuple]:
__UpperCAmelCase : int = self.index_for_timestep(__lowerCamelCase )
# advance index counter by 1
__UpperCAmelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__lowerCamelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__UpperCAmelCase : List[Any] = self.sigmas[step_index]
__UpperCAmelCase : Optional[Any] = self.sigmas_interpol[step_index + 1]
__UpperCAmelCase : Optional[int] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
__UpperCAmelCase : Tuple = self.sigmas[step_index - 1]
__UpperCAmelCase : str = self.sigmas_interpol[step_index]
__UpperCAmelCase : Union[str, Any] = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__UpperCAmelCase : str = 0
__UpperCAmelCase : List[Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__UpperCAmelCase : int = sigma_hat if self.state_in_first_order else sigma_interpol
__UpperCAmelCase : List[str] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__UpperCAmelCase : List[str] = sigma_hat if self.state_in_first_order else sigma_interpol
__UpperCAmelCase : Any = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample" )
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__UpperCAmelCase : Optional[int] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__UpperCAmelCase : List[Any] = sigma_interpol - sigma_hat
# store for 2nd order step
__UpperCAmelCase : List[str] = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
__UpperCAmelCase : List[Any] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
__UpperCAmelCase : Optional[Any] = sigma_next - sigma_hat
__UpperCAmelCase : Tuple = self.sample
__UpperCAmelCase : Optional[Any] = None
__UpperCAmelCase : List[str] = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__lowerCamelCase )
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: torch.FloatTensor , __lowerCamelCase: torch.FloatTensor , ) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
__UpperCAmelCase : int = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(__lowerCamelCase ):
# mps does not support float64
__UpperCAmelCase : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__UpperCAmelCase : Union[str, Any] = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__UpperCAmelCase : Optional[Any] = self.timesteps.to(original_samples.device )
__UpperCAmelCase : Optional[Any] = timesteps.to(original_samples.device )
__UpperCAmelCase : List[Any] = [self.index_for_timestep(__lowerCamelCase , __lowerCamelCase ) for t in timesteps]
__UpperCAmelCase : Tuple = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__UpperCAmelCase : Optional[Any] = sigma.unsqueeze(-1 )
__UpperCAmelCase : str = original_samples + noise * sigma
return noisy_samples
def __len__( self: str ) -> Tuple:
return self.config.num_train_timesteps
| 342 | import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = CanineTokenizer
lowerCamelCase__: Optional[int] = False
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
super().setUp()
__UpperCAmelCase : Tuple = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _lowerCamelCase ( self: Union[str, Any] ) -> List[Any]:
return CanineTokenizer.from_pretrained("google/canine-s" )
def _lowerCamelCase ( self: Any , **__lowerCamelCase: List[Any] ) -> CanineTokenizer:
__UpperCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
__UpperCAmelCase : Optional[int] = 10_24
return tokenizer
@require_torch
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : Union[str, Any] = self.canine_tokenizer
__UpperCAmelCase : List[str] = ["Life is like a box of chocolates.", "You never know what you're gonna get."]
# fmt: off
__UpperCAmelCase : Dict = [5_73_44, 76, 1_05, 1_02, 1_01, 32, 1_05, 1_15, 32, 1_08, 1_05, 1_07, 1_01, 32, 97, 32, 98, 1_11, 1_20, 32, 1_11, 1_02, 32, 99, 1_04, 1_11, 99, 1_11, 1_08, 97, 1_16, 1_01, 1_15, 46, 5_73_45, 0, 0, 0, 0]
# fmt: on
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : Dict = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."]
__UpperCAmelCase : Union[str, Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors="pt" )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertIn("token_type_ids" , __lowerCamelCase )
@require_torch
def _lowerCamelCase ( self: Any ) -> List[str]:
__UpperCAmelCase : Optional[Any] = self.canine_tokenizer
__UpperCAmelCase : int = [
"What's the weater?",
"It's about 25 degrees.",
]
__UpperCAmelCase : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
# safety check on max_len default value so we are sure the test works
__UpperCAmelCase : Optional[int] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
__UpperCAmelCase : str = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : int = tempfile.mkdtemp()
__UpperCAmelCase : List[Any] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : Tuple = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Dict = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
__UpperCAmelCase : List[Any] = tempfile.mkdtemp()
__UpperCAmelCase : Optional[int] = " He is very happy, UNwant\u00E9d,running"
__UpperCAmelCase : str = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
__UpperCAmelCase : Tuple = chr(0xE_0_0_7 )
additional_special_tokens.append(__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
__UpperCAmelCase : Optional[int] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
__UpperCAmelCase : str = tokenizer.__class__.from_pretrained(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn(__lowerCamelCase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
__UpperCAmelCase : Optional[Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[int]:
__UpperCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.get_clean_sequence(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : int = 0xE_0_0_5
__UpperCAmelCase : Tuple = chr(__lowerCamelCase )
tokenizer.add_special_tokens({"cls_token": special_token} )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
__UpperCAmelCase : Any = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Dict = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : int = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , input_encoded + special_token_id )
__UpperCAmelCase : Optional[int] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
self.assertTrue(special_token not in decoded )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : Optional[int] = chr(0xE_0_0_5 )
__UpperCAmelCase : List[str] = chr(0xE_0_0_6 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=__lowerCamelCase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} )
__UpperCAmelCase : Tuple = tokenizer.tokenize(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = tokenizer.tokenize(__lowerCamelCase )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(token_a[0] , __lowerCamelCase )
self.assertEqual(token_a[0] , __lowerCamelCase )
@require_tokenizers
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
__UpperCAmelCase : Any = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Union[str, Any] = 0xE_0_0_6
__UpperCAmelCase : int = chr(__lowerCamelCase )
__UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )
tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(__lowerCamelCase )
tokenizer.from_pretrained(__lowerCamelCase )
def _lowerCamelCase ( self: Dict ) -> List[str]:
__UpperCAmelCase : str = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Tuple = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
__UpperCAmelCase : Optional[int] = json.load(__lowerCamelCase )
# a special token for Canine can be defined as follows:
__UpperCAmelCase : Any = 0xE_0_0_6
__UpperCAmelCase : Union[str, Any] = chr(__lowerCamelCase )
__UpperCAmelCase : Dict = [new_token_a]
__UpperCAmelCase : int = [new_token_a]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
__UpperCAmelCase : List[str] = tokenizer_class.from_pretrained(__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
__UpperCAmelCase : List[Any] = 0xE_0_0_7
__UpperCAmelCase : List[Any] = chr(__lowerCamelCase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
__UpperCAmelCase : str = [AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase )]
__UpperCAmelCase : Dict = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , extra_ids=0 )
self.assertIn(__lowerCamelCase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : int = "hello world"
if self.space_between_special_tokens:
__UpperCAmelCase : Any = "[CLS] hello world [SEP]"
else:
__UpperCAmelCase : Union[str, Any] = input
__UpperCAmelCase : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
__UpperCAmelCase : Any = tokenizer.decode(__lowerCamelCase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(__lowerCamelCase , [output, output.lower()] )
def _lowerCamelCase ( self: Dict ) -> Any:
__UpperCAmelCase : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
__UpperCAmelCase : List[str] = [
"bos_token",
"eos_token",
"unk_token",
"sep_token",
"pad_token",
"cls_token",
"mask_token",
]
__UpperCAmelCase : List[str] = "a"
__UpperCAmelCase : Any = ord(__lowerCamelCase )
for attr in attributes_list:
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , attr + "_id" , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(getattr(__lowerCamelCase , attr + "_id" ) , __lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [] )
__UpperCAmelCase : Tuple = 0xE_0_0_6
__UpperCAmelCase : Optional[Any] = chr(__lowerCamelCase )
setattr(__lowerCamelCase , "additional_special_tokens_ids" , [additional_special_token_id] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens" ) , [additional_special_token] )
self.assertListEqual(getattr(__lowerCamelCase , "additional_special_tokens_ids" ) , [additional_special_token_id] )
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: Any ) -> Any:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: Optional[int] ) -> Any:
pass
def _lowerCamelCase ( self: List[str] ) -> str:
pass
def _lowerCamelCase ( self: Union[str, Any] ) -> Optional[int]:
pass
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
pass
def _lowerCamelCase ( self: str ) -> Tuple:
pass
| 342 | 1 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: bool = True , __lowerCamelCase: Dict[str, int] = None , __lowerCamelCase: int = 32 , __lowerCamelCase: bool = True , __lowerCamelCase: Union[int, float] = 1 / 2_55 , __lowerCamelCase: bool = True , __lowerCamelCase: bool = True , __lowerCamelCase: Optional[Union[float, List[float]]] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , __lowerCamelCase: Optional[Union[float, List[float]]] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , __lowerCamelCase: bool = True , __lowerCamelCase: Dict=7 , __lowerCamelCase: Union[str, Any]=30 , __lowerCamelCase: Dict=4_00 , __lowerCamelCase: Tuple=3 , ) -> int:
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : str = do_resize
__UpperCAmelCase : Tuple = size if size is not None else {"shortest_edge": 2_88}
__UpperCAmelCase : str = size_divisor
__UpperCAmelCase : Optional[Any] = do_rescale
__UpperCAmelCase : Dict = rescale_factor
__UpperCAmelCase : Any = do_normalize
__UpperCAmelCase : Dict = do_center_crop
__UpperCAmelCase : List[Any] = image_mean
__UpperCAmelCase : Optional[int] = image_std
__UpperCAmelCase : Any = do_pad
__UpperCAmelCase : int = batch_size
__UpperCAmelCase : int = num_channels
__UpperCAmelCase : Optional[Any] = min_resolution
__UpperCAmelCase : Optional[int] = max_resolution
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: Dict , __lowerCamelCase: int=False ) -> Any:
if not batched:
__UpperCAmelCase : Optional[Any] = self.size["shortest_edge"]
__UpperCAmelCase : List[str] = image_inputs[0]
if isinstance(__lowerCamelCase , Image.Image ):
__UpperCAmelCase , __UpperCAmelCase : int = image.size
else:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = image.shape[1], image.shape[2]
__UpperCAmelCase : Optional[Any] = size / min(__lowerCamelCase , __lowerCamelCase )
if h < w:
__UpperCAmelCase , __UpperCAmelCase : Tuple = size, scale * w
else:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = scale * h, size
__UpperCAmelCase : Optional[int] = int((13_33 / 8_00) * size )
if max(__lowerCamelCase , __lowerCamelCase ) > max_size:
__UpperCAmelCase : int = max_size / max(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = newh * scale
__UpperCAmelCase : str = neww * scale
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = int(newh + 0.5 ), int(neww + 0.5 )
__UpperCAmelCase , __UpperCAmelCase : str = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__UpperCAmelCase : List[Any] = []
for image in image_inputs:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__UpperCAmelCase : List[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0]
__UpperCAmelCase : Optional[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = BridgeTowerImageProcessor if is_vision_available() else None
def _lowerCamelCase ( self: Optional[Any] ) -> Dict:
__UpperCAmelCase : List[Any] = BridgeTowerImageProcessingTester(self )
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCamelCase ( self: str ) -> str:
__UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) )
def _lowerCamelCase ( self: Any ) -> int:
pass
def _lowerCamelCase ( self: int ) -> Any:
# Initialize image processor
__UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
__UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : str = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowerCamelCase ( self: Optional[int] ) -> List[str]:
# Initialize image processor
__UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__UpperCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
__UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : Optional[int] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : str = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _lowerCamelCase ( self: Any ) -> Any:
# Initialize image processor
__UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
__UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__UpperCAmelCase : List[str] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | import logging
import os
from .state import PartialState
class _snake_case ( logging.LoggerAdapter ):
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: Any ) -> int:
__UpperCAmelCase : str = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[Any] , *__lowerCamelCase: List[str] , **__lowerCamelCase: List[Any] ) -> Optional[int]:
if PartialState._shared_state == {}:
raise RuntimeError(
"You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility." )
__UpperCAmelCase : Any = kwargs.pop("main_process_only" , __lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = kwargs.pop("in_order" , __lowerCamelCase )
if self.isEnabledFor(__lowerCamelCase ):
if self._should_log(__lowerCamelCase ):
__UpperCAmelCase , __UpperCAmelCase : int = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
elif in_order:
__UpperCAmelCase : Optional[int] = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__UpperCAmelCase , __UpperCAmelCase : List[Any] = self.process(__lowerCamelCase , __lowerCamelCase )
self.logger.log(__lowerCamelCase , __lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase )
state.wait_for_everyone()
def _UpperCamelCase ( snake_case__, snake_case__ = None ) -> List[str]:
if log_level is None:
__UpperCAmelCase : List[Any] = os.environ.get("ACCELERATE_LOG_LEVEL", snake_case__ )
__UpperCAmelCase : Union[str, Any] = logging.getLogger(snake_case__ )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(snake_case__, {} )
| 342 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Optional[Any] = UniSpeechSatForSequenceClassification.from_pretrained(snake_case__, config=snake_case__ )
__UpperCAmelCase : int = downstream_dict["projector.weight"]
__UpperCAmelCase : Optional[Any] = downstream_dict["projector.bias"]
__UpperCAmelCase : Tuple = downstream_dict["model.post_net.linear.weight"]
__UpperCAmelCase : Optional[Any] = downstream_dict["model.post_net.linear.bias"]
return model
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[int]:
__UpperCAmelCase : Union[str, Any] = UniSpeechSatForAudioFrameClassification.from_pretrained(snake_case__, config=snake_case__ )
__UpperCAmelCase : Dict = downstream_dict["model.linear.weight"]
__UpperCAmelCase : Optional[Any] = downstream_dict["model.linear.bias"]
return model
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> int:
__UpperCAmelCase : Optional[int] = UniSpeechSatForXVector.from_pretrained(snake_case__, config=snake_case__ )
__UpperCAmelCase : str = downstream_dict["connector.weight"]
__UpperCAmelCase : Any = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
__UpperCAmelCase : Optional[Any] = downstream_dict[
f'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
__UpperCAmelCase : Tuple = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
__UpperCAmelCase : Optional[int] = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
__UpperCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
__UpperCAmelCase : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
__UpperCAmelCase : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
__UpperCAmelCase : int = downstream_dict["objective.W"]
return model
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__ ) -> Tuple:
__UpperCAmelCase : Dict = torch.load(snake_case__, map_location="cpu" )
__UpperCAmelCase : List[Any] = checkpoint["Downstream"]
__UpperCAmelCase : List[Any] = UniSpeechSatConfig.from_pretrained(snake_case__ )
__UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(
snake_case__, return_attention_mask=snake_case__, do_normalize=snake_case__ )
__UpperCAmelCase : Optional[int] = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
__UpperCAmelCase : Any = convert_classification(snake_case__, snake_case__, snake_case__ )
elif arch.endswith("ForAudioFrameClassification" ):
__UpperCAmelCase : Optional[int] = convert_diarization(snake_case__, snake_case__, snake_case__ )
elif arch.endswith("ForXVector" ):
__UpperCAmelCase : Any = convert_xvector(snake_case__, snake_case__, snake_case__ )
else:
raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
__UpperCAmelCase : Optional[int] = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(snake_case__ )
hf_model.save_pretrained(snake_case__ )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
_snake_case = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 342 | from typing import Optional
from .. import Features, NamedSplit
from ..packaged_modules.text.text import Text
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( _lowercase ):
def __init__( self: Optional[Any] , __lowerCamelCase: NestedDataStructureLike[PathLike] , __lowerCamelCase: Optional[NamedSplit] = None , __lowerCamelCase: Optional[Features] = None , __lowerCamelCase: str = None , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: Optional[int] = None , **__lowerCamelCase: Tuple , ) -> str:
super().__init__(
__lowerCamelCase , split=__lowerCamelCase , features=__lowerCamelCase , cache_dir=__lowerCamelCase , keep_in_memory=__lowerCamelCase , streaming=__lowerCamelCase , num_proc=__lowerCamelCase , **__lowerCamelCase , )
__UpperCAmelCase : Union[str, Any] = path_or_paths if isinstance(__lowerCamelCase , __lowerCamelCase ) else {self.split: path_or_paths}
__UpperCAmelCase : int = Text(
cache_dir=__lowerCamelCase , data_files=__lowerCamelCase , features=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: List[Any] ) -> Optional[Any]:
# Build iterable dataset
if self.streaming:
__UpperCAmelCase : List[str] = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
__UpperCAmelCase : Any = None
__UpperCAmelCase : Any = None
__UpperCAmelCase : Dict = None
__UpperCAmelCase : str = None
self.builder.download_and_prepare(
download_config=__lowerCamelCase , download_mode=__lowerCamelCase , verification_mode=__lowerCamelCase , base_path=__lowerCamelCase , num_proc=self.num_proc , )
__UpperCAmelCase : Dict = self.builder.as_dataset(
split=self.split , verification_mode=__lowerCamelCase , in_memory=self.keep_in_memory )
return dataset
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: List[str] = "open-llama"
def __init__( self: Union[str, Any] , __lowerCamelCase: Optional[int]=10_00_00 , __lowerCamelCase: Optional[Any]=40_96 , __lowerCamelCase: int=1_10_08 , __lowerCamelCase: Any=32 , __lowerCamelCase: Union[str, Any]=32 , __lowerCamelCase: Dict="silu" , __lowerCamelCase: Optional[int]=20_48 , __lowerCamelCase: Dict=0.02 , __lowerCamelCase: Tuple=1e-6 , __lowerCamelCase: Any=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]=1 , __lowerCamelCase: int=2 , __lowerCamelCase: Optional[Any]=False , __lowerCamelCase: int=True , __lowerCamelCase: Union[str, Any]=0.1 , __lowerCamelCase: Tuple=0.1 , __lowerCamelCase: Tuple=True , __lowerCamelCase: Dict=True , __lowerCamelCase: Any=None , **__lowerCamelCase: Tuple , ) -> Dict:
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : List[Any] = max_position_embeddings
__UpperCAmelCase : Any = hidden_size
__UpperCAmelCase : int = intermediate_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Tuple = num_attention_heads
__UpperCAmelCase : Optional[int] = hidden_act
__UpperCAmelCase : List[str] = initializer_range
__UpperCAmelCase : int = rms_norm_eps
__UpperCAmelCase : str = use_cache
__UpperCAmelCase : int = kwargs.pop(
"use_memorry_efficient_attention" , __lowerCamelCase )
__UpperCAmelCase : Optional[Any] = hidden_dropout_prob
__UpperCAmelCase : Any = attention_dropout_prob
__UpperCAmelCase : List[str] = use_stable_embedding
__UpperCAmelCase : Tuple = shared_input_output_embedding
__UpperCAmelCase : Dict = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase , )
def _lowerCamelCase ( self: Any ) -> Dict:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __lowerCamelCase ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
f'''got {self.rope_scaling}''' )
__UpperCAmelCase : Optional[Any] = self.rope_scaling.get("type" , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = self.rope_scaling.get("factor" , __lowerCamelCase )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__lowerCamelCase , __lowerCamelCase ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 342 | from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class _snake_case ( _lowercase ):
lowerCamelCase__: List[str] = "mctct"
def __init__( self: Any , __lowerCamelCase: Any=80_65 , __lowerCamelCase: Dict=15_36 , __lowerCamelCase: Union[str, Any]=36 , __lowerCamelCase: str=61_44 , __lowerCamelCase: int=4 , __lowerCamelCase: Dict=3_84 , __lowerCamelCase: Tuple=9_20 , __lowerCamelCase: Union[str, Any]=1e-5 , __lowerCamelCase: Tuple=0.3 , __lowerCamelCase: Union[str, Any]="relu" , __lowerCamelCase: Any=0.02 , __lowerCamelCase: List[Any]=0.3 , __lowerCamelCase: str=0.3 , __lowerCamelCase: Optional[int]=1 , __lowerCamelCase: Optional[Any]=0 , __lowerCamelCase: Any=2 , __lowerCamelCase: List[str]=1 , __lowerCamelCase: Tuple=0.3 , __lowerCamelCase: str=1 , __lowerCamelCase: Dict=(7,) , __lowerCamelCase: Any=(3,) , __lowerCamelCase: Tuple=80 , __lowerCamelCase: str=1 , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: int="sum" , __lowerCamelCase: Any=False , **__lowerCamelCase: Optional[int] , ) -> Dict:
super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase )
__UpperCAmelCase : Any = vocab_size
__UpperCAmelCase : Optional[int] = hidden_size
__UpperCAmelCase : Optional[Any] = num_hidden_layers
__UpperCAmelCase : Any = intermediate_size
__UpperCAmelCase : Optional[Any] = num_attention_heads
__UpperCAmelCase : List[Any] = attention_head_dim
__UpperCAmelCase : List[str] = max_position_embeddings
__UpperCAmelCase : Dict = layer_norm_eps
__UpperCAmelCase : Tuple = layerdrop
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : str = hidden_dropout_prob
__UpperCAmelCase : int = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = pad_token_id
__UpperCAmelCase : Optional[int] = bos_token_id
__UpperCAmelCase : Optional[int] = eos_token_id
__UpperCAmelCase : Optional[Any] = conv_glu_dim
__UpperCAmelCase : int = conv_dropout
__UpperCAmelCase : Optional[Any] = num_conv_layers
__UpperCAmelCase : int = input_feat_per_channel
__UpperCAmelCase : List[str] = input_channels
__UpperCAmelCase : Optional[Any] = conv_channels
__UpperCAmelCase : Union[str, Any] = ctc_loss_reduction
__UpperCAmelCase : str = ctc_zero_infinity
# prevents config testing fail with exporting to json
__UpperCAmelCase : Optional[Any] = list(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = list(__lowerCamelCase )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.conv_kernel)` == `config.num_conv_layers` "
f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '''
f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
| 342 | import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Dict=4 , __lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , __lowerCamelCase: int=[2, 2, 3, 2] , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Tuple=37 , __lowerCamelCase: Tuple="gelu" , __lowerCamelCase: List[Any]=10 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Optional[Any]=["stage2", "stage3", "stage4"] , __lowerCamelCase: Optional[int]=[2, 3, 4] , __lowerCamelCase: int=None , ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : List[str] = batch_size
__UpperCAmelCase : Optional[int] = image_size
__UpperCAmelCase : List[str] = num_channels
__UpperCAmelCase : Union[str, Any] = num_stages
__UpperCAmelCase : List[str] = hidden_sizes
__UpperCAmelCase : Any = depths
__UpperCAmelCase : Optional[int] = is_training
__UpperCAmelCase : List[Any] = use_labels
__UpperCAmelCase : Optional[int] = intermediate_size
__UpperCAmelCase : Optional[Any] = hidden_act
__UpperCAmelCase : Union[str, Any] = num_labels
__UpperCAmelCase : Any = initializer_range
__UpperCAmelCase : List[str] = out_features
__UpperCAmelCase : Tuple = out_indices
__UpperCAmelCase : List[Any] = scope
def _lowerCamelCase ( self: List[Any] ) -> Optional[int]:
__UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[str] = None
if self.use_labels:
__UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : Optional[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: Tuple ) -> List[Any]:
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: int , __lowerCamelCase: int , __lowerCamelCase: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : Optional[Any] = ConvNextVaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : List[str] = model(__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = ConvNextVaForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Optional[int] = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: int , __lowerCamelCase: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[str] = ConvNextVaBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
__UpperCAmelCase : Any = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowerCamelCase ( self: int ) -> List[str]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = config_and_inputs
__UpperCAmelCase : str = {"pixel_values": pixel_values}
return config, inputs_dict
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = config_and_inputs
__UpperCAmelCase : Dict = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
lowerCamelCase__: str = (
{"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__: Tuple = False
lowerCamelCase__: int = False
lowerCamelCase__: Dict = False
lowerCamelCase__: int = False
lowerCamelCase__: Any = False
def _lowerCamelCase ( self: Union[str, Any] ) -> Union[str, Any]:
__UpperCAmelCase : Union[str, Any] = ConvNextVaModelTester(self )
__UpperCAmelCase : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _lowerCamelCase ( self: Dict ) -> Tuple:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowerCamelCase ( self: List[Any] ) -> int:
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def _lowerCamelCase ( self: Any ) -> Any:
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> int:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : Optional[Any] = True
if model_class.__name__ in [
*get_values(__lowerCamelCase ),
*get_values(__lowerCamelCase ),
]:
continue
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
__UpperCAmelCase : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
__UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_with_labels()
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : int = True
if (
model_class.__name__
in [*get_values(__lowerCamelCase ), *get_values(__lowerCamelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCAmelCase : int = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCAmelCase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : Any = model(**__lowerCamelCase ).loss
loss.backward()
def _lowerCamelCase ( self: List[str] ) -> Dict:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : int = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : List[Any] = [*signature.parameters.keys()]
__UpperCAmelCase : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> Dict:
def check_hidden_states_output(__lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: str ):
__UpperCAmelCase : Any = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
__UpperCAmelCase : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
__UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : Optional[int] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Optional[int] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : Any = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: Dict ) -> List[Any]:
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> List[Any]:
__UpperCAmelCase : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def _lowerCamelCase ( self: List[Any] ) -> Tuple:
__UpperCAmelCase : List[Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.default_image_processor
__UpperCAmelCase : Optional[Any] = prepare_img()
__UpperCAmelCase : int = preprocessor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
__UpperCAmelCase : str = model(**__lowerCamelCase )
# verify the logits
__UpperCAmelCase : Dict = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 1 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
_snake_case = get_logger()
_snake_case = None
class _snake_case ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
def __init__( self: Optional[Any] , __lowerCamelCase: Tuple=None , __lowerCamelCase: Dict=None , **__lowerCamelCase: Optional[Any] ) -> Dict:
super().__init__(features=__lowerCamelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
__UpperCAmelCase : List[str] = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
__UpperCAmelCase : Dict = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
__UpperCAmelCase : int = str(jax.devices()[0] )
__UpperCAmelCase : int = jnp_array_kwargs
@staticmethod
def _lowerCamelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]:
import jax
return {str(__lowerCamelCase ): device for device in jax.devices()}
def _lowerCamelCase ( self: Tuple , __lowerCamelCase: Dict ) -> Optional[int]:
import jax
import jax.numpy as jnp
if isinstance(__lowerCamelCase , __lowerCamelCase ) and column:
if all(
isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__lowerCamelCase , axis=0 )
return column
def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[str] ) -> List[str]:
import jax
import jax.numpy as jnp
if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ):
return value
elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCAmelCase : Tuple = {}
if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
__UpperCAmelCase : Any = {"dtype": jnp.intaa}
else:
__UpperCAmelCase : Optional[int] = {"dtype": jnp.intaa}
elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCAmelCase : List[str] = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__lowerCamelCase , PIL.Image.Image ):
__UpperCAmelCase : str = np.asarray(__lowerCamelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
__UpperCAmelCase : Any = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple ) -> Union[str, Any]:
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__lowerCamelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ):
__UpperCAmelCase : Tuple = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__lowerCamelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] )
elif isinstance(__lowerCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] )
return self._tensorize(__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: dict ) -> Tuple:
return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase )
def _lowerCamelCase ( self: int , __lowerCamelCase: pa.Table ) -> Mapping:
__UpperCAmelCase : Dict = self.numpy_arrow_extractor().extract_row(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.python_features_decoder.decode_row(__lowerCamelCase )
return self.recursive_tensorize(__lowerCamelCase )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: pa.Table ) -> "jax.Array":
__UpperCAmelCase : Optional[Any] = self.numpy_arrow_extractor().extract_column(__lowerCamelCase )
__UpperCAmelCase : List[Any] = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] )
__UpperCAmelCase : str = self.recursive_tensorize(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = self._consolidate(__lowerCamelCase )
return column
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: pa.Table ) -> Mapping:
__UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase )
__UpperCAmelCase : int = self.python_features_decoder.decode_batch(__lowerCamelCase )
__UpperCAmelCase : List[str] = self.recursive_tensorize(__lowerCamelCase )
for column_name in batch:
__UpperCAmelCase : List[Any] = self._consolidate(batch[column_name] )
return batch
| 342 | import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _snake_case ( _lowercase ):
lowerCamelCase__: str = "detr"
lowerCamelCase__: Dict = ["past_key_values"]
lowerCamelCase__: str = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self: List[str] , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Any=None , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[int]=6 , __lowerCamelCase: List[Any]=20_48 , __lowerCamelCase: int=8 , __lowerCamelCase: Tuple=0.0 , __lowerCamelCase: Dict=0.0 , __lowerCamelCase: Any=True , __lowerCamelCase: Tuple="relu" , __lowerCamelCase: Tuple=2_56 , __lowerCamelCase: Dict=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Optional[int]=0.0 , __lowerCamelCase: Union[str, Any]=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: List[str]=False , __lowerCamelCase: Dict="sine" , __lowerCamelCase: Optional[int]="resnet50" , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: int=False , __lowerCamelCase: Union[str, Any]=1 , __lowerCamelCase: Tuple=5 , __lowerCamelCase: int=2 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Dict=1 , __lowerCamelCase: Union[str, Any]=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: int=0.1 , **__lowerCamelCase: str , ) -> int:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
__UpperCAmelCase : Optional[int] = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
__UpperCAmelCase : List[Any] = backbone_config.get("model_type" )
__UpperCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type]
__UpperCAmelCase : List[str] = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = None, None, None
__UpperCAmelCase : Any = use_timm_backbone
__UpperCAmelCase : Optional[Any] = backbone_config
__UpperCAmelCase : Optional[Any] = num_channels
__UpperCAmelCase : List[Any] = num_queries
__UpperCAmelCase : Optional[int] = d_model
__UpperCAmelCase : Optional[Any] = encoder_ffn_dim
__UpperCAmelCase : Dict = encoder_layers
__UpperCAmelCase : List[Any] = encoder_attention_heads
__UpperCAmelCase : int = decoder_ffn_dim
__UpperCAmelCase : Tuple = decoder_layers
__UpperCAmelCase : int = decoder_attention_heads
__UpperCAmelCase : List[Any] = dropout
__UpperCAmelCase : Dict = attention_dropout
__UpperCAmelCase : Optional[Any] = activation_dropout
__UpperCAmelCase : int = activation_function
__UpperCAmelCase : Any = init_std
__UpperCAmelCase : str = init_xavier_std
__UpperCAmelCase : int = encoder_layerdrop
__UpperCAmelCase : Tuple = decoder_layerdrop
__UpperCAmelCase : List[Any] = encoder_layers
__UpperCAmelCase : Optional[Any] = auxiliary_loss
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = backbone
__UpperCAmelCase : str = use_pretrained_backbone
__UpperCAmelCase : Dict = dilation
# Hungarian matcher
__UpperCAmelCase : Optional[int] = class_cost
__UpperCAmelCase : Optional[Any] = bbox_cost
__UpperCAmelCase : Optional[int] = giou_cost
# Loss coefficients
__UpperCAmelCase : Any = mask_loss_coefficient
__UpperCAmelCase : Any = dice_loss_coefficient
__UpperCAmelCase : Any = bbox_loss_coefficient
__UpperCAmelCase : Optional[int] = giou_loss_coefficient
__UpperCAmelCase : Optional[Any] = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _lowerCamelCase ( self: Dict ) -> int:
return self.encoder_attention_heads
@property
def _lowerCamelCase ( self: str ) -> int:
return self.d_model
@classmethod
def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: List[Any] ) -> List[Any]:
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Dict[str, any]:
__UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
__UpperCAmelCase : int = self.backbone_config.to_dict()
__UpperCAmelCase : List[str] = self.__class__.model_type
return output
class _snake_case ( _lowercase ):
lowerCamelCase__: Optional[int] = version.parse("1.11" )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _lowerCamelCase ( self: Optional[Any] ) -> float:
return 1e-5
@property
def _lowerCamelCase ( self: List[str] ) -> int:
return 12
| 342 | 1 |
from __future__ import annotations
import inspect
import unittest
from typing import List, Tuple
from transformers import RegNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Any=32 , __lowerCamelCase: Dict=3 , __lowerCamelCase: int=10 , __lowerCamelCase: Dict=[10, 20, 30, 40] , __lowerCamelCase: List[str]=[1, 1, 2, 1] , __lowerCamelCase: str=True , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]="relu" , __lowerCamelCase: Dict=3 , __lowerCamelCase: str=None , ) -> Optional[Any]:
__UpperCAmelCase : Dict = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : List[Any] = image_size
__UpperCAmelCase : Tuple = num_channels
__UpperCAmelCase : Any = embeddings_size
__UpperCAmelCase : Tuple = hidden_sizes
__UpperCAmelCase : Union[str, Any] = depths
__UpperCAmelCase : Union[str, Any] = is_training
__UpperCAmelCase : Dict = use_labels
__UpperCAmelCase : Dict = hidden_act
__UpperCAmelCase : Tuple = num_labels
__UpperCAmelCase : Dict = scope
__UpperCAmelCase : Union[str, Any] = len(__lowerCamelCase )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCAmelCase : List[Any] = None
if self.use_labels:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels )
__UpperCAmelCase : List[Any] = self.get_config()
return config, pixel_values, labels
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: str , __lowerCamelCase: List[Any] ) -> Optional[Any]:
__UpperCAmelCase : Union[str, Any] = TFRegNetModel(config=__lowerCamelCase )
__UpperCAmelCase : Tuple = model(__lowerCamelCase , training=__lowerCamelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowerCamelCase ( self: int , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict , __lowerCamelCase: int ) -> List[Any]:
__UpperCAmelCase : Union[str, Any] = self.num_labels
__UpperCAmelCase : str = TFRegNetForImageClassification(__lowerCamelCase )
__UpperCAmelCase : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: Optional[int] ) -> Union[str, Any]:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Optional[int] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( _lowercase , _lowercase , unittest.TestCase ):
lowerCamelCase__: Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else ()
lowerCamelCase__: Any = (
{"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__: Optional[Any] = False
lowerCamelCase__: Dict = False
lowerCamelCase__: Union[str, Any] = False
lowerCamelCase__: int = False
lowerCamelCase__: Union[str, Any] = False
def _lowerCamelCase ( self: int ) -> str:
__UpperCAmelCase : List[str] = TFRegNetModelTester(self )
__UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
return
@unittest.skip(reason="RegNet does not use inputs_embeds" )
def _lowerCamelCase ( self: Any ) -> Tuple:
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , )
@slow
def _lowerCamelCase ( self: str ) -> List[str]:
super().test_keras_fit()
@unittest.skip(reason="RegNet does not support input and output embeddings" )
def _lowerCamelCase ( self: int ) -> Union[str, Any]:
pass
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase : Union[str, Any] = model_class(__lowerCamelCase )
__UpperCAmelCase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase : Any = [*signature.parameters.keys()]
__UpperCAmelCase : Optional[int] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Optional[Any]:
__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> Optional[int]:
def check_hidden_states_output(__lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] ):
__UpperCAmelCase : Optional[Any] = model_class(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase )
__UpperCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__UpperCAmelCase : int = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__UpperCAmelCase , __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCAmelCase : str = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__UpperCAmelCase : Union[str, Any] = layer_type
__UpperCAmelCase : Union[str, Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__UpperCAmelCase : str = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def _lowerCamelCase ( self: str ) -> Tuple:
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
def check_equivalence(__lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str={} ):
__UpperCAmelCase : Tuple = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase )
__UpperCAmelCase : List[Any] = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple()
def recursive_check(__lowerCamelCase: Any , __lowerCamelCase: Dict ):
if isinstance(__lowerCamelCase , (List, Tuple) ):
for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ):
recursive_check(__lowerCamelCase , __lowerCamelCase )
elif tuple_object is None:
return
else:
self.assertTrue(
all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=(
"Tuple and dict output are not equal. Difference:"
f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}'''
) , )
recursive_check(__lowerCamelCase , __lowerCamelCase )
for model_class in self.all_model_classes:
__UpperCAmelCase : str = model_class(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : int = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} )
__UpperCAmelCase : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
__UpperCAmelCase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True} )
def _lowerCamelCase ( self: Any ) -> Optional[Any]:
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def _lowerCamelCase ( self: int ) -> Any:
for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : int = TFRegNetModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def _lowerCamelCase ( self: List[str] ) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Union[str, Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__UpperCAmelCase : str = self.default_image_processor
__UpperCAmelCase : Optional[int] = prepare_img()
__UpperCAmelCase : Dict = image_processor(images=__lowerCamelCase , return_tensors="tf" )
# forward pass
__UpperCAmelCase : Optional[int] = model(**__lowerCamelCase , training=__lowerCamelCase )
# verify the logits
__UpperCAmelCase : List[str] = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
__UpperCAmelCase : str = tf.constant([-0.41_80, -1.50_51, -3.48_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 )
| 342 | from typing import Optional, Tuple
import jax
import jax.numpy as jnp
from flax import linen as nn
from flax.core.frozen_dict import FrozenDict
from transformers import CLIPConfig, FlaxPreTrainedModel
from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=1e-1_2 ) -> str:
__UpperCAmelCase : Any = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
__UpperCAmelCase : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(snake_case__, axis=1 ), a_min=snake_case__ ) ).T
return jnp.matmul(snake_case__, norm_emb_a.T )
class _snake_case ( nn.Module ):
lowerCamelCase__: CLIPConfig
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Any ) -> Tuple:
__UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config )
__UpperCAmelCase : Any = nn.Dense(self.config.projection_dim , use_bias=__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : int = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) )
__UpperCAmelCase : int = self.param(
"special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) )
__UpperCAmelCase : Tuple = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) )
__UpperCAmelCase : str = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) )
def __call__( self: List[Any] , __lowerCamelCase: Dict ) -> Dict:
__UpperCAmelCase : Optional[int] = self.vision_model(__lowerCamelCase )[1]
__UpperCAmelCase : List[str] = self.visual_projection(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = jax_cosine_distance(__lowerCamelCase , self.special_care_embeds )
__UpperCAmelCase : Optional[Any] = jax_cosine_distance(__lowerCamelCase , self.concept_embeds )
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign image inputs
__UpperCAmelCase : List[str] = 0.0
__UpperCAmelCase : Tuple = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(special_scores > 0 , axis=1 , keepdims=__lowerCamelCase )
# Use a lower threshold if an image has any special care concept
__UpperCAmelCase : List[Any] = is_special_care * 0.01
__UpperCAmelCase : Any = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment
__UpperCAmelCase : List[str] = jnp.round(__lowerCamelCase , 3 )
__UpperCAmelCase : Any = jnp.any(concept_scores > 0 , axis=1 )
return has_nsfw_concepts
class _snake_case ( _lowercase ):
lowerCamelCase__: int = CLIPConfig
lowerCamelCase__: Tuple = "clip_input"
lowerCamelCase__: str = FlaxStableDiffusionSafetyCheckerModule
def __init__( self: Union[str, Any] , __lowerCamelCase: CLIPConfig , __lowerCamelCase: Optional[Tuple] = None , __lowerCamelCase: int = 0 , __lowerCamelCase: jnp.dtype = jnp.floataa , __lowerCamelCase: bool = True , **__lowerCamelCase: Optional[int] , ) -> int:
if input_shape is None:
__UpperCAmelCase : Dict = (1, 2_24, 2_24, 3)
__UpperCAmelCase : Tuple = self.module_class(config=__lowerCamelCase , dtype=__lowerCamelCase , **__lowerCamelCase )
super().__init__(__lowerCamelCase , __lowerCamelCase , input_shape=__lowerCamelCase , seed=__lowerCamelCase , dtype=__lowerCamelCase , _do_init=_do_init )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: jax.random.KeyArray , __lowerCamelCase: Tuple , __lowerCamelCase: FrozenDict = None ) -> FrozenDict:
# init input tensor
__UpperCAmelCase : Tuple = jax.random.normal(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Dict = jax.random.split(__lowerCamelCase )
__UpperCAmelCase : Optional[int] = {"params": params_rng, "dropout": dropout_rng}
__UpperCAmelCase : str = self.module.init(__lowerCamelCase , __lowerCamelCase )["params"]
return random_params
def __call__( self: Union[str, Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: dict = None , ) -> List[Any]:
__UpperCAmelCase : int = jnp.transpose(__lowerCamelCase , (0, 2, 3, 1) )
return self.module.apply(
{"params": params or self.params} , jnp.array(__lowerCamelCase , dtype=jnp.floataa ) , rngs={} , )
| 342 | 1 |
def _UpperCamelCase ( snake_case__ = 200_0000 ) -> int:
__UpperCAmelCase : Optional[Any] = [0 for i in range(n + 1 )]
__UpperCAmelCase : List[Any] = 1
__UpperCAmelCase : Tuple = 1
for i in range(2, int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i, n + 1, snake_case__ ):
__UpperCAmelCase : Any = 1
__UpperCAmelCase : int = 0
for i in range(snake_case__ ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'{solution() = }')
| 342 | import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Union[str, Any] = 384
if "tiny" in model_name:
__UpperCAmelCase : Union[str, Any] = [3, 3, 9, 3]
__UpperCAmelCase : List[Any] = [96, 192, 384, 768]
if "small" in model_name:
__UpperCAmelCase : Tuple = [3, 3, 27, 3]
__UpperCAmelCase : Any = [96, 192, 384, 768]
if "base" in model_name:
__UpperCAmelCase : str = [3, 3, 27, 3]
__UpperCAmelCase : str = [128, 256, 512, 1024]
__UpperCAmelCase : str = 512
if "large" in model_name:
__UpperCAmelCase : Dict = [3, 3, 27, 3]
__UpperCAmelCase : int = [192, 384, 768, 1536]
__UpperCAmelCase : Dict = 768
if "xlarge" in model_name:
__UpperCAmelCase : List[Any] = [3, 3, 27, 3]
__UpperCAmelCase : Tuple = [256, 512, 1024, 2048]
__UpperCAmelCase : int = 1024
# set label information
__UpperCAmelCase : List[Any] = 150
__UpperCAmelCase : str = "huggingface/label-files"
__UpperCAmelCase : List[Any] = "ade20k-id2label.json"
__UpperCAmelCase : str = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : str = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()}
__UpperCAmelCase : int = ConvNextConfig(
depths=snake_case__, hidden_sizes=snake_case__, out_features=["stage1", "stage2", "stage3", "stage4"] )
__UpperCAmelCase : int = UperNetConfig(
backbone_config=snake_case__, auxiliary_in_channels=snake_case__, num_labels=snake_case__, idalabel=snake_case__, labelaid=snake_case__, )
return config
def _UpperCamelCase ( snake_case__ ) -> Tuple:
__UpperCAmelCase : Optional[int] = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') )
rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') )
if i > 0:
rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') )
rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
__UpperCAmelCase : Union[str, Any] = dct.pop(snake_case__ )
__UpperCAmelCase : Optional[int] = val
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : Dict = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
__UpperCAmelCase : Union[str, Any] = model_name_to_url[model_name]
__UpperCAmelCase : str = torch.hub.load_state_dict_from_url(snake_case__, map_location="cpu" )["state_dict"]
__UpperCAmelCase : Dict = get_upernet_config(snake_case__ )
__UpperCAmelCase : str = UperNetForSemanticSegmentation(snake_case__ )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__UpperCAmelCase : str = state_dict.pop(snake_case__ )
if "bn" in key:
__UpperCAmelCase : int = key.replace("bn", "batch_norm" )
__UpperCAmelCase : Union[str, Any] = val
# rename keys
__UpperCAmelCase : Optional[Any] = create_rename_keys(snake_case__ )
for src, dest in rename_keys:
rename_key(snake_case__, snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# verify on image
__UpperCAmelCase : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
__UpperCAmelCase : Optional[int] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw ).convert("RGB" )
__UpperCAmelCase : str = SegformerImageProcessor()
__UpperCAmelCase : Any = processor(snake_case__, return_tensors="pt" ).pixel_values
with torch.no_grad():
__UpperCAmelCase : Union[str, Any] = model(snake_case__ )
if model_name == "upernet-convnext-tiny":
__UpperCAmelCase : Any = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__UpperCAmelCase : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__UpperCAmelCase : Dict = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__UpperCAmelCase : Tuple = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__UpperCAmelCase : Union[str, Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("Logits:", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], snake_case__, atol=1e-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(snake_case__ )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-convnext-tiny''',
type=str,
choices=[F'upernet-convnext-{size}' for size in ['''tiny''', '''small''', '''base''', '''large''', '''xlarge''']],
help='''Name of the ConvNext UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 | 1 |
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def _UpperCamelCase ( snake_case__ = "laptop" ) -> DataFrame:
__UpperCAmelCase : Tuple = f'''https://www.amazon.in/laptop/s?k={product}'''
__UpperCAmelCase : Dict = {
"User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36",
"Accept-Language": "en-US, en;q=0.5",
}
__UpperCAmelCase : Any = BeautifulSoup(requests.get(snake_case__, headers=snake_case__ ).text )
# Initialize a Pandas dataframe with the column titles
__UpperCAmelCase : Union[str, Any] = DataFrame(
columns=[
"Product Title",
"Product Link",
"Current Price of the product",
"Product Rating",
"MRP of the product",
"Discount",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"div", attrs={"class": "s-result-item", "data-component-type": "s-search-result"}, ), soup.find_all("div", attrs={"class": "a-row a-size-base a-color-base"} ), ):
try:
__UpperCAmelCase : List[str] = item.ha.text
__UpperCAmelCase : List[str] = "https://www.amazon.in/" + item.ha.a["href"]
__UpperCAmelCase : Optional[int] = item.find("span", attrs={"class": "a-offscreen"} ).text
try:
__UpperCAmelCase : Tuple = item.find("span", attrs={"class": "a-icon-alt"} ).text
except AttributeError:
__UpperCAmelCase : Any = "Not available"
try:
__UpperCAmelCase : List[str] = (
"₹"
+ item.find(
"span", attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1]
)
except AttributeError:
__UpperCAmelCase : Optional[Any] = ""
try:
__UpperCAmelCase : Optional[int] = float(
(
(
float(product_mrp.strip("₹" ).replace(",", "" ) )
- float(product_price.strip("₹" ).replace(",", "" ) )
)
/ float(product_mrp.strip("₹" ).replace(",", "" ) )
)
* 100 )
except ValueError:
__UpperCAmelCase : int = float("nan" )
except AttributeError:
pass
__UpperCAmelCase : int = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
__UpperCAmelCase : List[Any] = " "
__UpperCAmelCase : int = " "
data_frame.index += 1
return data_frame
if __name__ == "__main__":
_snake_case = '''headphones'''
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 342 | from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
'''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''',
}
class _snake_case ( _lowercase ):
lowerCamelCase__: Dict = "roc_bert"
def __init__( self: int , __lowerCamelCase: Union[str, Any]=3_05_22 , __lowerCamelCase: int=7_68 , __lowerCamelCase: Any=12 , __lowerCamelCase: int=12 , __lowerCamelCase: Union[str, Any]=30_72 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: Optional[int]=0.1 , __lowerCamelCase: str=0.1 , __lowerCamelCase: Any=5_12 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: str=0.02 , __lowerCamelCase: int=1e-12 , __lowerCamelCase: str=True , __lowerCamelCase: int=0 , __lowerCamelCase: List[str]="absolute" , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: Dict=7_68 , __lowerCamelCase: Optional[int]=9_10 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: int=2_48_58 , __lowerCamelCase: Optional[int]=True , **__lowerCamelCase: Any , ) -> List[Any]:
__UpperCAmelCase : str = vocab_size
__UpperCAmelCase : Dict = max_position_embeddings
__UpperCAmelCase : Optional[Any] = hidden_size
__UpperCAmelCase : Optional[int] = num_hidden_layers
__UpperCAmelCase : Union[str, Any] = num_attention_heads
__UpperCAmelCase : List[str] = intermediate_size
__UpperCAmelCase : List[Any] = hidden_act
__UpperCAmelCase : List[str] = hidden_dropout_prob
__UpperCAmelCase : Optional[int] = attention_probs_dropout_prob
__UpperCAmelCase : Union[str, Any] = initializer_range
__UpperCAmelCase : Optional[Any] = type_vocab_size
__UpperCAmelCase : List[Any] = layer_norm_eps
__UpperCAmelCase : Optional[int] = use_cache
__UpperCAmelCase : Optional[Any] = enable_pronunciation
__UpperCAmelCase : Any = enable_shape
__UpperCAmelCase : Union[str, Any] = pronunciation_embed_dim
__UpperCAmelCase : Optional[Any] = pronunciation_vocab_size
__UpperCAmelCase : Optional[Any] = shape_embed_dim
__UpperCAmelCase : List[Any] = shape_vocab_size
__UpperCAmelCase : int = concat_input
__UpperCAmelCase : int = position_embedding_type
__UpperCAmelCase : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
| 342 | 1 |
from __future__ import annotations
from math import pow, sqrt
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance == 0:
return {"resistance": sqrt(pow(snake_case__, 2 ) - pow(snake_case__, 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(snake_case__, 2 ) - pow(snake_case__, 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(snake_case__, 2 ) + pow(snake_case__, 2 ) )}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__UpperCAmelCase : int = [144, 192, 240]
__UpperCAmelCase : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__UpperCAmelCase : Optional[Any] = [96, 120, 144]
__UpperCAmelCase : Tuple = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__UpperCAmelCase : str = [64, 80, 96]
__UpperCAmelCase : Optional[Any] = [16, 16, 24, 48, 64, 80, 320]
__UpperCAmelCase : Tuple = 0.05
__UpperCAmelCase : Dict = 2.0
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : str = 512
__UpperCAmelCase : Any = 16
__UpperCAmelCase : str = 21
__UpperCAmelCase : Union[str, Any] = "pascal-voc-id2label.json"
else:
__UpperCAmelCase : Optional[Any] = 1000
__UpperCAmelCase : int = "imagenet-1k-id2label.json"
__UpperCAmelCase : Dict = "huggingface/label-files"
__UpperCAmelCase : int = json.load(open(hf_hub_download(snake_case__, snake_case__, repo_type="dataset" ), "r" ) )
__UpperCAmelCase : Any = {int(snake_case__ ): v for k, v in idalabel.items()}
__UpperCAmelCase : int = idalabel
__UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( snake_case__, snake_case__=False ) -> Tuple:
for i in range(1, 6 ):
if f'''layer_{i}.''' in name:
__UpperCAmelCase : Tuple = name.replace(f'''layer_{i}.''', f'''encoder.layer.{i - 1}.''' )
if "conv_1." in name:
__UpperCAmelCase : Dict = name.replace("conv_1.", "conv_stem." )
if ".block." in name:
__UpperCAmelCase : Optional[int] = name.replace(".block.", "." )
if "exp_1x1" in name:
__UpperCAmelCase : Tuple = name.replace("exp_1x1", "expand_1x1" )
if "red_1x1" in name:
__UpperCAmelCase : Optional[Any] = name.replace("red_1x1", "reduce_1x1" )
if ".local_rep.conv_3x3." in name:
__UpperCAmelCase : Optional[int] = name.replace(".local_rep.conv_3x3.", ".conv_kxk." )
if ".local_rep.conv_1x1." in name:
__UpperCAmelCase : Any = name.replace(".local_rep.conv_1x1.", ".conv_1x1." )
if ".norm." in name:
__UpperCAmelCase : Dict = name.replace(".norm.", ".normalization." )
if ".conv." in name:
__UpperCAmelCase : List[Any] = name.replace(".conv.", ".convolution." )
if ".conv_proj." in name:
__UpperCAmelCase : List[str] = name.replace(".conv_proj.", ".conv_projection." )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : List[Any] = name.replace(f'''.{i}.{j}.''', f'''.{i}.layer.{j}.''' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'''.{i}.{j}.''' in name:
__UpperCAmelCase : Any = name.replace(f'''.{i}.{j}.''', f'''.{i}.''' )
if "expand_1x1" in name:
__UpperCAmelCase : Optional[int] = name.replace("expand_1x1", "downsampling_layer.expand_1x1" )
if "conv_3x3" in name:
__UpperCAmelCase : List[Any] = name.replace("conv_3x3", "downsampling_layer.conv_3x3" )
if "reduce_1x1" in name:
__UpperCAmelCase : Dict = name.replace("reduce_1x1", "downsampling_layer.reduce_1x1" )
for i in range(2, 5 ):
if f'''.global_rep.{i}.weight''' in name:
__UpperCAmelCase : Any = name.replace(f'''.global_rep.{i}.weight''', ".layernorm.weight" )
if f'''.global_rep.{i}.bias''' in name:
__UpperCAmelCase : Optional[Any] = name.replace(f'''.global_rep.{i}.bias''', ".layernorm.bias" )
if ".global_rep." in name:
__UpperCAmelCase : Tuple = name.replace(".global_rep.", ".transformer." )
if ".pre_norm_mha.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_mha.0.", ".layernorm_before." )
if ".pre_norm_mha.1.out_proj." in name:
__UpperCAmelCase : Tuple = name.replace(".pre_norm_mha.1.out_proj.", ".attention.output.dense." )
if ".pre_norm_ffn.0." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".pre_norm_ffn.0.", ".layernorm_after." )
if ".pre_norm_ffn.1." in name:
__UpperCAmelCase : Dict = name.replace(".pre_norm_ffn.1.", ".intermediate.dense." )
if ".pre_norm_ffn.4." in name:
__UpperCAmelCase : int = name.replace(".pre_norm_ffn.4.", ".output.dense." )
if ".transformer." in name:
__UpperCAmelCase : Tuple = name.replace(".transformer.", ".transformer.layer." )
if ".aspp_layer." in name:
__UpperCAmelCase : Any = name.replace(".aspp_layer.", "." )
if ".aspp_pool." in name:
__UpperCAmelCase : Optional[Any] = name.replace(".aspp_pool.", "." )
if "seg_head." in name:
__UpperCAmelCase : Optional[int] = name.replace("seg_head.", "segmentation_head." )
if "segmentation_head.classifier.classifier." in name:
__UpperCAmelCase : str = name.replace("segmentation_head.classifier.classifier.", "segmentation_head.classifier." )
if "classifier.fc." in name:
__UpperCAmelCase : Optional[Any] = name.replace("classifier.fc.", "classifier." )
elif (not base_model) and ("segmentation_head." not in name):
__UpperCAmelCase : List[str] = "mobilevit." + name
return name
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=False ) -> Union[str, Any]:
if base_model:
__UpperCAmelCase : Optional[int] = ""
else:
__UpperCAmelCase : Tuple = "mobilevit."
for key in orig_state_dict.copy().keys():
__UpperCAmelCase : Optional[int] = orig_state_dict.pop(snake_case__ )
if key[:8] == "encoder.":
__UpperCAmelCase : str = key[8:]
if "qkv" in key:
__UpperCAmelCase : Tuple = key.split("." )
__UpperCAmelCase : List[Any] = int(key_split[0][6:] ) - 1
__UpperCAmelCase : Optional[Any] = int(key_split[3] )
__UpperCAmelCase : Tuple = model.get_submodule(f'''{model_prefix}encoder.layer.{layer_num}''' )
__UpperCAmelCase : List[str] = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__UpperCAmelCase : Optional[Any] = (
f'''{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'''
)
if "weight" in key:
__UpperCAmelCase : Any = val[:dim, :]
__UpperCAmelCase : Any = val[dim : dim * 2, :]
__UpperCAmelCase : List[Any] = val[-dim:, :]
else:
__UpperCAmelCase : List[str] = val[:dim]
__UpperCAmelCase : Optional[Any] = val[dim : dim * 2]
__UpperCAmelCase : List[Any] = val[-dim:]
else:
__UpperCAmelCase : str = val
return orig_state_dict
def _UpperCamelCase ( ) -> Any:
__UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg"
__UpperCAmelCase : List[str] = Image.open(requests.get(snake_case__, stream=snake_case__ ).raw )
return im
@torch.no_grad()
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=False ) -> Optional[Any]:
__UpperCAmelCase : Tuple = get_mobilevit_config(snake_case__ )
# load original state_dict
__UpperCAmelCase : str = torch.load(snake_case__, map_location="cpu" )
# load 🤗 model
if mobilevit_name.startswith("deeplabv3_" ):
__UpperCAmelCase : Optional[int] = MobileViTForSemanticSegmentation(snake_case__ ).eval()
else:
__UpperCAmelCase : List[Any] = MobileViTForImageClassification(snake_case__ ).eval()
__UpperCAmelCase : Dict = convert_state_dict(snake_case__, snake_case__ )
model.load_state_dict(snake_case__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCAmelCase : Optional[Any] = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__UpperCAmelCase : Any = image_processor(images=prepare_img(), return_tensors="pt" )
__UpperCAmelCase : Dict = model(**snake_case__ )
__UpperCAmelCase : Tuple = outputs.logits
if mobilevit_name.startswith("deeplabv3_" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__UpperCAmelCase : int = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__UpperCAmelCase : Any = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3, :3, :3], snake_case__, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__UpperCAmelCase : str = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__UpperCAmelCase : Tuple = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'''Unknown mobilevit_name: {mobilevit_name}''' )
assert torch.allclose(logits[0, :3], snake_case__, atol=1e-4 )
Path(snake_case__ ).mkdir(exist_ok=snake_case__ )
print(f'''Saving model {mobilevit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(snake_case__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(snake_case__ )
if push_to_hub:
__UpperCAmelCase : List[str] = {
"mobilevit_s": "mobilevit-small",
"mobilevit_xs": "mobilevit-x-small",
"mobilevit_xxs": "mobilevit-xx-small",
"deeplabv3_mobilevit_s": "deeplabv3-mobilevit-small",
"deeplabv3_mobilevit_xs": "deeplabv3-mobilevit-x-small",
"deeplabv3_mobilevit_xxs": "deeplabv3-mobilevit-xx-small",
}
print("Pushing to the hub..." )
__UpperCAmelCase : int = model_mapping[mobilevit_name]
image_processor.push_to_hub(snake_case__, organization="apple" )
model.push_to_hub(snake_case__, organization="apple" )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--mobilevit_name''',
default='''mobilevit_s''',
type=str,
help=(
'''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\','''
''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.'''
),
)
parser.add_argument(
'''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.'''
)
_snake_case = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 | 1 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
_snake_case = logging.get_logger(__name__)
def _UpperCamelCase ( snake_case__ ) -> List[str]:
__UpperCAmelCase : Any = r'\w+[.]\d+'
__UpperCAmelCase : List[str] = re.findall(_UpperCAmelCase, _UpperCAmelCase )
for pat in pats:
__UpperCAmelCase : Union[str, Any] = key.replace(_UpperCAmelCase, "_".join(pat.split("." ) ) )
return key
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Optional[Any]:
__UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ('scale',)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
__UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('scale',)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
__UpperCAmelCase : str = pt_tuple_key[:-1] + ('scale',)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
__UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ('embedding',)
return renamed_pt_tuple_key, pt_tensor
# conv layer
__UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
__UpperCAmelCase : str = pt_tensor.transpose(2, 3, 1, 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
__UpperCAmelCase : str = pt_tuple_key[:-1] + ('kernel',)
if pt_tuple_key[-1] == "weight":
__UpperCAmelCase : Optional[Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
__UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ('weight',)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
__UpperCAmelCase : Optional[Any] = pt_tuple_key[:-1] + ('bias',)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__=42 ) -> Union[str, Any]:
# Step 1: Convert pytorch tensor to numpy
__UpperCAmelCase : str = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
__UpperCAmelCase : str = flax_model.init_weights(PRNGKey(_UpperCAmelCase ) )
__UpperCAmelCase : Optional[Any] = flatten_dict(_UpperCAmelCase )
__UpperCAmelCase : List[Any] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
__UpperCAmelCase : List[str] = rename_key(_UpperCAmelCase )
__UpperCAmelCase : int = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
__UpperCAmelCase : List[Any] = rename_key_and_reshape_tensor(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
__UpperCAmelCase : List[Any] = jnp.asarray(_UpperCAmelCase )
return unflatten_dict(_UpperCAmelCase )
| 350 | import math
_snake_case = 10
_snake_case = 7
_snake_case = BALLS_PER_COLOUR * NUM_COLOURS
def _UpperCamelCase ( snake_case__ = 20 ) -> str:
__UpperCAmelCase : Optional[Any] = math.comb(snake_case__, snake_case__ )
__UpperCAmelCase : List[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, snake_case__ )
__UpperCAmelCase : Dict = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 342 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = '''▁'''
_snake_case = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''}
_snake_case = {
'''vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''',
},
'''monolingual_vocab_file''': {
'''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''',
},
}
_snake_case = {'''vinai/bartpho-syllable''': 1024}
class _snake_case ( A__ ):
lowerCamelCase__: Union[str, Any] = VOCAB_FILES_NAMES
lowerCamelCase__: Dict = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__: Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__: List[str] = ["input_ids", "attention_mask"]
def __init__( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: List[Any] , __lowerCamelCase: str="<s>" , __lowerCamelCase: Optional[Any]="</s>" , __lowerCamelCase: int="</s>" , __lowerCamelCase: str="<s>" , __lowerCamelCase: Any="<unk>" , __lowerCamelCase: List[Any]="<pad>" , __lowerCamelCase: str="<mask>" , __lowerCamelCase: Dict = None , **__lowerCamelCase: Optional[int] , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
__UpperCAmelCase : Dict = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
__UpperCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , )
__UpperCAmelCase : Any = vocab_file
__UpperCAmelCase : Optional[int] = monolingual_vocab_file
__UpperCAmelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__A ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
__UpperCAmelCase : Tuple = {}
__UpperCAmelCase : List[str] = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__A ) not in self.fairseq_tokens_to_ids:
__UpperCAmelCase : List[str] = cnt
cnt += 1
with open(__A , "r" , encoding="utf-8" ) as f:
for line in f.readlines():
__UpperCAmelCase : int = line.strip().split()[0]
__UpperCAmelCase : int = len(self.fairseq_tokens_to_ids )
if str(__A ) not in self.fairseq_tokens_to_ids:
__UpperCAmelCase : Union[str, Any] = len(self.fairseq_tokens_to_ids )
__UpperCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self: Optional[int] ) -> Any:
__UpperCAmelCase : Optional[Any] = self.__dict__.copy()
__UpperCAmelCase : str = None
__UpperCAmelCase : str = self.sp_model.serialized_model_proto()
return state
def __setstate__( self: List[str] , __lowerCamelCase: str ) -> Any:
__UpperCAmelCase : Optional[int] = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
__UpperCAmelCase : int = {}
__UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _lowerCamelCase ( self: Any , __lowerCamelCase: List[str] , __lowerCamelCase: Any = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCAmelCase : Tuple = [self.cls_token_id]
__UpperCAmelCase : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple = None , __lowerCamelCase: int = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1, 1] + ([0] * len(__A )) + [1]
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] = None ) -> List[int]:
__UpperCAmelCase : Optional[int] = [self.sep_token_id]
__UpperCAmelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCamelCase ( self: str ) -> List[Any]:
return len(self.fairseq_ids_to_tokens )
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : str = {self.convert_ids_to_tokens(__A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: Optional[Any] ) -> List[str]:
return self.sp_model.encode(__A , out_type=__A )
def _lowerCamelCase ( self: str , __lowerCamelCase: int ) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def _lowerCamelCase ( self: Dict , __lowerCamelCase: int ) -> List[str]:
return self.fairseq_ids_to_tokens[index]
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: List[str] ) -> List[Any]:
__UpperCAmelCase : int = """""".join(__A ).replace(__A , " " ).strip()
return out_string
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Tuple = None ) -> Tuple[str]:
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__UpperCAmelCase : List[Any] = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
__UpperCAmelCase : Tuple = os.path.join(
__A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __A )
elif not os.path.isfile(self.vocab_file ):
with open(__A , "wb" ) as fi:
__UpperCAmelCase : int = self.sp_model.serialized_model_proto()
fi.write(__A )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__A ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __A )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__A , "w" , encoding="utf-8" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(__A )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 351 | def _UpperCamelCase ( snake_case__ ) -> int:
__UpperCAmelCase : int = [0] * len(snake_case__ )
__UpperCAmelCase : Union[str, Any] = []
__UpperCAmelCase : str = [1] * len(snake_case__ )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case__ ) ):
if indegree[i] == 0:
queue.append(snake_case__ )
while queue:
__UpperCAmelCase : List[str] = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__UpperCAmelCase : str = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(snake_case__ )
print(max(snake_case__ ) )
# Adjacency list of Graph
_snake_case = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 0 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
_snake_case = logging.get_logger(__name__)
class _snake_case ( _UpperCAmelCase ):
def __init__( self: Optional[Any] , *__lowerCamelCase: List[Any] , **__lowerCamelCase: List[Any] ) -> Dict:
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 352 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_snake_case = {
'''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''],
'''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''],
'''processing_whisper''': ['''WhisperProcessor'''],
'''tokenization_whisper''': ['''WhisperTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = ['''WhisperTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''WhisperForConditionalGeneration''',
'''WhisperModel''',
'''WhisperPreTrainedModel''',
'''WhisperForAudioClassification''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFWhisperForConditionalGeneration''',
'''TFWhisperModel''',
'''TFWhisperPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
'''FlaxWhisperForConditionalGeneration''',
'''FlaxWhisperModel''',
'''FlaxWhisperPreTrainedModel''',
'''FlaxWhisperForAudioClassification''',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 342 | 0 |
from __future__ import annotations
from random import choice
def _UpperCamelCase ( snake_case__ ) -> str:
return choice(__lowerCAmelCase )
def _UpperCamelCase ( snake_case__, snake_case__ ) -> int:
__UpperCAmelCase : Tuple = random_pivot(__lowerCAmelCase )
# partition based on pivot
# linear time
__UpperCAmelCase : Optional[Any] = [e for e in lst if e < pivot]
__UpperCAmelCase : str = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(__lowerCAmelCase ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(__lowerCAmelCase ) < k - 1:
return kth_number(__lowerCAmelCase, k - len(__lowerCAmelCase ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(__lowerCAmelCase, __lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 | from __future__ import annotations
from math import pi
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> dict[str, float]:
if (inductance, frequency, reactance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if inductance < 0:
raise ValueError("Inductance cannot be negative" )
if frequency < 0:
raise ValueError("Frequency cannot be negative" )
if reactance < 0:
raise ValueError("Inductive reactance cannot be negative" )
if inductance == 0:
return {"inductance": reactance / (2 * pi * frequency)}
elif frequency == 0:
return {"frequency": reactance / (2 * pi * inductance)}
elif reactance == 0:
return {"reactance": 2 * pi * frequency * inductance}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 0 |
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: list[int] ) -> Dict:
__UpperCAmelCase : Dict = len(_lowerCamelCase )
__UpperCAmelCase : Any = [0] * len_array
if len_array > 0:
__UpperCAmelCase : int = array[0]
for i in range(1 , _lowerCamelCase ):
__UpperCAmelCase : Union[str, Any] = self.prefix_sum[i - 1] + array[i]
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> Tuple:
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def _lowerCamelCase ( self: Union[str, Any] , __lowerCamelCase: int ) -> List[str]:
__UpperCAmelCase : List[Any] = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(_lowerCamelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 354 | import flax.linen as nn
import jax
import jax.numpy as jnp
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: Tuple ) -> Union[str, Any]:
__UpperCAmelCase : List[str] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Optional[Any] , __lowerCamelCase: Optional[int] ) -> List[Any]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = hidden_states.shape
__UpperCAmelCase : Dict = jax.image.resize(
__lowerCamelCase , shape=(batch, height * 2, width * 2, channels) , method="nearest" , )
__UpperCAmelCase : Dict = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self: Dict , __lowerCamelCase: str ) -> List[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
__UpperCAmelCase : Any = self.conv(__lowerCamelCase )
return hidden_states
class _snake_case ( nn.Module ):
lowerCamelCase__: int
lowerCamelCase__: int = None
lowerCamelCase__: float = 0.0
lowerCamelCase__: bool = None
lowerCamelCase__: jnp.dtype = jnp.floataa
def _lowerCamelCase ( self: str ) -> List[str]:
__UpperCAmelCase : str = self.in_channels if self.out_channels is None else self.out_channels
__UpperCAmelCase : Dict = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : List[str] = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[Any] = nn.Dense(__lowerCamelCase , dtype=self.dtype )
__UpperCAmelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__UpperCAmelCase : Optional[Any] = nn.Dropout(self.dropout_prob )
__UpperCAmelCase : Tuple = nn.Conv(
__lowerCamelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__UpperCAmelCase : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__UpperCAmelCase : List[Any] = None
if use_nin_shortcut:
__UpperCAmelCase : Dict = nn.Conv(
__lowerCamelCase , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , )
def __call__( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any]=True ) -> List[Any]:
__UpperCAmelCase : Dict = hidden_states
__UpperCAmelCase : int = self.norma(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = nn.swish(__lowerCamelCase )
__UpperCAmelCase : Tuple = self.conva(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = self.time_emb_proj(nn.swish(__lowerCamelCase ) )
__UpperCAmelCase : List[str] = jnp.expand_dims(jnp.expand_dims(__lowerCamelCase , 1 ) , 1 )
__UpperCAmelCase : List[str] = hidden_states + temb
__UpperCAmelCase : Union[str, Any] = self.norma(__lowerCamelCase )
__UpperCAmelCase : Tuple = nn.swish(__lowerCamelCase )
__UpperCAmelCase : str = self.dropout(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = self.conva(__lowerCamelCase )
if self.conv_shortcut is not None:
__UpperCAmelCase : Optional[int] = self.conv_shortcut(__lowerCamelCase )
return hidden_states + residual
| 342 | 0 |
_snake_case = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]:
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> Any:
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError("Invalid inputs. Enter positive value." )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 355 | import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pytest
from datasets.arrow_dataset import Dataset
from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex
from .utils import require_elasticsearch, require_faiss
_snake_case = pytest.mark.integration
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : Optional[int] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(__lowerCamelCase ) for x in np.arange(30 ).tolist()]} )
return dset
def _lowerCamelCase ( self: Optional[Any] ) -> Tuple:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
__UpperCAmelCase : int = dset.map(
lambda __lowerCamelCase , __lowerCamelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowerCamelCase , keep_in_memory=__lowerCamelCase )
__UpperCAmelCase : Tuple = dset.add_faiss_index("vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT )
__UpperCAmelCase , __UpperCAmelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
dset.drop_index("vecs" )
def _lowerCamelCase ( self: List[str] ) -> int:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , )
__UpperCAmelCase , __UpperCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: Optional[int] ) -> Dict:
import faiss
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
dset.save_faiss_index("vecs" , tmp_file.name )
dset.load_faiss_index("vecs2" , tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase , __UpperCAmelCase : List[Any] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
def _lowerCamelCase ( self: List[Any] ) -> List[Any]:
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
dset.add_faiss_index_from_external_arrays(
external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" )
dset.drop_index("vecs" )
self.assertRaises(__lowerCamelCase , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
from elasticsearch import Elasticsearch
__UpperCAmelCase : Dataset = self._create_dummy_dataset()
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : int = {"acknowledged": True}
mocked_bulk.return_value([(True, None)] * 30 )
__UpperCAmelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 29}]}}
__UpperCAmelCase : Any = Elasticsearch()
dset.add_elasticsearch_index("filename" , es_client=__lowerCamelCase )
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = dset.get_nearest_examples("filename" , "my_name-train_29" )
self.assertEqual(examples["filename"][0] , "my_name-train_29" )
@require_faiss
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
import faiss
__UpperCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
# add vectors
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsNotNone(index.faiss_index )
self.assertEqual(index.faiss_index.ntotal , 5 )
index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) )
self.assertEqual(index.faiss_index.ntotal , 10 )
# single query
__UpperCAmelCase : Dict = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : List[str] = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search , query.reshape(-1 , 1 ) )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
# batched queries
__UpperCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1]
__UpperCAmelCase , __UpperCAmelCase : Any = index.search_batch(__lowerCamelCase )
self.assertRaises(__lowerCamelCase , index.search_batch , queries[0] )
__UpperCAmelCase : Dict = [scores[0] for scores in total_scores]
__UpperCAmelCase : int = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([4, 3, 2, 1, 0] , __lowerCamelCase )
def _lowerCamelCase ( self: Any ) -> List[str]:
import faiss
__UpperCAmelCase : Dict = FaissIndex(string_factory="Flat" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
__UpperCAmelCase : Optional[Any] = FaissIndex(string_factory="LSH" )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexLSH )
with self.assertRaises(__lowerCamelCase ):
__UpperCAmelCase : Any = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) )
def _lowerCamelCase ( self: List[str] ) -> Dict:
import faiss
__UpperCAmelCase : str = faiss.IndexFlat(5 )
__UpperCAmelCase : int = FaissIndex(custom_index=__lowerCamelCase )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
self.assertIsInstance(index.faiss_index , faiss.IndexFlat )
def _lowerCamelCase ( self: Union[str, Any] ) -> int:
import faiss
__UpperCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5 , dtype=np.floataa ) )
# Setting delete=False and unlinking manually is not pretty... but it is required on Windows to
# ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue.
# see https://bugs.python.org/issue14243 and
# https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515
with tempfile.NamedTemporaryFile(delete=__lowerCamelCase ) as tmp_file:
index.save(tmp_file.name )
__UpperCAmelCase : List[str] = FaissIndex.load(tmp_file.name )
os.unlink(tmp_file.name )
__UpperCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa )
__UpperCAmelCase : Tuple = 1
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search(__lowerCamelCase )
self.assertGreater(scores[0] , 0 )
self.assertEqual(indices[0] , 1 )
@require_faiss
def _UpperCamelCase ( snake_case__ ) -> Optional[Any]:
import faiss
__UpperCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT )
index.add_vectors(np.eye(5, dtype=np.floataa ) )
__UpperCAmelCase : Optional[Any] = "index.faiss"
__UpperCAmelCase : Optional[int] = f'''mock://{index_name}'''
index.save(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : Dict = FaissIndex.load(snake_case__, storage_options=mockfs.storage_options )
__UpperCAmelCase : str = np.zeros(5, dtype=np.floataa )
__UpperCAmelCase : Any = 1
__UpperCAmelCase , __UpperCAmelCase : List[str] = index.search(snake_case__ )
assert scores[0] > 0
assert indices[0] == 1
@require_elasticsearch
class _snake_case ( _lowercase ):
def _lowerCamelCase ( self: str ) -> Union[str, Any]:
from elasticsearch import Elasticsearch
with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch(
"elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk:
__UpperCAmelCase : Optional[Any] = Elasticsearch()
__UpperCAmelCase : Dict = {"acknowledged": True}
__UpperCAmelCase : Any = ElasticSearchIndex(es_client=__lowerCamelCase )
mocked_bulk.return_value([(True, None)] * 3 )
index.add_documents(["foo", "bar", "foobar"] )
# single query
__UpperCAmelCase : Dict = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = index.search(__lowerCamelCase )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# single query with timeout
__UpperCAmelCase : int = "foo"
__UpperCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search(__lowerCamelCase , request_timeout=30 )
self.assertEqual(scores[0] , 1 )
self.assertEqual(indices[0] , 0 )
# batched queries
__UpperCAmelCase : int = ["foo", "bar", "foobar"]
__UpperCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : List[Any] = index.search_batch(__lowerCamelCase )
__UpperCAmelCase : Tuple = [scores[0] for scores in total_scores]
__UpperCAmelCase : Optional[int] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
# batched queries with timeout
__UpperCAmelCase : str = ["foo", "bar", "foobar"]
__UpperCAmelCase : Tuple = {"hits": {"hits": [{"_score": 1, "_id": 1}]}}
__UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = index.search_batch(__lowerCamelCase , request_timeout=30 )
__UpperCAmelCase : Union[str, Any] = [scores[0] for scores in total_scores]
__UpperCAmelCase : List[Any] = [indices[0] for indices in total_indices]
self.assertGreater(np.min(__lowerCamelCase ) , 0 )
self.assertListEqual([1, 1, 1] , __lowerCamelCase )
| 342 | 0 |
"""simple docstring"""
import unittest
from knapsack import greedy_knapsack as kp
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: str ) -> Dict:
__UpperCAmelCase : Tuple = [10, 20, 30, 40, 50, 60]
__UpperCAmelCase : str = [2, 4, 6, 8, 10, 12]
__UpperCAmelCase : List[str] = 1_00
self.assertEqual(kp.calc_profit(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , 2_10 )
def _lowerCamelCase ( self: str ) -> Dict:
self.assertRaisesRegex(__lowerCamelCase , "max_weight must greater than zero." )
def _lowerCamelCase ( self: List[Any] ) -> List[str]:
self.assertRaisesRegex(__lowerCamelCase , "Weight can not be negative." )
def _lowerCamelCase ( self: Any ) -> List[Any]:
self.assertRaisesRegex(__lowerCamelCase , "Profit can not be negative." )
def _lowerCamelCase ( self: List[str] ) -> Dict:
self.assertRaisesRegex(__lowerCamelCase , "max_weight must greater than zero." )
def _lowerCamelCase ( self: Tuple ) -> Tuple:
self.assertRaisesRegex(
__lowerCamelCase , "The length of profit and weight must be same." )
if __name__ == "__main__":
unittest.main()
| 356 | import argparse
import struct
import unittest
class _snake_case :
def __init__( self: Tuple , __lowerCamelCase: bytes ) -> None:
__UpperCAmelCase : Tuple = data
# Initialize hash values
__UpperCAmelCase : Any = [
0x6_A_0_9_E_6_6_7,
0xB_B_6_7_A_E_8_5,
0x3_C_6_E_F_3_7_2,
0xA_5_4_F_F_5_3_A,
0x5_1_0_E_5_2_7_F,
0x9_B_0_5_6_8_8_C,
0x1_F_8_3_D_9_A_B,
0x5_B_E_0_C_D_1_9,
]
# Initialize round constants
__UpperCAmelCase : Dict = [
0x4_2_8_A_2_F_9_8,
0x7_1_3_7_4_4_9_1,
0xB_5_C_0_F_B_C_F,
0xE_9_B_5_D_B_A_5,
0x3_9_5_6_C_2_5_B,
0x5_9_F_1_1_1_F_1,
0x9_2_3_F_8_2_A_4,
0xA_B_1_C_5_E_D_5,
0xD_8_0_7_A_A_9_8,
0x1_2_8_3_5_B_0_1,
0x2_4_3_1_8_5_B_E,
0x5_5_0_C_7_D_C_3,
0x7_2_B_E_5_D_7_4,
0x8_0_D_E_B_1_F_E,
0x9_B_D_C_0_6_A_7,
0xC_1_9_B_F_1_7_4,
0xE_4_9_B_6_9_C_1,
0xE_F_B_E_4_7_8_6,
0x0_F_C_1_9_D_C_6,
0x2_4_0_C_A_1_C_C,
0x2_D_E_9_2_C_6_F,
0x4_A_7_4_8_4_A_A,
0x5_C_B_0_A_9_D_C,
0x7_6_F_9_8_8_D_A,
0x9_8_3_E_5_1_5_2,
0xA_8_3_1_C_6_6_D,
0xB_0_0_3_2_7_C_8,
0xB_F_5_9_7_F_C_7,
0xC_6_E_0_0_B_F_3,
0xD_5_A_7_9_1_4_7,
0x0_6_C_A_6_3_5_1,
0x1_4_2_9_2_9_6_7,
0x2_7_B_7_0_A_8_5,
0x2_E_1_B_2_1_3_8,
0x4_D_2_C_6_D_F_C,
0x5_3_3_8_0_D_1_3,
0x6_5_0_A_7_3_5_4,
0x7_6_6_A_0_A_B_B,
0x8_1_C_2_C_9_2_E,
0x9_2_7_2_2_C_8_5,
0xA_2_B_F_E_8_A_1,
0xA_8_1_A_6_6_4_B,
0xC_2_4_B_8_B_7_0,
0xC_7_6_C_5_1_A_3,
0xD_1_9_2_E_8_1_9,
0xD_6_9_9_0_6_2_4,
0xF_4_0_E_3_5_8_5,
0x1_0_6_A_A_0_7_0,
0x1_9_A_4_C_1_1_6,
0x1_E_3_7_6_C_0_8,
0x2_7_4_8_7_7_4_C,
0x3_4_B_0_B_C_B_5,
0x3_9_1_C_0_C_B_3,
0x4_E_D_8_A_A_4_A,
0x5_B_9_C_C_A_4_F,
0x6_8_2_E_6_F_F_3,
0x7_4_8_F_8_2_E_E,
0x7_8_A_5_6_3_6_F,
0x8_4_C_8_7_8_1_4,
0x8_C_C_7_0_2_0_8,
0x9_0_B_E_F_F_F_A,
0xA_4_5_0_6_C_E_B,
0xB_E_F_9_A_3_F_7,
0xC_6_7_1_7_8_F_2,
]
__UpperCAmelCase : List[Any] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _lowerCamelCase ( __lowerCamelCase: bytes ) -> bytes:
__UpperCAmelCase : List[str] = B"\x80" + (B"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64))
__UpperCAmelCase : int = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) )
return data + padding + big_endian_integer
def _lowerCamelCase ( self: Dict ) -> None:
# Convert into blocks of 64 bytes
__UpperCAmelCase : Dict = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCAmelCase : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Tuple = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCAmelCase : Union[str, Any] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCAmelCase : str = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCAmelCase : Union[str, Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_0_0_0_0_0_0_0_0
# Compression
__UpperCAmelCase : Union[str, Any] = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 )
__UpperCAmelCase : Tuple = (e & f) ^ ((~e & 0xF_F_F_F_F_F_F_F) & g)
__UpperCAmelCase : int = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase : List[Any] = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 )
__UpperCAmelCase : Dict = (a & b) ^ (a & c) ^ (b & c)
__UpperCAmelCase : int = (sa + maj) % 0x1_0_0_0_0_0_0_0_0
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = (
g,
f,
e,
((d + tempa) % 0x1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0x1_0_0_0_0_0_0_0_0),
)
__UpperCAmelCase : Optional[int] = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCAmelCase : List[str] = [
((element + mutated_hash_values[index]) % 0x1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
__UpperCAmelCase : int = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: int ) -> int:
return 0xF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class _snake_case ( unittest.TestCase ):
def _lowerCamelCase ( self: List[Any] ) -> None:
import hashlib
__UpperCAmelCase : Dict = bytes("Test String" , "utf-8" )
self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() )
def _UpperCamelCase ( ) -> None:
import doctest
doctest.testmod()
__UpperCAmelCase : Tuple = argparse.ArgumentParser()
parser.add_argument(
"-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", )
parser.add_argument(
"-f", "--file", dest="input_file", help="Hash contents of a file" )
__UpperCAmelCase : List[Any] = parser.parse_args()
__UpperCAmelCase : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, "rb" ) as f:
__UpperCAmelCase : List[str] = f.read()
else:
__UpperCAmelCase : List[Any] = bytes(snake_case__, "utf-8" )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main()
| 342 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _snake_case :
def __init__( self: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int]=2 , __lowerCamelCase: str=8 , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Dict=True , __lowerCamelCase: int=True , __lowerCamelCase: Any=99 , __lowerCamelCase: Union[str, Any]=16 , __lowerCamelCase: Any=5 , __lowerCamelCase: Union[str, Any]=2 , __lowerCamelCase: List[Any]=36 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: List[Any]=0.0 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: Union[str, Any]=5_12 , __lowerCamelCase: Optional[Any]=16 , __lowerCamelCase: int=2 , __lowerCamelCase: List[Any]=0.02 , __lowerCamelCase: List[str]=3 , __lowerCamelCase: Any=4 , __lowerCamelCase: Optional[Any]=None , ) -> Tuple:
__UpperCAmelCase : Tuple = parent
__UpperCAmelCase : Any = batch_size
__UpperCAmelCase : Union[str, Any] = seq_length
__UpperCAmelCase : List[Any] = is_training
__UpperCAmelCase : int = use_input_mask
__UpperCAmelCase : str = use_token_type_ids
__UpperCAmelCase : Optional[Any] = use_labels
__UpperCAmelCase : Dict = vocab_size
__UpperCAmelCase : str = hidden_size
__UpperCAmelCase : str = num_hidden_layers
__UpperCAmelCase : int = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : str = hidden_act
__UpperCAmelCase : int = hidden_dropout_prob
__UpperCAmelCase : Any = attention_probs_dropout_prob
__UpperCAmelCase : int = max_position_embeddings
__UpperCAmelCase : Union[str, Any] = type_vocab_size
__UpperCAmelCase : int = type_sequence_label_size
__UpperCAmelCase : Optional[Any] = initializer_range
__UpperCAmelCase : Dict = num_labels
__UpperCAmelCase : Tuple = num_choices
__UpperCAmelCase : Any = scope
def _lowerCamelCase ( self: Optional[int] ) -> Optional[Any]:
__UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : Dict = None
if self.use_input_mask:
__UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : int = None
if self.use_token_type_ids:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCAmelCase : Any = None
__UpperCAmelCase : List[Any] = None
__UpperCAmelCase : List[Any] = None
if self.use_labels:
__UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
__UpperCAmelCase : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowerCamelCase ( self: List[str] ) -> Any:
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , )
def _lowerCamelCase ( self: Optional[int] ) -> List[str]:
__UpperCAmelCase : int = self.get_config()
__UpperCAmelCase : Tuple = 3_00
return config
def _lowerCamelCase ( self: Dict ) -> Dict:
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Optional[int] = self.prepare_config_and_inputs()
__UpperCAmelCase : Union[str, Any] = True
__UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[str] , __lowerCamelCase: Tuple , __lowerCamelCase: int ) -> Union[str, Any]:
__UpperCAmelCase : List[Any] = MraModel(config=_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : Optional[Any] = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
__UpperCAmelCase : int = model(_snake_case , token_type_ids=_snake_case )
__UpperCAmelCase : Union[str, Any] = model(_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self: Optional[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Dict , ) -> Any:
__UpperCAmelCase : int = True
__UpperCAmelCase : Tuple = MraModel(_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : List[str] = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , encoder_attention_mask=_snake_case , )
__UpperCAmelCase : Union[str, Any] = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , encoder_hidden_states=_snake_case , )
__UpperCAmelCase : int = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: int , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: List[str] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int ) -> int:
__UpperCAmelCase : Union[str, Any] = MraForMaskedLM(config=_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : Optional[Any] = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Any ) -> str:
__UpperCAmelCase : int = MraForQuestionAnswering(config=_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : str = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , start_positions=_snake_case , end_positions=_snake_case , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int ) -> List[str]:
__UpperCAmelCase : List[str] = self.num_labels
__UpperCAmelCase : List[str] = MraForSequenceClassification(_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : Tuple = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: Dict , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Any , __lowerCamelCase: int ) -> int:
__UpperCAmelCase : Optional[int] = self.num_labels
__UpperCAmelCase : List[Any] = MraForTokenClassification(config=_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : Tuple = model(_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _lowerCamelCase ( self: str , __lowerCamelCase: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: Any , __lowerCamelCase: Tuple ) -> Tuple:
__UpperCAmelCase : int = self.num_choices
__UpperCAmelCase : List[Any] = MraForMultipleChoice(config=_snake_case )
model.to(_snake_case )
model.eval()
__UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__UpperCAmelCase : Dict = model(
_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _lowerCamelCase ( self: List[str] ) -> int:
__UpperCAmelCase : int = self.prepare_config_and_inputs()
(
(
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) , (
__UpperCAmelCase
) ,
) : Union[str, Any] = config_and_inputs
__UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: List[Any] = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__: int = False
lowerCamelCase__: str = False
lowerCamelCase__: Optional[Any] = False
lowerCamelCase__: Dict = False
lowerCamelCase__: Any = ()
def _lowerCamelCase ( self: List[Any] ) -> str:
__UpperCAmelCase : Optional[Any] = MraModelTester(self )
__UpperCAmelCase : List[Any] = ConfigTester(self , config_class=_snake_case , hidden_size=37 )
def _lowerCamelCase ( self: Optional[int] ) -> int:
self.config_tester.run_common_tests()
def _lowerCamelCase ( self: Optional[int] ) -> str:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def _lowerCamelCase ( self: Optional[Any] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCAmelCase : Optional[int] = type
self.model_tester.create_and_check_model(*_snake_case )
def _lowerCamelCase ( self: Union[str, Any] ) -> Any:
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_snake_case )
def _lowerCamelCase ( self: Tuple ) -> Dict:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_snake_case )
def _lowerCamelCase ( self: Optional[int] ) -> List[Any]:
__UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_snake_case )
def _lowerCamelCase ( self: Dict ) -> Optional[Any]:
__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_snake_case )
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_snake_case )
@slow
def _lowerCamelCase ( self: List[Any] ) -> List[str]:
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCAmelCase : List[str] = MraModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
@unittest.skip(reason="MRA does not output attentions" )
def _lowerCamelCase ( self: int ) -> int:
return
@require_torch
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
__UpperCAmelCase : Optional[int] = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
__UpperCAmelCase : str = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : Optional[int] = model(_snake_case )[0]
__UpperCAmelCase : Optional[Any] = torch.Size((1, 2_56, 7_68) )
self.assertEqual(output.shape , _snake_case )
__UpperCAmelCase : int = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
@slow
def _lowerCamelCase ( self: Union[str, Any] ) -> str:
__UpperCAmelCase : List[str] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
__UpperCAmelCase : Any = torch.arange(2_56 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[str] = model(_snake_case )[0]
__UpperCAmelCase : Optional[int] = 5_02_65
__UpperCAmelCase : str = torch.Size((1, 2_56, vocab_size) )
self.assertEqual(output.shape , _snake_case )
__UpperCAmelCase : str = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
@slow
def _lowerCamelCase ( self: List[str] ) -> Optional[int]:
__UpperCAmelCase : Optional[int] = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
__UpperCAmelCase : List[str] = torch.arange(40_96 ).unsqueeze(0 )
with torch.no_grad():
__UpperCAmelCase : List[str] = model(_snake_case )[0]
__UpperCAmelCase : Dict = 5_02_65
__UpperCAmelCase : str = torch.Size((1, 40_96, vocab_size) )
self.assertEqual(output.shape , _snake_case )
__UpperCAmelCase : Dict = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _snake_case , atol=1e-4 ) )
| 357 | import numpy as np
import datasets
_snake_case = '''
Compute the Mahalanobis Distance
Mahalonobis distance is the distance between a point and a distribution.
And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.
It was introduced by Prof. P. C. Mahalanobis in 1936
and has been used in various statistical applications ever since
[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]
'''
_snake_case = '''\
@article{de2000mahalanobis,
title={The mahalanobis distance},
author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},
journal={Chemometrics and intelligent laboratory systems},
volume={50},
number={1},
pages={1--18},
year={2000},
publisher={Elsevier}
}
'''
_snake_case = '''
Args:
X: List of datapoints to be compared with the `reference_distribution`.
reference_distribution: List of datapoints from the reference distribution we want to compare to.
Returns:
mahalanobis: The Mahalonobis distance for each datapoint in `X`.
Examples:
>>> mahalanobis_metric = datasets.load_metric("mahalanobis")
>>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])
>>> print(results)
{\'mahalanobis\': array([0.5])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: List[str] ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowerCamelCase ( self: List[str] , __lowerCamelCase: int , __lowerCamelCase: Union[str, Any] ) -> List[str]:
# convert to numpy arrays
__UpperCAmelCase : int = np.array(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.array(__lowerCamelCase )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
__UpperCAmelCase : str = X - np.mean(__lowerCamelCase )
__UpperCAmelCase : Union[str, Any] = np.cov(reference_distribution.T )
try:
__UpperCAmelCase : int = np.linalg.inv(__lowerCamelCase )
except np.linalg.LinAlgError:
__UpperCAmelCase : Optional[int] = np.linalg.pinv(__lowerCamelCase )
__UpperCAmelCase : Optional[Any] = np.dot(__lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 | 0 |
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__, snake_case__=5 ) -> Dict:
assert masked_input.count("<mask>" ) == 1
__UpperCAmelCase : List[str] = torch.tensor(tokenizer.encode(lowerCamelCase_, add_special_tokens=lowerCamelCase_ ) ).unsqueeze(0 ) # Batch size 1
__UpperCAmelCase : Union[str, Any] = model(lowerCamelCase_ )[0] # The last hidden-state is the first element of the output tuple
__UpperCAmelCase : Any = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
__UpperCAmelCase : Union[str, Any] = logits[0, masked_index, :]
__UpperCAmelCase : List[Any] = logits.softmax(dim=0 )
__UpperCAmelCase : List[Any] = prob.topk(k=lowerCamelCase_, dim=0 )
__UpperCAmelCase : Dict = """ """.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCamelCase_ ) )] )
__UpperCAmelCase : Union[str, Any] = tokenizer.mask_token
__UpperCAmelCase : List[Any] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ):
__UpperCAmelCase : Tuple = predicted_token_bpe.replace("\u2581", " " )
if " {0}".format(lowerCamelCase_ ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(" {0}".format(lowerCamelCase_ ), lowerCamelCase_ ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(lowerCamelCase_, lowerCamelCase_ ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
_snake_case = CamembertTokenizer.from_pretrained('''camembert-base''')
_snake_case = CamembertForMaskedLM.from_pretrained('''camembert-base''')
model.eval()
_snake_case = 'Le camembert est <mask> :)'
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 358 | import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class _snake_case ( unittest.TestCase ):
def __init__( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=13 , __lowerCamelCase: List[str]=7 , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[str]=True , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Tuple=99 , __lowerCamelCase: List[str]=32 , __lowerCamelCase: Optional[Any]=5 , __lowerCamelCase: List[str]=4 , __lowerCamelCase: str=37 , __lowerCamelCase: Union[str, Any]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: Optional[Any]=0.1 , __lowerCamelCase: Tuple=5_12 , __lowerCamelCase: int=16 , __lowerCamelCase: str=2 , __lowerCamelCase: Optional[Any]=0.02 , __lowerCamelCase: Optional[Any]=4 , ) -> str:
__UpperCAmelCase : Union[str, Any] = parent
__UpperCAmelCase : Optional[int] = batch_size
__UpperCAmelCase : Optional[Any] = seq_length
__UpperCAmelCase : Tuple = is_training
__UpperCAmelCase : List[str] = use_attention_mask
__UpperCAmelCase : Dict = use_token_type_ids
__UpperCAmelCase : Optional[int] = use_labels
__UpperCAmelCase : Optional[Any] = vocab_size
__UpperCAmelCase : Union[str, Any] = hidden_size
__UpperCAmelCase : Dict = num_hidden_layers
__UpperCAmelCase : Dict = num_attention_heads
__UpperCAmelCase : Tuple = intermediate_size
__UpperCAmelCase : Union[str, Any] = hidden_act
__UpperCAmelCase : Tuple = hidden_dropout_prob
__UpperCAmelCase : str = attention_probs_dropout_prob
__UpperCAmelCase : Optional[Any] = max_position_embeddings
__UpperCAmelCase : Optional[int] = type_vocab_size
__UpperCAmelCase : str = type_sequence_label_size
__UpperCAmelCase : Tuple = initializer_range
__UpperCAmelCase : str = num_choices
def _lowerCamelCase ( self: Optional[Any] ) -> List[str]:
__UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCAmelCase : str = None
if self.use_attention_mask:
__UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCAmelCase : Any = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , )
return config, input_ids, attention_mask
def _lowerCamelCase ( self: str ) -> Any:
__UpperCAmelCase : List[str] = self.prepare_config_and_inputs()
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[int] = config_and_inputs
__UpperCAmelCase : Any = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _snake_case ( _lowercase , unittest.TestCase ):
lowerCamelCase__: str = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _lowerCamelCase ( self: List[Any] ) -> Dict:
__UpperCAmelCase : Union[str, Any] = FlaxDistilBertModelTester(self )
@slow
def _lowerCamelCase ( self: Tuple ) -> Optional[Any]:
for model_class_name in self.all_model_classes:
__UpperCAmelCase : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def _lowerCamelCase ( self: int ) -> List[Any]:
__UpperCAmelCase : Dict = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" )
__UpperCAmelCase : Any = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__UpperCAmelCase : Optional[int] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__UpperCAmelCase : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
__UpperCAmelCase : str = (1, 11, 7_68)
self.assertEqual(output.shape , __lowerCamelCase )
__UpperCAmelCase : Optional[int] = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
| 342 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.